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The noncommutative (NC) massive quantum electrodynamics in 2þ 1 dimensions is considered.
We show explicitly that the one-loop effective action arising from integrating out the fermionic fields leads
to the ordinary NC Chern-Simons and NC Maxwell action at the long wavelength limit (large fermion
mass). In the next to leading order, the higher-derivative contributions to NC Chern-Simons are obtained.
Moreover, the gauge invariance of the outcome action is carefully discussed. We then consider the
higher-derivative modification into the pure NC Chern-Simons Lagrangian density and evaluate the
one-loop correction to the pole of the photon propagator.
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I. INTRODUCTION

Low-dimensional field theories were recognized, a long
time ago, as serving as laboratories where important
theoretical ideas are suitably tested in a simple setting,
especially on condensed matter systems. Besides, these
studies were also driven with the wishful thought that in
such a simpler setting we can learn useful things about the
well-recognized four-dimensional problems. Furthermore,
including that, the fact that a field theory defined in a
three-dimensional space-time contains a highly interesting
inner structure, due to the odd space-time dimensionality,
it is rather natural to investigate them as theoretical
options [1–4].
Due to the recent improvement concerning the precision

of the measurements of experiments (LHC, ILC, etc.)
investigating particle properties, the possibility of observ-
ing direct evidence of new physics has captured and led to a
major interest in the development and understanding of the
physics in higher scales, for instance at Planck scale.
A conscientious point in the majority of the analyses is
that the nature of the space-time may change at Planck
scale. This fact had strong influence in thinking that the
physics at Planck scale may suitably be described by a
noncommutativity between the coordinates of the space-
time. Direct motivations supporting considering models
constructed on noncommutative space-time are many, and
come from several theoretical areas such as string theory,
quantum gravity, and Lorentz breaking [5–7].
In recent years, we have witnessed an enormous activity

involving the development of noncommutative (NC) gauge
theories in high-energy physics [5,8]. The noncommuta-
tivity of space-time, whose structure is determined by

½xμ; xν� ¼ iθμν, has provided a better understanding about
the quantum nature of space-time. On the other hand, it has
been also studied how noncommutativity affects estab-
lished properties of conventional theories, i.e., studying NC
extensions of well studied quantum field theories and to
look then for NC effects on its deviations, since it is
generally found that such extensions behave in very
interesting and nontrivial ways. Despite its close relation
with the space-time structure, no consistent gravitational
theory defined on noncommutative space-time has been
established yet [9].
In fact, various studies in analyzing three-dimensional

gauge theories defined in a noncommutative space-time
have uncovered deviations of known phenomena and
interesting new properties of these theories [10–16]. One
of the most exploited features of a three-dimensional gauge
theory is that, in one side, if you started with a theory with
massless fermionic fields interacting with Chern-Simons
gauge fields, a mass for the fermionic fields is generated
dynamically by radiative corrections; on the other side, if
you started with a theory with massive fermionic fields
interacting with an external gauge field, the Chern-Simons
action is also induced by radiative corrections. These
properties are usually related to nonperturbative phenom-
ena due to the space-time dimensionality.
The generation of the Chern-Simons action in a non-

commutative gauge theory was the subject of several
analyses, with the most different purposes [14,16–21].
However, no higher-derivative (HD) extensions of the
Chern-Simons action have been considered. This subject
was first discussed in great detail by considering the full
Abelian action, consisting in the Chern-Simons added
by the Maxwell theory,1 adjoined by higher-derivative
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1This theory is the so-called topologically massive electrody-
namics [1], and describes a helicity �1 mode.

PHYSICAL REVIEW D 91, 125013 (2015)

1550-7998=2015=91(12)=125013(11) 125013-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.125013
http://dx.doi.org/10.1103/PhysRevD.91.125013
http://dx.doi.org/10.1103/PhysRevD.91.125013
http://dx.doi.org/10.1103/PhysRevD.91.125013


contributions appearing from a ð∂=mÞ perturbative expan-
sion of the effective action of QED3 [22,23]. Our main aim
in the present paper is to treat the latter phenomenon in full
detail when formulated within the framework of non-
commutative gauge theory.
In this paper, we discuss, within the effective action

approach, the one-loop properties of the three-dimensional
noncommutative QED. For this purpose, we follow the idea
outlined in Ref. [24] in which noncommutative fermionic
effective actions were considered. Although the Seiberg-
Witten map is perturbative by nature [5], remarkably, it
suffices to consider the existence of an exact Seiberg-
Witten map, valid to all orders in θ, in a formal way that the
noncommutative effects into the resulting outcome are in
fact nonperturbative. For this purpose, in Sec. II, we review
the basic ideas consisting in this nonperturbative approach
(in θ) to the NC QED3, obtaining the main objects of our
analysis at one-loop effective action. Furthermore, in
Sec. III, we perform explicitly the calculation for two,
three and four gauge fields of the one-loop effective action.
In particular, we will consider the long wavelength limit
(large fermion mass) and consider the terms in the
expansionOðm0Þ, Oðm−1Þ and Oðm−2Þ, which correspond
exactly to the NC Chern-Simons action, NC Maxwell
action, and higher-derivative extension to the NC Chern-
Simons action, respectively. Also, the gauge invariance of
the higher-derivative extension is discussed. By completion
we present a discussion to characterize the excitation
modes regarding the effective action of the higher-
derivative extension of the pure NC Chern-Simons theory
in Sec. IV. As well as the one-loop correction, arising from
the higher-derivative terms, to the pole of the photon
propagator in the infrared limit is studied, which leads
to the noncommutative UV/IR mixing effect. In Sec. V we
summarize the results, and present our final remarks.

