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Some physical effects of time averaged quantum electric field fluctuations are discussed. The one loop
radiative corrections to potential scattering are approximately derived from simple arguments which invoke
vacuum electric field fluctuations. For both above barrier scattering and quantum tunneling, this effect
increases the transmission probability. It is argued that the shape of the potential determines a sampling
function for the time averaging of the quantum electric field operator. We also show that there is a
nonperturbative enhancement of the transmission probability which can be inferred from the probability
distribution for time averaged electric field fluctuations. The same method should be useful in under-
standing the effects of large quantum stress tensor fluctuations, which cannot be treated in perturbation
theory.
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I. INTRODUCTION

The vacuum fluctuations of the quantized electromag-
netic field give rise a number of physical effects, including
the Casimir effect, the Lamb shift, and the anomalous
magnetic moment of the electron. Many of these effects are
calculated in perturbative quantum electrodynamics, often
by a procedure which does not easily lend itself to an
interpretation in terms of field fluctuations. An exception
is Welton’s [1] calculation of the dominant contribution to
the Lamb shift, which leads to a simple physical picture
in which electric field fluctuations cause an electron in the
2s state of hydrogen to be shifted upwards in energy. One
of the purposes of this paper will be to seek additional
examples of this type.
It is well known that time averaging of quantum fields is

needed to produce mathematically well-defined operators.
Usually, a test function of compact support is employed
for this purpose [2]. However, in rigorous quantum field
theory, this is a formal device which is not given a physical
interpretation. In a recent paper [3], it was suggested that
the test or sampling functions can have a physical meaning.
That paper deals with the propagation of pulses in nonlinear
optical materials and suggests that time averaged vacuum
fluctuations of the electric field can alter the pulse propa-
gation time inside the material. Furthermore, Ref. [3]
hypothesizes that the sampling function is determined by
the geometry of the nonlinear material. In the present paper,
we will explore this hypothesis in a different context, that of
electron scattering by a potential barrier.
We will be concerned with the vacuum fluctuations of

the electric field in a particular direction. Let Eðx; tÞ be a
Cartesian component of the quantum electric field, such as

the x-component. We wish to average this operator over a
timelike worldline. By going to the rest frame of an
observer moving on this worldline, the averaging can be
in time alone at a fixed spatial coordinate. Let fτðtÞ be a
sampling function of characteristic width τ, whose time
integral is unity

Z
∞

−∞
fτðtÞdt ¼ 1: ð1Þ

We define the averaged electric field component by

Ē ¼
Z

∞

−∞
Eðx; tÞfτðtÞdt: ð2Þ

Both Eðx; tÞ and Ē have a vanishing mean value in the
vacuum state

h0jĒj0i ¼ 0: ð3Þ

However, h0jE2ðx; tÞj0i is infinite, while the mean squared
value of the averaged field is finite,

h0jĒ2j0i ¼ η2

τ4
; ð4Þ

where η is a dimensionless constant determined by the
explicit form of the sampling function. (Lorentz-Heaviside
units with c ¼ ℏ ¼ 1 will be used here, so the electric field
has dimensions of inverse time squared or inverse length
squared.) Note that the mean squared value of the averaged
electric field scales as 1=τ4, so shorter sampling times
lead to larger fluctuations due to the contribution of higher
frequency modes. Typical values of η are somewhat less
than one. For example, η ¼ 1=ð ffiffiffi

3
p

πÞ for the Gaussian
sampling function, fτðtÞ ¼ expð−t2=τ2Þ=ð ffiffiffi

π
p

τÞ.
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It is convenient to define a dimensionless variable by

χ ¼ Ēτ2: ð5Þ

The moments of χ, and hence of Ē, are those of a Gaussian
probability distribution:

PðχÞ ¼ 1ffiffiffiffiffiffi
2π

p
η
exp

�
−

χ2

2η2

�
: ð6Þ

Now Eq. (4) gives the second moment of this distribution,

hχ2i ¼
Z

∞

−∞
χ2PðχÞdχ ¼ η2: ð7Þ

Equation (6) is the familiar result that the fluctuations of a
free quantum field are Gaussian.
As for other quantum field fluctuations, vacuum electric

field fluctuations are strongly anticorrelated. This means
that a fluctuation on a time scale τ is likely to be followed
by a fluctuation of the opposite sign. This anticorrelation
prevents Brownian motion of a charged particle in the
vacuum [4], as is required by energy conservation.
However, a time dependent background can upset the
anticorrelations, and allow the particle to gain average
energy [5,6]. The key point is that energy conservation is
only required on longer time scales, and quantum fluctua-
tions can temporarily violate energy conservation on scales
consistent with the energy-time uncertainty principle. Here
we will be examining a situation where these temporary
violations of energy conservation can lead to observable
effects.
The outline of this paper is as follows: Section II A will

review a perturbative treatment of quantum scattering in
one space dimension, where the incident particle energy
exceeds the height of the potential barrier. The one loop
QED correction to this scattering will be summarized in
Sec. II B. In Sec. II C, we will present an order of
magnitude rederivation of this one loop correction based
upon vacuum electric field fluctuations, and argue that this
provides a simple physical picture for the origin of the QED
correction. In Sec. III, we repeat this discussion of one loop
corrections for the case of quantum tunneling. In Sec. IV,
we propose a nonperturbative correction to the tunneling
rate arising from large but rare electric field fluctuations.
The extension of our approach to study physical effects of
quantum stress tensor fluctuations is discussed in Sec. V.
Our results are summarized and discussed in Sec. VI.

II. RADIATIVE CORRECTIONS TO ABOVE
BARRIER POTENTIAL SCATTERING

A. Quantum scattering in one space dimension

Consider the scattering of a nonrelativistic electron by a
potential VðxÞ in one space dimension, which is illustrated

in Fig. 1. Here we assume that the incident energy of the
electron E0 is large compared to the maximum of the
potential, so the scattering may be treated perturbatively.
If E0 ¼ p2

0=ð2mÞ, we can write the one-dimensional time
independent Schrödinger equation as

ψ 00ðxÞ þ p2
0ψðxÞ ¼ 2mVðxÞψðxÞ: ð8Þ

Here p0 ¼ mv0 is the incident momentum, v0 is the speed,
and m is the mass. This equation is equivalent to the
integral equation,

ψðxÞ ¼ ψ0ðxÞ þ
Z

∞

−∞
Gðx − x0ÞVðx0Þψðx0Þdx0; ð9Þ

where ψ0ðxÞ is a solution of the free Schrödinger equation,
with VðxÞ ¼ 0, and Gðx − x0Þ is a Green’s function which
satisfies

d2Gðx − x0Þ
dx2

þ p2
0Gðx − x0Þ ¼ 2mδðx − x0Þ: ð10Þ

The explicit form of this Green’s function can be taken
to be

Gðx − x0Þ ¼
�−i m

p0
eþip0ðx−x0Þ; x > x0

−i m
p0
e−ip0ðx−x0Þ; x < x0:

ð11Þ

The perturbative solution for ψ to a given order is obtained
by iteration of Eq. (9).
Here we need only the first order solution, obtained by

replacing ψ by ψ0 in the right-hand side of Eq. (9). Let
ψ0ðxÞ ¼ eip0x, corresponding to a particle incident on the
barrier from the left. The first order solution for a particle
reflected back to the left is

ψ1ðxÞ ¼ re−ip0x; ð12Þ

where r is the reflection amplitude given by

r ¼ −i
m
p0

Z
∞

−∞
dxVðxÞe2ip0x: ð13Þ

FIG. 1. Scattering in one space dimension by a potential VðxÞ
with characteristic width a is illustrated. A particle is incident
from the left, and may either be transmitted or reflected back to
the left.
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The reflection and transmission probabilities are given by
R ¼ jrj2 and T ¼ 1 − R, respectively. Note that the tran-
sition matrix element is

