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Asymmetric symmetry breaking models dynamically break theG × G gauge symmetries of mirror models
to distinct subgroups in the two sectors. The coincidental abundances of visible and darkmatter,ΩDM ≃ 5ΩVM,
motivates asymmetric dark matter theories where similar number densities of baryons in each sector are
explained by their connected origins. However, the question of why the baryons of two sectors should have
similar mass remains. In this work we develop an alternative class of asymmetric symmetry breaking models
which unify the dark and visible sectors while generating a small difference in the mass scale of the baryons of
each sector. By examining the different paths that the SO(10) GUT group can take in breaking to gauge
symmetries containing SU(3), we can adapt the mechanism of asymmetric symmetry breaking to demonstrate
models in which originally unified visible and dark sectors have isomorphic color gauge groups at low energy
yet pass through different intermediate gauge groups at high energy. Through this, slight differences in the
running coupling evolutions and, thus, the confinement scales of the two sectors are generated.
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I. INTRODUCTION

The present understanding of our Universe places all of
the matter that we understand as just a small fraction of the
total amount of matter and energy that make up the cosmos.
This visible matter (VM), made up of the particles of the
standard model (SM) interacting under the gauge forces
described by the group SUð3Þ × SUð2Þ ×Uð1Þ accounts
for only 4.9% of the total mass energy while the remainder
is made up of the currently unknown dark matter (DM),
with 26.8%, and dark energy which drives the acceleration
of the Universe accounting for 68.3%. The similarity in the
abundances of visible and dark matter suggests a common
origin, since if the two forms of matter were completely
independent their relative abundances would likely be
dissimilar. Asymmetric dark matter (ADM) models seek
to explain this observed ratio of visible and dark matter
of ΩDM ≃ 5ΩVM by the conservation of a single global
quantum number. By establishing a symmetry in a linear
combination of baryon and dark baryon numbers, the
matter-antimatter annihilations and chemical reprocessing
taking place result in a relation between the number
densities of visible and dark baryons [1–3]. Though armed
with an explanation for similar baryon number densities,
ADM models are still in need of an explanation as to why
visible and dark baryons should have similar mass. In [4],
the mechanism of asymmetric symmetry breaking (ASB)
was introduced to develop a way of connecting these
masses by generating an SU(3) confinement scale in each
sector which is similar but slightly different due to a grand
unification of the two sectors for which the originally
unifiedGV ×GD gauge group is broken differently for each

sector. This was used in the context of an SUð5Þ × SUð5Þ
model where the hidden sector was broken to a dark SUð3Þ.
Such a model then allows for variations in the masses of
fermions in each sector and alters the running couplings
of the surviving SU(3) gauge symmetries that confine the
visible and dark baryons. This model worked by using the
fact that since the two sectors unify into a single G × G
group at high energy with a Z2 mirror symmetry, the values
of the coupling constants at the GUT scale are the same and
different quark masses of the two sectors differentiate the
evolution of the couplings slightly to produce confinement
scales of similar but distinct value.
In this work we explore the ability of spontaneous

symmetry breaking to generate similar results from different
GUT breaking chains in the two sectors in an SOð10Þ ×
SOð10Þ theory. These different gauge symmetry breaking
chains can result from a simple extension of the mechanism
of ASB and allows one to create regions where the coupling
evolution differs in the two sectors without considering
fermion mass generation. The models that we explore here
are larger extensions tomirror symmetricmodelswhich have
been explored in many contexts [5–22], where in this work
the mirror symmetry serves only at high energy and the
low-energy features of the two sectors can bevastly different.
We use this to develop a way of explaining the similarity of
DMmass, the focus of this paper. In further work it would be
interesting to see more complete theories that explore the
baryogenesis of the two sectors such as in the recent work of
[23] where an SOð10Þ × SOð10Þ model explored baryo-
genesis via leptogenesiswith visible and darkQCDscales set
at similar values. Our work is also related to other inves-
tigations into the possibility of a dark QCD such as [24–30].
The next section will review the motivation for such

models by examining how the running of coupling*lsj@student.unimelb.edu.au
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constants in gauge theories with unification can be used to
link the color confinement scales of the two sectors. From
there Sec. III will discuss SO(10) models and their appeal
as the choice of GUT group to be implemented with this
method. Following this Sec. IV and Sec. V will discuss the
paths of symmetry breaking that we can take within SO(10)
models and how these can be used in ASB models to create
the standard model in one sector with an SU(3) group in the
dark sector (DS). We will then move on to Sec. VI where
we will explore similar models within the supersymmetric
framework, while Sec. VII will examine the results from a
broad range of these possible scenarios and their effect on
the dark QCD scale. Finally, in Sec. VIII wewill discuss the
constraints on some of these models and the outlook for
such theories.

II. DIMENSIONAL TRANSMUTATION

Our objective is to develop SOð10Þ × SOð10Þ models
that can account for the similarity in mass of visible and
dark matter. The overwhelming majority of the mass of VM
comes from dimensional transmutation where a dimen-
sionful parameter is created at the scale at which a coupling
begins to diverge and the theory becomes nonperturbative.
The masses of the protons and neutrons which dominate the
visible sector (VS) in the present Universe come from
the confinement scale of QCD where the coupling constant
of the color force becomes large at low energy. This feature
of asymptotically free theories presents an elegant way to
introduce mass scales into a theory. The capacity to yield
such scales at low energy comes from the negative sign of
the beta function of a non-Abelian gauge theory. The
running coupling evolution is described by the logarithmic
dependence on energy scale,

αsðμÞ ¼
αsðμ0Þ

1 − ðb0=4πÞαsðμ0Þ lnðμ2=μ02Þ
; ð1Þ

such that at low-energy scales the value of αs grows
exponentially. This asymptote sets the energy scale of
the proton mass after chiral symmetry breaking when
colored particles are confined to bound states. In a general
non-Abelian gauge theory for group G, the beta function at
one loop is given by

