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In this work, we have obtained Maxwell-type equations for a compressible fluid whose sources are
functions of velocity and vorticity. A correlation function and the dispersion relation were analyzed as
functions of the Reynolds number. A Lagrangian for the Lamb vector and the vorticity was constructed, and
the equations of motion were discussed. After that, we have analyzed the case of a charged fluid dynamics.
Finally, the non-Abelian generalization of some results was introduced. A basic review for non-Abelian
fluids was described in Appendix B.
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I. INTRODUCTION

Maxwell electrodynamics is the classical field theory
that is the basics for the fluid’s dynamics. Since the
Maxwell theory has passed through a non-Abelian (NA)
generalization, the same is expected concerning the fluid’s
dynamics. The top of this NA evolution is the so-called
quark-gluon plasma (QGP) which is obtained from high-
energy collisions of heavy nuclei. This state of matter has
attracted big interest both theoretically and in experiments
at the Relativistic Heavy Ion Collider (RHIC) facility and at
CERN [1].
It is well known that QGP liquid is dense. However,

apparently it flows with very little viscosity close to an ideal
fluid which is ruled by the standard laws of hydrodynamics.
Hence, to analyze the results that come from the RHIC, one
has to adopt a hydrodynamic point of view to the plasma for
constructing its properties. To consider the NA charges of
the quarks and gluons is important in order to describe the
dynamics for the proper fluid of the quarks and gluons.
We have in the literature several theories about some

aspects of an ideal fluid in interaction with Yang-Mills
fields [2–6]. One of the objectives to create QGP from high-
energy heavy-ion collisions is to test the prediction of a
transition from a color-confining to an unconfining phase in
QCD at high temperature and/or density.
Recent works have introduced an alternative way to

describe fluid dynamics, compressible fluids [7], and the

equations of a plasma [8]. These results were obtained
through the recasting of the equations and by obtaining a
set of Maxwell-type equations for the fluid. This trans-
formation in the structure of the equations implies the
generalization of the idea of charge and current related to
fluid dynamics [9]. The understanding of what will be
considered as a source term in the final formalism depends
on the choice of the quantities and will be the main issue of
this new structure of fluid dynamics.
The formalism of fluid-gravity equivalence has a chance

of being able to depict different aspects of relativistic fluids,
such as superfluidity and dissipation. On the other hand,
the AdS=CFT correspondence provides a way to analyze
strongly interacting field theories which motivate the use of
holographic ideas in high-energy physics [10,11]. After
that, holographic dualities have became powerful tools to
study strongly coupled theories, like superfluidity and
superconductivity, the so-called holographic superconduc-
tors, and superfluids.
Another current issue deals with group theoretic for-

mulations for fluid dynamics [12], where the particle
motion is described as the transport of several conserved
quantum numbers. This is based on the construction of a
Lagrangian which generalizes the usual coadjoint orbit
action for the particle motion. The quantum numbers are
related to a proper group [12].
On the other hand, when we have anomalies, some

effects like the chiral magnetic and chiral vorticity effects
appear. Another one, the isospin asymmetry, was discussed
in Ref. [13] and it is part of the dynamics of the quark-
gluon fluid. Concerning hydrodynamics, which is a long-
wavelength effective description of interacting systems
relying on the local equilibrium assumption [14], the
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conservation laws, which generate the hydrodynamic
equations, are related to the symmetries of the system. If
we have a quantum field theory, as an underlying theory,
with quantum anomalies, the conservation laws relative to
anomalous symmetries are broken.
The connection between the ferromagnetic and fluid

dynamics was explored in Ref. [15]. And the relativistic
charged particle dynamics as well as the relativistic
magnetohydrodynamics using symplectic framework were
discussed in Ref. [16].
In Lighthill works about sound [17], the applied stress

tensor is considered as the source of the radiation field. The
objective here is to construct, analogously to Marmanis
concerning an incompressible fluid, theMaxwell-type equa-
tions for a compressible fluid considering the presence of a
dissipation term from the beginning of the process. In this
case, we can see that there is an underlying difference
between the definitions of the source terms. Another impor-
tant point that wewill analyze is the possibility of obtaining a
Lagrangian description for the compressible fluid.
In Ref. [8], the author has recently introduced an

extension of this new structure of the plasma equations,
for each kind of fluid, beginning with the equations of
motion that describe such a system. We can obtain the
equations by extending the Lagrangian description relative
to the compressible fluid. In the present paper, we will
consider a charged fluid and its coupling with the electro-
magnetic field. We will combine both the Lamb vector and
vorticity with the electric and magnetic fields. As we will
see, this coupling will result in some changes of the set of
Maxwell-type equations that describe the system, and also
we will obtain new source terms.
The paper is organized in the following way: in Sec. II,

we have obtained the Maxwell-type equations as functions
of the vorticity and Lamb vector. In Sec. III, we have
computed the correlation function of the velocity in order to
connect it with the current density. In Sec. IV, we described
the Lagrangian formalism for the theory above, and we
have constructed the NAversion for our compressible fluid.
The analysis for a charged fluid was developed in Sec. V.
The conclusions are depicted in Sec. VI. In Appendix A,
we have demonstrated precisely that our fluid formulation
and the standard one have the same number of degrees of
freedom, and, in Appendix B, we have made a brief review
of NA fluids.