M0 ¼ h−p0jVjp0i ¼
Z

∞

−∞
dxVðxÞe2ip0x; ð14Þ

and the factor proportional to m=p0 ¼ 1=v0 in r is a
kinematic factor. The reflection probability becomes

R ¼ jM0j2
v20

: ð15Þ

B. Radiative corrections to scattering

Here we discuss the one loop quantum electrodynamic
corrections to potential scattering. In Feyman diagrams,
the lowest order nonrelativistic scattering reviewed in the
previous subsection corresponds to Fig. 2. The one loop
correction to this process of interest here is the vertex
correction, described by the diagram in Fig. 3. The
computation of the vertex correction is discussed in many
references, such as Ref. [7]. The result is that the transition
matrix element, M0, is modified to M0 þMV , where

MV ¼ −
α

3π

q2

m2

�
ln

�
m
λ

�
þ const of order 1

�
M0; ð16Þ

where α ¼ e2=ð4πÞ is the fine structure constant, q is the
four-momentum transfer in the scattering process, and λ is
an infrared cutoff. A spacelike metric was assumed in
writing Eq. (16). Here we are concerned with elastic
scattering, so q is a spacelike vector with zero time
component in the rest frame of the potential, and q2 ¼ 4p2

0.
The infrared cutoff λ arises because the vertex diagram,

Fig. 3, contains an infrared divergence. The solution to this
problem is well known, and first given by Bloch and
Nordsieck [8]. It involves the realization that in any
scattering process, there is a nonzero probability of
emission of soft photons by bremsstrahlung, illustrated
in Fig. 4. In any experiment, there is a threshold of photon
energy below which the soft photons cannot be detected,
so the bremsstrahlung process becomes indistinguishable
from the scattering process. However, this is a practical
limitation rather than a fundamental one, so the brems-
strahlung and scattering processes should be added
incoherently. The squared matrix element for the brems-
strahlung process can be written as

jMbj2 ¼
2α

3π

q2

m2

�
ln

�
2Δϵ
λ

�
− const of order 1

�
jM0j2;

ð17Þ

where Δϵ is the lowest energy we can detect for the soft
photon. The net squared matrix element for scattering,
including bremsstrahlung, becomes

jM0 þMV j2 þ jMbj2 ¼ jM0j2
�
1 −

2α

3π

q2

m2

�
ln

�
m
2Δϵ

�

þ const of order 1

��
: ð18Þ

Note that the infrared cutoff, λ, no longer appears.
The net effect of the radiative correction to the quantum

scattering by the potential VðxÞ is to decrease the reflection
probability and hence increase the transmission probability.
The decrease in reflection probability can be written as

FIG. 2. The tree level diagram which describes scattering by an
external potential at the level of quantum mechanics.

FIG. 3. The one loop vertex correction to potential scattering.

FIG. 4. Bremsstrahlung processes in which soft photons are
emitted during scattering.

QUANTUM ELECTRIC FIELD FLUCTUATIONS AND … PHYSICAL REVIEW D 91, 125005 (2015)

125005-3



δR ¼ −
2e2v20
3π2

ln

�
m
2Δϵ

�
R; ð19Þ

where v0 ¼ p0=m is the speed of the electron before and
after scattering. Note that the magnitude of this decrease
grows quadratically with increasing electron speed.
Although the logarithmic factor is formally divergent as
Δϵ → 0, it grows very slowly and can never be very large
in a realistic experiment. For example, in an experiment
performed at finite temperature T, we need Δϵ ≥ kBT,
where kB is Boltzmann’s constant, in order that the
bremsstrahlung photons can be distinguished from the
thermal photons. If m is the electron mass, and
T ¼ 300 K, then

2

3π2
ln

�
m
2Δϵ

�
≈ 1.09; ð20Þ

and is only slightly larger (1.38) at T ¼ 4 K. Here we set
Δϵ ¼ kBT in both cases. This implies that a reasonable
approximation is