βðgÞð1LoopÞ ¼
g3

16π2

�
−
11

3
RGauge þ

4

3
RDirac þ

2

3
RMajorana

þ 2

3
RWeyl þ

1

3
RC:Scalar þ

1

6
RScalar

�
; ð2Þ

where βðgÞð1LoopÞ ¼ g3

16π2
b0 and the factors of R are the

indices for the choice of multiplet(m) defined as

TrðtatbÞ ¼ δab × RðmÞ; ð3Þ
and are calculated for each copy of the gauge fields, which
are necessarily in the adjoint representation of G, followed

by the Dirac, Majorana, and Weyl fermions and finally
complex and real scalars. For the familiar QCD group
SU(3), the beta function becomes

b0 ¼ −11þ 2

3
nf; ð4Þ

with nf the number of flavors. In the standard model the
coupling of QCD goes nonperturbative at ≈200 MeV. In
this paper we seek to explain the similarity of visible and
dark matter masses by assuming that DM similarly gains its
mass by dimensional transmutation and that the confine-
ment scales of the two sectors are linked to each other by
their different evolution from a common starting point at
the GUT scale. These differences can occur spontaneously
from a completely mirror symmetric model thanks to ASB
where the absolute minima of the potential are such that the
vacuum structure of each sector is necessarily different.
The goal of this work is to construct a broad outline of the
possible models in which a GUT theory with a discrete Z2

symmetry can naturally explain the similarity of visible and
dark matter masses by spontaneously breaking the sym-
metries of the two sectors through different subgroups
while ending with at least one copy of SU(3) in each sector.
In this manner the confining scale of the dark QCD is
related to that of the standard model through the unified
couplings at high scale, but within intermediate symmetry
breaking scales the coupling constants run differently due
to the contribution from the gauge bosons of their respec-
tive groups. It, thus, becomes effectively the first term in
Eq. (2) that changes at particular mass scales allowing for
the generation of different confinement scales rather than
the second term in Eq. (4) at the quark mass thresholds as in
[4]. In this work we will not examine any differences
resulting from quark mass thresholds though of course the
two effects could be utilized in a single theory. We will
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FIG. 1 (color online). The confinement of the dark sector QCD
occurs at a higher scale than its visible counterpart after
asymmetric symmetry breaking. The top line shows αD after
running as SU(4) for 2 orders of magnitude at a high-energy scale
while αV remains SU(3).
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focus on those cases where after the altered running of the
two QCDs is established the dark QCD coupling will
confine at a higher energy scale as this is more suited to
ADM where mass scales of around 1 order of magnitude
higher are compatible. Figure 1 shows the divergence of the
two SU(3) theories after running at different rates for a
segment of the high-energy regime.
A number of other works have explored similar concepts

of generating the confinement scale of a dark QCD in order
to explain the DMmass coincidence. In particular this work
is related to that of [31] where Z2 symmetric SU(5) GUTs
were explored for generating confined states at low scales.
The present work, however, seeks to expand the technique
of ASB beyond SU(5) theories to the SO(10) gauge group
and so we move on to a discussion of its features.

III. SOð10Þ × SOð10Þ MODELS

The group SO(10) presents an appealing avenue for
GUT extensions to the standard model beyond the minimal
cases. It has the benefit of allowing each generation of
fermions to fit within a single SO(10) multiplet including
the right hand neutrino. Most SO(10) models require at
least two Higgs multiplets to break the full symmetry down
to the standard model. Typical choices include one set of
fields in 45 or 54 representations and another in 10, 16 or
126 dimensional representations [32]. The choice of 126

for the second is appealing as it allows the generation of
fermion masses by Yukawa coupling to the 3 copies of 16f
which contain the fermions of the standard model. Since
there are two multiplets required to break SO(10) to the
standardmodel gaugegroup, thework of [4] can be naturally
extended to SO(10) where the visible and dark sectors
required two Higgs representations in each sector to carry
out ASB. By giving a nonzero vacuum expectation value
(VEV) to all four representations in such a manner that
representations paired under theZ2 symmetry gainVEVs of
different sizes, the gauge group of each sector will be
different for small segments of the range between the GUT
scale and the low-energy theory. The parameter space of this
particular type of model can be quite small as we shall see
in Sec. V and, therefore, leads us to consider nonminimal
multistep breaking chains in SOð10ÞV × SOð10ÞD models
for more than four Higgs multiplets. We are chiefly con-
cerned with paths that can break SO(10) to a gauge sector
containing SU(3) in the dark sector while breaking to the
SM gauge group in the visible sector. Since our primary
goal is to generate dark confinement scales only slightly
above that of the visible sector, we will limit ourselves to
models where this is the result, that is ΛD > ΛV . The case
of ΛD ¼ ΛV can also appear, often in the limiting cases
where the intermediate scales approach the GUT scale.
To illustrate the concept, consider the case where

SOð10ÞV →MX
SUð4Þ × SUð2Þ × SUð2Þ→MI

SUð3Þ × SUð2Þ ×Uð1Þ; ð5Þ

while in the dark sector

SOð10ÞD→MX
SUð5Þ→MI

SUð3Þ × SUð2Þ ×Uð1Þ: ð6Þ

In the visible sector this could be done with with a Higgs
multiplet which transforms as a 54 and which gains a VEV
at the scaleMX while in the dark sector we have a 45. Then
a pair of 16þ 16 or 126þ 126 representations could gain
VEVs in both sectors at the scale MI where each sector
becomes standard model-like. The use of a pair of con-
jugate representations allows for such fields to be included
in the superpotential in supersymmetric theories and also
allows us to invoke Michel’s conjecture which states that
for conjugate pairs such as these, or for real irreducible
representations, the symmetry breaking must be to a
maximal little group [33,34]. This pair of breaking chains
is a particularly simple example where we have only two
scales, MX and MI; however, in general, it is possible for
the intermediate scales of the two sectors to be independent.
In such a scenario we have only the distance between the
two scales MX and MI that determines the size of the
difference between the confinement scales between the two
sectors. This difference can be approximately determined
by calculating the value of the dark sector’s Λ after running
upward in energy from ΛV to the lowest breaking scale MI

and then to the second, MX, before evolving back down
in energy until we reach the confinement regime. Using this
it can be calculated that at one loop the ratio of the
confinement scales is given by

ΛD

ΛV
¼ MX

MI

bD−bV
b0 ; ð7Þ

where the beta functions here are for the intermediate
gauge groups in the intermediate range MI ≤ M ≤ MX for
the two sectors, and b0 is the SU(3) beta function given
in Eq. (3). This calculation allows us to see that similar
but different confinement scales can be generated from a
model with different gauge symmetries at high energy, and
for this reason we wish to consider the full set of possible
symmetry breaking scenarios. In the next section we will
examine what breaking chains are possible in each sector.

