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Neutrinos propagating in media (matter and electromagnetic fields) undergo flavor and helicity
oscillations, where helicity transitions are instigated both by electromagnetic fields and matter currents.
In addition, it has been shown that correlations between neutrinos and antineutrinos of opposite momentum
can build up in anisotropic media. We rederive the neutrino equations of motion in the mean-field
approximation for homogeneous yet anisotropic media, confirming previous results except for a small
correction in the Majorana case. Furthermore, we derive the mean-field Hamiltonian induced by neutrino
electromagnetic interactions. We also provide a phenomenological discussion of pair correlations in
comparison with helicity correlations.
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I. INTRODUCTION

Neutrino flavor conversion in vacuum [1,2], in matter
[3–8], or self-induced flavor conversion in a gas of
interacting neutrinos [9–27] provide a rich phenomenology
of very practical experimental and astrophysical impor-
tance. The data leave no room for doubt that neutrinos have
small but nonvanishing masses. One consequence is that
neutrinos have small electromagnetic dipole and transition
moments [28]. These lead to spin and spin-flavor oscil-
lations in strong electromagnetic fields [29–32]. Actually,
polarized matter or matter currents alone instigate spin and
spin-flavor transitions of massive neutrinos, having effects
similar to electromagnetic fields [33–37].
For neutrinos streaming from a supernova core, the

background medium may contain currents. Moreover,
the neutrino stream itself provides an unavoidable non-
isotropic background. In addition, self-induced flavor
conversion in an interacting neutrino gas requires unstable
modes in flavor space (run-away solutions). If such
solutions exist, even small perturbations or otherwise small
effects can grow exponentially. In this sense, it is never
obvious if a seemingly small effect can get amplified by
an instability to play an important role after all. Therefore, it
is interesting to study if an interacting neutrino gas can
amplify helicity conversion effects [38] which otherwise
are very small.
Flavor oscillations lead to correlations building up

between neutrinos of different flavor. If a†α is the creation
operator of a neutrino in flavor state α with a certain
momentum p, the initially prepared system can be
described by the occupation number ha†αaαi. One way of
looking at flavor oscillations is that “flavor off-diagonal”
occupation numbers of the type ha†αaβi develop and

oscillate [39–41]. One unifies these expressions in a density
matrix ρ with components ραβ ¼ ha†βaαi. It evolves accord-
ing to the commutator equation i_ρ ¼ ½H; ρ�, where H is the
Hamiltonian matrix, consisting of oscillation frequencies.
For vacuum oscillations we have H ¼ M2=2E, whereM2 is
a matrix of squared neutrino masses. Similar descriptions
pertain to spin and spin-flavor oscillation, where the indices
now indicate various states of spin and/or flavor.
It was recently stressed that yet another form of

correlations, hitherto neglected in the context of neutrino
propagation, can build up in nonisotropic media [42–44]. If
a†p is the creation operator of a massless neutrino in mode p
and b†−p is the one for an antineutrino with opposite
momentum, correlators of the form κp ¼ hb−papi and κ†p ¼
ha†pb†−pi will build up, the latter corresponding to the
creation of a particle-antiparticle pair with vanishing total
momentum. Because massless neutrinos and antineutrinos
have opposite helicity, this pair has total spin 1 so that its
creation requires a medium current transverse to p to satisfy
angular-momentum conservation. This requirement is
analogous to the case of helicity transitions where we also
need a transverse current or magnetic field for the same
reason. Including flavor and spin degrees of freedom
expands the “pair correlations” κ and κ† to become matrices
similar to ρ.
To develop more intuition about the meaning of the pair

correlations, we consider a single mode p of neutrinos
and −p of antineutrinos. We define ρp ¼ ha†papi and for
antineutrinos ρ̄p ¼ hb†−pb−pi involving the opposite
momentum. Following the earlier literature [42–44], we
unify these expressions in an extended density matrix

R ¼
�

ρ κ

κ† 1 − ρ̄

�
¼
 

ha†papi hb−papi
ha†pb†−pi hb−pb†−pi

!
; ð1Þ
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which obeys an equation of motion of the form [42–44]

i _R ¼ ½H;R�: ð2Þ

If the background is a current moving in the transverse
direction with velocity β, the Hamiltonian matrix is found
to be

H ¼ E

�
1 0

0 −1

�
þ V

�
1 −β
−β 1

�
; ð3Þ

where E ¼ jpj. For νμ or ντ neutrinos the usual matter
potential is V ¼ GFnn=

ffiffiffi
2

p
, where nn is the neutron density.

This commutator equation has the same structure that
one encounters for the evolution of any two-level system
and in particular for two-flavor or helicity oscillations, of
course with a different matrix H for each case. However,
what specifically are the two states that are being mixed by
the matter current in the pair-correlation case?
The answer becomes evident if one considers the

evolution of states rather than correlators. Our simple
system is described by the four basis states j00i, j10i,
j01i and j11i, where the first entry refers to νðpÞ and the
second to ν̄ð−pÞ. A homogeneous background medium
cannot mix states of different total momentum, so the
single-particle states must evolve independently as
i∂tj10i ¼ ðEþ VÞj10i and i∂tj01i ¼ ðE − VÞj01i, i.e.,
they simply suffer the usual energy shift by the weak
potential of the medium. This leaves us with j00i and j11i
which both have zero momentum and therefore can be
mixed by a homogeneous medium. The former has spin 0,
the latter spin 1, so for the medium to mix them, it must
provide a transverse vector in the form of a current or a
spin polarization. If A00 and A11 are the amplitudes of j00i
and j11i, respectively, we will show later that Eq. (2)
corresponds to

i∂t

�
A00

A11

�
¼
�

0 βV

βV 2E

��
A00

A11

�
: ð4Þ

Therefore, it is the empty and the completely filled states
that are being mixed and that oscillate. The true ground
state of our system is not j00i, but a suitable combination of
j00i and j11i which follows from diagonalizing the matrix
in Eq. (4).
As we have noted, any two-level system is equivalent to

an abstract spin-1
2
system. In two-flavor oscillations, the

“spin” represents the two flavor states. In the pair-
correlation case, “spin up” means “empty” and “spin
down” means “full with a pair.” This interpretation is
analogous to Anderson’s “pseudo spin” devised to describe
Cooper pairs in the context of superconductivity [45].
A coherent superposition of these two spin states, repre-
sented in our case by the pair correlations, corresponds to a
coherent superposition of j00i and j11i.

In analogy to the example of superconductivity, another
way to think about these phenomena is in terms of
Bogolyubov transformations of the creation and annihila-
tion operators. If we think of a single momentum mode p of
mixed neutrinos in vacuum, the operators aνe and aνμ in the
flavor basis are rotated by a unitary transformation with
mixing angle ϑ to form new operators cϑaνe þ sϑaνμ and
cϑaνe − sϑaνμ , and similarly for the creation operators, to
form a new set of canonically anticommuting operators,
now describing neutrinos in the mass basis. Describing
flavor oscillations in terms of time-dependent Bogolyubov
transformations can be especially illuminating to under-
stand quantum statistics in mixing phenomena for both
bosons and fermions [46]. Pair correlations correspond to
the same idea where the mixing is between ap and b

†
−p with

a mixing angle corresponding to the unitary transformation
that diagonalizes the matrix in Eq. (4). The state j00i
defined in the Bogolyubov-transformed basis is the ground
state of the system and no longer oscillates into the new
j11i state.
The goal of our paper is two-pronged. On the one hand

we reconsider the mean-field equations of motion for
massive neutrinos propagating in a background medium
that can consist of matter and neutrinos, and that is
homogeneous but not isotropic. Besides the usual flavor
oscillations in matter, the resulting phenomena include spin
and spin-flavor oscillations as well as pair correlations.
As a second goal, we provide a phenomenological

discussion of the interpretation of the pair correlations in
the context of neutrino oscillation problems in dense media.
Ultimately, our community needs to develop an under-
standing if, from a practical perspective, we need to worry
about pair correlations and helicity oscillations in the
supernova context.
The supernova environment is characterized by small

neutrino energies of at most some 200 MeV (for degenerate
νe), i.e., small compared to W and Z masses so that it
suffices to describe neutrino interactions in terms of an
effective current-current Hamiltonian. In the early
Universe, where the chemical potentials of background
particles are small, one has to worry about corrections from
the electroweak gauge-boson propagators even at low
temperatures [47]. The supernova environment, in contrast,
has large densities of background particles and this concern
is moot.
On the mean-field level, the current of background

particles is a classical quantity. For example, the neutral-
current interaction of a neutrino with neutrons is given by
the Hamiltonian density H ¼ ffiffiffi

2
p

GF½ν̄γμPLν�Iμn, where GF
is the Fermi constant, ν is the neutrino Dirac field, PL is
the left-handed projector, and Iμn is the neutron current. If
the current is homogeneous, H ¼ R d3xH is effectively a
“forward” Hamiltonian: it couples, e.g., a† and a of equal
momenta. Following the previous literature [40,41,44], the
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evolution of, e.g., the annihilator for a neutrino of mass
eigenstate i in mode p is given by the Heisenberg
equation of motion i∂taiðt;pÞ ¼ ½aiðt;pÞ; H�. It is then
straightforward to find the equations of motion of bilinears
of the form a†i ðt;pÞajðt;pÞ, of their expectation value
ha†i ðt;pÞajðt;pÞi, of the entire matrix ρ, and then of the
extended matrix R which also includes pair correlations.
It is largely a cumbersome bookkeeping exercise to

obtain, for neutrinos with mass, all the components of the
Hamiltonian matrix H appearing in Eq. (2) when R
involves all components of spin and flavor. We perform
this task separately for Dirac neutrinos in Sec. II, for
Majorana neutrinos in Sec. III, and for Weyl neutrinos
(massless two-component case) in Sec. IV. These deriva-
tions closely parallel the recent paper by Serreau and Volpe
[44] and we will largely follow their notation to avoid
confusion. In the Majorana case, we find a small correction,
but otherwise our results agree.
The density matrix formalism allows one to treat helicity

oscillations induced by magnetic fields and by matter
currents on equal footing for both Dirac and Majorana
fermions. We derive the mean-field Hamiltonian induced
by electromagnetic fields in Sec. V. Concerning helicity
oscillations induced by matter currents, which we analyze
in Sec. VI, our results coincide with those of Volpe and
Serreau, and parallel those of Vlasenko, Fuller, and
Cirigliano [36–38] as far as the mean-field limit is con-
cerned. These authors have derived the neutrino kinetic
equations starting from first field-theoretic principles and
have carried the results beyond the mean-field limit to
include (nonforward) collision terms, generalizing previous
derivations [39–41]. We note in passing that one of their
findings—helicity oscillations in a nonisotropic matter
background—had been anticipated in several papers by
Studenikin and collaborators who have worked out the one-
to-one correspondence to the effect of electromagnetic
fields [33,35]. Of course, Vlasenko, Fuller, and Cirigliano
also included neutrino-neutrino interactions as an agent of
helicity conversion and carried their results beyond the
mean-field limit.
Pair correlations have been studied in detail in condensed

matter and nuclear physics, as well as in the context of pair
creation in quantum field theory. On the other hand, in
neutrino physics these concepts are less familiar. They have
been addressed only in a handful of papers in the context of
leptogenesis, where pair correlations have been studied
from first principles in a series of papers by Fidler,
Herranen, Kainulainen and Rahkila [48–52]. In the context
of neutrino propagation in supernovae, the only discussions
so far appear in a series of papers by Volpe and collab-
orators [42–44]. We address phenomenological aspects of
pair correlations in Sec. VII and compare them to helicity
correlations.
Finally, in Sec. VIII we summarize the results and

present our conclusions.

II. DIRAC NEUTRINO

Our first goal is to derive the components of the
Hamiltonian matrix H which governs the evolution equa-
tion (2) for the extended density matrix R including flavor,
helicity, and pair correlations. In this rather technical
section, we begin with the conceptually simplest case of
three neutrino flavors which are assumed to have Dirac
masses. Therefore, helicity correlations involve the sterile
components of the neutrino field, which otherwise are
completely decoupled.