δR ≈ −e2v20R: ð21Þ

C. Electric field fluctuations

Here we wish to give an alternative derivation of Eq. (21)
using a simple physical picture invoking vacuum fluctua-
tions of the electric field. If E0 ≫ VðxÞ, then the speed
of the electron as it passes over the barrier is approximately
its initial speed, v0. If the characteristic width of the barrier
is a, then the time required to transit over the barrier is
τ ≈ a=v0. Now we assume that the electron effectively
samples the quantized electric field with a sampling
function fτðtÞ ∝ Vðv0tÞ. This implies that the electron
feels a mean electric field of about Ē ¼ η=τ2, and a force
of order eĒ, which changes the electron’s momentum
during the transit by

δp ¼ eĒτ ¼ eη
τ
¼ eηv0

a
: ð22Þ

Although the electrons are quantum particles in wave
packet states, we assume that Ehrenfest’s theorem allows
us to use Newtonian mechanics to calculate δp, which will
only be used to find averages or averages of a square, but
not the properties of an individual electron. The sign of the
change in Eq. (22) can be either positive or negative with
equal probability. Thus we need to examine in more detail
how a small change in momentum during transit over the
barrier changes the reflection probability. Recall that
quantum field fluctuations are strongly anticorrelated, so
the change in momentum during the transit is likely to be
quickly reversed by a fluctuation in the opposite direction
soon after the electron has cleared the barrier. Our key
assumption will be that the kinematic factor proportional to

m=p0 in Eq. (13) is not sensitive to the temporary change in
momentum, but the matrix element M0 is sensitive to it.
Under this assumption, we may use Eq. (15) to compute
the change in reflection probability as being proportional to
the change in the squared matrix element, jM0j2,

δR ¼ m2

p2
0

δjM0j2: ð23Þ

We may find δjM0j2 by a Taylor expansion near p ¼ p0,

δjM0j2 ¼
∂ðjM0j2Þ
∂p0

δpþ1

2

∂2ðjM0j2Þ
∂p2

0

ðδpÞ2þ��� : ð24Þ

If we average on δp, the linear term in the above expression
will vanish.
We need to compute the second derivative of the squared

matrix element, using Eq. (14). We may simplify the
discussion by assuming that the potential VðxÞ is even
and that its width is small compared to 1=p0, so that

Vð−xÞ ¼ VðxÞ; a ≪
1

p0

: ð25Þ

Now we have

M0ðp0Þ ¼
Z

∞

−∞
dxVðxÞ cosð2p0xÞ

≈
Z

∞

−∞
dxVðxÞð1 − 2p2

0x
2Þ: ð26Þ

Let

Z
∞

−∞
dxx2VðxÞ ¼ ξa2

Z
∞

−∞
dxVðxÞ; ð27Þ

where we expect ξ to be a positive constant slightly less
than one. To leading order, we have

M0
0 ¼ −4ξp0a2M0; M00

0 ¼ −4ξa2M0; ð28Þ

where here prime denotes a derivative with respect to p0.
Thus

ðM2
0Þ00 ¼ 2ðM00

0M0 þM0
0M

0
0Þ ≈ −8ξa2M2

0: ð29Þ

It is useful to examine a few specific choices for VðxÞ
here. For a square barrier,

VðxÞ ¼
�
V0; jxj ≤ a=2

0; jxj > a=2;
ð30Þ

we find from Eq. (14)
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M0 ¼ V0

sinðp0aÞ
p0

: ð31Þ

When p0a ≪ 1, this leads to Eq. (29) with ξ ¼ 1=12. Note
that the square barrier does not lead to a suitable choice of
sampling function fτðtÞ because it is not sufficiently
differentiable, but for the purpose of calculating scattering
amplitudes, it is a good approximation to a smooth, flat
topped potential. Another example is a Gaussian form for
the potential,

VðxÞ ¼ V0e−ð2x=aÞ
2

; ð32Þ
leading to Eq. (29) with ξ ¼ 1=8.
Now we may complete our heuristic derivation of

the change in refection or transmission probability. Use
Eqs. (15), (22), (23), and (29) to write

δR ≈ −4ξη2e2v20R: ð33Þ

Given that ξ and η are constants of order one, this estimate
approximately agrees with Eq. (21).