IV. MULTISTEP BREAKING CHAINS

Wewish to systematically explore all the possibilities for
the different breaking chains that can occur in each sector
for an SO(10) model in order to examine which chains
allow for realistic models of both sectors. There are a
number of paths through which SO(10) can break down to a
gauge theory containing the SM with two of the most

UNIFIED DARK MATTER WITH INTERMEDIATE … PHYSICAL REVIEW D 91, 125019 (2015)

125019-3



notable being through the Pati-Salam SUð4Þ × SUð2Þ ×
SUð2Þ [35] and the Georgi-Glashow SU(5) [36] subgroups.
For the visible sector we are mostly concerned with these
particular models; however, for the dark sector we are free
to choose any breaking which leaves unbroken an SU(3)
theory at low energy. This opens up a large number of
choices of Higgs multiplet representations in the dark
sector. We will limit ourselves to the cases of one and
two intermediate scales as additional scales add complexity
without necessarily offering more insight into possible
outcomes. Below we list all of the possible breaking chains
we can consider for the color force in the dark sector.
We consider first of all chains with just one intermediate
scale, MI , between the confinement scale, ΛD, and the
GUT scale MX. These are

SOð10Þ → SOð9Þ → SUð3Þ ðIÞ
SOð10Þ → SOð8Þ → SUð3Þ ðIIÞ
SOð10Þ → SOð7Þ → SUð3Þ ðIIIÞ
SOð10Þ → SUð5Þ → SUð3Þ ðIVÞ
SOð10Þ → SUð4Þ → SUð3Þ ðVÞ ð8Þ

and secondly we consider models with two intermediate
scales,MI andMJ, betweenMX and the low-energy theory,
with MJ ≥ MI . These are

SOð10Þ → SOð9Þ → SOð8Þ → SUð3Þ ðVIÞ
SOð10Þ → SOð9Þ → SOð7Þ → SUð3Þ ðVIIÞ
SOð10Þ → SOð9Þ → SUð4Þ → SUð3Þ ðVIIIÞ
SOð10Þ → SOð8Þ → SOð7Þ → SUð3Þ ðIXÞ
SOð10Þ → SOð8Þ → SUð4Þ → SUð3Þ ðXÞ
SOð10Þ → SOð7Þ → SUð4Þ → SUð3Þ ðXIÞ
SOð10Þ → SUð5Þ → SUð4Þ → SUð3Þ ðXIIÞ: ð9Þ

The chains we consider in the visible sector are most often
IV and V as well as the case where the two intermediate
scales are close enough that the symmetry breaking effec-
tively happens at one scale, as per SOð10Þ → SUð3Þ. We
consider this variety as the limiting case for the magnitude
of the difference between the two groups one loop beta
functions and is useful for cases where the symmetry
breaking chains of the two sectors are in fact the same
except for the scales at which breaking occurs. This can be
seen as delayed symmetry breaking where at one or more of
the scales,MX;MI andMJ one sector breaks to a subgroup
but the other does not. The analysis is no different than
other examples, it is simply that we contrast some inter-
mediate gauge group’s running with that of, for instance,
the group SOð10Þ itself. In examining results we choose a
breaking chain for each sector from the list, but we will
limit ourselves to only those choices for which the dark
scale runs faster in the intermediate range of the running for
the case of one intermediate scale. These cases demonstrate

the key aspect of these theories, that the gauge group of
the intermediate energy scale can change the final scale
of dimensional transmutation in two SU(3) theories that
originate from an originally Z2 symmetric G × G theory.
For the sake of proton decay limits the intermediate scale

of the visible sector MI must be above experimental
constraints. Additionally it is important for consideration
of gauge coupling constant unification in the visible sector
which we will return to in Sec. VIII. The scale at which the
dark sector becomes SU(3) is not so constrained; however,
if it is significantly lower, the confinement scales will
distance themselves beyond the desired amount. It may also
have consequences for the stability of DM depending on
other features of the hidden sector. It is also natural to
consider the models mentioned where Higgs multiplets
that gain the same VEV in each sector allow for the lower
intermediate scale to be the same in the two sectors.
Beyond this the next highest intermediate scale MJ is
constrained only from above in that MJ < MX < MPlanck.
In the next section we present a proof that for non-SUSY
models ASB can be realized in potentials that give minima
which describe any of the model types we discussed above.

V. MULTISTEP ASYMMETRIC
SYMMETRY BREAKING

We will now outline how a Higgs sector can accom-
modate a large variety of symmetry breaking chains in a
GUT model of two sectors. As in [4] ASB can induce
nonzero VEVs in Higgs multiplets which have Z2 partners
in the opposing sector that retain a VEV of zero. The
simplest example has just two pairs of scalar singlet fields
that transform under the Z2 symmetry as

ϕ1 ↔ ϕ2; χ1 ↔ χ2: ð10Þ

We can then write down the general potential without loss
of generality as

V ¼ λϕðϕV
2 þ ϕD

2 − v2ϕÞ2 þ κϕðϕV
2ϕD

2Þ
þ λχðχV2 þ χD

2 − v2χÞ2 þ κχðχV2χD
2Þ

þ σðϕV
2χV

2 þ ϕD
2χD

2Þ
þ ρðϕV

2 þ χV
2 þ ϕD

2 þ χD
2 − v2ϕ − v2χÞ2; ð11Þ

where cubic terms are taken to be absent by additional
discrete symmetries. If all of the parameters in Eq. (11)
are positive, then each term in the potential is positive
definite and, thus, minimized if it is equal to zero. The total
potential is then minimized by VEVs that break the Z2

symmetry in such a way that

hϕ1i ¼ vϕ; hχ1i ¼ 0; hϕ2i ¼ 0; hχ2i ¼ vχ : ð12Þ

This minimum is also degenerate with its Z2 partner
where it is ϕ2 and χ1 that gain nonzero VEVs. We can
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then extend this idea to larger representations of gauge
groups by replacing the singlet fields with Higgs multiplets.
The set of Higgs multiplets responsible for symmetry brea-
king in each sector can, thus, be entirely independent for
an arbitrary number of representations we add to the theory.
Let us first take the case of a set of 2n singlet scalar fields,
HV1; HD1;…; HVn;HDn, where under the Z2 symmetry,