II. MAXWELL-TYPE EQUATIONS
FOR A COMPRESSIBLE FLUID

There are several works in the literature that show the
similarity between fluid dynamics and classical electrody-
namics. More recently, this analogy has been used to write
the equations of motion of a fluid with the same structure as
Maxwell’s equations of electromagnetism. Marmanis [9]
has described the dynamical behavior of average flow
quantities in incompressible fluid flows with high Reynolds

numbers. Kambe [7] has presented a generalization of a
previous work concerning a compressible fluid.
Our purpose in this section is to obtain the Maxwell-type

equations considering the viscosity from the beginning and
to construct a system of equations as functions of both the
vorticity ð~ωÞ and Lamb vector ð~l ¼ ~ω × ~uÞ, which is also
known as vortex force. In this way, we will follow a
different path from Kambe [7].
The equations of motion of a fluid are given by the Euler

equation:

∂~u
∂t þ ~ω × ~uþ∇

�
1

2
u2
�

¼ − 1

ρ
∇p; ð1Þ

where 1=2u2 is the kinetic energy, and this equation is
supplemented by the following equations such as the
continuity equation given by

∂ρ
∂t þ∇ð~uρÞ ¼ 0 ð2Þ

and the entropy equation

∂s
∂t þ ~u ·∇s ¼ 0; ð3Þ

where ρ is the fluid density, s is the entropy per unit mass,
p is the pressure, and ~ω ¼ ∇ × ~u is the vorticity.
We can rewrite Eq. (1) by introducing the viscosity

through the stress tensor

σij ¼ μeij þ ξδijD; ð4Þ

eij ¼ ∂jui þ ∂iuj −
2

3
δijD; D≡ ∂mum; ð5Þ

where the coefficients μ and ξ are called coefficients of
viscosity (and ξ is also known as the second viscosity). We
have from thermodynamics that

−
1

ρ
∇p ¼ −∇hþ T∇s; ð6Þ

where h is the enthalpy per unit mass and T is the
temperature. So, we obtain

∂~u
∂t þ ~ω × ~uþ∇

�
1

2
u2
�

¼ −∇hþ ~κ; ð7Þ

where

~κ ¼ T∇sþ 1

ρ
∇σ ð8Þ

and Eq. (7) is the Navier-Stokes equation for a viscous
compressible fluid [18], different from Eq. (1). From a
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dimensional analysis of Eq. (8), we can see that ~k has
acceleration dimension.
Hence, we will define from Eq. (1) the Lamb vector as

~l ¼ −
∂~u
∂t −∇Ωþ ~κ; ð9Þ

where

Ω ¼ hþ 1

2
u2 ð10Þ

is the total energy. From Eq. (9), we see that the sign of∇ · ~l
oscillates between negative and positive, which occurs
usually in turbulent flows.
Now, let us compute the divergence, curl, and time

derivative of the Lamb vector and after that, the divergence
of the vorticity to obtain, respectively, that

∇ · ~l ¼ nþ∇ · ~κ; ð11Þ

∇ × ~lþ ∂ ~ω
∂t ¼ ∇ × ~κ; ð12Þ

∂~l
∂t − u2∇ × ~ω ¼ −~jþ ∂~κ

∂t ; ð13Þ

∇ · ~ω ¼ 0; ð14Þ

where ~j will be defined in a moment and

n ¼ −
∂
∂t∇ · ~u −∇2Ω ð15Þ

is connected to the concept of source terms, analogous to
both the electric charge and current densities. Notice that n
is directly proportional to the time variation of the dilatation
and the spatial variation of the energy. On the other hand, it
is well known that

∇ · ~l ¼ ~u ·∇ × ~ω − ~ω · ~ω;

and from (11) we can write that

n ¼ ~u ·∇ × ~ω − ~ω · ~ω

when ∇ · ~k, and it means that the source term can be given
by both the velocity and vorticity.
From the Lagrange acceleration formula [19] given by

_~u ¼ ∂~u
∂t þ ~ω × ~uþ∇

�
1

2
u2
�

⇒ ∇ × _~u ¼ ∂ ~ω
∂t þ∇ × ~l;

which is analogous to Eq. (12), and as we have said above,
~k is the acceleration.

In Eq. (11), we have that the sources of the Lamb vector
are the pressure, enthalpy, and velocity gradients. In
Eq. (12), one can show that the time variation of the
angular velocity is equal to the torque given by the Coriolis
force, which is the Lamb vector. The last equation
represents the conservation of the vorticity flux along a
tube of vorticity. Analogously to the electromagnetic case,
we can say that it means the absence of a monopole source
of vorticity.
Moreover, back to Eq. (12), in the case of a motion with

steady vorticity (∂ω=∂t ¼ 0) and a lamellar Lamb vector,

i.e., ∇ × ~l ¼ 0, we have, using Eq. (8), that

∇T ×∇s ¼ −∇ 1

ρ
×∇σ;

which is the condition for the second and third vorticity
theorems of Helmholtz [19]. The new thing is that this last
equation is the condition for circulation-preserving motion

independent of ~ω and ~l.
Having said that, the Lamb vector and the vorticity

should be taken as the kernel of turbulent dynamics rather
through velocity and vorticity fields or velocity and
pressure fields [9]. Then any term that cannot be explicitly
expressed as a function of only ~w or ~l will be treated as a
source term. Within the term connected with the viscosity
through the source term in Eq. (15) and

~j ¼ ~unþ∇ × ð~u · ~ωÞ~uþ ~ω ×∇ðΩþ u2Þ
þ 2½ð~ω × ~uÞ ·∇�~u − ð~ω × ~uÞð∇ · ~uÞ; ð16Þ

we have to notice that the source terms in Eqs. (15) and (16)
differ from the source terms given in Ref. [9] thanks to the
presence of ∇ · ~u, since the fluid is compressible. The
charge density n related to the vorticity can be regarded as a
topological feature of the flow [20].
An important observation can be made about the

presence of the term ~κ in Eq. (9) and its effect into
Maxwell-type equations, which can be rewritten as