II. GENERAL DISCUSSION

In this section, we will introduce our basic notation and
describe the analysis method. Let us consider the non-
commutative extension of fermionic fields interacting in the

presence of an external gauge field. For this, we shall
consider the following action:

S ¼
Z

d3x½ψ̄ ⋆ iγμD⋆
μψ −mψ̄ ⋆ ψ �; ð2:1Þ

in which the covariant derivative is defined as
D⋆

μψ ¼ ∂μψ − igAμ ⋆ ψ . The action is invariant under
the infinitesimal gauge transformations,

δAμ ¼ ∂μλ − ig½Aμ; λ�⋆; δψ ¼ igλ ⋆ ψ : ð2:2Þ

Moreover, it should be emphasized that we are working
with a two-component representation for the fermionic
fields. In this representation, the γ-matrices satisfy
γμγν ¼ ημν − iϵμναγα. Furthermore, we introduce the
Moyal star product between the functions f and g defined
as

fðxÞ ⋆ gðxÞ ¼ fðxÞ exp
�
i
2
θμν ⃖∂μ

~∂ν

�
gðxÞ; ð2:3Þ

where we assume that the noncommutative structure of the
space-time is determined by ½xμ; xν� ¼ iθμν, in which
θμν ¼ −θνμ are constant parameters. The one-loop effective
action can be readily obtained by integrating out the
fermionic fields of (2.1),

iΓ½A� ¼ ln
det ðD⋆ þ imÞ
det ð∂ þ imÞ ¼ −

X
n

1

n
tr½ð∂ þ imÞ−1igA ⋆�n:

ð2:4Þ
The differential operator in (2.4) is identified as being the
fermionic propagator,

ð∂ þ imÞ−1δðx − yÞ ¼
Z

d3p
ð2πÞ3

iðpþmÞ
p2 −m2 þ iε

e−ip:ðx−yÞ:

ð2:5Þ
Nevertheless, we can rewrite (2.4) in a more suitable form
as for perturbative computation,

iΓ½A� ¼
X
n

Z
d3x1…

Z
d3xnAμ1ðx1ÞAμ2ðx2Þ � � �AμnðxnÞΓμ1μ2…μnðx1; x2;…; xnÞ; ð2:6Þ

where we have written the one-loop contributions from the noncommutative gauge field such as

Γμ1μ2…μnðx1; x2;…xnÞ ¼ −
ð−gÞn
n

Z Y
i

d3pi

ð2πÞ3 ð2πÞ
3δ
�X

i

pi

�
exp

�
−i
X
i

pi:xi
�

× exp
�
−
i
2

X
i<j

pi × pj

�
Ξμ1μ2…μnðp1; p2;…; pn−1Þ; ð2:7Þ
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in which we have introduced the notation p × q ¼ θμνpμqν, and by simplicity we have also defined the one-loop
contributions in the form

Ξμ1μ2…μn ¼
Z

d3q
ð2πÞ3

tr½ðqþ p1 þmÞγμ1ðqþmÞγμ2ðq − p2 þmÞγμ3…ðq −
P

n−1
i¼2 pi þmÞγμn �

½ðqþ p1Þ2 −m2�½q2 −m2�½ðq − p2Þ2 −m2�…½ðq −
P

n−1
i¼2 piÞ2 −m2� : ð2:8Þ

It should be stressed that in order to rewrite (2.4) into the form (2.6), we have made use of the general result,

Z
d3x½O1ðxÞ ⋆ O2ðxÞ… ⋆ OnðxÞ� ¼

Z Y
i

d3xi
Y
i

d3pi

ð2πÞ3 ½O1ðx1ÞO2ðx2Þ…OnðxmÞ�

× exp

�
−i
X
i

pi:xi

�
exp

�
−
i
2

X
i<j

pi × pj

�
δ

�X
i

pi

�
: ð2:9Þ

Now that we have concluded with our formal development
and presented all the necessary information, we will
proceed in evaluating explicitly the contributions for
n ¼ 2; 3; 4 gauge fields in (2.6). Initially we will consider
and evaluate the general expressions for such contributions;
however, by means of illustration we will consider in
particular the resulting expressions in the long wavelength
limit (i.e., m2 ≫ p2, where p is an external momenta).
Moreover, we will concentrate on the leading contributions
Oðm0Þ, Oðm−1Þ, and Oðm−2Þ, which are responsible to
generate the noncommutative Chern-Simons, Maxwell, and
HD Chern-Simons extension, respectively.

III. PERTURBATIVE EFFECTIVE ACTION

We shall now proceed in evaluating explicitly the one-
loop contributions of (2.6) for two, three and four gauge
fields. Actually, the contribution of one gauge field of (2.6)
is identically vanishing. Among all the terms from such
contributions, we will show that at the long wavelength

limit the complete three-dimensional action for the non-
commutative Chern-Simons and Maxwell theory is gen-
erated; moreover, we also discuss the higher-derivatives
extension for the noncommutative Chern-Simons action.2

A. AA-term contribution

In order to evaluate the first nonvanishing contribution,
let us take n ¼ 2 in the one-loop contribution (2.8), which
is shown in Fig. 1:

ΞμνðpÞ ¼
Z

d3q
ð2πÞ3

tr½ðqþ pþmÞγμðqþmÞγν�
½ðqþ pÞ2 −m2�½q2 −m2� : ð3:1Þ

This expression can be put into a more convenient form,
which facilitates the evaluation of the momentum integra-
tion. Thus, we can make use of the Feynman parametriza-
tion, which combined with the change of variables
q → qþ xp results into