A. Two-point correlators and kinetic equations

In the simplest approximation, one can describe the state
of a neutrino gas in terms of one-particle distribution
functions. They are extended to include flavor and helicity
coherence effects by promoting the one-particle distribu-
tion functions to density matrices [36,39–41,44]. In terms
of the usual creation and annihilation operators, their
components are

ð2πÞ3δðp − kÞρij;shðt;pÞ ¼ ha†j;hðt;þkÞai;sðt;þpÞi; ð5aÞ

ð2πÞ3δðp − kÞρ̄ij;shðt;pÞ ¼ hb†i;sðt;−pÞbj;hðt;−kÞi; ð5bÞ

where i and j are flavor indices in the mass basis, and s
and h ∈ fþ;−g denote helicities. In this convention, the
density matrix for antineutrinos ρ̄ij;shðt;pÞ for momentum
p actually corresponds to the occupation numbers of
antineutrinos with physical momentum −p.
This convention is necessary to combine ρ and ρ̄with the

pair correlations which are defined as [43,44]

ð2πÞ3δðp − kÞκij;shðt;pÞ ¼ hbj;hðt;−kÞai;sðt;þpÞi; ð6aÞ

ð2πÞ3δðp − kÞκ†ij;shðt;pÞ ¼ ha†j;hðt;þpÞb†i;sðt;−kÞi; ð6bÞ

and which involve opposite-momentum modes.
The kinetic equations for Eqs. (5) and (6) are obtained

with the Heisenberg equation of motion. As we will show
below, in the mean-field approximation, and assuming
spatial homogeneity, the Hamiltonian of charged- and
neutral-current neutrino interactions can be written in the
compact form

Hmf ¼
Z

d3xν̄iðt;xÞΓijνjðt;xÞ; ð7Þ

where summation over repeated indices is implied. The
kernel takes account of the background medium and is

Γij ¼ γμPLV
μ
ij; ð8Þ

where PL ¼ ð1 − γ5Þ=2 is the usual left-chiral projector.
The current of background matter Vμ

ij will be defined
in Eq. (24).
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The momentum-mode decomposition of a Dirac
neutrino field reads

νiðt;xÞ ¼
Z
p;s

eip·xνi;sðt;pÞ; ð9Þ

where
R
p;s denotes the phase-space integration

R
d3p=ð2πÞ3

and the summation over helicities. In the mass basis, the
individual momentum modes are

νi;sðt;pÞ ¼ ai;sðt;pÞui;sðpÞ þ b†i;sðt;−pÞvi;sð−pÞ: ð10Þ

The chiral spinors u and v are given in Appendix A, and
the creation and annihilation operators satisfy the usual
equal-time anticommutation relation,

fai;sðt;pÞ; a†j;hðt;kÞg ¼ ð2πÞ3δðp − kÞδijδsh: ð11Þ

Similar relations hold for the antiparticle operators b
and b†.
As a next step, we contract the kernels Γij with the

spinors appearing in the mean-field Hamiltonian (7),
leading to the matrices [44]

Γνν
ij;shðpÞ≡ ūi;sðpÞΓijuj;hðpÞ; ð12aÞ

Γνν̄
ij;shðpÞ≡ ūi;sðpÞΓijvj;hð−pÞ; ð12bÞ

Γν̄ν
ij;shðpÞ≡ v̄i;sð−pÞΓijuj;hðpÞ; ð12cÞ

Γν̄ ν̄
ij;shðpÞ≡ v̄i;sð−pÞΓijvj;hð−pÞ; ð12dÞ

in component form.We can now bring Eq. (7) to the desired
form bilinear in the creation and annihilation operators

Hmf ¼
Z
p
½a†i;sðpÞΓνν

ij;shðpÞaj;hðpÞþa†i;sðpÞΓνν̄
ij;shðpÞb†j;hð−pÞ

þbi;sð−pÞΓν̄ν
ij;shðpÞaj;hðpÞ

þbi;sð−pÞΓν̄ ν̄
ij;shðpÞb†j;hð−pÞ�; ð13Þ

where we have omitted the time arguments to shorten the
notation. Summation over repeated indices is implied.
Using the Heisenberg equation of motion with this

Hamiltonian one finds the extended equation of motion
i _R ¼ ½H;R�; see also Eq. (2). The extended density matrix,
Eq. (1), and the Hamiltonian, Eq. (3), generalize to [42]

R ¼
�

ρ κ

κ† 1 − ρ̄

�
and H ¼

�
Hνν Hνν̄

Hν̄ν Hν̄ ν̄

�
; ð14Þ

where the submatrices Hνν ¼ Γνν, Hνν̄ ¼ Γνν̄ etc. and ρ, κ,
etc. are 6 × 6 matrices in helicity and flavor space. The
product between such matrices in the commutator is

defined in the obvious way ðA · BÞij;sh ≡ Ain;srBnj;rh with
a summation over repeated indices. In the following we
write the matrix structure in the form of 2 × 2 matrices in
helicity space,  

−− ij −þ ij

þ− ij þþ ij

!
; ð15Þ

where each entry is itself a 3 × 3 matrix in flavor space.

B. Hamiltonian in the mean-field approximation

After having established the overall structure of the
kinetic equations we now turn to the interactions contrib-
uting to neutrino refraction in the supernova environment.
In this subsection we only consider charged- and neutral-
current neutrino interactions, whereas the analysis of the
electromagnetic interactions is postponed to Sec. V.

1. Charged-current interaction

We begin with charged-current (cc) interactions with
background charged leptons. In the low-energy limit and
after a Fierz transformation, the usual current-current
Hamiltonian density is

Hcc ¼
ffiffiffi
2

p
GF

X
α;β

½ν̄αγμPLνβ�½l̄βγμð1 − γ5Þlα�; ð16Þ

where α; β ∈ fe; μ; τg are flavor indices.
To obtain the neutrino mean-field Hamiltonian we

replace the second bracket by its expectation value. In
the supernova environment, the temperature is too low to
support a substantial density of muons or tauons, and we
use only the electron background. Then we find in the mass
basis

Hcc
mf ¼

ffiffiffi
2

p
GF

X
i;j

½ν̄iγμPLνj�½U†
ieI

μ
ccUej�; ð17Þ

where U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. We have introduced a linear combination
of vector and axial-vector charged electron currents,

Iμcc ≡ cVhēγμei − cAhēγμγ5ei; ð18Þ

where cV ¼ cA ¼ 1. Because electrons are the only back-
ground particles contributing to charged-current inter-
actions and to simplify the notation, an “e” index is
implied in Iμcc. If the electrons are not polarized, the axial
current vanishes and Iμcc ¼ Jμe, the “convective” electron
current.

2. Neutral-current interaction with matter

The neutral-current (nc) interactions with matter are
described in the mass basis by the Hamiltonian density
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Hnc ¼
ffiffiffi
2

p
GF

X
i;f

½ν̄iγμPLνi�½ψ̄fγ
μðcfV − cfAγ

5Þψf�; ð19Þ

where f denotes electrons, protons, and neutrons. The
resulting contribution to the mean-field Hamiltonian is

Hnc
mf ¼

ffiffiffi
2

p
GF

X
i

½ν̄iγμPLνi�½Iμnc þ Iμp þ Iμn�; ð20Þ

where Iμnc denotes the electron neutral current (index e
implied), whereas the other contributions refer to protons
and neutrons as explicitly indicated.
These currents are defined in analogy to Eq. (18) with the

appropriate coupling constants. For electrons, they are
given by cV ¼ − 1

2
þ 2sin2θW (Weinberg angle θW) and

cA ¼ − 1
2
. For protons, cV ¼ 1

2
− 2sin2θW , i.e., the same as

for electrons with opposite sign, and for neutrons cV ¼ − 1
2
.

For the nucleon axial vector one often uses cA ¼ �1.26=2
in analogy to their charged current. However, the strange-
quark contribution to the nucleon spin as well as mod-
ifications in a dense nuclear medium leave the exact values
somewhat open [53,54].
In an unpolarized and electrically neutral environment,

the axial currents disappear and the electron and proton
contributions to the convective neutral current cancel such
that in Eq. (20) we have Iμnc þ Iμp þ Iμn ¼ − 1

2
Jμn, where J

μ
n is

the neutron convective current. Neutrino refraction in such
a medium depends only on the charged electron current and
the neutral neutron current.

3. Neutrino-neutrino interaction

The most complicated interaction is the neutral-current
neutrino-neutrino one. It is described in the mass basis by
the Hamiltonian density

Hνν ¼ 1ffiffiffi
2

p GF

X
ij

½ν̄iγμPLνi�½ν̄jγμPLνj�: ð21Þ

To obtain the mean-field Hamiltonian bilinear in the
neutrino fields we need to replace products of two of
the four neutrino fields in this expression by their expect-
ation value.
The only combinations that do not violate lepton number

are of the type hν̄iνji and hνiν̄ji, where i and j can be equal
or different. We denote the corresponding mean field as

Iμij ≡ hν̄jγμPLνii: ð22Þ

To simplify notation we avoid an explicit “neutrino” and
“nc” index, i.e., expressions of the type Iμij always refer to
the neutral neutrino current for the mass states i and j. An
explicit expression in terms of the density matrices and pair
correlators will be given in Eq. (27) below.

For the i ¼ j contractions it is sufficient to take the
expectation value of one of the square brackets in
Eq. (21), leading to the mean-field Hamiltonianffiffiffi
2

p
GF
P

ij½ν̄iγμPLνi�Iμjj. For the i ≠ j contractions we
use the Fierz identity to rewrite the Hamiltonian as
½ν̄iγμPLνj�½ν̄jγμPLνi� in Eq. (21), leading to the contributionffiffiffi
2

p
GF
P

ij½ν̄iγμPLνj�Iμij. Altogether, we find

Hνν
mf ¼

ffiffiffi
2

p
GF

X
ij

½ν̄iγμPLνj�
�
Iμij þ δij

X
k

Iμkk

�
ð23Þ

for the neutrino-neutrino mean-field Hamiltonian.

C. Components of the Hamiltonian matrix H

Adding up Eqs. (17), (20), and (23) we find the overall
mean-field current

Vμ
ij ¼

ffiffiffi
2

p
GF

�
U†

ieI
μ
ccUej þ δijðIμnc þ Iμp þ IμnÞ

þ Iμij þ δij
X
k

Iμkk

�
: ð24Þ

The spinor contractions defined in Eq. (12) lead to the
components of the Hamiltonian matrix H of the form

Hνν
ij;sh ¼ ðγμPLÞννij;shVμ

ij þ δshδijEi; ð25aÞ

Hνν̄
ij;sh ¼ ðγμPLÞνν̄ij;shVμ

ij; ð25bÞ

Hν̄ν
ij;sh ¼ ðγμPLÞν̄νij;shVμ

ij; ð25cÞ

Hν̄ ν̄
ij;sh ¼ ðγμPLÞν̄ ν̄ij;shVμ

ij − δshδijEi; ð25dÞ

where Ei ¼ ðp2 þm2
i Þ

1
2 is the neutrino energy, and we have

identified Hνν ¼ Γνν, Hνν̄ ¼ Γνν̄, etc. We have used the
compact notation

ðγμPLÞννij;sh ≡ ūi;sðþpÞγμPLuj;hðþpÞ; ð26aÞ

ðγμPLÞνν̄ij;sh ≡ ūi;sðþpÞγμPLvj;hð−pÞ; ð26bÞ

ðγμPLÞν̄νij;sh ≡ v̄i;sð−pÞγμPLuj;hðþpÞ; ð26cÞ

ðγμPLÞν̄ ν̄ij;sh ≡ v̄i;sð−pÞγμPLvj;hð−pÞ: ð26dÞ

Later we will use similar expressions for contractions with
other Dirac structures. The neutrino mean-field current
itself contains spinor contractions of this type and can be
expressed in terms of the density matrices and pair
correlations as

NEUTRINO PROPAGATION IN MEDIA: FLAVOR, … PHYSICAL REVIEW D 91, 125020 (2015)

125020-5



Iμij ¼
Z
p;s;h

½ðγμPLÞννji;hsρij;sh þ ðγμPLÞνν̄ji;hsκ†ij;sh
þ ðγμPLÞν̄νji;hsκij;sh þ ðγμPLÞν̄ ν̄ji;hsðδijδsh − ρ̄ij;shÞ�:

ð27Þ

Notice that in this case there is no implied summation over i
and j. The fourth term contains a divergent vacuum
contribution that must be renormalized.
We finally work out the spinor contractions explicitly to

lowest order in neutrino masses. To this end we introduce

nμ ¼ ð1; p̂Þ; n̄μ ¼ ð1;−p̂Þ; ϵμ ¼ ð0; ϵ̂Þ; ð28Þ

where p̂ is a unit vector in the momentum direction and the
complex polarization vector ϵ̂ spans the plane orthogonal to
p (see Appendix A for more details). We also use ϕ to
denote the polar angle of p in spherical coordinates.
To lowest order in mi, the spinor contractions are then
found to be

ðγμPLÞννij;sh ≈
� nμ −eþiϕ mj

2p ϵ
�
μ

−e−iϕ mi
2p ϵμ 0

�
; ð29aÞ

ðγμPLÞνν̄ij;sh ≈
�−eþiϕ mj

2p nμ ϵ�μ

0 −e−iϕ mi
2p n̄μ

�
; ð29bÞ

ðγμPLÞν̄νij;sh ≈
�−e−iϕ mi

2p nμ 0

ϵμ −eþiϕ mj

2p n̄μ

�
; ð29cÞ

ðγμPLÞν̄ ν̄ij;sh ≈
� 0 −e−iϕ mi

2p ϵ
�
μ

−eþiϕ mj

2p ϵμ n̄μ

�
; ð29dÞ

where we use the notation introduced in Eq. (15). As an
example, the νν term, Eq. (29a), reads explicitly

−− νν
ij ¼

0
B@

1 1 1

1 1 1

1 1 1

1
CAnμ; ð30aÞ

−þ νν
ij ¼ −

1

2p

0
B@

m1 m2 m3

m1 m2 m3

m1 m2 m3

1
CAeþiϕϵ�μ; ð30bÞ

þ− νν
ij ¼ −

1

2p

0
B@

m1 m1 m1

m2 m2 m2

m3 m3 m3

1
CAe−iϕϵμ; ð30cÞ

þþ νν
ij ¼ 0: ð30dÞ

These results agree with those obtained in Ref. [44].

III. MAJORANA NEUTRINO

From a theoretical perspective, it is quite natural for
neutrino masses to be of Majorana type. In this case, the
two helicity states of a given family coincide with the ν and
ν̄ states, the mass term violates lepton number, and there are
no sterile degrees of freedom. We work out the modifica-
tions of the results of the previous section for the Majorana
case, concentrating again on technical issues.