HV ↔ HD: ð13Þ

We then consider general potentials where again all
of the parameters are positive and each individual term is
positive definite and cubic terms are taken to be absent
by discrete symmetries. For the case of n ¼ 3 we
have

V ¼ λH1
ðHV

2
1 þHD

2
1 − v2H1

Þ2 þ κH1
ðHV

2
1HD

2
1Þ þ λH2

ðHV
2
2 þHD

2
2 − v2H2

Þ2 þ κH2
ðHV

2
2HD

2
2Þ

þ σ1ðHV
2
1HV

2
2 þHD

2
1HD

2
2Þ þ ρ1ðHV

2
1 þHV

2
2 þHD

2
1 þHD

2
2 − v2H1

− v2H2
Þ2 þ λH3

ðHV
2
3 þHD

2
3 − v2H3

Þ2
þ κH3

ðHV
2
3HD

2
3Þ þ σ3ðHV

2
1HD

2
3 þHD

2
1HV

2
3Þ þ ρ3ðHV

2
1 þHV

2
3 þHD

2
1 þHD

2
3 − v2H1

− v2H3
Þ2

þ σ2ðHV
2
3HV

2
2 þHD

2
3HD

2
2Þ þ ρ2ðHV

2
3 þHV

2
2 þHD

2
3 þHD

2
2 − v2H3

− v2H2
Þ2: ð14Þ

In this case the minimum is given by

hHV1i ¼ vH1
; hHD1i ¼ 0;

hHV2i ¼ 0; hHD2i ¼ vH2
;

hHV3i ¼ vH3
; hHD3i ¼ 0: ð15Þ

The above minima could have been the reverse where the V
and D subscripts are interchanged of course. We simply
label the sector which develops the features of the SM as
the visible sector. This potential demonstrates the general
procedure by which we can generate nonsupersymmetric
asymmetric symmetry breaking multistep chains. The first
two sets of fields form an asymmetric set as in Eq. (11) and
for any additional field, such as H3, we can choose for it to
align with either the visible or dark sector based on these
choices: For coupling between fields that we want to break
similarly we set σ to couple fields in opposing sectors and
the ρ term to be that which allows for same sector terms. In
this case we choose for H3 to break the same as H1 so σ3
couples fields of different sectors. Then for mixing between
H3 and fields that break differently we set σ to couple the
same sector fields, where in Eq. (14) we have σ2 coupling
same sector fields since H2 is aligned with the opposite
sector to H1. Following this simple prescription allows
us to add an arbitrary number of multiplets to each sector
with the asymmetry determining which sectors will gain the
symmetry breaking aspects of that multiplet. We can then
consider representations of SO(10) where now each HVn ∼
ðRn; 1Þ and itsZ2 partner transforms asHDn ∼ ð1; RnÞ. The
general potential will contain additional couplings; how-
ever, it will always contain an analogous set of terms to
those above for which we can always generate an asym-
metric array of VEVs. These will then drive the symmetry
breaking of the two sectors to be completely different.
As we mentioned earlier the simplest variety of SO(10)

model is one where the asymmetry in the VEVs of the
potential is not limited to distinguishing between zero and
nonzero, but rather creates an asymmetry in the size of the

VEVs which are all nonzero. Consider a potential of just
two pairs as in Eq. (11) but with each of κϕ; κχ < 0. In this
scenario we can create asymmetries of the form

hϕ1i ¼ hχ2i; hχ1i ¼ hϕ2i: ð16Þ

We found it possible to generate a ratio of hϕ1i=hχ1i ≈ 103

for a very constrained region of parameter space. Such a
potential can minimally accommodate exactly the number
of Higgs multiplets necessary to break two copies of
SO(10) to the same final gauge group but with different
gauge groups in the intermediate range depending on the
choice of Higgs multiplet. While simple in the number of
multiplets, this minimal theory suffers from a much smaller
allowed parameter space than the previously discussed
ASB mechanisms. In particular the size of parameters must
be fine tuned slightly such that we very nearly have κχ ≃ κϕ
and −κϕ − κχ ≃ σ. If we remove the condition of having
just two breaking scales and allow each of the four fields to
attain different VEVs then a much broader range of the
parameter space is compatible.
We can also develop models in which additional pairs of

multiplets that transform under theZ2 symmetry are added as
inEq. (14) but break in such away that they both gain nonzero
VEVs and, thus, both contribute to the symmetry breaking in
each sector. This is in fact the simplest method in some kinds
of cases where the same dimensional representation is useful
for the symmetry breaking needed in each sector. This can be
always be accomplished by, for example, having these added
fields couple only weakly to the previously added fields. We
illustrate this asymmetric breakingwith a particularSOð10Þ ×
SOð10Þ potential which breaks the mirror symmetric GUT
group to ½SUð4Þ × SUð2Þ × SUð2Þ�V × ½SUð5Þ ×Uð1Þ�D.
Within the context of the standard model, such a theory
would need at least onemoreHiggsmultiplet in order to break
the Pati-Salam group to SUð3Þ × SUð2Þ ×Uð1Þ. Within our
variety of models we would require at least one additional
mirror symmetric pair of representations to break the sym-
metry in each sector to one containing SU(3). Since the
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important results from this work are the generation of different symmetries in the intermediate range we focus on constructing a
potential that asymmetrically generates the first step of the breaking chain. We consider a set of fields transforming as

ϕV ∼ ð45; 1Þ; χV ∼ ð54; 1Þ; ϕD ∼ ð1; 45Þ; χD ∼ ð1; 54Þ: ð17Þ

With these we can follow the procedure detailed in the toy model and construct an asymmetric potential. Each of the terms in
the toy model has a direct analogue and in addition to these there will be new terms from unique contractions of the Higgs
multiplets. The general renormalizable fourth-order potential is

