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The noncommutative (NC) massive quantum electrodynamics in 2 + 1 dimensions is considered.
We show explicitly that the one-loop effective action arising from integrating out the fermionic fields leads
to the ordinary NC Chern-Simons and NC Maxwell action at the long wavelength limit (large fermion
mass). In the next to leading order, the higher-derivative contributions to NC Chern-Simons are obtained.
Moreover, the gauge invariance of the outcome action is carefully discussed. We then consider the
higher-derivative modification into the pure NC Chern-Simons Lagrangian density and evaluate the

one-loop correction to the pole of the photon propagator.
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I. INTRODUCTION

Low-dimensional field theories were recognized, a long
time ago, as serving as laboratories where important
theoretical ideas are suitably tested in a simple setting,
especially on condensed matter systems. Besides, these
studies were also driven with the wishful thought that in
such a simpler setting we can learn useful things about the
well-recognized four-dimensional problems. Furthermore,
including that, the fact that a field theory defined in a
three-dimensional space-time contains a highly interesting
inner structure, due to the odd space-time dimensionality,
it is rather natural to investigate them as theoretical
options [1-4].

Due to the recent improvement concerning the precision
of the measurements of experiments (LHC, ILC, etc.)
investigating particle properties, the possibility of observ-
ing direct evidence of new physics has captured and led to a
major interest in the development and understanding of the
physics in higher scales, for instance at Planck scale.
A conscientious point in the majority of the analyses is
that the nature of the space-time may change at Planck
scale. This fact had strong influence in thinking that the
physics at Planck scale may suitably be described by a
noncommutativity between the coordinates of the space-
time. Direct motivations supporting considering models
constructed on noncommutative space-time are many, and
come from several theoretical areas such as string theory,
quantum gravity, and Lorentz breaking [5-7].

In recent years, we have witnessed an enormous activity
involving the development of noncommutative (NC) gauge
theories in high-energy physics [5,8]. The noncommuta-
tivity of space-time, whose structure is determined by
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[x#,x*] = i0", has provided a better understanding about
the quantum nature of space-time. On the other hand, it has
been also studied how noncommutativity affects estab-
lished properties of conventional theories, i.e., studying NC
extensions of well studied quantum field theories and to
look then for NC effects on its deviations, since it is
generally found that such extensions behave in very
interesting and nontrivial ways. Despite its close relation
with the space-time structure, no consistent gravitational
theory defined on noncommutative space-time has been
established yet [9].

In fact, various studies in analyzing three-dimensional
gauge theories defined in a noncommutative space-time
have uncovered deviations of known phenomena and
interesting new properties of these theories [10-16]. One
of the most exploited features of a three-dimensional gauge
theory is that, in one side, if you started with a theory with
massless fermionic fields interacting with Chern-Simons
gauge fields, a mass for the fermionic fields is generated
dynamically by radiative corrections; on the other side, if
you started with a theory with massive fermionic fields
interacting with an external gauge field, the Chern-Simons
action is also induced by radiative corrections. These
properties are usually related to nonperturbative phenom-
ena due to the space-time dimensionality.

The generation of the Chern-Simons action in a non-
commutative gauge theory was the subject of several
analyses, with the most different purposes [14,16-21].
However, no higher-derivative (HD) extensions of the
Chern-Simons action have been considered. This subject
was first discussed in great detail by considering the full
Abelian action, consisting in the Chern-Simons added
by the Maxwell theory,' adjoined by higher-derivative

"This theory is the so-called topologically massive electrody-
namics [1], and describes a helicity +1 mode.
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contributions appearing from a (0/m) perturbative expan-
sion of the effective action of QED5 [22,23]. Our main aim
in the present paper is to treat the latter phenomenon in full
detail when formulated within the framework of non-
commutative gauge theory.

