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Among the so-called classical tests of general relativity (GR), light bending has been confirmed with an
accuracy that increases as times goes by. Here we study the gravitational deflection of photons within the
framework of classical and semiclassical higher-derivative gravity (HDG)—the only version of GR that is
known up to now to be renormalizable along with its matter couplings. Since our computations are
restricted to scales much below the Planck cutoff we need not be afraid of the massive spin-2 ghost that
haunts HDG. An upper bound on the constant related to the R2

μν sector of the theory is then found by
analyzing—from the classical and semiclassical viewpoints—the deflection angle of a photon passing by
the Sun. This upper limit greatly improves that available in the literature.
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I. INTRODUCTION

General relativity (GR) is widely recognized as one of
the keystones of modern physics. Notwithstanding, it has
not always been adopted to set bounds on physical
parameters as it should. The pity of it is that the so-called
classical tests of GR are moderately used to estimate
limits on the constants that appear in relevant physical
models.
We remark that among the aforementioned tests there is

one, namely, light bending, which has been confirmed with
great accuracy in the last two decades. This prediction of
GR was first verified in 1919. Two separate expeditions to
Sobral (Brazil) and Prince (Guinea), organized by
Eddington and Dyson with the aim of observing the eclipse
of May 29, 1919, reported deflections of 1.98� 0.1600 and
1.61� 0.4000, in reasonable accord with what Einstein
thought would happen. Many measurements of the gravi-
tational deflection were then made in succeeding years, but
the accuracy did not really increase until the advent of very
long baseline radio interferometry in 1972, using quasar
sources. In this vein, it is worth mentioning two measure-
ments of the solar gravitational deflection of radio waves
made using the aforementioned technique, which are in
excellent agreement with the prediction of GR. The first
was made by Lebach et al. [1], while the other is due to
Fomalont, Kopeikin, Lanyi, and Benson [2]. From the
former a deflection parameter γ ¼ 0.9996� 0.0017 was
obtained, whereas for the latter γ ¼ 0.9998� 0.0003.
Incidentally, it is expected that a series of improved
designed experiments with the Very Long Baseline

Array could increase the accuracy of the second measure-
ment by at least a factor of 4 [2].
Interestingly enough, to the layman, light bending is one

of the most impressive predictions made by Einstein. His
celebrated formula E ¼ mc2 is in truth the only possible
rival to the mentioned prediction in popularity.
On the other hand, higher-derivative gravity models in

(3þ 1) dimensions were suggested for the first time by
Weyl [3] and Eddington [4], being, roughly speaking,
nothing but simple generalizations of GR obtained by
enlarging the Einstein Lagrangian via the scalars R2; R2

μν,
and R2

μναβ. An interesting discussion about these classical
systems can be found in the article by Havas [5]. Later on it
was shown that owing to the Gauss-Bonnet theorem only
two of the terms mentioned above had to be added to the
Einstein Lagrangian.
However, only when it was proven that GR was non-

renormalizable within the standard perturbative scheme,
did higher-derivative gravity (HDG)—up until then thought
of as a mere extension of Einstein’s gravity—become
indeed a prime candidate in the long and difficult search
for a quantum gravity theory. In this vein, the seminal work
done by Stelle in 1977 [6]—in which it was clearly shown
that HDG is renormalizable along with its matter couplings
—is worthy of note. Unfortunately, this theory is nonuni-
tary owing to the presence of a massive spin-2 ghost. By the
way, in 1986, Antoniadis and Tomboulis [7] claimed that
the presence of a massive spin-2 ghost in the bare
propagator is inconclusive, since this excitation is unstable.
According to them, the position of the complex poles in the
dressed propagator is explicitly gauge dependent. Using
standard arguments from quantum field theory they came to
the conclusion that HDG theories are unitary. Two years
after Antoniadis and Tomboulis’ article, Johnston [8]
proved that the conjectures of these authors were not
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correct since the pair of complex-conjugate poles that
appear in the resumed propagator are gauge independent,
i.e., they are sedentary: under a change in the gauge
parameter they do not move. Therefore, HDG models
are nonunitary.
Before going on we shall discuss the common miscon-