∇ · ð~l − ~κÞ ¼ n; ð17Þ

∇ × ð~l − ~κÞ þ ∂ ~ω
∂t ¼ 0; ð18Þ

∂ð~l − ~κÞ
∂t − u2∇ × ~ω ¼ −~j; ð19Þ

∇ · ~ω ¼ 0: ð20Þ

We can see that the presence of this ~κ term, in analogy with
the Maxwell electromagnetism, shows that ~κ acts as a

polarization vector for the Lamb vector, such as the ~P
vector for the electric field in classical electrodynamics.
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So, let us construct a new Lamb vector field ~l0 ¼ ~l − ~κ in
Eqs. (17)–(20), and consequently we reobtain the same set
in (11)–(14) for the vectors ~l0 e ~w [7].
The system of equations (17)–(20) shares a common

feature with the so-called microscopic Maxwell equations
concerning the extremely fast space and time variable
fields. As in Ref. [9] for an incompressible fluid, we will
use the spatial filtering method proposed by Russakoff [21]
to obtain the dynamical behavior of average flow quan-
tities. After the application of the process, we have that

∇ · h~l0i ¼ hni; ð21Þ

∇ × h~l0i þ ∂h~ωi
∂t ¼ 0; ð22Þ

∂h~l0i
∂t − hu2i∇ × h~ωi ¼ −h~ji; ð23Þ

∇ · h~ωi ¼ 0; ð24Þ

where hu2i ¼ a2 is the spatial averaged squared velocity.
We can promote an extension of this analogy by

introducing the potentials which, in this case, correspond
to the average velocity field h~ui (vector potential) and
energy function hΩi (the scalar potential). As in Maxwell’s
electromagnetism, sometimes it is more appropriate to
work with the equations involving only the potential in
order to keep a smaller number of second-order equations,
rather than against a set of coupled first-order partial
differential equations (21)–(24). So, from Eq. (23) and
using the expression in (9), it can be shown that the average
velocity field obeys the following equation:

∇2h~ui − 1

a2
∂2h~ui
∂t2 þ∇

�
∇ · h~ui þ 1

a2
∂hΩi
∂t

�
¼ −a−2h~ji;

ð25Þ

concerning the average velocity, and

∇2hΩi þ ∂
∂t∇ · h~ui ¼ −hn̂i; ð26Þ

for the energy function hΩi [see Eq. (15)].
Equation (25) shows the wave character of the equations

for the fluid dynamics described by Eqs. (21)–(24).
Besides, Eqs. (25) and (26) allow us to make an interesting
observation about a conceptual difference between both
theories, namely, electromagnetism and fluid theories.
The equations for the electromagnetic potentials ð~A;ΦÞ,

which have expressions analogous to mathematical equa-
tions, can be decoupled through a suitable choice for
potential called gauge transformations:

∇ · ~A ¼ 0 ðCoulomb gaugeÞ ð27Þ

and

∇ · ~Aþ 1

c2
∂Φ
∂t ¼ 0 ðLorentz gaugeÞ; ð28Þ

which do not affect the physics of the system. In fluid
dynamics, this freedom is not simply a choice of gauge; it
has implications about the physical nature of the flow. The
relation ∇ · h~ui ¼ 0 in fluid dynamics, which is equivalent
to the Coulomb gauge, is not a true gauge, but it is a choice
of the incompressibility of the flow.
Similarly, the Lorentz gauge has a corresponding equa-

tion which connects the fluid dynamics given by

∇ · h~ui þ 1

a2
∂hΩi
∂t ¼ 0 ð29Þ

and which is relative to a compressible fluid. Thus, we
observe that a “gauge choice” in fluid dynamics is directly
related to the hypothesis made about the compressibility or
incompressibility of the fluid [8].
A mathematical object of great importance in the

statistical theory of fluid dynamics is the correlation
function of two points of the velocity field defined as

Rijð~rÞ≡ hvið~xÞvjð~xþ ~rÞi ð30Þ

for two points separated by the displacement vector ~r. Both
assumptions of stationary and homogeneity allow us to
establish that, as indeed has already been attempted in the
link above, this correlator does not depend on time but
only on the displacement vector ~r. The space-time corre-
lation is underlying in fluid dynamics and has a wide
application [22].

III. THE CORRELATION FUNCTION

Great efforts have been devoted for decades to the
discovery of how the kinetic energy of a turbulent flow
can be partitioned along the length scales. The focus of
these studies is the energy spectrum of the turbulent flow
in Fourier space, obtained directly from the correlation
function for speed.
Our purpose now is to show that we can connect the

correlation function of the velocity field with the current
density ~j. To accomplish that, we have to consider a
specific case which is not simpler than the flow of a
compressible fluid. It is an incompressible fluid with high
Reynolds numbers in the completely developed turbulent
regime [23].
In this case, the wave equation in (25) (without the

electromagnetic field coupling) can be written as
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∂2~v
∂t2 ¼ a2∇2~vþ ~j −∇

�∂ϕ
∂t

�
þ ν2∇4~v; ð31Þ

where ν is the (kinematic) viscosity, ~v ¼ h~ui, and ϕ ¼ hΩi.
As in the electromagnetic theory, we can decompose ~j

into its longitudinal part (irrotational) ~jl and its transverse

part (solenoidal) ~jt, i.e.,

~j ¼ ~jl þ ~jt; ð32Þ

where we can show that

~jl ¼ ∇∂ϕ
∂t ð33Þ

and we can rewrite Eq. (31) as follows:

∂2~v
∂t2 ¼ a2∇2~vþ ν2∇4~vþ ~jt; ð34Þ

which is a wave equation with a forcing term exclusively
expressed in terms of the turbulence sources.
The nonhomogeneous wave equation (34) has a solution

of the type

~vð~x; tÞ ¼
Z

d4xGð~x; t; ~x0; tÞ~jtð~x0; t0Þ; ð35Þ

where the Green functions in Eq. (35) satisfies the
inhomogeneous equation

�
a2∇2 þ ν2∇4 −

∂2

∂t2
�
Gð~x; t; ~x0; tÞ ¼ δð~x − ~x0Þδðt − t0Þ:

ð36Þ

The wave equation in (34) describes waves with the
following dispersion relation [9]:

ω ¼ ak

�
1 −

ν2

2a2
k2
�
; ð37Þ

where, in the upper limit for the value of k (kf, filter
microscale), we have

ν2k2f
a2

¼ OðRe−1Þ:

So, when we consider a fluid with high Reynolds
number, we have a linear law to the dispersion relation:
ωðkÞ ¼ ak. In this case, the operator in Eq. (36) is the type
D’Alembertian with the usual Green’s function, such as

Gð~x; t; ~x0; tÞ ¼
(

1
4πa2

δðt−t0−j~x−~x0 j
a Þ

j~x−~x0j if ðt > t0Þ;
0 if ðt < t0Þ:

ð38Þ

Now, substituting Eq. (38) into (35) and solving the
integration in t0, we have that

~vð~x; tÞ ¼
Z

d3~x0
~jtð~x0; t − j~x−~x0j

a Þ
j~x − ~x0j ; ð39Þ

and with this result, we can write the correlation function as

Rijð~rÞ ¼ hvið~xÞvjð~xþ ~rÞi

¼
Z

~xþ~r

~x
d3~y

Z
~xþ~r

~x
d3~zhfið~yÞfjð~zÞi

¼
Z

~xþ~r

~x
d3~y

Z
~xþ~r−~y

~x−~y
d3~ρhfið~yÞfjð~yþ ~ρÞi; ð40Þ

where we have defined

~fð~x0; tÞ ¼
~jtð~x0; t − j~x−~x0j

a Þ
j~x − ~x0j : ð41Þ

We can observe in Eq. (40) that the correlation function
of the velocity field depends on both the correlation
function of the current density ~jt and the displacement
vector ~r. The current density is an input and cannot be
determined by theory; it depends on both the observation
and the geometry of the flow.

IV. LAGRANGIAN FORMALISM
AND MINIMAL COUPLING

From the geometric and Lie algebraic points of view,
Arnold [24] showed that the Euler flow can be described
via the Hamiltonian formalism in any dimensions. This has
a lot of interesting consequences concerning fluid mechan-
ics [25]. One of them is that it is the standard path to
introduce statistical approaches into dynamical systems.
The Hamiltonian is helpful in order to build a statistical
measure. However, it is not quite obvious that this process
can be used when viscosity is taken into account.
In Ref. [26], one of us has shown that this is possible if

we consider the equations of metafluid dynamics obtained
by Marmanis [9]. Since the structures of Eqs. (21)–(24) are
the same as the equations of metafluid dynamics, although
we are working with a compressible fluid, we can similarly
write down the Lagrangian density of the theory of a
compressible fluid. Hence, let us begin with

L ¼ 1

2
ð~l2 − a2 ~ω2Þ; ð42Þ

where we will define the averaged Lamb vector ~l ¼ h~li as
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~l ¼ −
∂~v
∂t −∇ϕþ ~k; ð43Þ

where ~ω ¼ h~wi and ~k ¼ h~κi. We can see at first sight that
the Lagrangian in (42) has a kind of duality, since we can
substitute l → iaω and aω → il and the Lagrangian in (42)
is invariant under this symmetry. However, one can ask
about the physical meaning of the complex terms in the
fluid dynamics.
So, we can also write the above Lagrangian density in

terms of the potential in the following way:

L ¼ 1

2

�
−
∂~v
∂t −∇ϕþ ~k

�
2

−
1

2
a2ð∇ × ~vÞ2; ð44Þ

which is the Lagrangian of a compressible fluid with nonzero
viscosity, which gives us the Navier-Stokes equation directly
from the conjugated momenta of the velocity field:

~π ¼ δL

δ _~v
¼ ∂~v

∂t þ∇ϕ − ~k ¼ −~l; ð45Þ

when it is comparedwithEq. (43). Thus,wehave obtained the
Navier-Stokes equation for the mean field:

∂~v
∂t ¼ ~l −∇ϕ − ~k; ð46Þ

where ~l ¼ ~ω × ~v. Notice that the contributions of viscosity

and T∇s are embedded in ~k.
It is easy to see that the Lagrangian density (44) gives us

the set of Maxwell-type (11)–(14) equations for the
homogeneous case (no source). Computing the Euler-
Lagrange equations relative to ϕ and ~v from Eq. (45),
respectively, we can write that

∇ · ð−∇ϕ − _~vþ ~kÞ ¼ 0; ð47Þ

and using Eq. (43), we can see that

∇ · ~l ¼ 0: ð48Þ

For the velocity field ~v, we have

∂
∂t ð−∇ϕ − _~vþ ~kÞ ¼ a2ð∇ ×∇ × ~vÞ; ð49Þ

and from Eq. (43) and using that ~ω ¼ ∇ × ~v, this last
equation can be written as

∂~l
∂t ¼ a2ð∇ × ~ωÞ þ ∂~k

∂t : ð50Þ

The other two equations, (12) and (14), can be obtained
directly from the ~ω and ~l definitions. Taking the divergence

of ~ω, we can obtain Eq. (14). To obtain Eq. (12), we have to
take the curl of Eq. (9).
Now, let us consider the case where the sources do not

vanish. In this case, the sources appear into the equations
of motions, and, as a consequence, we can write its
Lagrangian density as

L ¼ 1

2

�
−
∂~v
∂t −∇ϕþ ~k

�
2

−
1

2
a2ð∇ × ~vÞ2 þ ~J · ~v − Nϕ;

ð51Þ

where N ¼ hni, ~J ¼ h~ji, and n was given in Eq. (17).
Considering the term ~k as a vector polarization for the