A. Two-point correlators and kinetic equations

In the Majorana case, the momentum decomposition of
the neutrino field looks the same as for the Dirac case
[Eq. (9)]. However, because there are no independent
antiparticle degrees of freedom, the field mode p has the
simpler form

νi;sðt;pÞ ¼ ai;sðt;pÞui;sðpÞ þ a†i;sðt;−pÞvi;sð−pÞ: ð31Þ

The creation and annihilation operators satisfy the same
anticommutation relations [Eq. (11)] and the bispinors are
the same as in the Dirac case.
The definitions of the two-point correlation functions

are different because of the different particle content,

ð2πÞ3δðp − kÞρij;shðpÞ ¼ ha†j;hðþkÞai;sðþpÞi; ð32aÞ

ð2πÞ3δðp − kÞρ̄ij;shðpÞ ¼ ha†i;sð−pÞaj;hð−kÞi; ð32bÞ

ð2πÞ3δðp − kÞκij;shðpÞ ¼ haj;hð−kÞai;sðþpÞi; ð32cÞ

ð2πÞ3δðp − kÞκ†ij;shðpÞ ¼ ha†j;hðþpÞa†i;sð−kÞi; ð32dÞ

where all operators are taken at the same time t. In the Dirac
case, κ† has no additional information relative to κ. Here we
have additional redundancies

ρ̄ij;shðt;pÞ ¼ ρji;hsðt;−pÞ; ð33aÞ

κij;shðt;pÞ ¼ −κji;hsðt;−pÞ; ð33bÞ

which reflect that Majorana neutrinos have half as many
degrees of freedom as Dirac ones. Note that in the Majorana
case, the pair correlations violate total lepton number.
The mean-field Hamiltonian, bilinear in the neutrino

creation and annihilation operators, has the same form
[Eq. (7)] as in the Dirac case. However, as we will
demonstrate below, the kernel has a more general structure,

Γij ¼ γμPLV
μ
ij þ PLVR

ij þ PRVL
ij: ð34Þ

The first piece, Vμ
ij, is defined as in Eq. (24). In addition,

there are two scalar pieces
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VL;R
ij ¼

ffiffiffi
2

p
GFI

L;R
ij ; ð35Þ

depending, as we will see, on the left-chiral and right-chiral
neutrino mean-field scalar background

IL;Rij ¼ hν̄jPL;Rνii: ð36Þ

These scalar pieces are missing in the previous literature.1

Their explicit form in terms of the density matrices and pair
correlators will be given in Eq. (41).
The mean-field Hamiltonian can be written in a form

similar to Eq. (13),

Hmf ¼
Z
p;s;h

½a†i;sðpÞΓνν
ij;shðpÞaj;hðpÞ

þ a†i;sðpÞΓνν̄
ij;shðpÞa†j;hð−pÞ

þ ai;sð−pÞΓν̄ν
ij;shðpÞaj;hðpÞ

þ ai;sð−pÞΓν̄ ν̄
ij;shðpÞa†j;hð−pÞ�; ð37Þ

where the matrices Γνν, Γνν̄, etc. are the spinor contractions
defined in Eq. (12). Using the Heisenberg equation of
motion with the Hamiltonian (37) one recovers the equation
of motion i _R ¼ ½H;R�, where R and H have the same
structure as in Eq. (14). The components of the effective
Hamiltonian now read [44]

Hνν
ij;shðpÞ ¼ Γνν

ij;shðpÞ − Γν̄ ν̄
ji;hsð−pÞ; ð38aÞ

Hνν̄
ij;shðpÞ ¼ Γνν̄

ij;shðpÞ − Γνν̄
ji;hsð−pÞ; ð38bÞ

Hν̄ν
ij;shðpÞ ¼ Γν̄ν

ij;shðpÞ − Γν̄ν
ji;hsð−pÞ; ð38cÞ

Hν̄ ν̄
ij;shðpÞ ¼ Γν̄ ν̄

ij;shðpÞ − Γνν
ji;hsð−pÞ: ð38dÞ

Not all of these components are independent. In particular

Hν̄ ν̄
ij;shðpÞ ¼ −Hνν

ji;hsð−pÞ; ð39aÞ

Hνν̄
ij;shðpÞ ¼ −Hνν̄

ji;hsð−pÞ; ð39bÞ

so only two of the four submatrices of H are independent.

B. Neutrino-neutrino mean-field Hamiltonian

The Majorana neutrino interaction with matter is
described by the same charged- and neutral-current
Hamiltonian densities [Eqs. (16) and (19)] which lead to

the same mean-field currents of electrons and nucleons—
see Eqs. (17) and (20).
The neutrino-neutrino interaction in the Majorana case is

also described by Eq. (21). However, Majorana neutrinos
violate lepton-number conservation, and in addition to the
four lepton-number-conserving combinations considered
in Sec. II one should also take into account the lepton-
number-violating combinations hνiνji and hν̄iν̄ji which
were not included in the previous literature.
To calculate these additional contractions, we use the

definition of the charge-conjugate field νc ≡ Cν̄T , where C
is the charge-conjugation matrix which has the property
CTC ¼ 1. Using this definition ν̄ ¼ ðνcÞTC and ν ¼
Cγ0ðνcÞ�, which further implies ν̄γμPLν ¼ −νcγμPRν

c.
Therefore, we can rewrite the Hamiltonian as
−½ν̄iγμPLνi�½νcjγμPRν

c
j � in Eq. (21). The Fierz identity

[55] ðγμPLÞ½γμPR� ¼ 2ðPR�½PLÞ further allows us to rewrite
it as 2½ν̄iPRν

c
j �½νcjPLνi�, where another sign change was

induced by anticommuting the neutrino fields. Taking the
expectation value of one of the square brackets we obtain
for the new contribution to the mean-field Hamiltonian
density

Hνν
mf ¼

ffiffiffi
2

p
GF

X
ij

ð½ν̄iPRν
c
j �ILij þ ½νci PLνj�IRijÞ: ð40Þ

These new terms supplement the expression for the
effective Majorana Hamiltonian obtained in the previous
literature [44]. In Appendix B we reproduce this result
using two-component notation.
Two comments are in order here. First, for Majorana

fermions νc ¼ ν and therefore the resulting contribution
to the kernel reduces to the last two terms in Eq. (34),
while the definition of left- and right-chiral neutrino
backgrounds reduces to Eq. (35). Second, ν̄PRν

c ¼ ν̄Lν
c
L

and ν̄cPLν ¼ νcLνL, where νL ≡ PLν, which are nothing but
components of the Majorana mass term.

C. Components of the Hamiltonian matrix H

The new contributions stemming from neutrino-neutrino
interactions can be expressed in terms of the (anti)particle
densities and pair correlators,

ILij ¼
Z
p;s;h

½ðPLÞννji;hsρij;sh þ ðPLÞν̄ ν̄ji;hsðδijδsh − ρ̄ij;shÞ

þ ðPLÞν̄νji;hsκij;hs þ ðPLÞνν̄ji;hsκ†ij;sh�; ð41Þ

where we have again suppressed the common arguments p
and ðt;pÞ. The notation for the scalar contractions ðPLÞννij;sh
etc. is analogous to Eq. (26), except that now there is no γμ

included.
To lowest order in the small neutrino masses we find,

using the explicit form of the chiral spinors of Appendix A,

1In a private communication, the authors of Ref. [44] agree that
these terms should indeed be present in the Majorana case. Of
course, the presence of these terms does not modify the overall
structure of the kinetic equations.
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ðPLÞννij;sh ≈
� mi

2p 0

0
mj

2p

�
; ð42aÞ

ðPLÞνν̄ij;sh ≈
�
0 0

0 −e−iϕ

�
; ð42bÞ

ðPLÞν̄νij;sh ≈
�
e−iϕ 0

0 0

�
; ð42cÞ

ðPLÞν̄ ν̄ij;sh ≈
�− mj

2p 0

0 − mi
2p

�
: ð42dÞ

The components of ðPRÞ can be obtained from these
results using the relations ðPRÞννij;sh ¼ ½ðPLÞννji;hs�� and
ðPRÞνν̄ij;sh ¼ ½ðPLÞν̄νji;hs��, as well as similar relations for
the remaining two components.
Using the definitions (38) combined with Eq. (29) and

the corresponding definition for the scalar case we obtain
for the νν component of H

Hνν
ij;shðpÞ ¼ δshδijEi

þ ðγμPLÞννij;shðpÞVμ
ij − ðγμPLÞν̄ ν̄ji;hsð−pÞVμ

ji

þ ðPLÞννij;shðpÞVR
ij − ðPLÞν̄ ν̄ji;hsð−pÞVR

ji

þ ðPRÞννij;shðpÞVL
ij − ðPRÞν̄ ν̄ji;hsð−pÞVL

ji: ð43Þ

The second line generalizes the Dirac result of Eq. (25a)
to the Majorana case and has been obtained in Ref. [44].
The third and fourth lines stem from the contractions (40)
and supplement the previous results.
The ν̄ ν̄ term follows from the identity (39). For the νν̄

component we find

Hνν̄
ij;shðpÞ ¼ ðγμPLÞνν̄ij;shðpÞVμ

ij − ðγμPLÞνν̄ji;hsð−pÞVμ
ji

þ ðPLÞνν̄ij;shðpÞVR
ij − ðPLÞνν̄ji;hsð−pÞVR

ji

þ ðPRÞνν̄ij;shðpÞVL
ij − ðPRÞνν̄ji;hsð−pÞVL

ji: ð44Þ

The ν̄ν component follows from replacing νν̄ with ν̄ν
everywhere in this result.
An inspection of Eqs. (41) and (42) shows that the last

two lines of Eq. (43) contain terms proportional to κ and κ†

that are linear in the neutrino masses, and additionally
terms quadratic in the neutrino masses which we neglect
here.
A peculiar feature of Eq. (44) is that its last two lines

contain terms proportional to κ and κ† that are not sup-
pressed by the neutrino masses and therefore do not vanish
when we set the masses to zero. This is somewhat
surprising because we expect that Dirac and Majorana

neutrinos are equivalent for mν → 0. Therefore, the com-
ponents of H must coincide in this limit. We return to this
question in Sec. IV, where we study the case of massless
two-component neutrinos and demonstrate that in the
massless limit these additional terms, which are propor-
tional to the lepton-number-violating correlators, are not
produced if they are zero initially.
On the other hand, one important finding of our paper is

that for a Majorana neutrino with an arbitrary small mass,
lepton-number-violating correlators are automatically pro-
duced and, in turn, induce the additional scalar background
terms of the mean-field Hamiltonian which then affect the
dynamics of the density matrices.

IV. WEYL NEUTRINO

In the previous section we have found that the additional
scalar contributions to the mean-field Hamiltonian, that
naturally arise for Majorana neutrinos, do not vanish in the
massless limit. This is somewhat surprising because we
expect no difference between Dirac andMajorana neutrinos
in this case. To clarify this paradox we study a single
generation of massless neutrinos. The equations presented
in this section will also be used later to study particle-
antiparticle coherence.

A. Standard two-point correlators
and kinetic equations

In the Weyl case, the momentum decomposition of the
neutrino field looks the same as for the Dirac case [Eq. (9)].
However, because a Weyl fermion has only two degrees of
freedom the field mode p does not carry a spin index,

νðt;pÞ ¼ aðt;pÞu−ðpÞ þ b†ðt;−pÞvþð−pÞ: ð45Þ

It is automatically left-chiral because the right-chiral
components of the chiral spinors u−ðpÞ and vþð−pÞ vanish
in the massless limit; see Appendix A.
If we require lepton-number conservation then the only

correlators that we can define are

ð2πÞ3δðp − kÞρ−−ðpÞ ¼ ha†ðkÞaðpÞi; ð46aÞ

ð2πÞ3δðp − kÞρ̄þþðpÞ ¼ hb†ð−kÞbð−pÞi; ð46bÞ

ð2πÞ3δðp − kÞκ−þðpÞ ¼ hbð−kÞaðpÞi; ð46cÞ

ð2πÞ3δðp − kÞκ†þ−ðpÞ ¼ ha†ðpÞb†ð−kÞi: ð46dÞ

Note that we keep helicity indices in these definitions to
distinguish the lepton-number-conserving correlators from
the lepton-number-violating ones, which we introduce
below.We can extract the explicit form of the kinetic
equations for these correlators from Eq. (2),
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i_ρ−− ¼ Hνν
−−ρ−− − ρ−−Hνν

−− þ Hνν̄
−þκ

†
þ− − κ−þHν̄νþ−; ð47aÞ

i _̄ρþþ ¼Hν̄ ν̄þþρ̄þþ− ρ̄þþHν̄ ν̄þþ−Hν̄νþ−κ−þþ κ†þ−Hνν̄
−þ; ð47bÞ

i_κ−þ ¼ Hνν
−−κ−þ − κ−þHν̄ ν̄þþ − Hνν̄

−þρ̄þþ − ρ−−Hνν̄
−þ þ Hνν̄

−þ;

ð47cÞ

where we omit the arguments ðt;pÞ, which are common to
all the functions, to shorten the notation. Note that for a
single neutrino generation the first two terms in Eqs. (47a)
and (47b) cancel each other and we have retained them only
to keep the resemblance with the general form of the kinetic
equations.
A peculiar feature of Eq. (47c) is that κ, i.e. the coherence

between j00i and j11i states, is automatically induced
provided that the mean-field Hamiltonian H has nonzero
off-diagonals. The off-diagonals can be induced even if
all neutrino two-point functions are zero initially by, for
instance, a transverse neutron current.
The explicit form of the mean-field Hamiltonian can be

obtained from Eq. (29) by setting the masses to zero,

Hνν
−−ðpÞ ¼ Eþ V0 − p̂V; ð48aÞ

Hνν̄
−þðpÞ ¼ −ϵ̂�V; ð48bÞ

Hν̄νþ−ðpÞ ¼ −ϵ̂V; ð48cÞ

Hν̄ ν̄þþðpÞ ¼ −Eþ V0 þ p̂V; ð48dÞ

where E ¼ jpj. Note that the p̂V term in Eq. (48a) accounts
for the enhancement (suppression) of the mean-field
potential for the matter flowing antiparallel (parallel) to
the neutrino momentum. This has been pointed out in
Ref. [34].
It remains to express the neutrino current Iμ in terms of

the density matrices and pair correlations. For its time
component we obtain from Eq. (27), I0 ¼ Rp l, where
lðt;pÞ≡ ρðt;pÞ − ρ̄ðt;−pÞ has the meaning of lepton
number in mode p. For the spatial components we find

I ¼
Z
p
½p̂lþ ϵ̂κ þ ϵ̂�κ†�; ð49Þ

which coincides with the result of Ref. [44].