ception that singular higher-derivative models can be
discarded by appealing to the Ostrogradski theorem [9].
For the sake of generality we consider higher-derivative
systems in (N þ 1) dimensions, with N ¼ 2; 3;….
According to popular belief, Ostrogradski’s result implies
that there exists a linear instability in the Hamiltonian
associated with all higher-derivative systems. This is a
completely untrue assertion. Indeed, Ostrogradski only
treated nonsingular models [10]. Therefore, the only way
of circumventing Ostrogradski’s non-go theorem is by
considering singular models, which is in accord with the
conclusion reached by Woodard [11]. An interesting
example of this kind is the rigid relativistic particle studied
by Plyushchay [12].
Now, since in this paper we are only interested in higher-

derivative gravity models, we remark that these systems are
gauge invariant and, as a consequence, are defined by
singular Lagrangians [10]. Thence, Ostrogradski’s theorem
does not apply to them, which does not mean, of course,
that they are always ghost-free models.
In (2þ 1) dimensions, for instance, the Bergshoeff-

Holm-Towsend model (“new massive gravity”), which is
defined by the Lagrangian

L ¼ ffiffiffi
g

p �
−
2R
κ2

þ 2

κ2m2
2

�
R2
μν −

3

8
R2

��
;

where κ2 ¼ 4κ3, with κ3 being Einstein’s constant in
(2þ 1) dimensions, and m2ð> 0Þ is a mass parameter,
has no ghosts at the tree level [13–16]. Interestingly
enough, Rþ R2 gravity in (N þ 1) dimensions, i.e., the
model defined by the Lagrangian L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞN−2g

p
×

½ð2R=κ2Þ þ ðα=2ÞR2�, where κ2 ¼ 4κNþ1, with κNþ1 being
Einstein’s constant in N þ 1 dimensions, and α is a free
parameter, is also tree-level unitary [17].
On the other hand, Sotiriou and Faraoni studied the so-

called fðRÞ theories of gravity in (3þ 1) dimensions at
the classical level and came to the conclusion that
“theories of the form fðR;R2; R2

μνÞ, contains, in general,
a massive spin-2 ghost field in addition to the usual
massless graviton and the massive scalar” [18].
Nevertheless, at the linear level, these theories are stable
[19]. The reason why they do not explode is because the
ghost cannot accelerate owing to energy conservation.
Another way of seeing this is by analyzing the free-wave
solutions. We remark that these models are not in
disagreement with the result found by Sotiriou and
Faraoni. Indeed, despite containing a massive spin-2

ghost as asserted by these authors, the alluded ghost
cannot cause trouble.
Recently it was shown that at least in the cases of specific

cosmological backgrounds, the unphysical massive ghost
that haunts higher-derivative gravity in (3þ 1) dimensions
and is present in the spectrum of this theory is not growing
up as a physical excitation and remains in the vacuum state
until the initial frequency of the perturbation is close to the
Planck scale. Accordingly, higher-derivative models of
quantum gravity can be seen as very satisfactory effective
theories of quantum gravity below the Planck cutoff [20].
Therefore, although HDG [higher-derivative gravity in

(3þ 1) dimensions] is nonunitary in the framework of the
usual quantum field theory, this does not imply that it must
be rejected.
We finish our digression by proving that HDG systems

can be utilized at the tree level as effective field models at
scales far away from the Planck scale. Consider for
instance, without any lost of generality, the process of
one-graviton exchange for photon-photon elastic scatter-
ing. Now, keeping in mind that the Lagrangian for HDG
can be written as

L1 ¼
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ α

2
R2 þ β

2
R2
μν

�
; ð1Þ

where κ2 ¼ 32πG, with G being Newton’s constant, and α
and β are free dimensionless coefficients, we promptly find
that the associated propagator is given in the de Donder
gauge and in momentum space by [21]