−
μ2ϕ
2
ðϕVijϕVji þ ϕDijϕDjiÞ þ

λϕ
4
ððϕVijϕVjiÞ2 þ ðϕDijϕDjiÞ2Þ þ

αϕ
4
ðϕVijϕVjkϕVklϕVli þ ϕDijϕDjkϕDklϕDliÞ

þ κϕðϕDijϕDjiϕVklϕVlkÞ −
μ2χ
2
ðχVijχVji þ χDijχDjiÞ þ

λχ
4
ððχVijχVjiÞ2 þ ðχDijχDjiÞ2Þ

þ αχ
4
ðχVijχVjkχVklχVli þ χDijχDjkχDklχDliÞ þ κχðχDijχDjiχVklχVlkÞ

þ βμχ
3

ðχVijχVjkχVki þ χDijχDjkχDkiÞ þ c1ðϕDijϕDjiχVklχVlk þ ϕVijϕVjiχDklχDlkÞ
þ c2ðϕDijϕDjiχDklχDlk þ ϕVijϕVjiχVklχVlkÞ þ c3ðϕDijϕDjkχDklχDli þ ϕVijϕVjkχVklχVliÞ
þ c4ðϕDijϕDjkχDkiÞ þ ϕVijϕVjkχVkiÞ þ c5ðTr½ðϕVikχVkm − χVilϕVlmÞ2� þ Tr½ðϕDikχDkm − χDilϕDlmÞ2�Þ: ð18Þ

The addition of the cubic term is necessary for the pattern of
symmetry breaking we have chosen. This differs from the
toymodel caseswhere an additionalZ2 symmetry protected
the potentials from such cubic terms. Relaxing this con-
dition still allows for asymmetric solutions for the VEVs of
the two sectors, however, as discussed in the Appendix. For
the sake of simplicity we also set the parameters c3; c4; c5 to
be zero as large values will remove the asymmetric VEV
structure. The analysis can be simplified by transforming
the fields into a simplified VEV form. For the adjoint
representation this becomes a block diagonal matrix with
each block being a 2 × 2 antisymmetric matrix. For the
54 we have a traceless diagonal matrix. For the region of
parameter space discussed in the Appendix, the potential
is minimized with VEVs

hϕVi ¼Mi

0
BBBBBBBBBBBBBBBBBBB@

0 a 0 0 0 0 0 0 0 0

−a 0 0 0 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0 0

0 0 −a 0 0 0 0 0 0 0

0 0 0 0 0 a 0 0 0 0

0 0 0 0 −a 0 0 0 0 0

0 0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 −a 0 0 0

0 0 0 0 0 0 0 0 0 a

0 0 0 0 0 0 0 0 −a 0

1
CCCCCCCCCCCCCCCCCCCA

hϕDi ¼ 0

hχVi ¼ 0

hχDi ¼ Mj

0
BBBBBBBBBBBBBBBBBBB@

b 0 0 0 0 0 0 0 0 0

0 b 0 0 0 0 0 0 0 0

0 0 b 0 0 0 0 0 0 0

0 0 0 b 0 0 0 0 0 0

0 0 0 0 b 0 0 0 0 0

0 0 0 0 0 b 0 0 0 0

0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 0 c 0 0

0 0 0 0 0 0 0 0 c 0

0 0 0 0 0 0 0 0 0 c

1
CCCCCCCCCCCCCCCCCCCA

: ð19Þ

In the above SOð10ÞV breaks by the VEV of the 54 to
SOð6Þ×SOð4Þ∼SUð4Þ×SUð2Þ×SUð2Þ and the 45 serves
to break SOð10ÞD to SUð5Þ ×Uð1Þ[37,38]. Following
this symmetry breaking we would then need additional
Higgs multiplets to break each of the gauge groups to
SU(3) color theories after which the running couplings will
be parallel. Due to the complexity of analyzing potentials
with increasing numbers of large dimensional Higgs
multiplets we leave such detailed models to more specific
theories.We have, however, completed our stated objective
of constructing an SO(10) asymmetric potential, built
according to the principles of ASB, and showing that by
choosing the breaking scales in the two sectors and the
breaking chains listed in the previous section, asymmetric
potentials can be constructed such that exactly that scenario
is the minimum of the potential. In the next section we
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attempt to generalize such possibilities for supersymmetric
models. We specifically look at the general case of real
representations which we can examine in an illustra-
tive model.

VI. SUPERSYMMETRIC THEORIES

As in [4] this analysis is predicated on the unification of
coupling constants and for this, among other reasons such
as the gauge hierarchy problem, we will explore super-
symmetric varieties of these models in this section. As
discussed in [4], Supersymmetric ASB requires more fields
than the non-SUSY case, specifically gauge singlets. Here
we will outline a general scheme to create asymmetric
symmetry breaking chains from the superpotential. In
general additional fields are required to allow for the scalar
potential to have the necessary terms that drive ASB since
only including nonsinglet Higgs multiplets does not allow
us to couple fields from the different sectors at all in the
scalar potential. The method that we outline below is not
necessarily the simplest way to generate such breaking for
any specific choice of representations or breaking chains;
indeed for many simple models as few as one additional
singlet is required [4]. The purpose of this discussion is to

provide an existence proof that for any symmetry breaking
chain we may consider in Sec. VII, a scalar potential can be
created which allows for such a vacuum solution.
We wish to consider a supersymmetric extension to the

argument of Sec. V wherein pairs of Higgs multiplets
can be added one at a time to a model in a Z2 symmetric
manner while allowing us to choose which sector its VEVs
will favor by appropriate choice of couplings. Take the
case of the fields H1V;H1D;H2V;H2D;H3V;H3D; X1; X2;
Y1; Y2; Z1; Z2;ϕ; θ, where under the Z2 symmetry

X1 ↔ X2; Y1 ↔ Y2;

Z1 ↔ Z2; ϕ ↔ ϕ; θ ↔ θ: ð20Þ

We then consider the general, renormalizable, gauge
invariant superpotential that respects the Z2 symmetry
between the sectors. In this case we are assuming that
the Higgs multiplets form real representations though a
similar argument likely exists for complex representations
as well. We do not write down all of the terms in such a
superpotential, only those which directly contribute to the
ASB terms as in Eq. (14):