B. Lepton-number-violating correlators
and kinetic equations

If we allow for hννi and hν̄ ν̄i contractions then, similarly
to the Majorana case, the mean-field Hamiltonian receives
contributions of the type (40). Because Weyl fields satisfy
the condition PLν ¼ ν we can rewrite Eq. (40) as

Hνν
mf ¼

ffiffiffi
2

p
GF

X
ð½ν̄νc�IL þ ½ν̄cν�IRÞ ð50Þ

(see Sec. III and Appendix B for more details), where now

IL ¼ hν̄cνi and IR ¼ hν̄νci: ð51Þ
As has been mentioned above ν̄cν and ν̄νc have the
structure of the Majorana mass term, which is known to
violate lepton number. Therefore, we expect that also for
the Weyl neutrino the mean-field Hamiltonian [Eq. (50)]
leads to lepton-number violation. However, for Weyl
neutrinos the inclusion of these additional terms is some-
what artificial because, as we show below, these correla-
tions are not produced if they are zero initially. They are
considered here to better understand the Majorana case,
where they are naturally produced by the lepton-number-
violating interactions.
The contribution of Eq. (50) to the mean-field

Hamiltonian is given by

Hmf ¼
Z
p
½a†ðpÞΓνν̄

−−ðpÞa†ð−pÞ þ b†ðpÞΓνν̄þþðpÞb†ð−pÞ

þ að−pÞΓν̄ν
−−ðpÞaðpÞ þ bð−pÞΓν̄νþþðpÞbðpÞ�; ð52Þ

and strongly resembles the mean-field Hamiltonian of
Majorana neutrinos [Eq. (37)]. From the structure of
Eq. (52) it is evident that, as expected, it leads to the
violation of lepton number. To take this into account we are
forced to introduce the following lepton-number-violating
correlators:

ð2πÞ3δðp − kÞκ−−ðpÞ ¼ hað−kÞaðpÞi; ð53aÞ

ð2πÞ3δðp − kÞκþþðpÞ ¼ hbð−kÞbðpÞi; ð53bÞ

ð2πÞ3δðp − kÞκ†−−ðpÞ ¼ ha†ðpÞa†ð−kÞi; ð53cÞ

ð2πÞ3δðp − kÞκ†þþðpÞ ¼ hb†ðpÞb†ð−kÞi; ð53dÞ

which also resemble the Majorana definitions (32). These
correlators are dictated by the structure of the Hamiltonian
(52) and are the only lepton-number-violating correlators
we consider in this section. If we wanted to consider all
other possible correlators we would be back to the
Majorana case with zero neutrino masses.
The lepton-number-violating correlators contribute to

the dynamics of the lepton-number-conserving ones,

i_ρ−− ¼ � � �
þ ðΓνν̄

−− − ½Γνν̄
−−�TÞκ†−− − κ−−ðΓν̄ν

−− − ½Γν̄ν
−−�TÞ; ð54aÞ

i _̄ρþþ ¼ � � �
− ðΓν̄νþþ − ½Γν̄νþþ�TÞκþþ þ κ†þþðΓνν̄þþ − ½Γνν̄þþ�TÞ;

ð54bÞ
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where ellipses denote terms on the right-hand side of
Eq. (47), and the superscript T stands for transposition
of the flavor and helicity indices, as well as inversion of the
momentum. Comparing Eq. (54) with Eqs. (38b) and (38c)
we see that we automatically recover the “Majorana”
definitions of the Hamiltonian matrix. Note that to avoid
confusion with the definitions of the elements of the mean-
field Hamiltonian, which are different for Dirac and
Majorana neutrinos, we write the right-hand side of
Eq. (54) directly in terms of spinor contractions defined
in Eq. (12). The dynamics of κ−þ [see Eq. (47c)] does not
receive any corrections. The reason is that the components
of the mean-field Hamiltonian needed to form the right spin
combination with the lepton-number-violating correlators
in Eq. (47c) are zero for Weyl neutrinos. The kinetic
equations for the lepton-number-violating pair correlations
read

i_κ−− ¼ Γνν
−−κ−− − κ−−ð−½Γνν

−−�TÞ − ρ−−ðΓνν̄
−− − ½Γνν̄

−−�TÞ
− ðΓνν̄

−− − ½Γνν̄
−−�TÞ½ρ−−�T þ ðΓνν̄

−− − ½Γνν̄
−−�TÞ; ð55aÞ

i_κþþ ¼ ð−½Γν̄ ν̄þþ�TÞκþþ − κþþΓν̄ ν̄þþ − ðΓνν̄þþ − ½Γνν̄þþ�TÞρ̄þþ
− ½ρ̄þþ�TðΓνν̄þþ − ½Γνν̄þþ�TÞ þ ðΓνν̄þþ − ½Γνν̄þþ�TÞ:

ð55bÞ

Their form can be guessed from Eq. (47c) by replacing
components of the mean-field Hamiltonian with their
“Majorana” counterparts, taking into account that
Γν̄ ν̄
−− ¼ Γννþþ ¼ 0, and replacing ρ̄−− by ½ρ−−�T as well as

ρþþ by ½ρ̄þþ�T.
Using the explicit form of the chiral spinors (see

Appendix A), we obtain

Γνν̄
−−ðpÞ ¼ þeþiϕVL; ð56aÞ

Γνν̄þþðpÞ ¼ −e−iϕVR; ð56bÞ

Γν̄ν
−−ðpÞ ¼ þe−iϕVR; ð56cÞ

Γν̄νþþðpÞ ¼ −eþiϕVL; ð56dÞ

where VLðRÞ ¼ ffiffiffi
2

p
GFILðRÞ are defined analogously to

Eq. (35). Let us now recall that IL and IR are produced
only by neutrino self-interactions and are proportional to
the lepton-number-violating pair correlations,

IL ¼
Z
p
e−iϕ½κ−− − κ†þþ�; ð57Þ

and a similar expression for IR. Thus, if the lepton-number-
violating correlators are zero initially, then the components
in Eq. (56) are zero and κ−− and κþþ remain zero in the
course of the system’s evolution. For this reason for
Weyl neutrinos the inclusion of lepton-number-violating

correlators is rather artificial because they could only exist
if they were put in by hand initially.
This observation explains why similar contributions do

not vanish for Majorana neutrinos in the limit of zero
neutrino masses. While such lepton-number-violating cor-
relators can be introduced by hand as an initial condition,
they can dynamically evolve only in the presence of a
nonvanishing Majorana mass.

V. ELECTROMAGNETIC
BACKGROUND FIELDS

A supernova environment is characterized not only by
matter currents, but also by strong magnetic fields.
Electromagnetic fields polarize both background media
and the vacuum. Although neutrinos do not couple directly
to the electromagnetic fields, they feel the induced polari-
zation. The coupling to a polarized background medium
has been treated in the previous sections. We now turn to
the interaction with the vacuum polarization.
The effect of vacuum polarization is described by

electromagnetic form factors. The most prominent exam-
ples, the magnetic and electric dipole moments, are
inevitable for massive neutrinos and have to be included
to obtain consistent evolution equations linear in the
neutrino mass. The main effects of electromagnetic fields
are spin and spin-flavor oscillations, which can be signifi-
cant. We treat Dirac and Majorana neutrinos separately.

A. General vertex structure

The coupling of neutrinos to an external vector potential
Aμ can be written as an effective vertex Hem ¼ Aμν̄Γμν,
where Γμ contains all irreducible combinations of Lorentz
vectors and pseudovectors generated by external momenta
and Dirac matrices. Neglecting a hypothetical minicharge,
in coordinate space the most general Hamiltonian density
can be reduced to

Hem ¼ 1

2
Fμνν̄iðfijMσμν þ ifijEσ

μνγ5Þνj
þ ∂νFμνν̄iðfijQγμ þ fijAγ

μγ5Þνj; ð58Þ
where the electromagnetic field-strength tensor is defined
as usual, Fμν ¼ ∂μAν − ∂νAμ, and σμν ¼ i

2
½γμ; γν�. The

form factors are fM (magnetic), fE (electric), fQ (reduced
charge [28]), and fA (anapole). The form factors carry
generation indices. Diagonal elements describe the usual
electromagnetic properties of a neutrino in the mass basis,
and reduce to electromagnetic moments in the static limit.
The off-diagonal elements describe transitions between
neutrinos of different masses. Some components of the
Hamiltonian matrix have been calculated in [28,56].
Maxwell’s equations tell us that ∂νFμν ¼ −Jμem, where

Jμem is some charged matter background that sources
electromagnetic fields. In supernovae, the sources are
electrons and protons. In the Standard Model with massless
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neutrinos, the value for the anapole moment has to be fA ¼
−fQ to reproduce the left-chiral form of the interaction. For
models with neutrino masses, the Hamiltonian matrix
might obtain contributions that are not purely left-chiral,
but we assume that these are always small so that we can
neglect them. The charge and anapole form factors then
only yield radiative corrections to the left-chiral tree-level
coupling in Eq. (16). We neglect these moments because
we are not interested in corrections to leading-order effects.
However, for completeness, we give the spinor contractions
for right-chiral currents in Appendix C.

B. Dipole moments of Dirac neutrinos

To study the dipole moments, we first turn to the
somewhat simpler case of Dirac neutrinos. A Dirac
neutrino has diagonal magnetic and electric moments.
Because we assume neutrinos to carry no charge, μ ¼
fMð0Þ is defined as the magnetic moment and ϵ ¼ fEð0Þ as
the electric dipole moment [28]. In the minimal extension
of the Standard Model, the magnetic moments are found to
be [57]

μij ¼
3e

ffiffiffi
2

p
GFðmi þmjÞ
2ð4πÞ2

�
δij −

m2
τ

2m2
W
F ij

�
; ð59aÞ

ϵij ¼ i
3e

ffiffiffi
2

p
GF

2ð4πÞ2 ðmi −mjÞ
�

m2
τ

2m2
W

�
F ij; ð59bÞ

F ij ¼
X

α¼e;μ;τ

U†
iα

�
mα

mτ

�
2

Uαj; ð59cÞ

where mτ is the tau mass. Note that the electric dipole
moment does not have a diagonal component because it
would violate CP [28], and that the transition electric
dipole moment carries a phase relative to the transition
magnetic dipole moment. Numerically, the above expres-
sions yield for the diagonal magnetic moments

μii ≃ 3.2 × 10−19
�
mi

eV

�
μB; ð60Þ

where μB is the Bohr magneton. The transition moments are

μij ≃ −3.9 × 10−23F ij

�
mi þmj

eV

�
μB; ð61aÞ

ϵij ≃ 3.9i × 10−23F ij

�
mi −mj

eV

�
μB: ð61bÞ

Note that the transition moments are much smaller than
the diagonal moments due to Glashow-Iliopoulos-Maiani
suppression.