D ¼
�
1

k2
−

1

k2 −m2
2

�
Pð2Þ þ 2λ

k2
Pð1Þ

þ 1

2

�
1

k2 −m2
0

−
1

k2

�
Pð0−sÞ

þ
�
4λ

k2
þ 3m2

0

2k2ðk2 −m2
0Þ
�
Pð0−wÞ

þ
ffiffiffi
3

p
m2

0

2k2ðk2 −m2
0Þ
½Pð0−swÞ þ Pð0−wsÞ�; ð2Þ

where λ is a gauge parameter, fPð1Þ; Pð2Þ;…; Pð0−wsÞg is the
set of the usual Barnes-Rivers operators, and

m2
2 ≡ −

4

βκ2
; m2

0 ≡ 2

κ2½3αþ β� : ð3Þ

We are assuming, of course, that m2
2 > 0ðβ < 0Þ and

m2
0 > 0ð3αþ β > 0Þ, so as to avoid tachyons in the model.
Let us then show that HDG is tree-level unitary at the

aforementioned scales. To accomplish this, we make use of
a method pioneered by Veltman [22] that has been
extensively used since it was conceived. Veltman’s pre-
scription consists in saturating the propagator with con-
served external currents and computing afterward the
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residues at the simple poles of the alluded saturated
propagator (SP). If the residues at all the poles are positive
or null, the model is tree-level unitary, but if at least one of
the residues is negative, the system is nonunitary at the
tree level.
The saturated propagator in momentum space is in turn

given by

SPðkÞ ¼ TμνðkÞDμν;αβðkÞTαβðkÞ

¼ A
k2

−
B

k2 −m2
2

þ C
k2 −m2

0

:

Here

A≡ T2
μν −

T2

2
; B≡ T2

μν −
T2

3
; C≡ T2

6
:

Let us then suppose that k2 ≪ m2
2. Consequently,

SPðkÞ ¼ A
k2

þ C
k2 −m2

0

þO
�
k2

m2
2

�
:

Now, bearing in mind that for a massless graviton

�
T2
μν −

T2

2

�����
k2¼0

> 0 ðsee Ref.½17�Þ;

we come to the conclusion that

ResðSPÞjk2¼0 > 0; ResðSPÞjk2¼m2
0
> 0:

Therefore, at the scale at hand, HDG is unitary at the tree
level and, as a consequence, the massive spin-2 ghost is
completely harmless.
Now, owing to the great interest this gravity theory has

aroused in the literature, it should be important to analyze
the issue of the gravitational deflection in its framework
and, using this result, to find bounds on its free constants.
This is precisely our goal in this paper. To do that we shall
study the gravitational deflection of a photon passing by the
Sun in the context of the gravity theory at hand using
classical and tree-level approaches. Since the R2 sector of
the model does not contribute anything to the gravitational
deflection, we cannot estimate an upper bound on the
constant concerning this sector of the system by analyzing
the light bending; nevertheless, we shall discuss in the latter
section of the paper, in passing, how to find a bound on this
constant by using another classical test of GR. On the other
hand, by suitably combining the classical and semiclassical
results concerning solar gravitational deflection, we will be
able to estimate an upper limit on the constant of the R2

μν

sector. The latter greatly improves the current bound
available in the literature.
The article is organized as follows. In Sec. II we study

the gravitational deflection of light by the Sun using a

classical approach, while in Sec. III we analyze the solar
gravitational bending of a photon at the tree level. An upper
bound on the constant of the R2

μν sector of the theory is
then obtained in Sec. IV by judiciously joining together
the classical and tree-level results. Our conclusions are
presented in Sec. V.
We use natural units throughout and our Minkowski

metric is diagð1;−1;−1;−1Þ.

II. LIGHT BENDING IN CLASSICAL
HIGHER-DERIVATIVE GRAVITY

To begin with, we solve the linearized field equations
related to HDG.
The field equations concerning the Lagrangian density

L ¼ L1 − LM; ð4Þ
where LM is the Lagrangian density for matter, are

2

κ2
Gμν þ

β

2

�
−
1

2
gμνR2

ρλ þ∇μ∇νRþ 2RμρλνRρλ

−
1

2
gμν□R −□Rμν

�
þ α

2

�
−
1

2
gμνR2 þ 2RRμν

þ 2∇μ∇νR − 2gμν□R

�
þ 1

2
Θμν ¼ 0;

where Θμν is the energy-momentum tensor.
From the above equation we promptly obtain its linear

approximation doing exactly as in Einstein’s theory. We
write

gμν ¼ ημν þ κhμν; ð5Þ
and then linearize the equation at hand via Eq. (5), which
results in the following:

�
1 −

βκ2

4
□

��
−
1

2
□hμν þ

1

6κ
RðlinÞημν

�
þ 1

2
ðΓμ;ν þ Γν;μÞ

¼ κ

4

�
Tμν −

1

3
Tημν

�
;

where

RðlinÞ ¼ κ

2
□h − κγμν;μν;

γμν ≡ hμν −
1

2
ημνh;

Γμ ≡
�
1 −

βκ2

4
□

�
γμν

;ν −
�
αþ β

2

�
κ

2
RðlinÞ

;μ:

Note that indices are raised (lowered) using ημν (ημν).
Here Tμν is the energy-momentum tensor of special
relativity.
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It can be shown that it is always possible to choose
a coordinate system such that the gauge conditions,
Γμ ¼ 0, on the linearized metric hold. Assuming that these
conditions are satisfied, it is straightforward to show that
the general solution of the linearized field equations is
given by [23,24]

hμν ¼ hðEÞμν − ϕημν þ ψμν; ð6Þ

where hðEÞμν is the solution of the linearized Einstein’s
equations in the de Donder gauge, i.e.,

□hðEÞμν ¼ κ

2

�
Tημν
2

− Tμν

�
; γðEÞ ;νμν ¼ 0;

γðEÞμν ≡ hðEÞμν −
1

2
ημνhðEÞ;

while ϕ and ψμν satisfy, respectively, the equations

ð□þm2
0Þϕ ¼ κT

12
;

ð□þm2
2Þψμν ¼

κ

2

�
Tμν −

1

3
Tημν

�
; □ψ ¼ ψμν

;μν:

It is worth noting that in this very special gauge the

equations for ψμν;ϕ, and hðEÞμν are totally decoupled. As
a result, the general solution to the linearized field
equations reduces to an algebraic sum of the solutions
of the equations concerning the three mentioned fields.
Solving the latter for a pointlike particle of mass M

located at r ¼ 0 and having, as a consequence, an energy-
momentum tensor Tμν ¼ Mημ0ην0δ

3ðrÞ, we find

hμνðrÞ ¼ hðEÞμν ðrÞ þ hðR
2Þ

μν ðrÞ þ h
ðR2

μνÞ
μν ðrÞ; ð7Þ

with

hðEÞμν ðrÞ ¼ Mκ

16π

�
ημν
r

−
2ημ0ην0

r

�
;

hðR
2Þ

μν ðrÞ ¼ Mκ

16π

�
−
1

3

e−m0r

r
ημν

�
;

h
ðR2

μνÞ
μν ðrÞ ¼ Mκ

16π

�
−
2

3

e−m2r

r
ημν þ 2

e−m2r

r
ημ0ην0

�
:

Note that for m0; m2 → ∞, the above solution reproduces
the solution of the linearized Einstein field equations in the
de Donder gauge, as it should. We also remark that
employing a method recently developed, that relies on
the Feynman path integral and allows the computation of
the ðN þ 1Þ-dimensional interparticle potential energy in a
straightforward way [21,25], we can trivially obtain the

potential energy for the interaction of two masses M1;M2

separated by a distance r. Utilizing this prescription, we
find

EðrÞ ¼ M1M2G

�
−
1

r
−
1

3

e−m0r

r
þ 4

3

e−m2r

r

�
;

which agrees asymptotically with Newton’s potential
energy, as expected.
We are now ready to discuss the light bending due to the

gravitational field sourced by the mass M. Suppose, in this
spirit, a photon with momentum pμ coming from infinity
with an impact parameter b (see Fig. 1). The net change in
pμ while it passes through the aforementioned gravitational
field is given by

Δpμ ¼
κ

2
pα

Z
∞

−∞
∂μhαβdxβ; ð8Þ

where the integration is performed along the approximately
straight-line trajectory of the photon. As a consequence, the
displacement along the approximately straight ray and the
momentum are, respectively,

dxμ ≈ ðdx1; dx1; 0; 0Þ; pμ ≈ ðp1; p1; 0; 0Þ:

Inserting these quantities into Eq. (8), we obtain

Δp2 ¼
κ

2
p1

Z
∞

−∞
∂y½h00 þ h11�dx1; ð9Þ

which can be written as

Δp2 ¼
κ

2
p1

Z
∞

−∞

��
d
dr

ðh00 þ h11Þ
� ∂r
∂y

�����
y¼b

dx: ð10Þ

With the result (7), we can rewrite Eq. (10) simply as

Δp2 ¼
Mκ2b
16π

p1

Z
∞

−∞

�
1

ðx2 þ b2Þ3=2

−
1þm2ðx2 þ b2Þ1=2

ðx2 þ b2Þ3=2 e−m2ðx2þb2Þ1=2
�
dx: ð11Þ

FIG. 1. Geometry of the light bending.
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Therefore, the classical deflection angle, i.e., θC ≡
jΔpy=pxj ¼ j − Δp2=p1j, can be computed through the
expression

θC ¼ θE −
Mκ2b
16π

Z
∞

−∞

1þm2ðx2 þ b2Þ1=2
ðx2 þ b2Þ3=2 e−m2ðx2þb2Þ1=2dx;

where θE is Einstein’s deflection angle.
At this point, some comments are in order.
(1) It is trivial to see from the above result that θC → θE

as m2 → ∞ (jβj → 0). In other words, in this limit
we recover Einstein’s prediction for the light bend-
ing. That is the reason why the integration constant
related to the mentioned equation is zero. In addi-
tion, the limit for m2 → 0 (jβj → ∞) clearly shows
the absence of deflection. Both results are physically
consistent.

(2) The scalar excitation of mass m0 does not contribute
at all to the light bending. Why is this so? Because
the metric concerning linearized Rþ R2 gravity—
the theory obtained by linearizing the field equations
related to the Lagrangian L ¼ ffiffiffiffiffiffi−gp ½ð2=κ2ÞRþ
ðα=2ÞR2 − LM�—is conformally related to linear-
ized GR. Indeed, denoting the solution to the

linearized Rþ R2 gravity by gðRþR2Þ
μν , we promptly

obtain gðRþR2Þ
μν ≡ημνþκgðRþR2Þ

μν ¼ð1−κϕÞgðEÞμν , where,
of course, terms of order κ2 were neglected.

(3) A quick glance at the equation at hand shows that the
dependence of θC on jβj is dominated by the
exponential term, which suggests that the transition
from the Einsteinian limit to the no-deflection
scenario might be localized in a well-defined
interval. Outside this domain, θC is practically
constant. Thence, we come to the conclusion
that 0 ≤ θC ≤ θE.

Numerical integration allows the evaluation of the
deflection angle for different values of jβj. The result

for a light ray just grazing the Sun is depicted in Fig. 2.
We point out that the transition interval occurs for
1084 ≲ jβj≲ 1088. Therefore, in order not to conflict with
the prediction of GR for the solar gravitational deflection
which, incidentally, has been exhaustively tested exper-
imentally with great success, jβj < 1084.

III. GRAVITATIONAL DEFLECTION IN
TREE-LEVEL HDG

Semiclassical gravity is based on the following type of
approximation scheme: the metric is considered as a
classical field, predetermined by the gravitational field
equations which in our case are those of HDG; besides,
the energy content of some particles and/or fields are often
neglected. In addition, the spacetime, which is nothing but
a fixed background, is determined, uniquely, for example,
by a huge, static, point massM. Incidentally, the massM is
huge in comparison to the energy of the other particles and/
or fields that either exert a tiny influence on the spacetime
or do not affect it at all. And more, the classical gravita-
tional field interacts with particles that are quantum in
nature. As is well known, the results found via a semi-
classical gravity theory are more comprehensive than those
obtained from the corresponding classical one. In fact, at
the classical level we deal with structureless particles, while
at the tree level we are involved with quantum particles. Of
course, in the classical limit the former results reduce to the
latter. As far as GR is concerned, interesting examples
related to this subject can be found, for example, in
Refs. [26–30].
Let us then analyze the gravitational deflection of a

photon within the context of tree-level HDG. Consider, in
this vein, the scattering of this photon by the external
gravity field (7). The Feynman amplitude for this process is
given by (see Fig. 3)