In this paper, we discuss, within the effective action
approach, the one-loop properties of the three-dimensional
noncommutative QED. For this purpose, we follow the idea
outlined in Ref. [24] in which noncommutative fermionic
effective actions were considered. Although the Seiberg-
Witten map is perturbative by nature [5], remarkably, it
suffices to consider the existence of an exact Seiberg-
Witten map, valid to all orders in 0, in a formal way that the
noncommutative effects into the resulting outcome are in
fact nonperturbative. For this purpose, in Sec. II, we review
the basic ideas consisting in this nonperturbative approach
(in 0) to the NC QED;, obtaining the main objects of our
analysis at one-loop effective action. Furthermore, in
Sec. III, we perform explicitly the calculation for two,
three and four gauge fields of the one-loop effective action.
In particular, we will consider the long wavelength limit
(large fermion mass) and consider the terms in the
expansion O(m°), O(m~"') and O(m2), which correspond
exactly to the NC Chern-Simons action, NC Maxwell
action, and higher-derivative extension to the NC Chern-
Simons action, respectively. Also, the gauge invariance of
the higher-derivative extension is discussed. By completion
we present a discussion to characterize the excitation
modes regarding the effective action of the higher-
derivative extension of the pure NC Chern-Simons theory
in Sec. IV. As well as the one-loop correction, arising from
the higher-derivative terms, to the pole of the photon
propagator in the infrared limit is studied, which leads
to the noncommutative UV/IR mixing effect. In Sec. V we
summarize the results, and present our final remarks.

II. GENERAL DISCUSSION

In this section, we will introduce our basic notation and
describe the analysis method. Let us consider the non-
commutative extension of fermionic fields interacting in the

|

ir(A] =) / d*x;... / B, Ay (x1)A, (1) -+ Ay, (2, TR (x), X, ),
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presence of an external gauge field. For this, we shall
consider the following action:

S = /d3x[y7 * iy Dy — miy * yl, (2.1)

in which the covariant derivative is defined as
Dy = 0w —igA, x w. The action is invariant under
the infinitesimal gauge transformations,

6A, = 0,4 —iglA,. 2],. Sy = igh * y. (2.2)
Moreover, it should be emphasized that we are working
with a two-component representation for the fermionic
fields. In this representation, the y-matrices satisfy
Yyt =" — ie"?y,. Furthermore, we introduce the
Moyal star product between the functions f and g defined
as

700+ 9(3) = £ xp (5045, )t (2:3)

where we assume that the noncommutative structure of the
space-time is determined by [x¥,x*] =i6*, in which
o' = —0"* are constant parameters. The one-loop effective
action can be readily obtained by integrating out the
fermionic fields of (2.1),

= det (D* + lm) _ 1 s o\—1: n
g A

iT[A]

The differential operator in (2.4) is identified as being the
fermionic propagator,

(8+im)"5(x—y):/(;l;[l;Bp;(fl;ni)ig

e~ip-(x=y),
(2.5)

Nevertheless, we can rewrite (2.4) in a more suitable form
as for perturbative computation,

(2.6)

where we have written the one-loop contributions from the noncommutative gauge field such as

DHk2 b (X1, Xy, 10 Xy) = — (_’f)n / H (ff)l; (27f>35<zpi) exp (—in,vc,-)

i =
X exp (—EZPi X Pj):”‘”"'””(l’hpz» ey Pnc1)s

i<j

(2.7)
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in which we have introduced the notation p x g = 6"p,q,, and by simplicity we have also defined the one-loop

contributions in the form

/d3x[(91(x) * Oy (x)... *

g / dq tl(q+p1 +m)y (g +m)y*(q = po +m)y*s...(q = 315 7+ m)y*] (2.8)
27 [(g+p1)* =mg* = m?][(q = p2)* = m?]...[(q = 22123 pi)* — m?]
It should be stressed that in order to rewrite (2.4) into the form (2.6), we have made use of the general result,
3 & p,
Hd H 5101(x1)O02(x2)... O, (x)]
X exp <—i2pi.xi> exp ( Zpl X p]> (Zp,). (2.9)

Now that we have concluded with our formal development
and presented all the necessary information, we will
proceed in evaluating explicitly the contributions for
n = 2,3, 4 gauge fields in (2.6). Initially we will consider
and evaluate the general expressions for such contributions;
however, by means of illustration we will consider in
particular the resulting expressions in the long wavelength
limit (i.e., m? > p?, where p is an external momenta).
Moreover, we will concentrate on the leading contributions
O(m°), O(m™"), and O(m=2), which are responsible to
generate the noncommutative Chern-Simons, Maxwell, and
HD Chern-Simons extension, respectively.

III. PERTURBATIVE EFFECTIVE ACTION

We shall now proceed in evaluating explicitly the one-
loop contributions of (2.6) for two, three and four gauge
fields. Actually, the contribution of one gauge field of (2.6)
is identically vanishing. Among all the terms from such
contributions, we will show that at the long wavelength

|

i<j

[

limit the complete three-dimensional action for the non-
commutative Chern-Simons and Maxwell theory is gen-
erated; moreover, we also discuss the higher-derivatives
extension for the noncommutative Chern-Simons action.”