ΞμνðpÞ ¼
Z

1

0

dx
Z

d3q
ð2πÞ3

tr½ðqþ ð1 − xÞpþmÞγμðq − xpþmÞγν�
½q2 þ xð1 − xÞp2 −m2�2 : ð3:2Þ

We can evaluate the trace in (3.2) and write the integration into a dimensional regularization form. Hence, with the known
results for a two-dimensional representation,

trðγμγνÞ ¼ 2ημν; trðγμγβγνÞ ¼ 2iϵμβν; trðγαγμγβγνÞ ¼ 2ðηαμηβν − ηαβημν þ ηανημβÞ; ð3:3Þ

we obtain [25]

ΞμνðpÞ ¼ 2

Z
1

0

dx
Z

ddq
ð2πÞd

ð2d − 1Þq2ημν − 2xð1 − xÞpμpν þ impαϵ
αμν þ ðm2 þ xð1 − xÞp2Þημν

½q2 þ xð1 − xÞp2 −m2�2 : ð3:4Þ

2Indeed, a complete discussion of all higher-derivative contributions at order sgnðmÞ=m2 is presented (and generalized) in the
Appendix.
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Here d denotes the dimension of the space-time. The
detailed evaluation of the momentum integral is rather
direct, taking the limit d → 3 and the resulting expression
reads

ΞμνðpÞ ¼ −
1

4π
mpαϵ

αμν

Z
1

0

dx
1

ðm2 − xð1 − xÞp2Þ12

þ i
2π

ðp2ημν − pμpνÞ
Z

1

0

dx
xð1 − xÞ

ðm2 − xð1 − xÞp2Þ12 :

ð3:5Þ

1. Higher derivative contribution

Let us take a closer look at the expression (3.5). The
higher-derivative contributions are obtained by considering
the long wavelength limit p2 ≪ m2. Thus expanding the
expression and performing the remaining integrals, we
obtain

ΞμνðpÞ ¼ −
sgnðmÞ
4π

ðpαϵ
αμνÞ

�
1þ p2

12m2

�

þ i
12π

1

jmj ðp
2ημν − pμpνÞ þO

�
p4

m4

�
; ð3:6Þ

in which sgnðmÞ≡ m
jmj is the sign function. As it is easily

seen, the first term corresponds to the kinetic term of the
Chern-Simons term, Oðm0Þ, and its HD extension,
Oðm−2Þ, while the second one is the kinetic part of the
noncommutative Maxwell action, Oðm−1Þ. By means of
illustration, let us consider the first term from (3.6) which
corresponds to the Chern-Simons contribution

Ξμν
CSðpÞ ¼ −

sgnðmÞ
4π

ðpαϵ
αμνÞ

�
1þ p2

12m2
þO

�
p4

m4

��
:

ð3:7Þ

Substituting it into the expression (2.7) and after some
integral manipulation, we find

Γμν
CSðx1; x2Þ ¼ −

g2

2

Z
d3p
ð2πÞ3 exp ½−ip:ðx1 − x2Þ�Ξμν

csðpÞ

¼ −i
g2

8π
sgnðmÞϵαμν

�
1 −

□

12m2

�
∂αδðx1 − x2Þ:

ð3:8Þ

Finally, we substitute (3.8) into (2.6) to then obtain the
expression for the Chern-Simons effective action

iΓCS½AA� ¼ i
g2

8π
sgnðmÞϵμαν

×
Z

d3x

�
AμðxÞ

�
1 −

□

12m2

�
∂αAνðxÞ

�
: ð3:9Þ

As it is well known, the expression for two gauge fields
(3.9) does not display effects from noncommutativity,
since the phase factor from (2.7) vanishes for n ¼ 2.
Furthermore, one can perform the same manipulation as
above and realize that the second term in (3.6), when
written in terms of the effective action, is the quadratic part
of the noncommutative Maxwell action

iΓM½AA� ¼ i
g2

24π

1

jmj
Z

d3x½∂νAμ∂νAμ − ∂νAμ∂μAν�:

ð3:10Þ

B. AAA-term contribution

In the same way as the previous calculation, we start by
evaluating the one-loop contribution (2.8) for the case
n ¼ 3, represented in Fig. 2:

Ξμνσðp; kÞ ¼
Z

d3q
ð2πÞ3

tr½ðqþ pþmÞγμðqþmÞγνðq − kþmÞγσ�
½ðqþ pÞ2 −m2�½q2 −m2�½ðq − kÞ2 −m2� : ð3:11Þ

Moreover, we can use the Feynman parametrization and the change of variables q → q − ðxp − zkÞ≡ q − s to
obtain

Ξμνσðp; kÞ ¼ 2

Z
dξ

Z
d3q
ð2πÞ3

tr½ðq − sþ pþmÞγμðq − sþmÞγνðq − s − kþmÞγσ�
½q2 þ A2ðp; kÞ −m2�3 ; ð3:12Þ

p p

q

q+p

FIG. 1 (color online). Relevant graph for the AA-term.
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where we have introduced the notation
R
dξ¼R

1
0 dx

R
1−x
0 dz,

and A2ðp; kÞ ¼ −ðxp − zkÞ2 þ xp2 þ zk2. The momentum
integration can be performed without any complication by
using standard methods. Hence, after separating the differ-
ent powers of q in the numerator and then evaluating the
integration, we find

Ξμνσðp;kÞ¼ i
16π

Z
dξ

�
Aμνσðp;k;x;zÞ
ðm2−A2ðp;kÞÞ12−

Bμνσðp;k;x;zÞ
ðm2−A2ðp;kÞÞ32

�
;