C. Hamiltonian matrix for Dirac neutrinos

We treat electromagnetic effects on the same footing as
background matter. To this end, we have to evaluate the
components of the Hamiltonian matrix, which, for Dirac
neutrinos, are equal to the spinor contractions in Eq. (12).
For the contractions, we need to evaluate the Lorentz
structure of the vertex in Eq. (58).
Considering only magnetic and electric form factors,

the Hamiltonian reduces to 1
2
Fμνν̄iðfijMσμν þ ifijEσ

μνγ5Þνj,
which depends on the electric and magnetic fields, E and
B, through Fμν. The Lorentz structure can be decomposed
into the contractions ðiγ0γÞij;sh and ðγ0γγ5Þij;sh, the latter
appearing through the identity ϵabcγ0γcγ5 ¼ σab with spa-
tial indices a; b; c ¼ 1; 2 or 3, and the asymmetric tensor
ϵabc. These contractions are three-vectors that are con-
tracted with the electric and magnetic fields. We calculate
the contractions in momentum space.
Explicitly, the coupling of the magnetic field through the

magnetic form factor (superscript μB) has the structures

HμBνν
ij;sh ¼ − ðγ0γγ5Þννij;shfijMðq2ÞB; ð62aÞ

HμBνν̄
ij;sh ¼ − ðγ0γγ5Þνν̄ij;shfijMðl2ÞB; ð62bÞ

HμBν̄ν
ij;sh ¼ − ðγ0γγ5Þν̄νij;shfijMðl2ÞB; ð62cÞ

HμBν̄ ν̄
ij;sh ¼ − ðγ0γγ5Þν̄ ν̄ij;shfijMðq2ÞB; ð62dÞ

where we identify Hνν ¼ Γνν, Hνν̄ ¼ Γνν̄, etc., and the
minus sign in the metric gμν ¼ diagð1;−1;−1;−1Þ has
already been taken care of. In Eq. (62), the form factors still
depend on the momentum transfer. For the νν and ν̄ ν̄
components, the form factors contain qμ ¼ pμ

out − pμ
in,

where qμ → 0 in the forward-scattering limit. These com-
ponents are then proportional to the dipole moments.
For the neutrino-antineutrino components of the H matri-
ces, the argument of the form factor contains l2 with
lμ ¼ pμ

out þ pμ
in, the sum of neutrino and antineutrino

momenta. In the forward-scattering limit this reduces to
l2 ¼ ð2EÞ2, and the dependence of the form factors on the
four-momentum is important.
The coupling of the magnetic field to the electric form

factor (superscript ϵB) is

HϵBνν
ij;sh ¼ − ðiγ0γÞννij;shfijEðq2ÞB; ð63aÞ

HϵBνν̄
ij;sh ¼ − ðiγ0γÞνν̄ij;shfijEðl2ÞB; ð63bÞ

HϵBν̄ν
ij;sh ¼ − ðiγ0γÞν̄νij;shfijEðl2ÞB; ð63cÞ

HϵBν̄ ν̄
ij;sh ¼ − ðiγ0γÞν̄ ν̄ij;shfijEðq2ÞB: ð63dÞ
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The coupling of an electric field to the magnetic form
factor is

HμEνν
ij;sh ¼ðiγ0γÞννij;shfijMðq2ÞE; ð64aÞ

HμEνν̄
ij;sh ¼ðiγ0γÞνν̄ij;shfijMðl2ÞE; ð64bÞ

HμEν̄ν
ij;sh ¼ðiγ0γÞν̄νij;shfijMðl2ÞE; ð64cÞ

HμEν̄ ν̄
ij;sh ¼ðiγ0γÞν̄ ν̄ij;shfijMðq2ÞE; ð64dÞ

which is indicated by μE, and to the electric form factor, ϵE,

HϵEνν
ij;sh ¼ − ðγ0γγ5Þννij;shfijEðq2ÞE; ð65aÞ

HϵEνν̄
ij;sh ¼ − ðγ0γγ5Þνν̄ij;shfijEðl2ÞE; ð65bÞ

HϵEν̄ν
ij;sh ¼ − ðγ0γγ5Þν̄νij;shfijEðl2ÞE; ð65cÞ

HϵEν̄ ν̄
ij;sh ¼ − ðγ0γγ5Þν̄ ν̄ij;shfijEðq2ÞE: ð65dÞ

One can see that a magnetic field couples to both, the
electric and the magnetic form factor. Also electric fields
couple to both form factors. This can be understood as
follows. In the neutrino rest frame, the magnetic field only
couples to the magnetic dipole moment, and the electric
field only couples to the electric dipole moment (if any), as
suggested by the nomenclature. Lorentz covariance then
demands that both electric and magnetic fields couple to the
magnetic form factor in a system where the neutrino moves
with nonzero velocity. A moving neutrino also exhibits spin
precession in a pure electric field through its magnetic
moment [58].
The Lorentz structure of Eqs. (62)–(65) can now be

readily calculated. In contrast to the previous sections, we
neglect all contributions proportional to the mass since the
magnetic and electric form factors are small and, in the
models considered here, proportional to the neutrino mass
already. The ðγ0γγ5Þ components are

ðγ0γγ5Þννij;sh ≈
�

0 eþiϕϵ̂�

e−iϕϵ̂ 0

�
; ð66aÞ

ðγ0γγ5Þνν̄ij;sh ≈
�
−eþiϕp̂ 0

0 −e−iϕp̂

�
; ð66bÞ

ðγ0γγ5Þν̄νij;sh ≈
�
−e−iϕp̂ 0

0 −eþiϕp̂

�
; ð66cÞ

ðγ0γγ5Þν̄ ν̄ij;sh ≈
�

0 −e−iϕϵ̂�

−eþiϕϵ̂ 0

�
: ð66dÞ

The remaining Lorentz structures are of the form ðiγ0γÞ.
They read

ðiγ0γÞννij;sh ≈
�

0 ieþiϕϵ̂�

−ie−iϕϵ̂ 0

�
; ð67aÞ

ðiγ0γÞνν̄ij;sh ≈
�
−ieþiϕp̂ 0

0 ie−iϕp̂

�
; ð67bÞ

ðiγ0γÞν̄νij;sh ≈
�
ie−iϕp̂ 0

0 −ieþiϕp̂

�
; ð67cÞ

ðiγ0γÞν̄ ν̄ij;sh ≈
�

0 ie−iϕϵ̂�

−ieþiϕϵ̂ 0

�
: ð67dÞ

To this level of approximation, the νν̄ and ν̄ν components
are diagonal in helicity space, i.e., electric and magnetic
fields mainly couple spin-0 neutrino-antineutrino pairs.
Because the diagonal is proportional to p̂, the relevant
field components are those parallel to the momentum of the
neutrinos. The νν and ν̄ ν̄ components are off-diagonal in
helicity space. The dominant effect of magnetic and electric
fields on neutrinos and antineutrinos is spin precession.
Here the transverse components of the electromagnetic
fields contribute. The longitudinal components enter on
the diagonals in the next order of the expansion inm=E and
are therefore omitted.

D. Dipole moments of Majorana neutrinos

For Majorana neutrinos, electromagnetic transitions
always contain two contributions, e.g.,

hνpout
jHemjνpin

i ¼ Aμðūpout
Γμupin

− v̄pin
Γμvpout

Þ: ð68Þ

This difference of two amplitudes leads to the cancellation
of all the diagonal moments except for the anapole moment
[28]. This can also be understood by noting that the last two
terms (including the minus sign) in Eq. (68) are charge
conjugates of each other. Because the Lorentz structure of
the magnetic, electric, and charge form factors are C-odd
the combination vanishes. The Lorentz structure of the
anapole moment is C-even and does not cancel.
Because the magnetic moment of the Majorana neutrino

vanishes, it does not couple directly to a magnetic field.
However, magnetic fields polarize the background
medium, and this effect does lead to helicity oscillations;
see Sec. III.
Electromagnetic moments of neutrinos depend on the

details of the mechanism that creates the neutrino mass.
When neglecting the model-dependent amplitudes, one can
compare the moments of Dirac and Majorana neutrinos.
The main differences are that the Majorana amplitudes
contain Majorana PMNS matrices, which may contain
more phases than Dirac PMNS matrices, and that
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Eq. (68) has to be taken into account for Majorana
neutrinos.
After these adjustments, the off-diagonal form factors of

Majorana neutrinos can be obtained from Eq. (59a). One
finds that they depend on the relative CP phases of two
neutrino species [59]. The relative phase can either be equal
or opposite, i.e., the ratio is �1. For neutrinos with equal
CP phases, the magnetic transition moments vanish [59],
while for opposite CP phase the magnetic transition
moments are nonzero and can be obtained from
Eq. (59a) by substituting F ij with 2iImF ij.
For electric dipole moments, the role of the CP phases is

inverted. Opposite CP phases force the electric transition
moments to vanish, while for equal CP phases the electric
transition moments are nonzero and are obtained by
substituting F ij with 2ReF ij [59] in Eq. (59b).

E. Hamiltonian matrix for Majorana neutrinos

The density matrix formalism naturally reproduces the
results for the electromagnetic moments discussed in
the last section. Similarly to Eq. (68), each component
of the Hamiltonian matrix has two contributions from Γ
contractions, e.g., Hνν

ij;shðpÞ ¼ Γνν
ij;shðpÞ − Γν̄ ν̄

ji;hsð−pÞ; see
Eq. (38). The spinor contractions Γνν and Γν̄ ν̄ have the
same structure as for Dirac neutrinos; see Eq. (12). Again
neglecting the model dependence, the only difference is
that the Dirac PMNS matrix has to be replaced by a
Majorana PMNS matrix. For example, a magnetic field
coupling to a Majorana neutrino through the magnetic form
factor yields

Hνν
ij;−þ ¼ − ½fijMðq2Þ − c:c:Þ�eþiϕϵ̂�B

¼ − 2iIm½fijMðq2Þ�eþiϕϵ̂�B; ð69Þ

where we have used the Hermiticity of the form factors.
In the static limit, 2iIm½fijM� is the magnetic moment of
Majorana neutrinos [57]. It is zero for equal CP phases
since F ij becomes real. It is nonvanishing for opposite
CP phases because F ij becomes imaginary. An analogous
argument holds for the electric dipole moment.

VI. HELICITY COHERENCE

In this section we neglect pair correlations and discuss
helicity coherence effects. To separate the latter from the
usual flavor coherence effects, we consider only one
neutrino generation. Furthermore, for definiteness we
assume that neutrinos are Dirac particles.

A. Order-of-magnitude estimate

Two different mean-field backgrounds cause spin oscil-
lations and create spin coherence: matter and neutrino
currents, and electromagnetic fields. However, it is not clear

which of these is dominant in a supernova. In the following
we perform a crude estimate.
For Dirac neutrinos without pair correlations, the kinetic

equations of neutrinos and antineutrinos decouple, i_ρ ¼
½Hνν; ρ� and i _̄ρ ¼ ½Hν̄ ν̄; ρ̄�, and, for one family, we only have
to look at a 2 × 2 subsystem of the full evolution equation.
We start with a matter background with nonrelativistic
velocity β, which flows orthogonal to the neutrino’s
momentum. The Hamiltonian matrix reads

Hνν ≈ V

�
1 m

2p β
m
2p β 0

�
; ð70Þ

where V is the usual matter potential. For instance for νμ or

ντ it is given by V ¼ GFnn=
ffiffiffi
2

p
, where nn is the neutron

density. We have omitted the neutrino kinetic energy
because it is diagonal in helicity space, and for a single
generation trivially cancels in the commutator. The depend-
ence of the diagonal terms of the Hamiltonian on the
parallel flux and the dependence of the off-diagonal terms
on the orthogonal flux were discussed in Refs. [35,60].
In a derivation similar to the one that leads to Eq. (70),

we obtain the 2 × 2 subsystem of the Hamiltonian matrix
for a neutrino in a transverse magnetic field

Hνν ≈ −μB
�
0 1

1 0

�
ð71Þ

(see Sec. V for more details). Spin coherence is instigated
by the off-diagonals of Eqs. (70) and (71), and to find the
relative importance of the matter and magnetic contribu-
tions it is sufficient to estimate their relative size. Typical
magnetic fields in a supernova are of order 1012 G and
much larger in magnetars. Using the standard value for
the magnetic moment given in Eq. (60), and assuming a
neutrino mass of 0.1 eV, we find for the contribution of
the magnetic field μB ∼ 10−16 eV. For a typical neutron
mass density 1012 g=cm3, which corresponds to a number
density nn ∼ 104 MeV3, the matter potential is of the
order of the neutrino mass, V ∼ 0.1 eV. Thus, for a
typical momentum p ∼ 30 MeV we obtain Vβm=ð2pÞ∼
10−10β eV. For maximal background velocities of
3000 km=s, β ∼ 0.01, the matter contribution dominates.
Surprisingly, the magnetic field is only important if the
background moves very slowly, if the matter density has
decreased sufficiently, or if the magnetic moment is
enhanced.
Turning now to the density matrix, the size of the off-

diagonal elements depends on the initial conditions and
history of the evolution. To obtain a rough estimate, we can
assume that the system has reached equilibrium and, hence,
its previous evolution is irrelevant. In equilibrium, the
system is in an eigenstate of the Hamiltonian, i.e.,Hνν and ρ
commute. This condition alone allows us to express the
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off-diagonals of the density matrix in terms of the diagonals
and components of the Hamiltonian matrix,

ρ−þ ¼ Hνν
−þ

Hνν
−− − Hννþþ

ðρ−− − ρþþÞ: ð72Þ

Keeping only the (dominant) matter contribution, Eq. (70),
we find ρ−þ ¼ ðρ−− − ρþþÞmβ=2p ∼mβ=2p. For m ∼
0.1 eV and a typical momentum p ∼ 30 MeV this results
in ρ−þ ∼ 10−11, where we have used β ∼ 0.01.
The same result can be obtained by noting that if ρ and

Hνν commute, they can be simultaneously diagonalized by
a rotation that mixes positive- and negative-helicity states.
The rotation angle is tan 2ϑ ¼ mβ=p. Considering e.g. the
ρ−− ¼ 1 eigenstate of the diagonalized Hamiltonian and
rotating back to the basis where the Hamiltonian has the
form (70) we find to leading order

ρ ∼
�

1 m
2p β

m
2p β 0

�
∼
�

1 10−11

10−11 0

�
: ð73Þ

The corrections to the diagonals are not included in Eq. (73)
because they are of the order of δρ−− ∼ δρ̄þþ ∼ ρ2−þ ∼
10−22 and are therefore negligibly small.