A. AA-term contribution

In order to evaluate the first nonvanishing contribution,
let us take n = 2 in the one-loop contribution (2.8), which
is shown in Fig. 1:

3g tr m)y* m)y”
E,,y(p):/(dqt[(ww it mr] s

27)° (g + p)* — m?|[q* — m?]

This expression can be put into a more convenient form,
which facilitates the evaluation of the momentum integra-
tion. Thus, we can make use of the Feynman parametriza-
tion, which combined with the change of variables
q — q + xp results into

= (p / / d3q (g + (1 —x)p + m)y*(q— xp+ m)y']
- [4” +x(1 = x)p* = m*]? '

(3.2)

We can evaluate the trace in (3.2) and write the integration into a dimensional regularization form. Hence, with the known

results for a two-dimensional representation,
w(ty) =2, w(yly) = 2ie,

we obtain [25]

__1 q;/]l“/

w(r Py yt) = 20 = n P + ),

2x(1 - X)p”P” + imp e + (m?

(3.3)

+x(l - x)p

= —2/ dx/

¢+ x(1 = x)p? = m?? 34

’Indeed, a complete discussion of all higher-derivative contributions at order sgn(m)/m? is presented (and generalized) in the

Appendix.
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FIG. 1 (color online). Relevant graph for the AA-term.

Here d denotes the dimension of the space-time. The
detailed evaluation of the momentum integral is rather
direct, taking the limit d — 3 and the resulting expression
reads

1 1 1
= = ——mp e dx
(p) 4"t [) (m? — x(1 - x)p2):
i, P ld x(1—x)

(3.5)

1. Higher derivative contribution

Let us take a closer look at the expression (3.5). The
higher-derivative contributions are obtained by considering
the long wavelength limit p> < m?. Thus expanding the
expression and performing the remaining integrals, we
obtain

E(p) = - sgn(m) (Pat™) (1 + p22)

Az 12m

1 2. Uv v p4
(p*n™ = p'p") + O i) (3.6)

12z |m]|

in which sgn(m) = {my is the sign function. As it is easily
seen, the first term corresponds to the kinetic term of the
Chern-Simons term, O(m°), and its HD extension,
O(m~2), while the second one is the kinetic part of the
noncommutative Maxwell action, O(m~'). By means of
illustration, let us consider the first term from (3.6) which
corresponds to the Chern-Simons contribution

PHYSICAL REVIEW D 91, 125013 (2015)

oy sga(m) r’ rt
=s(p) = e (pac )1+12m2+(9 7))

m

(3.7)

Substituting it into the expression (2.7) and after some
integral manipulation, we find

Leg(xy,x,) =

_%/ (in;zl)js exp [~ip.(x; — x)]2e:(p)

2
_ L aw(y__E
= lSﬂsgn(m)e <1 T )5’(,5( X5).

(3.8)

Finally, we substitute (3.8) into (2.6) to then obtain the
expression for the Chern-Simons effective action

iTcs[AA] = iisgn(m)ef‘“”
87

x/d3x[A,,(x)<1 125 >8A (x )] (3.9)

As it is well known, the expression for two gauge fields
(3.9) does not display effects from noncommutativity,
since the phase factor from (2.7) vanishes for n = 2.
Furthermore, one can perform the same manipulation as
above and realize that the second term in (3.6), when
written in terms of the effective action, is the quadratic part
of the noncommutative Maxwell action

iTylAA]l =i~ / Bx[0VA,0,A" — A, D'A,).

2471|
(3.10)

B. AAA-term contribution

In the same way as the previous calculation, we start by
evaluating the one-loop contribution (2.8) for the case
n = 3, represented in Fig. 2:

S [ &q g+ p+m)y g+ m)yt (g —k+m)y°]
- mm—/( —mlg* = m[(q -

Moreover, we can use the Feynman parametrization and the change of variables ¢ — g —

27)° [(q + p)?

obtain

P (3.11)

(xp—zk)=q—s to

3 v o e
= (p, k)—z/dg/d‘“”f S+ p+m)y(qg—s+m)y(q—5—k+m)y]

(3.12)