ð3:13Þ

by sake of notation, we have introduced the quantities, with
sμ ¼ xpμ − zkμ,

Aμνσðp; k; x; zÞ ¼ tr½γαγμγαγνð−s − kþmÞγσ�
− tr½γαγμsγνγαγσ� þmtr½γαγμγνγαγσ�
− tr½sγμγαγνγαγσ� þ tr½pγμγαγνγαγσ�
þmtr½γμγαγνγαγσ�; ð3:14Þ

and

Bμνσðp;k;x; zÞ
¼ tr½sγμsγνð−s− kþmÞγσ�−mtr½sγμγνð−s− kþmÞγσ�
− tr½pγμsγνð−s− kþmÞγσ� þmtr½pγμγνð−s− kþmÞγσ�
−mtr½γμsγνð−s− kþmÞγσ� þm2tr½γμγνð−s− kþmÞγσ�:

ð3:15Þ
As usual, we could analyze in detail the full contribution of
(3.13), but since we are interested in particular cases that
induce the AAA noncommutative parts of the Chern-
Simons and Maxwell action, we will retain our attention
into the Oðm0Þ, Oðm−1Þ and Oðm−2Þ contributions.

1. Higher derivative contribution

The contributions for the effective action from AAA
gauge fields are more complicated than those from the AA
fields; this is due to the structure of the denominator and
numerator of the terms from the expression (3.13).
Nevertheless, the contributions for the Chern-Simons
action and its HD extension are those associated with

terms of order Oðm0Þ and Oðm−2Þ. Hence, by simple
power counting, we consider those terms that are linear in
m from (3.14),

Aμνσ
CS ðp;k;x;zÞ ¼−mtr½γμγνγσ�−mtr½γμγνγσ�−mtr½γμγνγσ�;

ð3:16Þ

and those that are linear and cubic in m from (3.15),

Bμνσ
CS ðp; k; x; zÞ
¼ mtr½ðs − pÞγμsγνγσ� þmtr½ðs − pÞγμγνðsþ kÞγσ�
þmtr½γμsγνðsþ kÞγσ� þm3tr½γμγνγσ�; ð3:17Þ

while, for the Maxwell action we shall consider the terms
Oðm−1Þ, which are those terms independent of m in (3.14),

Aμνσ
M ðp; k; x; zÞ ¼ tr½γμγνðsþ kÞγσ� þ tr½γμsγνγσ�

þ tr½sγμγνγσ� − tr½pγμγνγσ�; ð3:18Þ
and quadratic in m from (3.15),

Bμνσ
M ðp; k; x; zÞ ¼ −m2tr½sγμγνγσ� þm2tr½pγμγνγσ�

−m2tr½γμsγνγσ� −m2tr½γμγνðsþ kÞγσ�:
ð3:19Þ

Let us now focus our attention into the Chern-Simons
contributions. We can simplify the above equations by
means of the Clifford algebra fγμ; γνg ¼ 2ημν and the
identities (3.3), resulting in the following expressions:

Aμνσ
CS ðp; k; x; zÞ ¼ −6imϵμνσ; ð3:20Þ

and

Bμνσ
CS ðp; k; x; zÞ ¼ im ~Bμνσ

CS ðp; k; x; zÞ þ 2im3ϵμνσ; ð3:21Þ

where we have defined the quantity

~Bμνσ
CS ðp; k; x; zÞ ¼ 2ðpμkα − sμsα − 2sμkαÞϵανσ

þ 2ðsαsν − 2sνpα − pαkνÞϵαμσ
− 2ðsαsσ þ 2pαkσÞϵαμν þ 2pαkβηνσϵαμβ:

ð3:22Þ

Hence, replacing the expressions (3.20) and (3.21) back
into (3.13), we find the following expression for the Chern-
Simons contribution:

Ξμνσ
CS ðp; kÞ ¼

1

2π
sgnðmÞ

Z
dξ

�
ϵμνσ þ 1

8m2
ð6ϵμνσA2ðp; kÞ

þ ~Bμνσ
CS ðp; k; x; zÞÞ

�
: ð3:23Þ

q+p

q-k

p+k

p

k

q

FIG. 2 (color online). Relevant graph for the AAA-term.
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From the expression (3.23) we see that, differently from the
contributions appearing in the AA-term, (3.7), we now have
HD terms with different indices in the antisymmetric Levi-
Cività tensor, this shows that these HD terms arising from
~Bμνσ
CS contribute in a more involving form in terms of

derivatives than those arising from ϵμνσA2. Nonetheless, the
remaining integrals in (3.23) can be readily evaluated to
give

Z
dξA2ðp; kÞ ¼ 1

12
ðp2 þ ðp:kÞ þ k2Þ; ð3:24Þ

and

Z
dξ ~Bμνσ

CS ¼ 1

6

�
ϵανσ

�
5

2
pμkα − pμpα þ

1

2
kμpα þ 3kμkα

�

þ ϵαμσð−3pαpν − kαpν þ kαkν − 3pαkνÞ

− ϵαμνðpαpσ − kαpσ þ kαkσ þ 5pαkσÞ
�

þ ϵαμβηνσpαkβ: ð3:25Þ

Finally, to obtain the second part of the Chern-Simons and
its HD extension contributions to the effective action, we
should replace the above results in such a way: first (3.24)
and (3.25) into (3.23), and then substituting the resulting
expression back into (2.6) (for the case n ¼ 3), with the
choice p1 ¼ p and p2 ¼ k then p3 ¼ −p − k, after such
substitution we get