Mrr0 ¼
1

2
κhλρextðkÞ½−ημνηλρpp0 þ ηλρp0

μpν þ 2ðημνpλp0
ρ

− ηνρpλp0
μ − ημλpνp0

ρ þ ημληνρpp0Þ�ϵμrðpÞϵνr0 ðp0Þ;

81 83 85 87 89 91
0

0.5

1

1.5

2

log
10

β

θ C
 (

ar
cs

ec
)

FIG. 2. Deflection angle θC as a function of log10 jβj for light
rays just grazing the Sun in classical HDG.

 k

 p’

 p

FIG. 3. Photon scattering by an external gravitational field.
Here jpj ¼ jp0j.
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where ϵμrðpÞ and ϵνr0 ðp0Þ are the polarization vectors for the
initial and final photons, respectively, which satisfy the
completeness relation

X2
r¼1

ϵμrðpÞϵνrðpÞ ¼ −ημν −
pμpν

ðpnÞ2 þ
pμnν þ pνnμ

pn
; ð12Þ

where n2 ¼ 1. Here hλρextðkÞ is the momentum-space gravi-
tational field, namely,

hλρextðkÞ ¼
Z

d3re−ik·rhλρextðrÞ: ð13Þ

Thence,

hλρextðkÞ ¼ hðEÞλρext ðkÞ þ h
ðR2

μνÞλρ
ext ðkÞ þ hðR

2Þλρ
ext ðkÞ; ð14Þ

with

hðEÞμνext ðkÞ ¼ κM
4k2

ημν −
κM
2

ημ0ην0

k2
;

h
ðR2

αβÞμν
ext ðkÞ ¼ −

κM
6

ημν

k2 þm2
2

þ κM
2

ημ0ην0

k2 þm2
2

;

hðR
2Þμν

ext ðkÞ ¼ −
κM
12

ημν

k2 þm2
0

:

The unpolarized cross section can then be written as

dσ
dΩ

¼ 1

ð4πÞ2
1

2

X
r

X
r0

M2
rr0

¼ 1

ð4πÞ2
κ4M2E4ð1þ cos θÞ2

16

�
−

1

k2
þ 1

k2 þm2
2

�
2

;

where E is the energy of the incident photon and θ is the
scattering angle.
For small angles the preceding equations reduce to

dσ
dΩ

¼ 16G2M2

�
−

1

θ2
þ 1

θ2 þ m2
2

E2

�
2

: ð15Þ

This result signals an energy-dependent scattering.
It is easy to see from Eq. (15) that

dσ
dΩ

→ 0; if
m2

E
→ 0;

dσ
dΩ

→

�
4GM
θ2

�
2

; if
m2

E
→ ∞;

in other words, if ðm2=EÞ → 0, there is no scattering,
whereas if ðm2=EÞ → ∞, we recover Einstein’s standard
cross section, as expected.

Now, in order to arrive at a classical particle trajectory
from Eq. (15), we compare the classical and the tree-level
cross-section formulas [31,32]

dσ
dΩ

¼ 16G2M2

�
−

1

θ2
þ E2

E2θ2 þm2
2

�
2

¼ −
rdr
θdθ

: ð16Þ

Performing the integration we promptly find that for a
photon just grazing the Sun the above equation gives the
following result:

1

θ2E
¼ 1

θ2
þ 1

λ2 þ θ2
þ 2

λ2
ln

θ2

λ2 þ θ2
; ð17Þ

with λ2 ≡ ðm2
2=E

2Þ. We call attention to the fact that the
integration constant related to this equation was tempo-
rarily omitted for the sake of a cautious and meticulous
analysis of the behavior of the θ-dependent function we
shall perform in the following; of course, it will be restored
in due course. To do the aforementioned investigation in a
consistent way, we define beforehand a function γ ¼
γðm2