[q* + A%(p.k) — m?*]? ’
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FIG. 2 (color online). Relevant graph for the AAA-term.

where we have introduced the notation [dé= [ dx [}~ dz,
and A%(p, k) = —(xp — zk)* + xp? + zk*. The momentum
integration can be performed without any complication by
using standard methods. Hence, after separating the differ-
ent powers of g in the numerator and then evaluating the
integration, we find

—uo i A" (p.kix,z) B (p.k;x,z
= (P»k):F/df[ 2 (P2 )1_ 2 (pz )i J
4 (m*=A%(p.k))2  (m*—A%(p.k)):
(3.13)

by sake of notation, we have introduced the quantities, with
S, = xpy — zky,
A" (p,kx,2) = [y Yy (=5 — k + m)y°]

— wly sy var] + mu[y Yy var”]

— wlsy Y Y var] + ulpr Y vy’

+ mu[ Yy ey (3.14)

and

B (p,k;x,7)
= tr[sy¥sy" (—8 — k+ m)y°| — mtr[sy y" (=5 — k + m)y°]
—telpysy" (=s'— k+m)y°] + mulpyy" (—s'— k+ m)y°]
— mtr[y sy” (=5 — k+m)y°] + m*u[p*y (—s = k+ m)y°].
(3.15)

As usual, we could analyze in detail the full contribution of
(3.13), but since we are interested in particular cases that
induce the AAA noncommutative parts of the Chern-
Simons and Maxwell action, we will retain our attention
into the O(m®), O(m~"') and O(m2) contributions.

1. Higher derivative contribution

The contributions for the effective action from AAA
gauge fields are more complicated than those from the AA
fields; this is due to the structure of the denominator and
numerator of the terms from the expression (3.13).
Nevertheless, the contributions for the Chern-Simons
action and its HD extension are those associated with

PHYSICAL REVIEW D 91, 125013 (2015)

terms of order O(m") and O(m~?). Hence, by simple
power counting, we consider those terms that are linear in
m from (3.14),
AGS (poksx,z) = —mtt[p*y*y°] = mtely*y*y®] — muly*y*y°),
(3.16)
and those that are linear and cubic in m from (3.15),
Bes (pkix. z)
= mir[(s'= p)r"sy"y?] + mue[(s' = p)y'y” (8 + K)y”]
+ mtr[p sy (8 + K)y?] + mPue[pytye), (3.17)

while, for the Maxwell action we shall consider the terms
O(m~"), which are those terms independent of 7 in (3.14),
AN (o ks x, z) = [y (5 + K)r°) + telysy*y”)

+ trlsyyy?] = wlprtrrel. (3.18)

and quadratic in m from (3.15),

B\ (P, ks x, 2) = —mPte[sy'y y°] + m*elpytyy°)
— m*telyt sy y?| — mPue[ytyt (84 K)y°).
(3.19)
Let us now focus our attention into the Chern-Simons
contributions. We can simplify the above equations by

means of the Clifford algebra {y*,y*} = 2#** and the
identities (3.3), resulting in the following expressions:

AL (p.kix,z) = —6ime™”, (3.20)

and

B&S (poksx,z) = imE’é"S"(p, k;x,z) + 2ime*e,  (3.21)

where we have defined the quantity

E’&;”(P, k; x, Z) = 2([)/‘/{{1 — s#sa — 2S”ka)€m’”
+ 2(Sas” _ zsupa _ paky)eaﬂn—
- Z(Sasa + 2p(zk0)€aﬂy + 2pak/3’7yo—€a”ﬂ.
(3.22)
Hence, replacing the expressions (3.20) and (3.21) back

into (3.13), we find the following expression for the Chern-
Simons contribution:

mHVO 1 vo 1 vo
=5 (k) = 5senlm) [ delem o (6emn(p. )

+ B (p. k; x, z))] . (3.23)
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From the expression (3.23) we see that, differently from the
contributions appearing in the AA-term, (3.7), we now have
HD terms with different indices in the antisymmetric Levi-
Civita tensor, this shows that these HD terms arising from
B contribute in a more involving form in terms of
derivatives than those arising from e**°A%. Nonetheless, the
remaining integrals in (3.23) can be readily evaluated to
give

/ JEA2(p. k) = 1 (0 + (k) + KD, (3.24)

12

and

2
+ 6(1”6(_3papp - kapy + kaky - 3pakb)