iΓCS½AAA�

¼ g3

3

Z
d3x1d3x2d3x3Aμðx1ÞAνðx2ÞAσðx3Þ

×
Z

d3p
ð2πÞ3

d3k
ð2πÞ3 exp½−ip:ðx1 − x3Þ − ik:ðx2 − x3Þ�

× exp

�
−
i
2
ðp × kÞ

�
Ξμνσ
CS : ð3:26Þ

Thus, after some manipulation involving the momentum
factors becoming derivatives, and integrations involving the
noncommutativity between the gauge fields, we are able to
find the final expression for the Chern-Simons effective
action for the AAA-gauge fields,

iΓCS½AAA� ¼
g3

12π
sgnðmÞ

Z
d3xεμνσAμ ⋆ Aν ⋆ Aσ

−
g3

48πm2
sgnðmÞ

Z
d3x

�
3

4
εμνσ□Aμ ⋆ Aν ⋆ Aσ þ εαμβηνσ∂αAμ ⋆ ∂βAν ⋆ Aσ

þ 1

12
εανσ½13∂αAσ ⋆ ∂μAν ⋆ Aμ − 8∂μAν ⋆ ∂αAμ ⋆ Aσ − 3∂μAν ⋆ ∂αAσ ⋆ Aμ þ 6∂αAμ ⋆ ∂μAν ⋆ Aσ�

	
:

ð3:27Þ

The first term in (3.27) is the known AAA-part of the NC Chern-Simons action, while the remaining terms are those HD
contributions. Moreover, as aforementioned, the HD contributions of the AAA-fields, (3.27), are more involving than those
from the AA-term, (3.7). These HD terms give new types of derivative interactions. The extended Chern-Simons action, the
sum of Eqs. (3.9) and (3.27), can be cast conveniently into the following form:

iΓCS ¼ iΓð0Þ
CS þ iΓHD

CS ; ð3:28Þ

where we have defined, with Aμ ¼ −igAμ, the NC Chern-Simons action

iΓð0Þ
CS ¼ i

8π
sgnðmÞεμνσ

Z
d3x

�
AμðxÞ∂νAσðxÞ þ

2

3
AμðxÞ ⋆ AνðxÞ ⋆ AσðxÞ

�
; ð3:29Þ

and the higher-derivative extended NC Chern-Simons action

iΓHD
CS ¼ i

96πm2
sgnðmÞ

Z
d3x

�
ϵμνσAμðxÞ□∂νAσðxÞ þ

3

4
εμνσ□Aμ ⋆ Aν ⋆ Aσ

þ εαμβηνσ∂αAμ ⋆ ∂βAν ⋆ Aσ þ
1

12
εανσ½13∂αAσ ⋆ ∂μAν ⋆ Aμ − 8∂μAν ⋆ ∂αAμ ⋆ Aσ

− 3∂μAν ⋆ ∂αAσ ⋆ Aμ þ 6∂αAμ ⋆ ∂μAν ⋆ Aσ�
	
: ð3:30Þ
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By means of dimensional analysis, it can be shown that
there are other terms contributing to the higher-derivative
Chern-Simons action at this order, arising from the AAAA
and the AAAAA part (see the Appendix). Hence, obvi-
ously, the relevant effective action would not be gauge
invariant, without considering these parity violating terms.

However, the NC Chern-Simons action Γð0Þ
CS in (3.29) is

explicitly gauge invariant under the infinitesimal gauge
transformation δAμ ¼ ∂μλþ ½Aμ; λ�⋆ þOðλ2Þ. At last, just
by means of complementarity, we can evaluate the Maxwell
contributions from (3.18) and (3.19),

Aμνσ
M ðp; k; x; zÞ ¼ 2ððx − 1Þpþ ð1 − zÞkÞσημν

þ 2ððx − 1Þp − ð1þ zÞkÞμηνσ
þ 2ðð1þ xÞpþ ð1 − zÞkÞνημσ; ð3:31Þ

and

Bμνσ
M ðp;k;x;zÞ¼ 2m2ðð1−xÞpþð1þ zÞkÞμηνσ

−2m2ðð1þxÞpþð1− zÞkÞνημσ
þ2m2ðð1−xÞpþðz−1ÞkÞσημν: ð3:32Þ

Finally, replacing these results back into (3.23), we obtain
the AAA-fields part for the NC Maxwell action,

Ξμνσ
M ðp; kÞ ¼ i

12π

1

jmj ½ð−pþ kÞσημν − ðpþ 2kÞμηνσ

þ ð2pþ kÞνημσ�: ð3:33Þ

C. AAAA-term contribution

By means of complementarity, let us present here the
resulting expression for the one-loop contribution (2.8) for
the case n ¼ 4, which is shown in Fig. 3. This contribution
is important in a way to provide the remaining AAAA-fields
piece for the NCMaxwell action. The general expression to
be evaluated is

Ξμνσρðp; k; rÞ ¼
Z

d3q
ð2πÞ3

tr½ðqþ pþmÞγμðqþmÞγνðq − kþmÞγσðq − r − kþmÞγρ�
½ðqþ pÞ2 −m2�½q2 −m2�½ðq − kÞ2 −m2�½ðq − r − kÞ2 −m2� : ð3:34Þ

Its analysis follows by the same guidelines as presented
above for the previous contributions. Hence, in order to
obtain the term of interest from the AAAA-contribution, let
us consider an expansion m2 ≫ M2ðp; k; rÞ [in which
M2ðp; k; rÞ is a function of the external momenta]; this
provides the following contributions at order Oðm−1Þ,

Ξμνσρ
M ðp;k;rÞ¼ i

12π

1

jmj ½η
μνησρ−ημσηνρþημρηνσ�: ð3:35Þ

Therefore, by adding the pieces (3.10), (3.33), and (3.35)
we find the complete expression of the NC Maxwell
action, ΓM ∼ 1

jmj
R
d3xF μν ⋆ F μν, in which the field

strength tensor has the following expression: F μν ¼
∂μAν − ∂νAμ þ ½Aμ;Aν�⋆.