2=E
2Þ > 0 so that the θ angle can be written as

θ ¼ γ
m2

E
: ð18Þ

As a result, Eq. (17) can be rewritten as

λ2

θ2E
¼ 1

γ2
þ 1

1þ γ2
þ 2 ln

�
γ2

1þ γ2

�
≡ fðγÞ; ð19Þ

or

θ2

θ2E
¼ γ2fðγÞ: ð20Þ

We remark that since f is a monotonically decreasing
function of γ having as image the interval ð0;þ∞Þ, it can
be shown that it is always possible to find a solution to
Eq. (17) in the form (18). In addition, γ is a decreasing
function, implying that the limit λ → 0 corresponds, for
instance, to letting γ → ∞ in Eq. (20).
We are now ready to analyze the behavior of θ at

different situations. It is straightforward to see that for a
fixed energy E, θ → θE as jβj → 0 and θ → 0 as jβj → ∞.
The former regime recovers Einstein’s one, as desirable,
while the latter shows that for a sufficiently large jβj no
deflection occurs. We also point out that 0 ≤ θ ≤ θE
since γ2fðγÞ ≤ 1.
The repulsive contribution to the bending, which arrives

from the R2
μν sector, is energy dependent as is evident from

Eq. (17). Inasmuch as jβj is thought to be a (universal)
constant, it is worthwhile to analyze the behavior of the
scattering angle for a fixed jβj and different values of E. It is
obvious that in this scenario θ → θE in the low-energy
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(classical) limit, and θ → 0 for sufficiently energetic
photons, suggesting that the more energetic a photon is,
the less it will deviate. Let us then show that this is indeed
the case by finding the solutions to Eq. (17) for visible light.
In Fig. 4 it is shown how θ behaves for different values of
jβj. A quick glance at this graphic allows us to conclude
that for a fixed E, the scattering angle for visible light is
approximately constant for almost all values of jβj, making
a transition from θ ≈ θE to θ ≈ 0 in a well-defined interval
of width Δjβj ≈ 1010.
Accordingly, in the framework of tree-level HDG the

visible spectrum, whose wavelength ranges from 4000 to
7000 (Å), would spread over an angle jΔθj, where
jΔθj≡ jθviolet − θredj. Let us then evaluate jΔθj for different
values of jβj using Eq. (17). The results are shown in Fig. 5.
A cursory inspection of this graph allows us to

conclude that for 61≲ log10 jβj≲ 71 the spread of the
visible spectrum would in principle be observable.
Actually, we ought to expect a tiny value for jΔθj at the
Sun’s limb in order not to conflict with well-established
results of experimental general relativity. Consequently, if
jβj < 1061, the visible spectrum spread would be practi-
cally imperceptible and the deviation angle would be very
close to the Einstein one. Accordingly, we come to the
conclusion that in order to agree with the currently
measured values for visible light, jβj < 1061. We point
out that this bound was estimated by noting that the

gravitational rainbow predicted by tree-level HDG is
incompatible with today measurements. Of course, the
mentioned limit would be modified if we had made use of
photons with wavelengths outside the domain of the
visible light.

IV. SMOOTH TRANSITION FROM THE
SEMICLASSICAL CONTEXT TO THE

CLASSICAL ONE

The most striking difference between the classical and
semiclassical approaches is, perhaps, the fact that the
repulsive interaction due to the R2

μν sector depends on
the photon energy that interacts with the gravitational field.
Since in the classical realm the gravitational field acts on
structureless particles, gravity scatters light of all wave-
lengths in the same way; nonetheless, in the tree-level
scenario more energetic photons are more repelled and, as a
consequence, less deflected.
Now, a point that deserves careful attention is the subtle

divergence between these scenarios at low energy: the
classical limit of the semiclassical theory does not match
that of classical HDG. In fact, in the classical model,
whatever the energy of the light ray is, no scattering will
occur if jβj > 1089. On the other hand, the analysis at the
tree level does not impose any upper bound at all on the
interval of the jβj transition; consequently, it is always
possible to find a small E so that θ is arbitrarily close to θE,
even if jβj > 1089. Away out of this difficulty, would be to
add a nontrivial integration constant to Eq. (17) which, as a
result, assumes the form