. 1 5 1
/ng/évsv _ 6 |:€a1/0 <_pﬂka _ pﬂpa + 5k/‘po[ + 3k/‘ka>

— €M (pap” = kap” + Kok + 5pak")}

+ P p k. (3.25)

3
iTes[AAA] = lgz—ﬂsgn(m) / BxeA, * A, * A,

3

 48am?
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Finally, to obtain the second part of the Chern-Simons and
its HD extension contributions to the effective action, we
should replace the above results in such a way: first (3.24)
and (3.25) into (3.23), and then substituting the resulting
expression back into (2.6) (for the case n = 3), with the
choice p; = p and p, = k then p; = —p — k, after such
substitution we get

iTcs[AAA]

3
:%/d3x1d3x2d3X3A,,(X1)AU(XZ)AG(x3)

< [ S mesplein(n =) = ik sz = 52

i -
X exp [— 3 (p x k)} Sl (3.26)
Thus, after some manipulation involving the momentum
factors becoming derivatives, and integrations involving the
noncommutativity between the gauge fields, we are able to
find the final expression for the Chern-Simons effective

action for the AAA-gauge fields,

3
sgn(m) / dBX{Z e A, *x Ay x A, + e¥Pe9,A, x D4A, * A,

1
+ 5 € (130,40 x A, % A, = 8O'A, % O, % Ay = 30A, % Dy % Ay + 60,7, » DA, * A,] }

(3.27)

The first term in (3.27) is the known AAA-part of the NC Chern-Simons action, while the remaining terms are those HD
contributions. Moreover, as aforementioned, the HD contributions of the AAA-fields, (3.27), are more involving than those
from the AA-term, (3.7). These HD terms give new types of derivative interactions. The extended Chern-Simons action, the
sum of Egs. (3.9) and (3.27), can be cast conveniently into the following form:

iTes = TS 4 D (3.28)
where we have defined, with Aﬂ = —igA,, the NC Chern-Simons action

iFg)) = isgn(m)e’”’" / d*x {Aﬂ(x)ayAg(x) + %Aﬂ(x) * A, (x) * Ay (x) ],

o (3.29)

and the higher-derivative extended NC Chern-Simons action

i 3
irge = ngn(m) / d3x{e"”"A,, ()00, A, (x) + ZSﬂmDA” *x A, * A,

1
+ e"‘”ﬂn”"aaAM *x OpA, * A, + Eg"”’"[lBaaAa *x HA, * A, —8OHA, x D, A, * A,
—30MA, x 0,A, x A, +60,A, x O'A, x AG]}. (3.30)

125013-6
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By means of dimensional analysis, it can be shown that
there are other terms contributing to the higher-derivative
Chern-Simons action at this order, arising from the AAAA
and the AAAAA part (see the Appendix). Hence, obvi-
ously, the relevant effective action would not be gauge
invariant, without considering these parity violating terms.
However, the NC Chern-Simons action Fg)s) in (3.29) is
explicitly gauge invariant under the infinitesimal gauge
transformation 6 A, = 0,4 + [A,. 1], + O(2%). At last, just
by means of complementarity, we can evaluate the Maxwell
contributions from (3.18) and (3.19),

AR (pkix,2) = 2((x = p + (1 = 2)0)
+2((x=1)p = (1+2)k)n*e

+2((1+x)p + (1 =2)k)n,  (3.31)
and
BY (p.kix.z) =2m*((1-x)p + (1 +2)k)n*
=2m*((1+x)p + (1= 2)k)"n"
+2m*(1=x)p+ (z—Dk)np™.  (3.32)

Finally, replacing these results back into (3.23), we obtain
the AAA-fields part for the NC Maxwell action,

dq ul(g+p+m)*(q+m)y (g —k+m)y(q—#—k+m)y]

PHYSICAL REVIEW D 91, 125013 (2015)

FIG. 3 (color online). Relevant graph for the AAAA-term.