IV. PROPAGATING MODES

In order to characterize the excitations described by the
HD contribution as derived in the previous section, let us

consider the following higher-order derivative modification
into the pure NC Chern-Simons Lagrangian density and
analyze the induced corrections to the propagator pole.
In particular, we shall analyze the infrared sector of
the theory, where we expect that the noncommutative
UV/IR effects may be present and turn gauge theory
unstable. By simplicity we shall consider the following
free Lagrangian:

L ¼ m
2
ϵμνλAμ

�
1þ □

M2

�
∂νAλ −

1

2ξ
ð∂μAμÞ2; ð4:1Þ

where we assume m and M both positive. Now, by taking
M ¼ m, the propagator in the Landau gauge, ξ ¼ 0, is
given by

iDμνðpÞ ¼ m
iϵμνλpλ

p2ðp2 −m2Þ : ð4:2Þ

q+p

q-k

p

k r

q

p+k+r

q-r-k

FIG. 3 (color online). Relevant graph for the AAAA-term.

HIGHER DERIVATIVE CHERN-SIMONS EXTENSION IN … PHYSICAL REVIEW D 91, 125013 (2015)

125013-7



In addition to the free part, Eq. (4.1), we shall take the
following interacting part [26],3

Lint ¼ mgεμνσ
�
2

3
Aμ ⋆ Aν ⋆ Aσ þ

1

6m2
□Aμ ⋆ Aν ⋆ Aσ

�

þ mg
12m2

εαβγηλδ∂αAβ ⋆ ∂γAλ ⋆ Aδ

þ img2

2m2
εμνσAμ ⋆ Aν ⋆ ∂ρAσ ⋆ Aρ; ð4:3Þ

besides, we also have the ghost term,

Lgh ¼ ∂μc̄ ⋆ Dμc; ð4:4Þ

with Dμc ¼ ∂μc − ig½Aμ; c�⋆. We are here interested in
evaluating the one-loop photon self-energy diagrams. The
respective Feynman rules can be obtained from the above

Lagrangian densities, the AAA, AAAA and c̄Ac vertex
functions.4 Actually, the diagrams needed to be computed
have the same form as in the usual NC Chern-Simons
theory, however we have now obtained different (deriva-
tive) Feynman rules.
For the purpose of calculating the leading terms of the

ultraviolet contribution [27], we can set jpj ¼ 0, while
keeping ~p on the phase factor in the vertex functions, which
can lead to the UV/IR mixing. Finally, after evaluating the
three diagrams contributing at one-loop order, we have the
complete planar contribution [26]

ðΠμνÞpðpÞ ¼
mg2

60π
ημν; ð4:5Þ

whereas, the complete nonplanar contribution reads

ðΠμνÞn−pðpÞ ¼ −
g2

36π

��
ημν − ð1þ j ~pjmÞ ~p

μ ~pν

~p2

�
e−j ~pjm

j ~pj þ 6m2

Z
1

0

dxð1 − xÞ
�
1

α
ημν − j ~pj ~p

μ ~pν

~p2

�
e−j ~pjα

þ 9m4

Z
1

0

dx
Z

1−x

0

dyð1 − x − yÞ
�
1

β3
ð1þ j ~pjβÞημν − 1

β
~pμ ~pν

�
e−j ~pjβ

	

þ g2

4π

1

j ~pj
�
ημν −

~pμ ~pν

~p2

�
−
g2

4π

1

j ~pj
Z

1

0

dx

�
ημν − ð1þ j ~pjαÞ ~p

μ ~pν

~p2

�
e−j ~pjα; ð4:6Þ

where α2 ¼ ð1 − xÞm2 and β2 ¼ ð1 − x − yÞm2.
In order to discuss the radiative correction effects into the

photon propagator pole, it is interesting to recall that due to
gauge symmetry constrain the tensor structure to be

ΠμνðpÞ ¼
�
ημν −

pμpν

p2

�
ΠSðp2Þ þ ~pμ ~pν

~p2
ΠNCðp2Þ

þ iϵμνλpλΠAðp2Þ: ð4:7Þ
Moreover, we can determine the expression for the com-
plete propagator by making use of the following identity:
ðD−1ÞμνðpÞ¼ΓμνðpÞ−ΠμνðpÞ and that ðD−1ÞμνDνλ ¼ iδμλ .
After some algebraic manipulation we obtain that

iDμν ¼
ΠS þ ΠNC

R

�
ημν −

pμpν

p2

�
þ ξ

p2

pμpν

p2
−
ΠNC

R

~pμ ~pν

~p2

−
1
m ðp2 −m2Þ þ ΠA

R
iϵμνλpλ; ð4:8Þ

where R ¼ ΠSðΠS þ ΠNCÞ − p2ð1m ðp2 −m2Þ þ ΠAÞ2.
From the above results, at one-loop order, we immediately
see that ΠA ¼ 0. Now, the remaining form factors, in the
leading contributions when j ~pj → 0,

ΠNCðp2Þ ¼ g2

36π

1

j ~pj þOðmj ~pjÞ;

ΠSðp2Þ ¼ −
7g2

20π
m −

g2

24π

1

j ~pj þOðg2j ~pjÞ: ð4:9Þ

We notice that the last term of (4.8) can be rewritten as
m

ðp2−m2Þ
iϵμνλpλ

p2− m2

ðp2−m2Þ2ΠSðΠSþΠNCÞ
. This shows that the HD pole

remains intact and only the massless mode, p2 ¼ 0,
receives contribution from the radiative corrections.
From this we obtain the dispersion relation,

ω2ðpÞ ¼ p2 þ 1

m2
ΠSðΠS þ ΠNCÞ þO

�
g2

jpj
m2

�
: ð4:10Þ

Now, the tree-level parameter can be conveniently rewritten
g2 ∼m=κ, we finally find at low momenta,

4Notice that the AAAAA vertex, which is needed to ensure the
gauge invariance of the HD parts (see the Appendix), does not
contribute to the one-loop diagrams.