Lamb vector, let us define

~l0 ¼ h~l − ~κi ¼ −
∂~v
∂t −∇ϕ; ð52Þ

and we can rewrite the Lagrangian density (44) as

L ¼ 1

2
ð~l02 − a2 ~ω2Þ ¼ 1

2

�
−
∂~v
∂t −∇ϕ

�
2

−
1

2
a2ð∇ × ~vÞ2:

ð53Þ

Therefore, if we look at the Lamb vector defined in (52)
and the mean vorticity

~ω ¼ ∇ × ~v; ð54Þ

we can see that ~l0 and ~ω, as well as the electric and magnetic
fields, are components of a second-rank tensor, the strength
tensor, defined by

Tμν ¼ ~∂μUν − ~∂νUμ; ð55Þ

where ~∂μ ¼ ð1a ∂
∂t ;∇Þ and the four-vector potential is

Uμ ≡ ðϕ; a~vÞ: ð56Þ

The nonzero components of the Tμν are

T0i ¼ l0i and Tij ¼ aωk with i; j; k cyclic: ð57Þ

Thus we can see that, compared with the second-rank
tensor in (55), the second-rank tensor introduced by
Mahajan in Ref. [27] is a relativistic extension of the
Lamb vector and vorticity given in (57).
Therefore, one can write (53) using Tμν as

L ¼ −
1

4
TμνTμν; ð58Þ

or, considering the presence of the source terms, we
have that
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L ¼ −
1

4
TμνTμν −

1

a
JμUμ; ð59Þ

where the four-vector Jμ is defined as

Jμ ≡ ðN; a~JÞ: ð60Þ
The inhomogeneous equations of the compressible fluid

(21) and (23), in terms of Tμν and the four-current Jμ, can
be connected through a covariant expression

∂μTμν ¼ 1

a
Jν: ð61Þ

Similarly, the homogeneous equations (22) and (24) can be
written in terms of the dual field-strength tensor as

∂μT μν ¼ 0; ð62Þ

where T μν ¼ 1
2
ϵμναβTαβ.

A. The non-Abelian generalization

In Ref. [28], the authors carried out a NA generalization
of Ref. [27] in order to apply the formalism to QGP. With
the same motivation, we will provide the NA version of
these last results. In the name of self-containment, we have
provided the interested reader with the basic knowledge of
the issue in the Appendixes. From now on, we will assume
that the reader had read the Appendixes and has this basic
knowledge.
Having said that, sinceQa is the classical color charge of

the particle, let us define the Lie algebra which is defined
with anti-Hermitian Lie algebra objects with basis Ta:

½Ta; Tb� ¼ fabcTc;

trðTaTbÞ ¼ −
1

2
δab: ð63Þ

Hence, we can rewrite the Lagrangian in Eq. (53) as

L ¼ 1

2
ð~l02a − a2 ~ω2

aÞ; ð64Þ

where ~ωa ¼ Qa ~ω and ~la ¼ Qa
~l.

The strength tensor in Eq. (55) can be written in a NA
way as

Ta
μν ¼ ~∂μUa

ν − ~∂νUa
μ − ig½Uμ; Uν�a; ð65Þ

where ½Uμ; Uν�a ¼ fabcU
b
μUc

ν and g is the gauge charge. The
NA four-vector potential is given by

Uμ
a ¼ QaUμ; ð66Þ

where T0ia ¼ l0ia and Tija ¼ aωka, where i; j; k ¼ cyclic,
and the Lagrangian for the NA field strength in Eq. (58):

L ¼ −
1

4
TμνaTa

μν ð67Þ

and, considering source terms, we have that

L ¼ −
1

4
TμνaTa

μν −
1

a
JaμUμa; ð68Þ

where Jμa ¼ ðNa; a~JaÞ; Na ¼ Qahui and Jμa ¼ Qahjμi.
The non-Abelianization of Eqs. (61) and (62) is direct.
In the same manner, we can promote the non-
Abelianization of the elements when we consider a charged
fluid as in Sec. IV.
Since in Secs. IVand V we have used a gauge theoretical

analogy [28] to construct an electromagnetic-type theory as
functions of the Lamb vector and vorticity, in this section we
have developed a NA generalization to obtain a NA fluid-
field system analogous to the well-known Yang-Mills fluids.

V. THE ELECTROMAGNETIC
INTERACTION ANALYSIS

Let us now consider the case where the fluid described
by Eqs. (1)–(3) is a charged fluid with each species labeled
by the index α. Besides, they can be described by a set of
linear Maxwell-type equations for the mean field, such as

∇ · ~l0α ¼ Nα; ð69Þ

∇ × ~l0α þ
∂ ~ωα

∂t ¼ 0; ð70Þ

∂~l0α
∂t − a2∇ × ~ωα ¼ −~Jα; ð71Þ

∇ · ~ωα ¼ 0; ð72Þ

where ~l0α ¼ h~lα − ~καi and analogously to Eqs. (21)–(24),
which can be obtained from the Lagrangian density for
each species given by

L ¼ 1

2
ð~l02α − a2α ~ω2

αÞ; ð73Þ

where a2α ¼ h~u2αi.
In recent works [8,27], the authors present an extension

of the analogy between fluid dynamics and classical
electrodynamics by considering one multifluid plasma
using different approaches. However, in either case, we
have as the starting point the equations of motion. Our
proposal is to consider the fluid immersed in an electro-
magnetic field and the interaction between them from the
Lagrangian density in (73).
Let us then consider the following prescription for both

the Lamb field ð~lαÞ and the vorticity field ð~ωαÞ by defining
the coupling with electromagnetic field such as
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~l0α ⇒ ~̂lα ¼ ~l0α þ g~E ð74Þ

and

~ωα ⇒ ~̂ωα ¼ ~ωα þ b~B; ð75Þ
where g and b are the coupling constants that will be
calculated later.
Using Eqs. (74) and (75), we can now write the new

Lagrangian density L0:

L0 ¼ 1

2
ð~̂l2α − a2α ~̂ω

2
αÞ

¼ 1

2
ð~l0α þ g~EÞ2 − 1

2
a2αð~ωα þ b~BÞ2

¼ 1

2

�
−
∂~vα
∂t −∇ϕα þ ~kα þ g~E

�
2

−
1

2
a2αð∇× ~vα þ b~BÞ2;

ð76Þ

which is the Lagrangian density of a charged fluid

immersed in an electromagnetic field where the term ~kα
carries the contributions due to viscosity and statistical
features ðT∇sÞ of the fluid. The conjugated momenta
associated with velocity are computed as

~π0α ¼
δL0

δ _~vα
¼ ∂~vα

∂t þ∇ϕα − ~kα − g~E ¼ −~̂lα ð77Þ

or

∂~vα
∂t þ∇ϕα − ~kα − g~E ¼ − ~̂ωα × ~vα: ð78Þ

Using the relation (75), we finally have that

∂~vα
∂t þ ~ωα × ~vα ¼ −∇ϕα þ ~kα þ g~Eþ bð~vα × ~BÞ: ð79Þ

If we compare the above equation with the standard
momentum equation for a charged fluid immersed in an
electromagnetic field [8], we can see that the last two terms
on the right side of Eq. (79) are the Lorentz force. Thus, the
coupling constant g and b are both equal and given by

g ¼ b ¼ ϵα
mα

; ð80Þ

where ϵα is the charge andmα is the mass of the charge. So,
the Navier-Stokes equation of the fluid can be written as

∂~vα
∂t þ ~ωα × ~vα ¼ −∇ϕα þ

ϵα
mα

½~Eþ ~vα × ~B� þ ~kα; ð81Þ

which is a very interesting result, where we have a
Lagrangian density that describes a compressible and
charged fluid in a very general representation.

Using the vector and scalar potential (Φ) of the electro-
magnetic field in (76), we can rewrite the Lagrangian as
follows:

L0 ¼ 1

2

�
−
∂~vα
∂t −∇ϕα þ ~kα þ

ϵα
mα

�
−
∂ ~A
∂t −∇Φ

��2

−
1

2
a2α

�
∇ × ~vα þ

ϵα
mα

∇ × ~A

�
2

; ð82Þ

which can be written as

L0 ¼ 1

2

�
−
∂ ~̂vα
∂t −∇ϕ̂α þ ~kα

�2

−
1

2
a2αð∇ × ~̂vαÞ2; ð83Þ

where

~̂vα ¼ ~vα þ
ϵα
mα

~A and ϕ̂α ¼ ϕα þ
ϵα
mα

Φ: ð84Þ

Notice that the Lagrangian in Eq. (83) has the same
structure as the Lagrangian in (53), where the electromag-
netic field is zero.
However, as we will see, the coupling itself introduces

some modifications to the Maxwell-type equations of the
charged fluid dynamics shown in (69)–(72). Using
Eqs. (74) and (75), we have that

~̂lα ¼ −
∂ ~̂vα
∂t −∇ϕ̂α þ ~kα ð85Þ

and

~̂ωα ¼ ∇ × ~̂vα: ð86Þ

Let us take the divergence, curl, and time derivative of the
Lamb vector in Eq. (85) and finally the divergence of the
vorticity; we obtain

∇ · ~̂lα ¼ N̂α þ
ϵα
mα

1

ϵ0
ρel þ∇ · ~kα; ð87Þ

and, using both the Ampere law and

N̂α ¼ −
∂
∂t∇ · ~̂vα −∇2ϕ̂α; ð88Þ

we have that

∇ × ~̂lα þ
∂ ~̂ωα

∂t ¼ ∇ × ~kα: ð89Þ

Substituting Eq. (89) in the time derivative of the Lamb
vector in the following way we can write that
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∂~̂lα
∂t ¼ ∂ ~̂ωα

∂t × ~̂vα þ ~̂ωα ×
∂ ~̂vα
∂t

¼ ð∇ × ~̂lαÞ × ~̂vα þ ~̂ωα ×
∂ ~̂vα
∂t ; ð90Þ

and after some calculation we can see that

∂~̂lα
∂t − a2α∇ × ~̂ωα ¼ −~̂Jα þ

∂~kα
∂t ; ð91Þ

where the new equation for the current density is given by

~̂Jα ¼
�
N̂α þ

ϵα
mα

1

ϵ0
ρel þ∇ · ~kα

�
~̂vα þ 2~̂lα ·∇~̂vα

− ~̂lαð∇ · ~̂vαÞ þ ~̂lα × ~̂ωα − ~̂ωα ×
∂ ~̂vα
∂t : ð92Þ

Finally, substituting the divergence of the vorticity in
Eq. (86), we obtain the last equation:

∇ · ~̂ωα ¼ 0: ð93Þ

To sum up, we have a set of equations given by

∇ · ~̂lα ¼ N̂α þ
ϵα
mα

1

ϵ0
ρel þ∇ · ~kα; ð94Þ

∇ × ~̂lα þ
∂ ~̂ω
∂t ¼ ∇ × ~kα; ð95Þ

∂~̂lα
∂t − a2α∇ × ~̂ωα ¼ −~̂Jα þ

∂~kα
∂t ; ð96Þ

∇ · ~̂ωα ¼ 0: ð97Þ

In the same way as in (55), we can introduce a second-
rank tensor taking into account the coupling with electro-
magnetic field, given by

Gμν
α ¼ Tμν

α þ ϵα
mα

Fμν; ð98Þ

where

Tμν
α ¼ ~∂μUν

α − ~∂νUμ
α ð99Þ

and

Uμν
α ¼ ðϕ̂α; a~̂vαÞ; ð100Þ

where Fμν is the second-rank tensor of the electromag-
netic field.