III. RADIATIVE CORRECTIONS
TO QUANTUM TUNNELING

Now we return to the situation illustrated in Fig. 1,
but where the incident energy of the particle is below
the maximum of the potential barrier, E0 < V0. The
transmission, or tunneling probability T, may again be
found in nonrelativistic quantum mechanics by solving
the Schrödinger equation. In many cases, the result is
accurately given by the WKB approximation, which leads
to the result

T ≈ exp

�
−
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðxÞ − E0�

p
dx

�
; ð34Þ

where x1 and x2 are the classical turning points at which
E0 ¼ VðxÞ. This is typically a good approximation when
the tunneling probability is small, T ≪ 1.
The one loop radiative correction was given by

Flambaum and Zelevinsky [9], who show that it results
in an increase in tunneling probability. This increase is
the same as would arise if the potential were shifted by
VðxÞ → VðxÞ þ δVðxÞ, where the potential shift is

δVðxÞ ¼ ∇2VðxÞ e2

12π2m2
ln

�
m
V0

�
; ð35Þ

where V0 is the maximum value of VðxÞ. For a potential
such as that illustrated in Fig. 1, ∇2VðxÞ < 0 near the
maximum of the potential, so δVðxÞ < 0, and the tunneling
probability increases. This one loop effect also arises
from the vertex correction, Fig. 3, just as did the effect
discussed in Sec. II B. Flambaum and Zelevinsky introduce

an infrared cutoff at a scale of V0, the height of the
potential, so the logarithmic terms in Eqs. (16) and (35)
have the same origin.
If we approximate the form of the potential near its

maximum as

VðxÞ ≈ −
1

2
V0

�
x
a

�
2

þ V0; ð36Þ

then ∇2VðxÞ ≈ −V0=a2. Now we have the estimate

δVðxÞ ≈ −β
e2V0

m2a2
; ð37Þ

where β ¼ ½lnðm=V0Þ�=ð12π2Þ is a positive constant
which is expected to lie in the range between about 0.1
and 0.01, if m is the electron mass. For example, if
1eV < V0 < 105 eV, then 0.014 < β < 0.11.
Now we wish to give a heuristic derivation of Eq. (37)

based upon the effects of vacuum electric field fluctuations.
However, there is a conceptual problem of defining the
tunneling time of a quantum particle. This issue has been
much discussed in the literature. See Refs. [10,11] for
review articles with extensive lists of references. The origin
of the ambiguity lies in the fact that localized quantum
particles are described by wave packets which can change
shape as they pass under a potential barrier. A related
ambiguity arises for electromagnetic wave packets in a
dispersive material. For our purposes, an order of magni-
tude estimate for the tunneling time will be sufficient. If V0,
E0 and V0 − E0 are all of the same order of magnitude, then
one expects that this time will not be dramatically different
from the time required for a free particle of energy E0 ¼
1
2
mv20 to travel a distance a, which is a=v0. That is, we

expect τ ≈ a=veff , where the effective speed veff is of order
v0. This expectation is supported by several explicit
proposals, including one by Büttiker and Landauer [12],
who suggest

veff ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV0 − E0Þ

m

r
; ð38Þ

and a proposal by Davies [13],

veff ≈
2v0

2þ V0=E0

: ð39Þ

We will use an argument similar to that in Sec. II C,
where the electron is subjected to an electric field of
magnitude Ē ¼ η=τ2, and a force of order eĒ. This force
does work of order eaĒ, and causes a momentum change of
order eĒτ, whose signs may be either positive or negative.
Here we will use the fact that if the force is in the direction
of motion of the electron, it slightly decreases the transit
time and hence increases Ē and the work. A force in the
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backwards direction has the opposite effect. Let vþ and τþ
be the effective speed and transit time when the force is in
the forward direction, and v− and τ− be the corresponding
quantities for a backward force fluctuation. Then