W ¼ ρ1ðH2
2
VϕþH2

2
DϕÞ þ ρ2ðH2

2
VY1 þH2

2
DY2Þ þ ρ3ðH1

2
VZ2 þH1

2
DZ1Þ þ ρ4ðH2

2
VZ2 þH2

2
DZ1Þ

þ ρ5ðH1
2
Vθ þH1

2
DθÞ þ ρ6ðH1

2
VX1 þH1

2
DX2Þ þ ρ7ðZ1

3 þ Z2
3Þ þ ρ8θ

3 þ ρ9ϕ
3

þ ρ10ðX1
3 þ X2

3Þ þ ρ11ðY1
3 þ Y2

3Þ þ ρ12ðH3
2
VX2 þH3

2
DX1Þ þ ρ13ðH3

2
VY1 þH3

2
DY2Þ

þ ρ14ðH3
2
Vθ þH3

2
DθÞ þ ρ15ðH3

2
VϕþH3

2
DϕÞ þ… ð21Þ

The scalar potential then comes from the sum of soft terms
and Wi�Wi where we ignore the D-terms for this analysis,
though in general such terms will add positive definite
quartic interactions among those fields which are non-
singlets which will not negatively affect the results dis-
cussed here. We examine the extreme case of the parameter
space where the terms shown dominate and all other
parameters in the superpotential are at or very close to
zero. In this case the scalar potential minimally contains
only those terms that would exist without the purely singlet
fields, as in Eq. (14) and which are necessary for ASB, in
addition to a number of other terms which contain the
purely singlet fields. If the sum of the soft mass terms and
mass terms from the superpotential F-terms for the singlet
fields X; Y; Z; θ;ϕ is positive then these fields can maintain
a VEV of zero at the minimum. In this case the depend-
encies among the remaining fields is entirely that of N pairs
of fields under the Z2 symmetry exactly like that of Sec. V
where the symmetry breaking of added fields can be chosen
by the couplings to the previously added fields and we only
have quartic and quadratic terms to deal with. Again we
have that the symmetry breaking of an added multiplet such

as H3 can be chosen by its coupling strength to previously
added fields, in this case the X and Y fields. In Eq. (21) we
have chosen to include the couplings for which, upon
taking the derivatives with respect to X1; Y1; X2; Y2 create
the terms that follow the prescription discussed in Sec. V.
If one wished to have the field H3 break similarly to H2

instead of H1 we simply reduce the magnitude of the
parameters ρ12;13 and replace them with larger couplings
for the terms ðH3

2
VX1 þH3

2
DX2Þ and ðH3

2
VY2 þH3

2
DY1Þ

which were previously among the omitted terms. Z1 and Z2

set the initial asymmetry between the first two pairs of
fields H1V;D and H2V;D while the F-terms from θ and ϕ
create the remaining couplings in the ρ terms from Eq. (14).
The magnitude of the VEVs of the Higgs multiplets will,
however, depend on the size of the soft mass terms that
we add and so it may be difficult to construct models with
very different mass scales. This may, however, work to
our benefit as large differences in the values of ΛQCD can
be generated in short ranges if the difference in the beta
functions is large. One can take this example as a proof of
concept that asymmetric models of any number of Higgs
multiplets can be built in SUSY with the addition of singlet
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fields. Now that we have demonstrated such possible
models in both supersymmetric and nonsupersymmetric
cases we will move on to displaying the numerical results
for the dark confinement scale for different choices of
representations of the Higgs multiplets.

VII. DARK QCD SCALE FROM ASYMMETRIC
SYMMETRY BREAKING

We first consider the set of models with just one
intermediate scale which allows just one energy range
over which the beta functions of the two SU(3) groups
differ. In this case we are, thus, only considering models
where the group in the dark sector has a larger beta
function. We consider both SUSY and non-SUSY models
here since for this part of the analysis the only discerning
feature is the size of the beta functions which for the SUSY
case contains supersymmetric partners to consider as per
Eq. (2). We take the unification point to be where both
sectors become SOð10Þ, the GUT scale MX in our context.

We can, however, have cases where the dark sector remains
as an SO(10) for the range between MX and the inter-
mediate scale MI while the visible sector changes group.
The analysis is the same with the intermediate gauge group
of the dark sector being simply SO(10).
There are three possibilities for the visible sector’s QCD

parent group. It can remain SU(3) up until MX while the
dark sector changes atMI or it can become SUð4Þ or SUð5Þ
at theMI and continue to the unification point. For the dark
sector group we examined the cases of the chains from
Sec. IV. For the case of just two scales MX and MI we plot
the ratio of confinement scales by using Eq. (7). We look at
the scale MI and the difference between the two scales
δM ¼ MX −MI . We display in Figs. 2 and 3 the minimal
and maximal cases in terms of group choice, that is the
largest and smallest difference in beta functions for each of
the possible breaking chains in the VS. The color scale of
each graph gives the ratio ΛD

ΛV
. We see in these figures that

quite a large range in the distance between the breaking
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FIG. 2 (color online). The ratio of confinement scales ΛD=ΛV in the two sectors for a sample of nonsupersymmetric breaking chains.
The top left figure is generated from SUð3ÞV and SUð4ÞD as the groups above the scaleMI . The top right features SUð3ÞV and SUð5ÞD
above MI while the bottom left has SUð4ÞV and SUð5ÞD followed by the bottom right with SUð3ÞV and SOð10ÞD. In each graph the
vertical scale is δM while the horizontal scale is MI below which both sectors contain SU(3) subgroups.
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scales is acceptable if the beta functions are not very
different in size, for example in the case of SU(3) and
SU(4). The magnitude of this difference may be smaller
depending on the particle content of a specific theory
though theZ2 symmetry between the sectors prevents these
matter terms in Eq. (2) from generating large differences.
For the limiting case of SU(3) and SO(10), on the other
hand, we have a much more constrained parameter space
for the choice of breaking scales.
In these cases the results follow from that of the one

intermediate scale case, that is, the final difference in the
confinement scales is a function of length of the range over
which the couplings run at different rates, and the magni-
tude of the difference between the beta functions. Because
of this it is possible to create a dark sector with an
acceptable confinement scale for any breaking chain that
is needed to satisfy visible sector GUT constraints. For
example, if a specific model requires a large range between
the SOð10Þ scale MX and the SUð5Þ scale MI in a theory
like that of breaking chain IV, then we can choose the scale

that the dark sector breaks to SU(5) to be similar toMX and
run as SU(5) down to a lower scale than MI. We have seen
that there are a large number of possible cases for the
breaking chains in each sector where the confinement scale
in the dark sector is just larger than that of the visible sector.
We have, however, been treating our GUT scale MX and
intermediate scale MI as free parameters and so in the next
section wewill look to constraining the realistic models and
look towards possible future work in this area.