B. Resonant enhancement

For a magnetic field, the diagonal elements of the
Hamiltonian matrix, Eq. (71), are zero for very relativistic
neutrinos. This allows for the magnetic fields to completely
flip the spin of a population of neutrinos. On the other
hand, the diagonals of Eq. (70) are in general nonzero and
suppress a complete conversion. In general, the matter
contribution is given by

Hνν ≈
�V0 − V∥

m
2p V⊥

m
2p V⊥ 0

�
ð74Þ

[see Eq. (43)], where V∥ ≡ p̂V and V⊥ ≡ ϵ̂V are compo-
nents of the matter flux parallel and orthogonal to the
neutrino momentum. Thus, if there are relativistic currents
parallel to the momentum of the neutrino such that the
diagonals vanish, Eq. (72) implies that a resonant enhance-
ment of the spin conversion is possible. The possibility to
generate the spin conversion by an orthogonal flux of
matter, and the cancellation of the matter effect for
relativistic matter moving along the direction of the
neutrino momentum were first discussed in Refs. [35,60]
on the basis of the Lorentz-covariant Bergmann-Michel-
Telegdi equation. In Refs. [36,38] these effects have also
been studied using the formalism of nonequilibrium quan-
tum field theory. In the context of resonant leptogenesis the
formation of flavor and helicity correlations in medium and
the derivation of flavor-covariant transport equations able

to account for helicity correlations has been discussed
in Ref. [61].
For vanishing diagonals, Eq. (74) can be rotated into its

diagonal form with a rotation angle ϑ ¼ π=4. In other
words, mixing of the helicity states becomes maximal,
similarly to the Mikheyev–Smirnov–Wolfenstein reso-
nance mixing, and hence in equilibrium

ρ ∼
�
1=2 1=2

1=2 1=2

�
; ð75Þ

where we have again assumed that the system is in an
eigenstate of the diagonalized Hamiltonian. Outside of the
core, a supernova is far from equilibrium, but nonlinear
feedback can enhance the spin-flipping processes [38].
Making use of Eq. (24), we can rewrite the resonance

condition, Hνν
−− − Hννþþ ¼ V0 − V∥ ¼ 0, in the form [38]

Ye þ
4

3

�
Yν −

V∥

2nb

�
¼ 1

3
; ð76Þ

where Ye ≡ ne=nB and Yν ¼ ðnν − nν̄Þ=nB are the electron
and neutrino asymmetry fractions respectively and nB is
the baryon number density, The resonance condition can
potentially be fulfilled in or near the protoneutron star in a
core-collapse supernova, or near the central region of a
compact object merger; see Ref. [38] and references
therein.

C. Lorentz covariance

Helicity coherence builds up only if the off-diagonal
elements of the Hamiltonian matrix differ from zero. On the
other hand, because the off-diagonals are proportional to
the component of the matter flow orthogonal to the neutrino
momentum, one can always find a frame where the off-
diagonals vanish and no helicity coherence builds up. In
other words, at first sight physical results seem to depend
on the frame. This raises the question of Lorentz covariance
of the kinetic equations.
To be specific, let us consider the following simple

example. We have two identical observers moving with
velocity β with respect to each other. In the frame of the
first observer, the neutrino has momentum p along the z
axis and the matter is at rest, i.e. V∥ ¼ V⊥ ¼ 0,

Hνν ≈ V

�
1 0

0 0

�
: ð77Þ

Thus no helicity coherence builds up. In the frame of the
second observer which moves with velocity β along the x
axis the Hamiltonian is no longer diagonal,

Hνν ≈
V
γ

�
1 m

2p β
m
2p β 0

�
; ð78Þ
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and we expect helicity coherence to build up. Here γ is the
usual Lorentz factor and V and p denote the potential and
neutrino momentum in the frame of the first observer.
Do the Hamiltonian matrices (77) and (78) lead to

different physical results? The answer is no, but to
demonstrate this point we need to take into account that
a helicity state is also not Lorentz invariant. Let the neutrino
be in a state of definite helicity in the frame of the first
observer, e.g. jpẑ;−i, where p is the absolute value of the
neutrino momentum and ẑ is the unit vector along the z
axis. The corresponding density matrix reads

ρ ¼ jpẑ;−ihpẑ;−j ¼
�
1 0

0 0

�
: ð79Þ

The Hamiltonian matrix (77) and the density matrix
commute and therefore the latter is constant in time. The
boost to the frame of the second observer transforms
jpẑ;−i into a mixed helicity state with momentum q,

jψi ¼ cθ=2jq;−i − sθ=2jq;þi; ð80Þ

where θ is the angle of Wigner rotation around ŷ with
tan θ ¼ −mβ=p. Note that the rotation angle vanishes in
the limit of zero neutrino mass which reflects chirality
conservation. The density matrix develops off-diagonal
elements,

ρ ¼ jψihψ j ¼ 1

2

�
1þ cθ −sθ
−sθ 1 − cθ

�
: ð81Þ

The Hamiltonian matrix and the density matrix again
commute. In other words, the second observer sees a
mixed helicity state which, as expected, is also time
independent. This result reflects Lorentz covariance of
the kinetic equations, the lesson being that one has to
transform the initial conditions consistently to obtain
covariant results.
Let us now consider this result from a slightly different

viewpoint. In each frame, we can diagonalize the effective
Hamiltonian by performing a Bogolyubov transformation
that mixes annihilation (creation) operators of the positive-
and negative-helicity states, as → cϑas þ sϑa−s. In
particular Eq. (78) is diagonalized by a Bogolyubov
transformation with the angle tan 2ϑ ¼ mβ=p. This trans-
formation brings the density matrix (81) back to the form
(79). In other words, there is a connection between the
Lorentz and Bogolyubov transformations. In particular,
if in every frame we diagonalize the Hamiltonian then the
transformed density matrix remains invariant under the
boosts.
To summarize, as far as helicity coherence is concerned,

both the Hamiltonian and the density matrix transform
under Lorentz boosts in such a way that the kinetic equation
is Lorentz covariant. We will rely on this result in the

discussion of particle-antiparticle coherence whose Lorentz
transformation properties are not as evident as for the
helicity coherence.

VII. PARTICLE-ANTIPARTICLE COHERENCE

In this section we discuss particle-antiparticle coherence.
In contrast to helicity coherence, which requires nonzero
neutrino masses, and flavor coherence, which in addition to
nonzero masses requires the existence of several neutrino
generations, particle-antiparticle coherence arises already
for a single massless neutrino generation. As has been
discussed in the previous section, for a massless neutrino
the only “natural” correlators are ρ−−, ρþþ and κ−þ. To
shorten the notation in this section we suppress the spin
indices.

A. Quantum-mechanical example

To clarify the meaning of the particle-antiparticle coher-
ence, let us first study in more detail the simple quantum-
mechanical example briefly discussed in the Introduction.
We consider a system that can be in a linear combination
of one of four pure states. These are i) the empty state
j00i without particles; ii) the paired state j11i ¼
a†ðpÞb†ð−pÞj00i, which contains a neutrino with momen-
tum p and an antineutrino with momentum −p; iii) the one
neutrino state j10i; and iv) the one antineutrino state j01i.
Note that in all these states the antineutrinos stream in
the direction opposite to that of neutrinos. A general state
can be expressed in terms of these four states,
jψi ¼ A00j00i þ A11j11i þ A10j10i þ A01j01i, where the
coefficients Aij are time dependent and normalized to
unity, jA00j2 þ jA11j2 þ jA10j2 þ jA01j2 ¼ 1.
In analogy to Eq. (13) we write the Hamiltonian in the

form

H ¼ a†ðpÞHννaðpÞ þ a†ðpÞHνν̄b†ð−pÞ
þ bð−pÞHν̄νaðpÞ − b†ð−pÞHν̄ ν̄bð−pÞ: ð82Þ

The Schrödinger equation for the coefficients Aij then splits
into three independent equations,

i∂t

�
A00

A11

�
¼
�

0 Hν̄ν

Hνν̄ Hνν − Hν̄ ν̄

��
A00

A11

�
; ð83aÞ

i∂tA10 ¼ HννA10; ð83bÞ

i∂tA01 ¼ −Hν̄ ν̄A01: ð83cÞ

Thus the evolution of the single-particle states completely
decouples because a homogeneous background medium
cannot mix states of different total momentum. On the other
hand, the j00i and j11i states have zero momenta and
therefore can be mixed by a homogeneous medium through
the Hν̄ν term of the Hamiltonian. However, the j00i and
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j11i states have different angular momentum. Hence, an
anisotropic background medium, e.g. a transverse matter
flux, is needed to absorb the angular momentum and to mix
the two states.
To make the connection to the density matrix equations,

we note that the number of neutrinos and antineutrinos
is given by ρ ¼ jA11j2 þ jA10j2 and ρ̄ ¼ jA11j2 þ jA01j2
respectively. Their time evolution can be derived from
Eq. (83) and takes the form expected from Eq. (47),

_ρ ¼ −2ImðHν̄νκÞ; ð84aÞ

_̄ρ ¼ −2ImðHν̄νκÞ; ð84bÞ

if we identify κ ¼ A�
00A11. Equation (83) also leads to an

evolution equation for κ

i_κ ¼ ðHνν − Hν̄ ν̄Þκ þ Hνν̄ð1 − ρ − ρ̄Þ; ð85Þ

which can be obtained by using the normalization of the
state jψi. Equation (85) is again consistent with Eq. (47)
and coincides with the result of Ref. [44] in the one-
flavor limit.
From these kinetic equations we can infer that while ρ

and ρ̄ are not separately conserved in the presence of
nonzero κ, their difference is conserved [44]. Because
ρðt;pÞ describes neutrinos with momentum p whereas
ρ̄ðt;pÞ describes antineutrinos with momentum −p, the
conservation of ρ − ρ̄ implies that κ induces the production
of neutrino-antineutrino pairs with opposite momentum.
The kinetic equation for κ describes a driven harmonic

oscillator with frequency Hνν − Hν̄ ν̄ ∼ 2E. Hence κ oscil-
lates with twice the neutrino energy as expected.
From the definition κ ¼ A�

00A11 we see that nonzero
particle-antiparticle coherence means that the system is not
in an eigenstate of the unperturbed Hamiltonian, but instead
in a mixture of the j00i and j11i states, i.e., in a squeezed
state. Such states do not have a definite particle number.
This observation clarifies the physical meaning of particle-
antiparticle coherence.

B. Order-of-magnitude estimate

As a next step we perform an order-of-magnitude
estimate of κ. For a single neutrino generation the extended
density matrix reduces to a 2 × 2 matrix of the form [see
Eq. (1)],

R ¼
�

ρ κ

κ† 1 − ρ̄

�
; ð86Þ

where now ρ and ρ̄ are real numbers and κ is a complex
number. We again start with an example of a matter
background with nonrelativistic velocity β, which flows
orthogonal to the neutrino’s momentum. Then, as follows

from Eq. (48), the Hamiltonian matrix reads [see also
Eq. (3)],

H ¼ E

�
1 0

0 −1

�
þ V

�
1 −β
−β 1

�
: ð87Þ

Unlike for helicity coherence, the neutrino kinetic energy E
no longer cancels out in the commutator.
Similarly to the case of spin coherence we can get a

crude estimate of the κ magnitude by assuming that the
system has reached equilibrium and hence _κ ¼ 0.
Equation (85) then gives

κ ¼ −
Hνν̄

Hνν − Hν̄ ν̄ ð1 − ρ − ρ̄Þ: ð88Þ

If we insert this result into Eq. (84) and use the Hermiticity
of the Hamiltonian matrix, we see that indeed _ρ ¼ _̄ρ ¼ 0.
Let us assume for a moment that the neutrino-neutrino

interactions are small compared to the neutrino interaction
with matter. For typical supernova parameters V ∼ 0.1 eV
and E ∼ 30 MeV and we then find V=E ∼ 10−9. Thus to a
good approximation Hνν̄=ðHνν − Hν̄ ν̄Þ ∼ Vβ=2E ∼ 10−11,
where we have used β ∼ 0.01. Because typically
j1 − ρ − ρ̄j ∼ 1 we conclude that the “natural” size of the
particle-antiparticle coherence is κ ∼ 10−11.
The same result can be obtained by noting that in

equilibrium R and H commute and can be simultaneously
diagonalized by a Bogolyubov transformation that
mixes neutrinos of momentum p with antineutrinos of
momentum −p. Under this transformation the creation and
annihilation operators transform as aðpÞ → e−iϕ=2cϑaðpÞþ
eiϕ=2sϑb†ð−pÞ and b†ð−pÞ→eiϕ=2cϑb†ð−pÞ−e−iϕ=2sϑaðpÞ
respectively, where the phase ϕ ¼ argHνν̄ and the rotation
angle is given by tan 2ϑ ¼ 2jHνν̄j=ðHνν − Hν̄ ν̄Þ ∼ Vβ=E. In
the basis where the Hamiltonian is diagonal, the system is
described by (anti)neutrino densities, which we denote by ϱ
and ϱ̄ respectively, and a pairing correlator, which we
denote by ϰ. From the transformation properties of the
creation/annihilation operators, we can infer the following
relations:

ρ ¼ c2ϑϱ − cϑsϑϰ − cϑsϑϰ† þ s2ϑð1 − ϱ̄Þ; ð89aÞ

ρ̄ ¼ c2ϑϱ̄ − cϑsϑϰ − cϑsϑϰ† þ s2ϑð1 − ϱÞ; ð89bÞ

κ ¼ eiϕ½c2ϑϰ þ cϑsϑϱ − cϑsϑð1 − ϱ̄Þ − s2ϑϰ
†� ð89cÞ

(see Ref. [43] for a detailed discussion). Eigenstates of
the diagonalized Hamiltonian are characterized by ϰ ¼ 0.
Assuming, e.g., that the system is in an eigenstate of the
diagonalized Hamiltonian with some ϱ and ϱ̄, and rotating
back to the basis where the Hamiltonian has the form (87),
we find to leading order
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R ∼

 
ϱ Vβ

2E
Vβ
2E 1 − ϱ̄

!
∼
�

ϱ 10−11

10−11 1 − ϱ̄

�
; ð90Þ

which again leads to the tiny κ ∼ sϑ ∼ 10−11.
Pair correlations themselves are not measurable, and

only their effect on the number densities can be observed.
A quick inspection of Eq. (89) shows that in equilibrium the
difference between e.g. ρ and ϱ is of the order of s2ϑ ∼ κ2.
In other words, the induced corrections to ρ and ρ̄ are
quadratic in κ.
This can also be understood from Eq. (85). If the system

has not yet reached equilibrium, then κ oscillates around its
stationary value (88), provided that the components of the
Hamiltonian matrix only vary slowly with time compared
toHνν − Hν̄ ν̄. This assumption allows us to approximate the
evolution of κ as a driven harmonic oscillator with an
amplitude that depends on the initial conditions. Assuming
that pairing correlations are not created during neutrino
production, the amplitude is of the order of the equilibrium
value, Eq. (88). We then find again that the mean number
density created by pairing correlations is ∼κ2. Therefore,
the inclusion of the particle-antiparticle coherence leads to
a negligibly small δρ ∼ δρ̄ ∼ κ2 ∼ 10−22.

C. Including neutrino-neutrino interactions

In the previous subsection we have estimated the
“natural” size of κ assuming that the neutrino-neutrino
interactions are negligible. However, in a supernova the
neutrino density is very large and the neutrino background
may play an important role. This complicates the estimate
of κ because Hνν̄ in Eq. (88) itself depends on κ once we
include neutrino-neutrino interactions,

Hνν̄ ¼ −Vβ − 2
ffiffiffi
2

p
GFϵ̂�

Z
q
½q̂lþ ϵ̂κ þ ϵ̂�κ†� ð91Þ

[see Eqs. (48) and (49)]. A further complication arises from
the fact that the stationary value for κ of one momentum
mode p depends on the pair correlations of all other
momentum modes q. Note also that the phase-space
integral in Eq. (91) is unbounded. Pairing correlations
with a momentum typical for the supernova environment
couple to pairing correlations of arbitrary high momentum.
This pushes us beyond the limitations of the Fermi
approximation, and in principle a fully renormalizable
theory has to be studied to make sense of these high-
momentummodes. To stay within the realm of applicability
of the effective theory, we use a phenomenological cutoff
jqj ¼ MW in the phase-space integrals.
To estimate the contribution of the κ terms to the integral

in Eq. (91), we take into account that pair correlators
of different momentum modes oscillate incoherently such
that we can replace κ by its approximate mean value,
κ ≈ −Hνν̄=2E, where we use that V ≪ E and assume

ρþ ρ̄ ≪ 1 in Eq. (88). To proceed we recall that Hνν̄ ¼
−ϵ̂�V [see Eq. (48)], where V is the total potential that
includes matter and neutrino contributions. Note further
that V is momentum independent. With these substitutions,
the integrals involving κ in Eq. (91) read

Re
Z
q
ϵ̂κ ∼ Re

Z
q
ϵ̂
ϵ̂� · V
2E

¼
ffiffiffi
2

p

2

GFM2
W

3π2
V; ð92Þ

where we have integrated up to the cutoff jqj ¼ MW . Let us
introduce the notation

Hνν̄
0 ¼ −Vβ − 2

ffiffiffi
2

p
GFϵ̂�

Z
q
q̂l: ð93Þ

Then using Eq. (92) we can write Eq. (91) as

Hνν̄ ≈ Hνν̄
0

�
1 −

ffiffiffi
2

p GFM2
W

3π2

�
−1
: ð94Þ

In other words the κ terms in Eq. (91) effectively lead to a
renormalization of the total potential produced by the
matter and neutrino backgrounds. Numerically, the correc-
tion is small,

ffiffiffi
2

p
GFM2

W=ð3π2Þ ≈ 3 × 10−3, and can be
neglected.
In a supernova the neutrino density is comparable to that

of matter. Whereas each individual neutrino is relativistic,
the bulk velocity of the neutrino background is also
comparable to the matter velocity. Thus, the neutrino
density contribution to Eq. (93) is not expected to be larger
than the matter contribution. Furthermore, because the
direction of the neutrino background flux is more likely
to be parallel to the momenta of individual neutrinos,
whereas the build up of the particle-antiparticle coherence
requires a current component orthogonal to the neutrino
momentum, there is an additional suppression as compared
to the matter effect. All in all, the estimates of κ presented
above remain essentially unaltered by the inclusion of the
neutrino-neutrino interactions.

D. Resonance condition

As follows from Eq. (88), particle-antiparticle coherence
can be resonantly enhanced if Hνν ¼ Hν̄ ν̄. In general for a
relativistic matter flow that also includes the neutrino flux,
the Hamiltonian matrix reads [see Eq. (48)],

H ¼ E

�
1 0

0 −1

�
þ
�
V0 − V∥ −V⊥
−V⊥ V0 þ V∥

�
; ð95Þ

where, as before, V∥ ≡ p̂V and V⊥ ≡ ϵ̂V are components
of the matter flux parallel and orthogonal to the neutrino
momentum. The resonance condition then translates into
E ¼ V∥. Even assuming a relativistic matter flow, for
typical supernova parameters V∥=E ∼ 10−9. In other words,
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the resonance condition cannot be fulfilled in a supernova
and there is no reason to expect κ to be larger than the
estimate presented above.
Note also that for V ∼ E not only does the Fermi

approximation break down, but also the perturbative
description is no longer applicable. In other words it is
in principle not possible to hit the resonance without
rendering the developed formalism meaningless.

E. Initial conditions

All physical processes in which neutrinos are created
have time scales much larger than the time scale of κ
oscillation. Hence, even during the production process
neutrinos would adiabatically adapt to the propagation
basis with respect to pair correlations. On the other hand,
the time scales of flavor and helicity oscillation are much
larger than those associated with production and detection.
This separation of time scales is crucial for the idea that
neutrinos are produced in an eigenstate of interaction, i.e.,
in a coherent superposition of propagation eigenstates. For
the same physical reason, as neutrinos stream away from
the supernova, they have enough time to adiabatically adapt
to the external background. Thus, κ does not oscillate but
instead closely tracks its equilibrium value. This makes
dynamical equations for κ essentially superfluous. As the
neutrinos leave the supernova, the mean pair correlations
approach zero adiabatically and decouple from the evolu-
tion of ρ and ρ̄.

F. Lorentz covariance

In the early Universe, the rest frame of the plasma is the
only natural reference frame and the question of Lorentz
transformation properties of the pair correlators does not
arise [52]. In a supernova environment the situation is more
complicated. In particular, the comoving frame of the
matter can in some cases be more convenient than the
rest frame of a distant observer. Similarly to helicity
coherence, the particle-antiparticle coherence builds up
only if the off-diagonal components of the Hamiltonian
matrix are not zero. However, because the off-diagonals are
proportional to the component of the matter flow orthogo-
nal to the neutrino momentum, their value depends on the
frame. In particular, one can find a frame where the off-
diagonals vanish and no particle-antiparticle coherence
builds up.
Let us consider the same example as in Sec. VI. We have

two identical observers moving with velocity β with respect
to each other. In the frame of the first observer, the neutrino
has momentum p along the z axis and the matter is at rest,
i.e. V∥ ¼ V⊥ ¼ 0,

H ¼ E

�
1 0

0 −1

�
þ V

�
1 0

0 1

�
: ð96Þ

Thus no particle-antiparticle coherence builds up. In the
frame of the second observer which moves with velocity β
along the x axis the Hamiltonian is no longer diagonal,

H ¼ γE

�
1 0

0 −1

�
þ V

�
1=γ −β
−β 1=γ

�
; ð97Þ

and we expect helicity coherence to build up. In other
words, physical results seem to depend on the frame.
As we have learned from the analysis of an analogous

problem for helicity coherence, the kinetic equations are
covariant only if the initial conditions also transform under
the boost. Pair correlations “couple” neutrinos of opposite
momenta. The notion of opposite momenta is not Lorentz
invariant and is violated by, e.g., a boost orthogonal to the
neutrino momentum. This alone implies that the initial
conditions, which include specifying κ for all momentum
modes, are not Lorentz invariant. At the same time the very
fact that the definition of κ involves two momentum modes
makes it rather difficult to derive the corresponding Lorentz
transformation rules and we will not attempt the deriva-
tion here.
We have argued in the previous subsection that neutrinos

are produced and propagate in an eigenstate with respect
to particle-antiparticle coherence. In Sec. VI we have
observed that if in every frame we diagonalize the
Hamiltonian then the (transformed) eigenstate of the
Hamiltonian remains invariant under the boosts. Here we
assume that the same holds true also for particle-antiparticle
coherence. As a particularly interesting example let us
assume that in the frame of the first observer the system is
in the vacuum state of the interacting Hamiltonian, i.e.
ρ ¼ ρ̄ ¼ κ ¼ 0,

R ¼
�
0 0

0 1

�
: ð98Þ

The Hamiltonian matrix (96) and the extended density
matrix (98) commute and therefore the latter is constant in
time. According to our assumption, after diagonalizing
Eq. (97) by a Bogolyubov transformation, the transformed
R takes the form (98). Transforming back to the initial basis
we obtain,

R ¼ 1

2

�
1 − cϑ sϑ
sϑ 1þ cϑ

�
; ð99Þ

where ϑ is the angle of the Bogolyubov transformation that
diagonalizes Eq. (97), tan 2ϑ ¼ ðβV=γEÞ=½1 − β2ðV=EÞ�.
By construction the Hamiltonian matrix (97) and the
extended density matrix (99) commute and the latter is
time independent as well.
A perplexing feature of Eq. (99) is that it seems to

describe a state with a nonzero number of particles and
antiparticles. Whereas the first observer would see neither
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neutrinos nor antineutrinos, the second observer that moves
with respect to the first one with a constant velocity β
seems to observe a nonzero density of neutrinos and
antineutrinos. Put in other words, the empty space per-
ceived by the first observer appears to be filled with
neutrino-antineutrino pairs in the frame of the second
observer. However, it is not entirely clear if the (anti)
particle densities in Eq. (99) describe electroweak inter-
action eigenstates and thus would actually manifest them-
selves via, e.g., particle production or momentum transfer
to nuclei in scattering processes.

G. Interpretation of the Bogolyubov transformation

To better understand the meaning of the Bogolyubov
transformation, we solve the equation of motion for a
massless neutrino field coupled to a constant classical
current Vμ, and demonstrate that this solution reproduces
the results obtained using the Bogolyubov transformation.
In the Fermi limit L ¼ ν†_ασ̄

μ; _ααði∂μ − VμÞνα. Varying the
Lagrangian with respect to the neutrino field, we obtain the
equation of motion, σ̄μ; _ααði∂μ − VμÞνα ¼ 0. Its solution can
be written in a form similar to Eq. (45),

νðt;pÞ ¼ aðt;pÞχ−ðp̂VÞ þ b†ðt;−pÞχþðp̂VÞ; ð100Þ

where aðt;pÞ ¼ aðt;pÞe−iωþt and b†ðt;−pÞ ¼ b†ð−pÞeiω−t

satisfy the usual anticommutation relations, p̂V is the unit
vector in the direction of p − V, and the energy spectrum is
given by ω� ≡ jp − Vj � V0.
Using the orthogonal vectors p̂ and ϵ̂ we can write ω� in

the form ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − p̂VÞ2 þ jϵ̂Vj2

p
� V0, which repro-

duces the eigenvalues of the Hamiltonian matrix (48). The
spinor contractions [see Eq. (12)] now include χ∓ðp̂VÞ. By
construction, Γνν̄ and Γν̄ν vanish once we use the solution of
the equations of motion. The diagonal elements can be
expanded in terms of χ∓ðp̂Þ. For example for Γνν we obtain

χ†−ðp̂VÞσ̄μχ−ðp̂VÞ ¼ c1nμðp̂Þ þ Re½c2ϵμðp̂Þ�: ð101Þ

Multiplied by Vμ, Eq. (101) reproduces the interaction part
of the Hνν element of the diagonalized Hamiltonian matrix.
The decomposition coefficients

c1 ≡ E − p̂V
jp − Vj and c2 ≡ −

ϵ̂�V
jp − Vj ; ð102Þ

are related to the angle of the Bogolyubov transformation
by c1 ¼ cos 2ϑ and jc2j ¼ sin 2ϑ respectively. In other
words, diagonalizing the Hamiltonian matrix by a
Bogolyubov transformation in every frame is equivalent
to using the equation of motion. This equivalence suggests
interpreting physical particle densities as propagation
eigenstates of the full Hamiltonian in line with the
discussion in Sec. VII E.