vþ ¼ veff þ
eĒτþ
2m

¼ veff þ
eη

2mτþ
ð40Þ

and

τþ ¼ a
vþ

¼ a − η e
2m

veff
¼ a

veff

�
1 − η

e
2ma

�
: ð41Þ

[The factor of 1=2 in the change in vþ comes from taking
an average velocity when the change in momentum is given
by Eq. (22).] Similarly,

τ− ¼ aþ η e
2m

veff
¼ a

veff

�
1þ η

e
2ma

�
: ð42Þ

The average change in kinetic energy due to a forward force
fluctuations is

δEþ ¼ eaη
τ2þ

¼ eaηv2eff
a2

�
1þ η

e
ma

�
; ð43Þ

and that for the backward direction is

δE− ¼ −
eaη
τ2−

¼ −
eaηv2eff
a2

�
1 − η

e
ma

�
: ð44Þ

The averaged change in energy is then

δE ¼ δEþ þ δE− ¼ 2η2
eav2eff
a2

e
ma

¼ 2η2
e2v2eff
a2m

∼
e2

m2

E0

a2
:

ð45Þ

The net effect is an average increase in electron energy
during the tunneling process, which is approximately equal
in magnitude to the decrease in potential given by Eq. (37).
Within the WKB approximation, Eq. (34) reveals that both
correspond to the same increase in tunneling probability.
Thus our heuristic derivation based upon vacuum electric
field fluctuations agrees with the result of Flambaum and
Zelevinsky [9].

IV. NONPERTURBATIVE EFFECTSOF ELECTRIC
FIELD FLUCTUATIONS

In the previous sections, we have discussed one loop
corrections to potential scattering, that is, effects which
may be calculated from perturbation theory. These effects
are small compared to the tree level transmission rates, and
in our heuristic treatment, are estimated from the mean
square of the time averaged electric field, given by Eq. (4).

Now we wish to turn to a discussion of the effects of large
electric field fluctuations. The probability of such fluctua-
tions is determined by Eq. (6). Consider the situation
discussed in Sec. III, where an electron has an incident
energy less than the height of the potential barrier. A
sufficiently large electric field fluctuation could tempo-
rarily give the electron enough energy to fly over the
barrier. This extra energy is likely to be taken away by a
fluctuation of the opposite sign, but this does not matter if
the particle is now on the far side of the barrier. Assume a
temporary increase in electron energy of order

δE ¼ eĒa ¼ eaτ−2χ; ð46Þ
where δE > V0 − E0. We estimate that the electron flies
over the barrier at a speed of order

veff ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðδE − V0 þ E0Þ

m

r
ð47Þ

and in a time of order τ ≈ a=veff. We may combine these
expressions and solve for χ to find

χ ¼ am
2e

þ τ2

ea
ðV0 − E0Þ > χ0; ð48Þ

where χ0 ¼ am=ð2eÞ. Note that χ0 is somewhat larger than
the width of the barrier a measured as a multiple of the
electron Compton wavelength, so we expect χ0 ≫ 1. The
lower bound on χ is never actually attained because τ > 0.
However, if V0 − E0 ≪ m, it may be possible to have
τ2ðV0 − E0Þ=a ≪ am=2, and hence χ nearly equal to χ0.
We will assume this in our probability estimate.
The probability of a fluctuation in which χ ≥ χ0 is given

by an integral of the probability distribution function in
Eq. (6),

Pðχ ≥ χ0Þ ¼
Z

∞

χ0

PðχÞdχ: ð49Þ

This integral may be evaluated in terms of the error
function, and in the limit of large χ0, the result is