—pre :;L _ OV __ 2k)Hnre
Eu (P, k) 7] [(=p + k)™ — (p + 2k)'n

m|

+ (2p + k)] (3.33)

C. AAAA-term contribution

By means of complementarity, let us present here the
resulting expression for the one-loop contribution (2.8) for
the case n = 4, which is shown in Fig. 3. This contribution
is important in a way to provide the remaining AAAA-fields
piece for the NC Maxwell action. The general expression to
be evaluated is

Its analysis follows by the same guidelines as presented
above for the previous contributions. Hence, in order to
obtain the term of interest from the AAAA-contribution, let
us consider an expansion m?>> M?(p,k,r) [in which
M?(p,k,r) is a function of the external momenta]; this
provides the following contributions at order O(m™!),

1 [r]ﬂynﬂ/) _ nﬂn’ny/) + ’7/4/)’71./0'] X

l
=Hvop k _ b
M (PokoT) 127 |m]

(3.35)

Therefore, by adding the pieces (3.10), (3.33), and (3.35)
we find the complete expression of the NC Maxwell
action, I’y ~ ﬁ Ik dxF w * F#, in which the field
strength tensor has the following expression: F,, =
0, A, —0,A, +[A,. Al,.

IV. PROPAGATING MODES

In order to characterize the excitations described by the
HD contribution as derived in the previous section, let us

(27)* [(q+ p)* = m’]lg* = m?|[(q — k)* = m*|[(q = r = k)* = m?] "

(3.34)

|

consider the following higher-order derivative modification
into the pure NC Chern-Simons Lagrangian density and
analyze the induced corrections to the propagator pole.
In particular, we shall analyze the infrared sector of
the theory, where we expect that the noncommutative
UV/IR effects may be present and turn gauge theory
unstable. By simplicity we shall consider the following
free Lagrangian:

L

m ]
==eA,(1+—=10,4, -
L 2€ ﬂ< +M2>8,, y) 26

(0#A,)% (4.1)

where we assume m and M both positive. Now, by taking
M = m, the propagator in the Landau gauge, £ =0, is
given by

H A
le/wip

s (4.2)

iD,,(p) =m

125013-7
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In addition to the free part, Eq. (4.1), we shall take the
following interacting part [26],

Lin = mge'® (%AM * A, *x A, + #DA” * A, * A(,)
+ S0, Ay % 0,4, % A;
+ gnnf; A, * Ay x OPA, % A, (4.3)
besides, we also have the ghost term,
Ly, = 0"¢ x D,c, (4.4)

with D,c = 0,c —ig[A,.c],. We are here interested in
evaluating the one-loop photon self-energy diagrams. The
respective Feynman rules can be obtained from the above
|

gt == - 0 2]

g_‘ﬁlm

PHYSICAL REVIEW D 91, 125013 (2015)

Lagrangian densities, the AAA, AAAA and cAc vertex
functions.* Actually, the diagrams needed to be computed
have the same form as in the usual NC Chern-Simons
theory, however we have now obtained different (deriva-
tive) Feynman rules.

For the purpose of calculating the leading terms of the
ultraviolet contribution [27], we can set |p| =0, while
keeping p on the phase factor in the vertex functions, which
can lead to the UV/IR mixing. Finally, after evaluating the
three diagrams contributing at one-loop order, we have the
complete planar contribution [26]

(), (p) = =, (4.5)

whereas, the complete nonplanar contribution reads

~u=y
D p~127 :|e_|1~7(1
p

1
+ 6m? / dx(l—x)[—n’“’—
a

"‘ 1 1 .
+9m* / dx/ y(l —x— y)[ﬁ (1 +|f)|/})nﬂ”_/§l~7ﬂﬁl’i|e—|l7ﬂ}
1 i,

where a? = (1 — x)m? and ? = (1 — x — y)m?

In order to discuss the radiative correction effects into the
photon propagator pole, it is interesting to recall that due to
gauge symmetry constrain the tensor structure to be

I, (p) = <n,w

+ l'€ﬂMp'1HA(p2).
Moreover, we can determine the expression for the com-
plete propagator by making use of the following identity:
(D7) (p) =T"(p) —11"(p) and that (D~')*D,; = id);.
After some algebraic manipulation we obtain that

PuPv ppu
. )n( )+ 2 nep2)

(4.7)

. ITg + Tne DPulv & pupy  Tne PuPy
D — ST NC - S _
W R (”ﬂv 2 + 2 p? R 52
L( 2 _
L(p?—m?) +11, .
- = zewﬂp , (4.8)

3Although this Lagrangian does not constitute the whole
contribution, we have considered some of the parts obtained
from the derivative contributions for the vertex functions that
suffice to our interest in a quantitative discussion for the NC and
HD contributions in the dispersion relation; the remaining terms
would contribute as changing the numerical factors in the
resulting outcome, but this does not change our quantitative
analysis.