VIII. SUMMARY AND CONCLUSIONS

Neutrino flavor conversion is important in supernovae,
yet a full understanding remains elusive, largely because of
neutrino-neutrino refraction and concomitant self-induced
flavor conversion, an effect caused by run-away modes of
the interacting neutrino gas. The difficulties in developing a
robust phenomenological understanding of even this rela-
tively simple case explains the reluctance to add further
complications. Yet other effects could be important as well,
caused by inhomogeneities and anisotropies of the medium
and by magnetic fields, especially if one broadens the view
to include, for example, magnetars or neutron-star mergers.
It is often thought that helicity conversion effects will be
small, at least if neutrino dipole moments have no
additional contributions beyond those provided by their
masses, yet one should remain open to such possibilities.
Finally, beyond flavor and helicity correlations, it has been
stressed recently that pair correlations could also become
important.
Motivated by these concerns, we have studied extended

kinetic equations that describe flavor, helicity, and pair
correlations, limiting ourselves to the mean-field level, i.e.,
considering only propagation effects for freely streaming
neutrinos. Based on the “forward Hamiltonian” of neu-
trinos interacting with a background medium, we have
derived the various terms and have given explicit results up
to lowest order in the neutrino mass, similar to previous
studies in the literature. For Dirac neutrinos, we confirmed
previous results and have extended them to include
magnetic-field effects. For Majorana neutrinos, we found
a small correction to the mean-field Hamiltonian which
arises from lepton-number-violating contractions that
appear only in the Majorana case. To analyze the behavior
of these additional terms in the limit of vanishing neutrino
masses, we have also studied extended kinetic equations for
Weyl neutrinos.
The density matrix formalism allows one to treat helicity

oscillation induced by matter currents and by magnetic
fields on equal footing for both Dirac and Majorana
neutrinos. We have derived the mean-field Hamiltonian
induced by electromagnetic fields and compared it to that
induced by matter currents. Somewhat surprisingly, for
typical supernova parameters, matter currents dominate
over magnetic fields. In principle, resonant enhancements
can be achieved, for example by relativistic flows of matter
and background neutrinos.
Flavor and helicity oscillations can be complicated in

detail, but they are conceptually straightforward. Their
importance arises because charged-current interactions
produce neutrinos in flavor eigenstates, and all interactions
produce them in almost perfect helicity states. This non-
equilibrium distribution which is produced, for example, in
the neutrino-sphere region of a supernova, subsequently
evolves coherently and leads to the various flavor and
helicity oscillation phenomena.
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Concerning pair correlations, the mean-field equations
produce similar oscillation equations. In the simplest case
of massless neutrinos, the pair correlations are between
neutrinos and antineutrinos of opposite momenta and the
oscillations are between the empty state and the one filled
with a neutrino and antineutrino. However, one probably
cannot separate production from subsequent propagation.
The oscillation frequency is here twice the neutrino energy,
so in contrast to flavor and helicity oscillations, there is no
separation of scales between the energy of the state and the
oscillation frequency. Probably, as far as pair correlations
are concerned, one should picture neutrinos as being
produced in eigenstates of propagation in the medium
and not as eigenstates of the interaction Hamiltonian.
Flavor and helicity oscillations become important only
because one produces a coherent superposition of different
propagation eigenstates. As this crucial characteristic
appears to be missing for pair correlations, we are tempted
to suspect that pair correlations remain a small correction to
neutrino dispersion.
In the simplest case, helicity and pair correlations build up

only in anisotropic media because angular-momentum con-
servation forbids mixing of states with different spin. If the
anisotropy is a convective matter current, then there is a
seeming paradox. In the frame with the current we expect
correlations to build up. On the other hand, we may study
these effects in the rest frame of the medium where no
correlations build up due to isotropy of the background. As
far as helicity correlations are concerned, this paradox is
resolved by noting that the handedness of massive neutrinos
is not Lorentz invariant. Transforming both the mean-field
background and the neutrino states to a different frame, e.g.,
the rest frame of the medium, leads to consistent physical
results. For pair correlations, physical resultsmust also be the
same in all frames, yet it is less obvious how to show this
point explicitly because the correlated modes of opposite
momentum are different ones in every frame. Note, however,
that in the supernova context, there is not necessarily a natural
coordinate system for the study of neutrino propagation.
Explicitly including production and detection processes, i.e.,
the collision terms in the kinetic equation, may shed more
light on this question.
The ultimate ambition of fully understanding neutrino

propagation in dense environments and strong magnetic
fields requires a more complete development of its theo-
retical underpinnings. Our paper is meant as a contribution
toward this overall goal.

ACKNOWLEDGMENTS

We would like to thank I. Izaguirre, S. Chakraborty,
A. Dobrynina, and C. Volpe for fruitful discussions.
We acknowledge partial support by the Deutsche
Forschungsgemeinschaft (DFG) under Grant No. EXC-
153 (Excellence Cluster “Universe”), and by the Research
Executive Agency (REA) of the European Union under

Grant No. PITN-GA-2011-289442 (FP7 Initial Training
Network “Invisibles”).

APPENDIX A: CHIRAL SPINORS

Following the conventions of Ref. [62], which differ
from the ones used in Ref. [44] by the overall sign of γ0, the
Dirac matrices in the Weyl representation, which is used in
this work, are

γμ ¼
�

0 σμ

σ̄μ 0

�
; ðA1Þ

where σμ ¼ ð1;σÞ and σ̄μ ¼ ð1;−σÞ. Here σ is a three-
vector Pauli matrix and 0 and 1 are 2 × 2 zero and unity
matrices respectively. The chiral projectors are

PL ¼
�
1 0

0 0

�
; PR ¼

�
0 0

0 1

�
: ðA2Þ

The charge-conjugation matrix is

C ¼ −iγ2γ0 ¼
�þε 0

0 −ε

�
; ðA3Þ

where

ε ¼
�

0 −1
þ1 0

�
: ðA4Þ

Notice that in two-component form, one usually writes
εαβ for this antisymmetric 2 × 2 matrix and ε _α _β for −ε
appearing in the lower right position of C.
In the Weyl representation and with these conventions,

the Dirac bispinors are

uiðp; sÞ ¼
�

N i
p;sχsðp̂Þ

N i
p;−sχsðp̂Þ

�
; ðA5aÞ

viðp; sÞ ¼ s

�−N i
p;−sχ−sðp̂Þ

N i
p;sχ−sðp̂Þ

�
; ðA5bÞ

where p̂ is the unit vector in the direction of p, p≡ jpj,
s ¼ � is a helicity index, and

N i
p;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei − sp
2Ei

s
≈ δs− þ mi

2p
δsþ; ðA6Þ

where Ei ¼ ðp2 þm2
i Þ1=2 is the energy of a neutrino with

mass mi.
We may describe the modes of the neutrino field in

spherical coordinates where the momentum components
are p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. In this case, the
standard two-component helicity spinors are explicitly
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χþðp̂Þ ¼
�

cos θ
2

eiϕ sin θ
2

�
; ðA7aÞ

χ−ðp̂Þ ¼
�−e−iϕ sin θ

2

cos θ
2

�
: ðA7bÞ

They satisfy the orthogonality condition χ†sðp̂Þχhðp̂Þ ¼ δsh.
The matrix elements of σ̄μ are then found by direct

evaluation to be

χ†−ðp̂Þσ̄μχ−ðp̂Þ ¼ nμ ¼ ð1; p̂Þ; ðA8aÞ

χ†þðp̂Þσ̄μχþðp̂Þ ¼ n̄μ ¼ ð1;−p̂Þ; ðA8bÞ

χ†þðp̂Þσ̄μχ−ðp̂Þ ¼ −e−iϕϵμ ¼ −e−iϕð0; ϵ̂Þ; ðA8cÞ

χ†−ðp̂Þσ̄μχþðp̂Þ ¼ −eiϕϵμ� ¼ −eiϕð0; ϵ̂�Þ; ðA8dÞ

where ϵμ is a polarization vector orthogonal to nμ. The
explicit components in spherical coordinates are

ϵ̂ ¼

0
B@

eiϕcos2 θ
2
− e−iϕsin2 θ

2

−iðeiϕcos2 θ
2
þ e−iϕsin2 θ

2
Þ

− sin θ

1
CA: ðA9Þ

Note that the vectors nμ and ϵμ depend on p̂, but we do not
show this dependence explicitly to simplify the notation.

APPENDIX B: NEUTRINO-NEUTRINO
MEAN-FIELD HAMILTONIAN

Because Majorana and Weyl neutrinos have two degrees
of freedom, in many cases it is more convenient to use two-
component notation. For Majorana neutrinos,

νi ¼
�
νi;α

ν† _αi

�
and ν̄i ¼ ðναi ν†i; _αÞ; ðB1Þ

where νi;α and ν†i; _α are two-component fields. They are
related by Hermitian conjugation and transform under the
ð1
2
; 0Þ and ð0; 1

2
Þ representations of the Lorentz group

respectively. To emphasize the different transformation
properties, the conjugated fields, by convention, always
carry a dotted spinor index. The spinor indices α and _α
are raised (lowered) using the spinor metric matrices εαβ

and ε _α _β (εαβ and ε _α _β). Left-handed Weyl fields satisfy the
condition PLν ¼ ν. Their explicit form can be obtained
from Eq. (B1) by applying the chiral projectors.
Rewritten in terms of the two-component fields, the

neutrino-neutrino Hamiltonian density of Eq. (21) is

Hνν ¼ GFffiffiffi
2

p
X
ij

½ν†i; _ασ̄μ; _αανi;α�½ν†j; _βσ̄
_ββ
μ νj;β�: ðB2Þ

Taking expectation values of products of two of the four
neutrino fields and bearing in mind that fermions anti-
commute we obtain for the mean-field Hamiltonian

Hνν
mf ¼

GFffiffiffi
2

p
X
ij

σ̄μ; _αασ̄
_ββ
μ

×
h
2ν†i; _ανi;αhν†j; _βνj;βi − 2ν†i; _ανj;βhν†j; _βνi;αi

þ ν†i; _αν
†
j; _β
hνj;βνi;αi þ νi;ανj;βhν†j; _βν

†
i; _αi
i
: ðB3Þ

Translating back to the four-component notation we
obtain ½ν̄iγμPLνi�hν̄jγμPLνji for the first term in Eq. (B3).

Using a Fierz identity [62], σ̄μ; _αασ̄
_ββ
μ ¼ −σ̄μ; _αβσ̄

_βα
μ , and

translating back to the four-component notation we can
represent the second term in a similar form,
½ν̄iγμPLνj�hν̄jγμPLνii. By raising and lowering the spinor
indices and reordering the fields the third term can be

rewritten as σμ_αασ̄
_ββ
μ ν†

j;_β
ν† _αi hναi νj;βi. Using another Fierz

identity [62], σμ_αασ̄
_ββ
μ ¼ 2δα

βδ _β _α, and translating back to
four-component notation we can rewrite the third term in
the form 2½ν̄jPRCν̄Ti �hνTi CPLνji. Collecting all terms we
obtain in four-component notation

Hνν
mf ¼

ffiffiffi
2

p
GF

X
ij

ð½ν̄iγμPLνi�hν̄jγμPLνji

þ ½ν̄iγμPLνj�hν̄jγμPLνii
þ ½ν̄iPRCν̄Tj �hνTj CPLνii
þ ½νTi CPLνj�hν̄jPRCν̄Ti iÞ: ðB4Þ

Using the definition of the charge-conjugate field,
νc ≡ Cν̄T , and the resulting ν̄c ¼ νTC we can further
simplify and write the last two terms in a form which
coincides with Eq. (40),

Hνν
mf ¼

ffiffiffi
2

p
GF

X
ij

ð½ν̄iγμPLνi�hν̄jγμPLνji

þ ½ν̄iγμPLνj�hν̄jγμPLνii
þ ½ν̄iPRν

c
j �hν̄cjPLνii

þ ½ν̄ci PLνj�hν̄jPRν
c
i iÞ: ðB5Þ

Thus, the effective Hamiltonian obtained using the two-
component notation is identical to the one obtained using
the four-component notation, as expected.

APPENDIX C: RIGHT-CHIRAL CURRENTS

For completeness, we provide the contractions of the
Lorentz structure of right-chiral currents ðγμPRÞ, which
might arise in, e.g., beyond the Standard Model theories
with right-handed currents. The contractions are
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ðγμPRÞννij;sh ≈
� 0 eþiϕ mi

2p ϵ
�
μ

e−iϕ mj

2p ϵμ nμ

�
; ðC1aÞ

ðγμPRÞνν̄ij;sh ≈
� eþiϕ mi

2p n̄μ 0

ϵμ e−iϕ mj

2p nμ

�
; ðC1bÞ

ðγμPRÞν̄νij;sh ≈
� e−iϕ mj

2p n̄μ ϵ�μ

0 eþiϕ mi
2p nμ

�
; ðC1cÞ

ðγμPRÞν̄ ν̄ij;sh ≈
� n̄μ e−iϕ mj

2p ϵ
�
μ

eþiϕ mi
2p ϵμ 0

�
: ðC1dÞ
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