VIII. PHENOMENOLOGICAL CONSTRAINTS

The methods detailed here for generating dark sectors
with baryons of a mass scale just above that of the proton
are generalizable to many breaking chains and GUT
models, not all of which will satisfy phenomenological
constraints such as current proton decay limits. Here we
briefly review some of the recent SO(10) GUT models
which can satisfy proton decay constraints in the visible
sector. Proton decay bounds typically bounds push the
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FIG. 3 (color online). The ratio of confinement scales ΛD=ΛV in the two sectors for a sample of supersymmetric breaking chains. The
top left figure is generated from SUð3ÞV and SUð4ÞD as the groups above the scaleMI . The top right features SUð3ÞV and SUð5ÞD above
MI while the bottom left has SUð4ÞV and SUð5ÞD followed by the bottom right with SUð5ÞV and SOð10ÞD.
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scale of unification in SU(5) theories up to energy regimes
consistent with the unification of the gauge coupling
constants. In some works such as [39] the SU(5) scale is
as low as MX ≈ 4 × 1015 after the addition of extra Higgs
multiplets. In particular we examine some of the recent
work on proton decay constraints in GUT models from
[40,41] where while minimal SU(5) theories are ruled out,
supersymmetric SU(5) theories may still be viable while
both supersymmetric and nonsupersymmetric SO(10)
models can generate cases where proton decay is within
experimental limits. We have not gone into any depth on
any specific choice of representations in this paper so it
remains an open question how a particular model of ASB
can work in the context of these phenomenological con-
straints. The construction of realistic models also requires
the unification of the coupling constants which places strict
constraints on the scale at which the visible sector’s QCD

parent group starts. We examine such examples for the
minimal supersymmetric standard model (MSSM) running
and a non-SUSY case. Below we examine the development
of a dark QCD in an extension of this model where the SM
gauge couplings unify at an intermediate scale and the two
sectors unify closer to the Planck scale. Figure 4 shows the
case where we have chain IV in the VS and chain X in the
dark sector. This could be accomplished with 45 and 16 or
126 Higgs multiplets in the VS, together with a 54 or 2100
and 16 or 126 in the DS. Figure 5 shows the direct breaking
SOð10Þ → SUð3Þ for the color force in the VS and chain
XII in the DS which was discussed in Sec. III.
In the MSSM, once we have fixed the scale at which the

VS SU(3) is absorbed into SU(5),MX and any intermediate
scale of the dark sector can then be treated as free
parameters to generate the dark confinement scale. For
the non-SUSY case we examine the work of [42] in which
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FIG. 4 (color online). Supersymmetric model with one and two intermediate scales. In the left plot we have SUð5Þ in the visible sector
and SOð8Þ in the dark above the scale MX ≈ 1016 GeV while the right plot shows SUð5Þ in the visible sector and SOð8Þ breaking to
SUð4Þ at the scale MJ ≈ 1017 GeV in the dark sector. Each graph displays the running coupling of the SM forces (α1; α2; α3) from top
to bottom and that of the color force in the dark sector (the lowest line). The value of the dark confinement scale is 4.1 and 1.9 GeV for
the left and right cases, respectively.
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FIG. 5 (color online). Nonsupersymmetric model with one and two intermediate scales. In the left plot we have SUð3Þ in the visible
sector and SUð5Þ in the dark sector above the scale MX ≈ 1015 GeV while the right plot shows SUð3Þ in the visible sector and SUð5Þ
breaking to SUð4Þ at a scaleMJ > MI in the dark sector. Each graph displays the running coupling of the SM forces (α1; α2; α3) from top
to bottom and that of the color force in the dark sector(the lowest line). The value of the dark confinement scale is 3.2 GeVand 2.5 GeV
respectively.
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a non-SUSY SO(10) model with a color sextet allows for
the unification of the gauge coupling constants. In this case
we can also examine a two step process which has one
segment working to diverge the couplings after SO(10)
breaking, while the next part of the breaking regime brings
the couplings closer again to result in a dark QCD scale just
1 order of magnitude greater than the SM for breaking
scales which span over 4 orders of magnitude.
One could examine a limitless number of such models

in this context extending the number of breaking scales;
however, we can see that for almost any choice in the
number of such scales and breaking chains in the VS, a
model can be constructed which allows a dark confinement
scale through the effect of ASB. In this sense it would
be interesting to move on to developing a detailed model
which resolves a significant number of other issues
associated with GUTs in the VS and then adapt it to an
ASB model in the pursuit of explaining DM also. A full
theory of baryogenesis in the two sectors can also place
strict limits on the size of these intermediate scales
particularly in the case of baryogenesis via leptogenesis
or GUT baryogenesis where the symmetry breaking scale
can affect the amount of baryon number violation in the
early Universe. In addition to these constraints we must
also consider the current DM constraints on self interaction
where the bullet cluster observation sets results on self
interaction for nucleon-nucleon–like scattering in [43].
Such nucleonlike scattering has a cross section of
σ ∼ 10−26 cm2 and can be compared to the upper bound of
the DM self-interaction cross section ≤ 10−23 cm2 [43–45].
In the cases we have considered we were only concerned
with maintaining an SU(3) symmetry in the DS and so in
many of these models the DM candidate only interacts
with itself through short range strong forces and gravity.
Such neutral baryon DM particles are, thus, compatible
with current detection limits.