We can then rewrite the Lagrangian density (59) as

L0 ¼ −
1

4
Gμν

α GðαÞμν −
1

a
JμαUðαÞμ; ð101Þ

where Jμα ¼ ðN̂α; a~̂JαÞ.

VI. CONCLUSIONS

In Ref. [9], the author developed an analogous Maxwell-
type formalism for an incompressible fluid without con-
sidering dissipation terms. In the present paper, we believe
that we have given a step forward in this issue, since we
have carried out a Maxwell-type electromagnetic model for
a compressible fluid with dissipation terms from the very
beginning of the calculations.
In order to present the formalism in a complete manner,

we have also constructed the Lagrangian for this fluid and,
after that, for a charged one. The “configuration space” for
both is formed by the Lamb vector and vorticity, which
could be organized as components of a field strength tensor
and, in this way, the analogy with the Maxwell Lagrangian
is direct.
Besides, in order to analyze the applications of this

fluid “electromagnetism” in QGP, we have accomplished a
NA version of the uncharged compressible fluid. The same
procedure to the charged one can be obtained, as we
have shown.
As an obvious perspective. we can use some analysis

of the Yang-Mills theories to attack the QGP problem.
Besides, we can also consider other analogies for alter-
native electromagnetic formalisms like Podolsky, Lee-
Wick, and others.
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APPENDIX A: DEGREES OF FREEDOM
ANALYSIS

The Hamiltonian for a Maxwell-type fluid can be
rewritten as

Hc ¼
1

2
~π2 − ~π ·∇Ωþ 1

2
a20ð∇ × ~vÞ2 ðA1Þ

and the Lagrangians

L ¼ 1

2
_~v2 þ 1

2
ð∇ΩÞ2 þ _~v · ∇Ω −

1

2
a20ð∇ × ~vÞ2;

where the conjugated momenta are given by
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πΩ0 ¼ 0; πvi ¼ _vi þ ∂iΩ ðA2Þ

and ϕ1 ≡ πΩ0 ≈ 0 is a primary constraint in Dirac’s formal-
ism, which will be followed from now on. Hence, the
consistency condition for ϕ1 is given by

_ϕ1 ¼ fϕ1;HTg ¼ 0; ðA3Þ

where

Ht ¼ Hc þ λ1ϕ1 ðA4Þ

and λ1 is a Lagrange multiplier. So, we have that

ϕ2 ¼ _ϕ1 ≡∇ · ~π; ðA5Þ

where ϕ1 and ϕ2 are easily proven to be first class. The
general degrees of freedom counting is given by [29]

2G ¼ 2N − C2 − 2C1; ðA6Þ

where G ¼ number of degrees of freedom, N ¼ number of
variables, C2 ¼ number of second-class constraints, and
C1 ¼ number of first-class constraints. Hence, for our sys-
tem we have that N ¼ 4, C2 ¼ 0, and C1 ¼ 2. Substituting
these values in (A6), we have that G ¼ 2.
As the objective here is to compare this result with the

standard formulation for a compressible fluid which is
represented by the Hamiltonian given by [30]

Hc ¼
1

2
ρ~v2 − VðρÞ; ðA7Þ

to obtain the correspondent Lagrangian description we
have to parametrize the velocity as

~v ¼ ∇θ þ α∇β; ðA8Þ

which is called the Clebsch parametrization (or decom-
position) and ðα; βÞ are the so-called Gaussian potentials.
The procedure tells us that in this case the Lagrangian can
be written as

L ¼ −ρð_θ þ α _βÞ −Hcj~v¼∇θþα∇β; ðA9Þ

where from (A9) we can see that the canonically con-
jugated pairs are given by ðρ; θÞ and ðρα; βÞ, which
represent ρ and ~v. Hence, the Lagrangian in (A9) can be
written as

L ¼ −ρð_θ þ α_βÞ − 1

2
ρð∇θ þ α∇βÞ2 þ VðρÞ: ðA10Þ

The phase space now is given by ðρ; θ; α; βÞ, and the
conjugated momenta are given by

πρ ¼ 0; πα ¼ 0; πβ ¼ −ρα; πθ ¼ −ρ:
ðA11Þ

Consequently, the Hamiltonian in this new phase space is

H ¼ πρ _ρþ πθ _θ þ πα _αþ πβ _β − L; ðA12Þ

where H ¼ 1
2
ρð∇θ þ α∇βÞ2 þ VðρÞ.

From (A11), after some calculation, we can see that the
conjugated momenta are second-class constraints. In this
case, the total Hamiltonian is

HT ¼ Hc þ λ1πρ þ λ2ðπθ þ ρÞ þ λ3ðπβ þ ραÞ þ λ4πα;

ðA13Þ

and the time evolution of the constraint in (A11) is
given by

χ1 ¼ πρ; χ2 ¼ πθ þ ρ;

χ3 ¼ πρ þ ρα; χ4 ¼ πα; ðA14Þ

where we can see that there are no new constraints; namely,
the consistency conditions generate the Lagrange multiplier
values.
Using Eq. (A6) again we have that, for N ¼ 4, C1 ¼ 0,

C2 ¼ 4, and so G ¼ 2. Hence, we have two degrees of
freedom, which is the same value as our description for the
compressible fluid.