3Although this Lagrangian does not constitute the whole
contribution, we have considered some of the parts obtained
from the derivative contributions for the vertex functions that
suffice to our interest in a quantitative discussion for the NC and
HD contributions in the dispersion relation; the remaining terms
would contribute as changing the numerical factors in the
resulting outcome, but this does not change our quantitative
analysis.
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ω2ðpÞ ¼ p2 þm2
eff þ

1

1728π2
m4

κ2
h2

p2
þ 7

360π2
m3

κ2
h
jpj

þO
�jpj
mκ

�
þO

�
mj ~pj
κ

�
; ð4:11Þ

where we have defined m2
eff ¼ 49

400π2
m2

κ2
and h−1 ¼ m2θ. In

contrast with the analysis in Ref. [28], we have no
instability in the infrared when jpj=m ≪ h. There the
authors have considered a different expression for ΠS,
where no 1=j ~pj term is present; this consideration has
changed the sign of the h term in (4.11) to negative,
implying therefore that the range of applicability of the
above expression was for jpj=m ≪ h. Moreover, this
consideration has also excluded the most infrared singular
1=j ~pj2 contribution.

V. CONCLUDING REMARKS

In this paper we have studied the one-loop effective
action of NC QED3, fermionic fields interacting with an
Abelian gauge field. After integrating out the fermionic
fields, we obtained the effective action for the noncommu-
tative gauge field, next we have computed explicitly the
contributions of the n ¼ 2; 3; 4 terms for the effective
action. In addition, it should be remarked that the non-
commutative effects into the resulting outcome are in fact
nonperturbative. This fact is supported, in a formal way, in
the existence of an exact Seiberg-Witten map, valid to all
orders in θ.
In completion to previous analyses, we have supplied

with detailed calculation of the n ¼ 2; 3; 4 terms for the
effective action. Based in the exact calculation, we have
considered, in particular, the long wavelength limit (large
fermion mass) into the terms in the expansion Oðm0Þ,
Oðm−1Þ and Oðm−2Þ, that corresponded exactly to the NC
Chern-Simons action, NC Maxwell action, and higher-
derivative extension to the NC Chern-Simons action,
respectively. Moreover, the gauge invariance of the
higher-derivative extension was also discussed. In addition,
we introduced a new Lagrangian density including the pure
NC Chern-Simons term with its higher-derivative exten-
sion. Then, the one-loop effect of the higher-derivative
terms to the pole of the photon propagator and the relevant
dispersion relation in the infrared limit was addressed.
Certainly a study considering the effects of these higher-

derivative terms in the gauge fields into the theory’s
quantities would be rather interesting [29], as well as a
detailed study about the finite gauge invariance of these
higher-derivative NC gauge fields [30,31]. Those aspects
are currently under scrutiny.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referee
for his/her comments and suggestions to improve this

paper. M. Gh. is grateful to M.M. Sheikh-Jabbari for
fruitful discussions and also thanks School of Physics of
Institute for research in fundamental sciences (IPM) for the
partial support and for the research facilities and environ-
ment. R. B. acknowledges FAPESP for full support, Project
No. 2013/26571-4.

APPENDIX: FIXING THE GENERAL
STRUCTURE OF THE HD-TERMS

In this Appendix, we use the dimensional analysis to
discuss carefully the gauge invariance of the higher-
derivative extended NC Chern-Simons action ΓHD

CS in
(3.30). The mass dimension of the gauge and fermionic
fields in d dimensions is given by

½A� ¼ d − 2

2
; ½ψ � ¼ d − 1

2
: ðA1Þ

For the case d ¼ 3, we have ½A� ¼ 1
2
and ½ψ � ¼ 1. Hence the

mass dimension of the coupling constant g (minimal
coupling) would be ½g� ¼ 1

2
. For the sake of our discussion

it is useful to introduce Aμ ¼ −igAμ, which is concluded
½A� ¼ 1.
Now, considering the ordinary CS term: A∂A with

½A∂A� ¼ 3, that other possible contribution with mass
dimension of 3 is AAA (non-Abelian or noncommutative
self-interacting gauge fields). Hence, by dimensional
analysis, the CS action without higher-derivative (HD)
terms is given by a linear combination of A∂A and AAA.
What about the HD terms? Suppose that we know the

structure of the HD terms appearing in the AA-part; hence,
we then try to guess recursively the general structure of HD
terms needed to be added into the AA-part in order to make
a gauge invariant higher-derivative action. The mass
dimension of the simplest HD contribution in the AA-term
is given by ½A∂□A� ¼ 5, so we can make all of the possible
contributions usingA and ∂ with total mass dimension of 5.
It is important to emphasize that due to the Levi-Cività
tensor ϵμνλ and metric gρσ, the several terms are produced
just like those appearing in relation (3.30) at the order of
sgnðmÞ=m2:

Γð2Þ∶ A∂□A; ðA2Þ

Γð3Þ∶ A∂A∂A; □AAA; ðA3Þ

Γð4Þ∶ ∂AAAA; ðA4Þ

Γð5Þ∶ AAAAA: ðA5Þ

We then can conclude that these arguments suffice to
determine the general structure of such terms, but only the
explicit calculation of their contributions that allows us to
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determine the tensorial coefficients of these different terms,
although the gauge invariance imposes some limitations.
To show the correctness of the above argument, let us

consider the dimensional analysis of the loop integrals that
we have mentioned, n ¼ 4 in (2.8),5

Ξμνρσ ∼
Z

dωq
ð2πÞω

1
ωðωþ2Þ q

4Cμνρσ þ 1
ω q

2Dμνρσ þ Eμνρσ

½q2 þM2 −m2�4 ;

ðA6Þ

in which each contribution labeled by its coefficient in the
leading order is given by

C∶
Z

dωq
ð2πÞω

q4

ðq2 þM2 −m2Þ4 ∼
1

ðM2 −m2Þ4−2−ω
2

∼
1

jmj ;

D∶
Z

dωq
ð2πÞω

q2

ðq2 þM2 −m2Þ4 ∼
1

ðM2 −m2Þ4−1−ω
2

∼
1

jmj
1

m2
;

E∶
Z

dωq
ð2πÞω

1

ðq2 þM2 −m2Þ4 ∼
1

ðM2 −m2Þ4−ω
2

∼
1

jmj
1

m4
:

ðA7Þ

By means of dimensional analysis, it is deduced that
(i) There is not any power of m in Cμνρσ.
(ii) There is an m term in Dμνρσ and m3 in Eμνρσ that

contribute to our result, which are corresponding to
those terms with one-derivative structure: ∂AAAA
in (A4).

Now, by completeness, we study the case n ¼ 5 of (2.8):

Ξμνρσλ ∼
Z

dωq
ð2πÞω

1
ωðωþ2Þ q

4Cμνρσλ þ 1
ω q

2Dμνρσλ þ Eμνρσλ

½q2 þM2 −m2�5 ;

ðA8Þ

where

C∶
Z

dωq
ð2πÞω

q4

ðq2 þM2 −m2Þ5 ∼
1

ðM2 −m2Þ5−2−ω
2

∼
1

jmj
1

m2
;

D∶
Z

dωq
ð2πÞω

q2

ðq2 þM2 −m2Þ5 ∼
1

ðM2 −m2Þ5−1−ω
2

∼
1

jmj
1

m4
;

E∶
Z

dωq
ð2πÞω

1

ðq2 þM2 −m2Þ5 ∼
1

ðM2 −m2Þ5−ω
2

∼
1

jmj
1

m6
:

ðA9Þ

We can then see that
(i) There is an m term in Cμνρσ, an m3 in Dμνρσ,

and m5 in Eμνρσ that contribute to our result. These

contributions lead to those terms without any
derivative: AAAAA in (A5).

Here, we would like to generalize this analysis for the
generic higher-derivative terms that may appear in the next
orders. Since we have expanded our result in powers of ð□m2Þ
in (3.6), in general, we can call the order of the expansion l
and start from the AA-part,

A∂
�
□

m2

�
l
A ¼ 1

m2l A∂□lA; ðA10Þ

in which the mass dimension of A∂□lA is given by

½A∂□lA� ¼ 3þ 2l: ðA11Þ

Therefore, we can determine the general structure of the
different higher-derivative expressions with the mass
dimension of 3þ 2l using combinations of A and ∂.
Actually, these expressions contribute to the gauge invari-
ant NC Chern-Simons action Γt

l at order l. Inserting the
several values for l, we obtain

(i) l ¼ 0→½Γt
l� ¼ 3→Γt

0 ¼ α0Γ
ð2Þ
0 þ β0Γ

ð3Þ
0 .

Here, t indicates the total action. We note that the case
l ¼ 0 corresponds to the ordinary noncommutative Chern-
Simons action with α0 ¼ 1 and β0 ¼ 2

3
:

Γð2Þ
0 ∼A∂A; Γð3Þ

0 ∼AAA: ðA12Þ

(ii) l ¼ 1→½Γt
l� ¼ 5→Γt

1 ¼ α1Γ
ð2Þ
1 þ β1Γ

ð3Þ
1 þ ρ1Γ

ð4Þ
1 þ

σ1Γ
ð5Þ
1 ,

in which

Γð2Þ
1 ∼A∂□A; Γð3Þ

1 ∼□AAA; ∂A∂AA;

Γð4Þ
1 ∼ ∂AAAA; Γð5Þ

1 ∼AAAAA: ðA13Þ

(iii) l ¼ 2→½Γt
l� ¼ 7→Γt

2 ¼ α2Γ
ð2Þ
2 þ β2Γ

ð3Þ
2 þ ρ2Γ

ð4Þ
2 þ

σ2Γ
ð5Þ
2 þ λ2Γ

ð6Þ
2 þ ξ2Γ

ð7Þ
2

in which

Γð2Þ
2 ∼A∂□2A; Γð3Þ

2 ∼□2AAA;

∂A∂A□A; ∂□A∂AA; □A□AA; ðA14Þ

Γð4Þ
2 ∼∂□AAAA; ∂A□AAA; ∂A∂A∂AA; ðA15Þ

Γð5Þ
2 ∼□AAAAA; ∂A∂AAAA;

Γð6Þ
2 ∼ ∂AAAAAA; Γð7Þ

2 ∼AAAAAAA: ðA16Þ

All of the coefficients appearing in Γt
l are determined using

the explicit calculations such that the gauge invariance of
the total NC Chern-Simons action is preserved.

5For the contributions as (A2) and (A3) see (3.9) and (3.30),
respectively.
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