1

θ2E
¼ 1

θ2
þ 1

λ2 þ θ2
þ 2

λ2
ln

θ2

λ2 þ θ2
−Ω; ð21Þ

Indeed, choosingΩ as a function only of jβj, it is possible to
make it give a negligible contribution in the range of
energies such that the transition occurs for jβj≲ 1085, and
to be relevant for the photons which make their transition
above this interval.
Let us then compare the deflection angles computed in

both frameworks, i.e., θ and θC, requiring furthermore that
θ → θC if E → 0. Using the limit calculated in Sec. III,
Eq. (21) reduces to

1

θ2E
¼ 1

θ2
− Ω; ð22Þ

whose solution is

θ ¼ θEð1þ Ωθ2EÞ−ð1=2Þ: ð23Þ

Now, imposing that θ ¼ θC, we promptly obtain
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FIG. 5. jΔθj as a function of log10 jβj for photons passing by the
Sun’s limb in the context of tree-level HDG.
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FIG. 4. θred (continuum line) and θviolet (dotted line) for photons
passing by the Sun as a function of log10 jβj in semiclassical
HDG.
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Ω ¼ 1

θ2C
−

1

θ2E
: ð24Þ

Our next step is to check whether the Einsteinian limit
(jβj → 0) is indeed consistent. In Sec. II we got that θC →
θE if jβj → 0, and, as a result, Ω → 0. Moreover, it is easy
to see thatΩ ≫ θ−2E if jβj≳ 1088. Therefore, the limit jβj →
0 remains unchanged, and the Einstein solar deflection
angle is recovered, as it should be. We point out that
for jβj < 1085 the integration constant Ω can be simply
neglected. For larger values of jβj, nevertheless, Ω
increases too quickly forcing θ → 0 even for low-energy
photons. Besides, the classical results are recovered in the
classical limit. In Figs. 6 and 7 we display some values ofΩ
for different jβj’s.
Two comments fit here.
(1) We have shown in Sec. III that for visible light

the transition from θE to 0 in the absence of
the integration constant took place for jβj ∈
ð1061; 1071Þ. Making use of these values an upper
bound on jβj was estimated. We remark that this
result remains unchanged since within the men-
tioned domain, as we have proved,Ω can be taken to
be equal zero.

(2) In order to allow the deflection angle computed at
the tree level to agree in the classical limit with the
result found directly via the classical approach, we
have to appeal to the integration constant Ω [see
Eq. (22)]. On the other hand, for jβj < 1085 this
constant is tiny, implying that it can be left out of any
computation if we take the current experimental
accuracy into account. Now, since jβj < 1084 is the
upper bound on jβj found classically, and jβj < 1061

is that arising from the tree-level computations, we
come to the conclusion that the constant Ω can be
simply neglected.

V. FINAL REMARKS

We have shown that the photon propagation in the
framework of tree-level HDG is dispersive. From the
analysis of the energy-dependent contribution coming from
the photons passing by the Sun, it was possible to estimate
an upper bound on jβj, namely, jβj < 1061. Let us then
compare this upper limit with that available in the literature.
Using the interesting measures of Long [33], Stelle [34]
found thatm2 ≈ 1 × 10−4 cm−1. From this value Donoghue
[35] estimated that jβj ≤ 1074. Therefore, our bound
lowered the accepted limit on jβj by 13 orders of
magnitude.
We call attention to the fact that the measurements made

in the radio band, despite their precision and accuracy, do
not improve the limit on jβj we have found. In fact, since
less energetic photons undergo a greater bending, the
transition interval from θ ¼ θE to θ ¼ 0 occurs for the
measured radio waves about 10 orders of magnitude above
the visible waves. However, if gravitational deflection
measurements in the x-ray or ultraviolet bands were
available, we could certainly improve the limit on jβj.
Unfortunately, it is a very hard task to separate the signs
present in these wavelengths from those emitted by the
Sun. Accordingly, we come to the conclusion that the
bound we have obtained is the best limit one can found
using the gravitational deflection measurements available
nowadays.
To conclude, we mention that we have estimated a bound

on the constant of the R2 sector of HDG using the accurate
experimental results we have at our disposal today con-
cerning the gravitational red shift of the spectral lines. This
limit will be published elsewhere [36]. Interestingly
enough, the cited classical text of GR was the first
conceived by Einstein to verify his theory but the last to
have reliable experimental results.
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