APPENDIX B: NON-ABELIAN FLUIDS:
A BASIC REVIEW

The main motivation to investigate NA fluids is based on
the increasing interest in the dynamics of NA plasmas at
both very high temperature and density. Other analyses
can be carried out concerning relativistic NA plasmas in
extreme cosmological and astrophysical conditions. As
examples, we can mention the electroweak plasma in the
early Universe, the physics of the explosions occurring in
supernovae, and the physics of dense neutron stars. So, it is
important to have a complete theoretical description of a
quantitative scenario for NA plasmas both in and out of
equilibrium [31]. Having said that, in this section we will
promote a non-Abelianization of the main results obtained
in the last section. But, in the name of self-containment, let
us review some few steps on NA fluids.
It is very well known that deriving the equations of fluid

mechanics from basic particle theory by statistical averages
will apply just fine in the NA scenario [30]. Considering,
for example, the QGP, the one-particle kinetic equation can
be written as [30]

ABREU et al. PHYSICAL REVIEW D 91, 125011 (2015)

125011-10



Pμ

� ∂
∂μ þ gQaFa

μν
∂

∂Pν
þ gfabcAb

μQc
∂

∂Qc

�
fðX;P;QÞ

¼ CðtÞ; ðB1Þ

where fðX;P;QÞ is the one-particle distribution function;
C is the collision integral term which considers the
particle’s scattering; Aμ and Fμν are the potential and the
field, respectively, for a NA theory which rely on a gauge
group with structure constants Fabc; and Qa is the classical
color charge of the particle.
The C ¼ 0 case means a collisionless plasma, and the

Boltzmann equation (B1) is the equation for the distribution
function for single particles that obey the basic classical
equations of motion for NA particles, namely, the Wong
equation [32] given by

m
dXμ

dτ
¼ Pμ; ðB2Þ

m
dPμ

dτ
¼ gQaFa

μνPν; ðB3Þ

m
dQa

dτ
¼ −gfabcPμAb

μQc; ðB4Þ

where the motion of the color degrees of freedom is in a
phase space way as the color index runs from a ¼ 1 to
N2 − 1 for a SUðNÞ gauge group and τ is the proper time of
the particle. We can say that the proper space is the Lie
group modulo the maximal torus [30]. Considering a
microscopic analysis, the trajectories in phase space are
known exactly. The Wong equations give the trajectories
xðτÞ, pðτÞ, and QðτÞ for every particle; i.e., they are the
classical equations of motion. From (B4) [31], we can see
that the NA charges are also subjected to the dynamical
evolution. Equation (B4) can be rewritten as DτQa ¼ 0,
where Dτ ¼ dxμ

dτ Dμ is the covariant derivative in the world
line.

Dac
μ ½A� ¼ ∂μδ

ac þ gfabcAb
μ

is its adjoint representation [31]. Besides, the Boltzmann
equation (B1) is invariant under gauge transformations; i.e.,
if fðX;P;QÞ is the solution of (B1), fðX;P;U−1QUÞ is
also a solution.
Given the fact that the equations for the Abelian fluid

have a very large regime of validity, one can consider a
derivation of a NA fluid mechanics, which encompasses
the NA degrees of freedom, coupling to a NA gauge field,
etc., which may be correct for dense, nonperturbative
and nondilute systems. The field strength Fa

μν and the
energy-momentum tensor of the gauge fields are written,
respectively, as

Fa
μν½A� ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν;

Θμν½A� ¼ 1

4
gμνFa

ρσF
ρσ
a þ Fμρ

a Faν
ρ ; ðB5Þ

where fabc are the structure constants of SUðNÞ and we are
working in natural units. The antisymmetric structure
constants fabc result from the commutator ½λa; λb� ¼
2ifabcλc, where λa are the Gell-Mann matrices. From
(B4), we can see that the NA charges have also a dynamical
evolution. With the solutions of Wong’s equations, we can
construct the color current [31] for the particles given by

jμaðxÞ ¼ g
Z

dτ
dxμ

dτ
QaðτÞδð4Þ½x − x̄ðτÞ�

¼ g
Z

dτ
pμ

m
QaðτÞδð4Þ½x − x̄ðτÞ�; ðB6Þ

and we can use (B2) and (B3) to write

mẍμðτÞ ¼ gQaFμν
a ðxðτÞÞ_xνðτÞ; ðB7Þ

where dots denote derivatives with respect to τ. Using the
Wong equations, we can find that Dμjμ ¼ 0; namely, the
current is conserved. The particle energy-momentum tensor
for the particles is given by

Tμν
part:ðxÞ ¼

Z
dτ

dxμ

dτ
pνðτÞδð4Þ½x − x̄ðτ0�; ðB8Þ

and the Yang-Mills equations are

DμFμνðxÞ ¼ JνðxÞ; ðB9Þ

which has the source term like

JνðxÞ ¼
X

particles

jνðxÞ ðB10Þ

for the sum of all particles. The Yang-Mills (color) field
energy-momentum tensor is given by

Tμν
YM ¼ Fμρ

a Faν
ρ þ 1

4
gμνF2; ðB11Þ

where F2 ¼ FμνaFa
μν. Hence, we have the conservation law

∂μ½Tμν
part:ðxÞ þ Tμν

YMðxÞ� ¼ 0; ðB12Þ

where the divergence ∂μT
μν
YM is given by

∂μT
μν
YM ¼ gjaμF

μν
a ; ðB13Þ

where we have used that
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ðDμFμνÞaðxÞ ¼ ∂μF
μν
a ðxÞ þ gfabcAb

μðxÞFμνcðxÞ ¼ gjνaðxÞ;
ðB14Þ

where jμaðxÞ is the color current for the particles given by
Eq. (B6). So, based on Eqs. (B6) and (B12), we can write thatZ

dτ
dxμ

dτ
QaðτÞδð4Þ½x − x̄ðτÞ� ¼ 0; ðB15Þ

which is specifically true only in the classical field approxi-
mation to the color sector. The conservation laws in

Eqs. (B12) and (B15) can be used as a standard for a
macroscopic fluid dynamical analysis for the QGP.
However, it is important to talk about space-time flow of
macroscopic variables (energy and momentum density),
entropy density, temperature, etc. [33], which rules the
general structure of the plasma lifetime and evolution. In
the set of these conservation laws, we can notice that it shows
the coupling of the colored quark fluid to the NA color field,
which is different from standard fluid dynamics; it is the
so-called chromohydrodynamics, which is the NA extension
of plasma physics.
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