(4.6)

where R = Hs(ns + HNC) - pZ(% (p2 - mz) + HA)Z.
From the above results, at one-loop order, we immediately
see that I[1, = 0. Now, the remaining form factors, in the
leading contributions when |p| — 0,

92 1

7g g7 1 -
My (p?) = A 215)). 4,
s(p?) ~505™ " 24ﬂ‘13‘+0(9 12 (4.9)

We notice that the last term of (4.8) can be rewritten as

() 30 fpal” o) This shows that the HD pole
P _mz)z TTs (M +Tne

remains intact and only the massless mode, p? =0,
receives contribution from the radiative corrections.
From this we obtain the dispersion relation,

( (D2 —m2\2

o?*(p) =p*+— ! HS(HS+HNC)+O< L’;'). (4.10)

Now, the tree-level parameter can be conveniently rewritten
g% ~ m/k, we finally find at low momenta,

“Notice that the AAAAA vertex, which is needed to ensure the
gauge invariance of the HD parts (see the Appendix), does not
contribute to the one-loop diagrams.
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+ m* h? " 7 m®h
17287 k> p*>  360x% & |p|

ol2) lE)
MK K
where we have defined m2; = ﬁ’)’:—; and h~' = m?@. In
contrast with the analysis in Ref. [28], we have no
instability in the infrared when |p|/m < h. There the
authors have considered a different expression for Ilg,
where no 1/|p| term is present; this consideration has
changed the sign of the A term in (4.11) to negative,
implying therefore that the range of applicability of the
above expression was for |p|/m < h. Moreover, this
consideration has also excluded the most infrared singular
1/|p|? contribution.

wz(p) = p2 + mgff

(4.11)

V. CONCLUDING REMARKS

In this paper we have studied the one-loop effective
action of NC QEDj;, fermionic fields interacting with an
Abelian gauge field. After integrating out the fermionic
fields, we obtained the effective action for the noncommu-
tative gauge field, next we have computed explicitly the
contributions of the n = 2,3,4 terms for the effective
action. In addition, it should be remarked that the non-
commutative effects into the resulting outcome are in fact
nonperturbative. This fact is supported, in a formal way, in
the existence of an exact Seiberg-Witten map, valid to all
orders in 6.

In completion to previous analyses, we have supplied
with detailed calculation of the n = 2, 3,4 terms for the
effective action. Based in the exact calculation, we have
considered, in particular, the long wavelength limit (large
fermion mass) into the terms in the expansion O(m°),
O(m~') and O(m=?), that corresponded exactly to the NC
Chern-Simons action, NC Maxwell action, and higher-
derivative extension to the NC Chern-Simons action,
respectively. Moreover, the gauge invariance of the
higher-derivative extension was also discussed. In addition,
we introduced a new Lagrangian density including the pure
NC Chern-Simons term with its higher-derivative exten-
sion. Then, the one-loop effect of the higher-derivative
terms to the pole of the photon propagator and the relevant
dispersion relation in the infrared limit was addressed.

Certainly a study considering the effects of these higher-
derivative terms in the gauge fields into the theory’s
quantities would be rather interesting [29], as well as a
detailed study about the finite gauge invariance of these
higher-derivative NC gauge fields [30,31]. Those aspects
are currently under scrutiny.
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APPENDIX: FIXING THE GENERAL
STRUCTURE OF THE HD-TERMS

In this Appendix, we use the dimensional analysis to
discuss carefully the gauge invariance of the higher-
derivative extended NC Chern-Simons action 'Y in
(3.30). The mass dimension of the gauge and fermionic
fields in d dimensions is given by

d-2

A] — ] =——.

(A1)
For the case d = 3, we have [A] = L and [y] = 1. Hence the
mass dimension of the coupling constant g (minimal
coupling) would be [g] = 1. For the sake of our discussion
it is useful to introduce Aﬂ = —igA,, which is concluded
[A] = 1.

Now, considering the ordinary CS term: AJA with
[AOA] = 3, that other possible contribution with mass
dimension of 3 is AAA (non-Abelian or noncommutative
self-interacting gauge fields). Hence, by dimensional
analysis, the CS action without higher-derivative (HD)
terms is given by a linear combination of AJ.A and AAA.