Pðχ ≥ χ0Þ ≈
η

χ0
ffiffiffiffiffiffi
2π

p exp

�
−

χ20
2η2

�

¼ 2eηffiffiffiffiffiffi
2π

p
am

exp

�
−
a2m2

8η2e2

�
: ð50Þ

We can view this result as a nonperturbative contribution
to the transmission probability T. Its nonperturbative
character is demonstrated by the appearance of e2 in the
denominator of an exponential.
As noted above, am is the barrier width as a multiple of

the electron Compton wavelength, so we expect am ≫ 1
and hence the exponential factor in Eq. (50) to be very
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small. Another feature of this result which should be noted
is the lack of explicit dependence upon the barrier height,
V0. This arises from our approximation in writing Eq. (49)
as an integral with a lower bound of χ0, which is
independent of V0. This approximation is at best valid
when V0 ≪ m, so a nonrelativistic particle can fly over the
barrier, and will fail for larger values of V0. Within this
approximation, this nonperturbative contribution is inde-
pendent of the barrier height, although it depends strongly
upon the barrier width.

V. QUANTUM STRESS
TENSOR FLUCTUATIONS

So far in this paper, we have been concerned with the
physical effects of time averaged electric field fluctuations,
which have a Gaussian probability distribution. However,
the fluctuations of time averages of quadratic operators,
such as the squared electric field or components of the
stress tensor, also have physical significance. The proba-
bility distributions for such operators were recently given in
Refs. [14,15] in special cases. In particular, Ref. [15] derived
the probability distribution for the case of Lorentzian
sampling, and found that the probability of large fluctuations
is much greater than one might have expected. If x is a
dimensionless measure of the sampled operator, then the
probability distribution for large x has the form

PðxÞ ∼ x−2e−x
1=3
: ð51Þ

The fractional power of 1=3 in the exponent is striking,
and indicates a slow decrease in the probability of large
fluctuations. Furthermore, sampling functions with compact
support lead to an even slower decrease, where 1=3 is
replaced by 1=6 or a smaller exponent [16].
These slowly decreasing probability distributions will

lead to large radiation pressure fluctuations on particles
which can also influence tunneling rates. This influence
cannot be calculated in perturbation theory, as one is
dealing with the tail of a distribution, as in the case of
Eq. (50). However, the insights and techniques used in the
present paper should be applicable to this problem, and are
the topic of current investigation.

VI. SUMMARY AND DISCUSSION

In this paper, we first reviewed some previous results on
one loop QED corrections to quantum potential scattering
in one space dimension, including both above barrier
scattering and quantum tunneling. In both cases, the one
loop correction increases the transmission probability. We
have argued that the order of magnitude of this increase can
be obtained from very simple arguments based upon
vacuum fluctuations of the quantized electric field. The
basic idea is that there is a characteristic transit time τ for
the electron to pass through the potential, and this time
defines a characteristic magnitude for an electric field
fluctuation, given by Eq. (4). This field fluctuation leads
to a temporary change in the energy and momentum of the
electron, Although the sign of this change can be either
positive or negative, the average effect is an increase in
transmission probability. This argument gives insight into
the physical mechanism behind the enhancement, which is
lacking in the previous approaches.
This argument also gives a concrete physical meaning to

time averaged quantum fields, such as defined in Eq. (2).
Both the width and shape of the potential determine the form
of the test function fτðtÞ. A different model in the context of
nonlinear optics was presented in Ref. [3] and led to a similar
interpretation of the test function. Previously, the use of test
functions in quantum field theory [2] was purely formal,
with no physical interpretation.
In Sec. IV, we used the probability distribution for

electric field fluctuations, Eq. (6), to propose a nonpertur-
bative effect of these fluctuations on quantum tunneling.
The use of the same procedure to explore the physical
implications of the probability distributions for quantum
stress tensor fluctuations was described in Sec. V. In this
case, it seems that the methods proposed in the present
paper may be useful to describe moderately rare, but very
large, stress tensor fluctuations.
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