IX. CONCLUSIONS

The similarity in the abundances of visible and dark
matter leads us to suppose that their origin is not indepen-
dent but rather that the production of both the number
density of DM particles in the early Universe and the
DM mass is a result of processes that are deeply connected
to the standard model. Mirror symmetric grand unified
theories offer a plausible solution to both of these problems
by supposing that DM is a result of a hidden sector whose
complexity is at least as large as our own yet is derived from
an underlying theory that places the two components of
the Universe on exactly the same footing in the distant past.
By assuming that the mass scale of DM comes from the
confinement scale of a dark SU(3), this connection in
masses can be realized through grand unified theories.
Where mirror symmetric models can give the similarity by
having the dark sector be an exact copy of the SM, ASB
allows us to establish a much larger set of theories of the

Universe which contain completely symmetric sectors
whose GUT groups break to subgroups that are necessarily
different allowing for the dynamics of visible and dark
sectors to appear completely different in the low-energy
regime while having the appealing concept of an under-
lying theory based on symmetries. In this work we have
expanded these asymmetric models to allow for SO(10)
models to provide the similarity in visible and dark baryon
mass by having multistep breaking chains in mirror GUT
scenarios give altered coupling constant evolution in the
range between intermediate scales and the GUT scale. We
have demonstrated a specific SOð10Þ × SOð10Þ potential
that breaks the symmetry asymmetrically to allow for
such divergences in the coupling constant evolutions. The
couplings, once gaining an altered value in the intermediate
range, then run parallel all the way down to the low-energy
scale of the present day Universe where the divergence of
the QCD coupling in the two sectors occurs at separate but
similar scales. This, combined with the theory of ADM, has
the potential for a natural explanation of the apparently
coincidental ratio ΩDM ≃ 5ΩVM that characterizes the
matter of our Universe.
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APPENDIX: SCALAR POTENTIALS FOR
NONSUPERSYMMETRIC SOð10Þ × SOð10Þ

MODELS

In this appendix we expand on the potential discussed in
Sec. V. We first consider the two representations of SO(10)
independently. These are the adjoint 45, denoted by ϕij
which can be formed from the antisymmetric product of
two fundamental representations, and the 54 which we
label χij which is formed from the completely sym-
metric product of two fundamentals. The most general
quartic potential for a rank two antisymmetric tensor in
SO(10) is

−
μ2

2
ϕijϕji þ

λ

4
ðϕijϕjiÞ2 þ

α

4
ϕijϕjkϕklϕli: ðA1Þ

For this potential the symmetry breaking pattern is as
follows. For λ > 0 and α > 0, we have

SOð10Þ → SUð5Þ ×Uð1Þ; ðA2Þ

while for λ > 0 and α < 0, we find

SOð10Þ → SOð8Þ ×Uð1Þ: ðA3Þ
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In the case of the symmetric rank-two representation, we
have a similar equation but with the added cubic term
Trðχ3Þ so that the potential reads

−
μ2

2
χijχji þ

λ

4
ðχijχjiÞ2 þ

α

4
χijχjkχklχli þ

βμ

3
χijχjkχki:

ðA4Þ

For this potential the parameter space is such that without
the cubic term the possible breaking chains are, when λ < 0
and α < 0 ,

SOð10Þ → SOð9Þ; ðA5Þ

while for λ > 0 and α > 0, we have

SOð10Þ → SOð5Þ × SOð5Þ: ðA6Þ

For the parameter space where λ > 0 and α > 0 and the
cubic term is nonzero, we have

SOð10Þ → SOð10 − nÞ × SOðnÞ; ðA7Þ

where for values of β ¼ 0 we recover the above result in
Eq. (A6) and for β > 0, n increases as β does until the
breaking chain of Eq. (A5) is recovered. The generation of
the potential in Eq. (18) then results from the addition of the
two potentials given above in Eq. (A1) and Eq. (A4), as
well as the analogue terms of the toy potential that mix the
fields of the two sectors and the new nontrivial same-sector
contractions afforded by the choice of the 45 and 54
representations. Using this potential our numerical results
align with the expected minima from the above potentials
in the case where the cross terms and the additional cubic
terms are sufficiently small. For the choice of parameter
space where λϕ > 0;αϕ > 0;λχ > 0;αχ > 0;β> 0;κϕ> 0;
κχ > 0;c2>c1> 0;c3 ≪ c2;c4≪ c2;c5 ≪ c2 we will obtain
a potential which breaks asymmetrically with the specific
choice of breaking chain for each sector. This agrees with
our numerical analysis where for a sample choice of
parameters,

λϕ ≃ 1; κϕ ≃ 0.75; κχ ≃ 0.75; λχ ≃ 1.6;

μϕ ≃ 1; μχ ≃ 1; αϕ ≃ 0.5; αχ ≃ 1;

βχ ≃ 0.35; c1 ≃ 0.25; c2 ≃ 0.75;

c3 ≃ 0; c4 ≃ 0; c5 ≃ 0;

we find that minimum preserves the VEVs

hϕVi¼0.3

0
BBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCCCCCCCA

hϕDi¼0

hχVi¼0

hχDi¼0.3

0
BBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −6=4 0 0 0

0 0 0 0 0 0 0 −6=4 0 0

0 0 0 0 0 0 0 0 −6=4 0

0 0 0 0 0 0 0 0 0 −6=4

1
CCCCCCCCCCCCCCCCCCCA

;

ðA8Þ

which breaks the symmetry according to

SOð10ÞV × SOð10ÞD → ½SUð4Þ × SUð2Þ × SUð2Þ�V
× ½SUð5Þ ×Uð1Þ�D: ðA9Þ

The analysis discussed here describes just the first step in
asymmetrically breaking an SO(10) mirror symmetric
potential to different subgroups for each sector and at
different energy scales. While many other possible break-
ing chains that have been discussed in this paper could be
analyzed, we leave such work to future efforts to create a
detailed model of an SO(10) GUT model where the choice
of representations aligns with choices for fermion mass
generation models and considerations of minimality. Due to
the complexity in analyzing such Higgs potentials for large
gauge groups, we content ourselves at the present juncture
with the demonstration of the versatility of such asym-
metric symmetry breaking in the context of GUT models.
With this specific example and the principles given in the
toy model, many of the other breaking chains could be
realized in potentials constructed in a like manner.
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