What about the HD terms? Suppose that we know the
structure of the HD terms appearing in the AA-part; hence,
we then try to guess recursively the general structure of HD
terms needed to be added into the AA-part in order to make
a gauge invariant higher-derivative action. The mass
dimension of the simplest HD contribution in the AA-term
is given by [[A00J.A] = 5, so we can make all of the possible
contributions using .4 and 0 with total mass dimension of 5.
It is important to emphasize that due to the Levi-Civita
tensor €#** and metric ¢’°, the several terms are produced
just like those appearing in relation (3.30) at the order of
sgn(m)/m?:

r®: A00A, (A2)
r'®: A0AOA, OAAA, (A3)
r': 0AAAA, (A4)
ré: AAAAA. (A5)

We then can conclude that these arguments suffice to
determine the general structure of such terms, but only the
explicit calculation of their contributions that allows us to
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determine the tensorial coefficients of these different terms,
although the gauge invariance imposes some limitations.

To show the correctness of the above argument, let us
consider the dimensional analysis of the loop integrals that
we have mentioned, n = 4 in (2.8),5

3

—uvpo dwq m q4CﬂIJPG + é qZD/wpo- + prpo
=~ | G PRy
(A6)

in which each contribution labeled by its coefficient in the
leading order is given by

c. [ ¢ ~ ! L
. (2”)(0 (q2 + MZ _ m2)4 (M2 _ m2)4—2—§ |m ’
D d”q q* 1 11

: (2”)(4; (6]2 +M2—m2)4 (Mz_m2)4—1—§NmW’

. / d°q 1 1 11
: (271')(” (qZ +M2 _ m2)4 (MZ _ m2)4—% |m| m4 :
(A7)

By means of dimensional analysis, it is deduced that

(1) There is not any power of m in C*"°,

(ii) There is an m term in D*° and m> in E*’° that
contribute to our result, which are corresponding to
those terms with one-derivative structure: 0.AAAA
in (A4).

Now, by completeness, we study the case n = 5 of (2.8):

’

upod d°q w4 C7 + L@ DM B
- N/@@w [ + M> — P
(A8)

where

c: [ & ¢ 1 11
: (271.)(1) (q2 + M2 _ m2)5 (MZ _ m2)5—2—% |m| m2 ’

D_/d“’q q* 1 11
“ ) e (@AM =2 (M=) E [m

e / d°q 1 1 11
: (2”)00 (q2+M2—m2)5 (MZ_mZ)S—%’ |m|m6

We can then see that
(i) There is an m term in C"°, an m>® in DH°,
and m> in E***° that contribute to our result. These

3For the contributions as (A2) and (A3) see (3.9) and (3.30),
respectively.
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contributions lead to those terms without any
derivative: AAAAA in (A5).
Here, we would like to generalize this analysis for the
generic higher-derivative terms that may appear in the next
orders. Since we have expanded our result in powers of (%)
in (3.6), in general, we can call the order of the expansion ¢
and start from the AA-part,

Uye , 1 ’
A@(W> A= — ALY A (A10)

in which the mass dimension of A9’ A is given by

[AOCYA] =3 + 2¢. (A11)
Therefore, we can determine the general structure of the
different higher-derivative expressions with the mass
dimension of 3 + 27 using combinations of A and 0.
Actually, these expressions contribute to the gauge invari-
ant NC Chern-Simons action I', at order 7. Inserting the
several values for £, we obtain
() £ =0-["] =3-T% = apl'? + s

Here, ¢ indicates the total action. We note that the case
¢ = 0 corresponds to the ordinary noncommutative Chern-
Simons action with ag = 1 and fy = %:

r? ~ 404, TP ~AAA (A12)
(i) £ =1-["] =551 =T + 4T 4 p T+
Ulr(ls),
in which

'Y ~ OAAA OADAA;
' ~ AAAAA.

'Y ~ AJDA;

'Y ~ 9AAAA; (A13)

(i) £ =2-["] = 7-T% = a,l? + g0 + po T8+
6T + 2,10 4 &,

in which
TP~ 40P A, T ~PAAA,

JADATA,  90AIAA,  OATAA;  (Al4)
IV ~O0AAAA, OADAAA, OADADAA;  (AlS)

'Y ~ OAAAAA,
T ~ OAAAAAA;

0AOAAAA;
) ~ AAAAAAA. (A16)
All of the coefficients appearing in I}, are determined using

the explicit calculations such that the gauge invariance of
the total NC Chern-Simons action is preserved.
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