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We address the issue of the all order multiplicative renormalizability of SUð2Þ Yang-Mills theories
quantized in the maximal Abelian gauge in presence of scalar matter fields. The nonlinear character of the
maximal Abelian gauge requires the introduction of quartic interaction terms in the Faddeev-Popov ghosts,
a well-known feature of this gauge. We show that, when scalar matter fields are introduced, a second quartic
interaction term between scalar fields and Faddeev-Popov ghosts naturally arises. A Becchi-Rouet-Stora-
Tyutin invariant action accounting for those quartic interaction terms is identified and proven to be
multiplicative renormalizable to all orders by means of the algebraic renormalization procedure.
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I. INTRODUCTION

Nowadays, the maximal Abelian gauge [1–3] is widely
employed in order to investigate nonperturbative aspects of
Yang-Mills theories. This gauge turns out to be suitable for
the study of the dual superconductivity mechanism for
color confinement [4], according to which Yang-Mills
theories in the low energy region should be described by
an effective Abelian theory [5–9] in the presence of
monopoles. The condensation of these magnetic charges
leads to a dual Meissner effect resulting in quark confine-
ment. In the maximal Abelian gauge, the Abelian configu-
ration is identified with the diagonal components A3

μ of the
gauge field corresponding to the diagonal generator of the
Cartan subgroup of SUð2Þ. The remaining off-diagonal
components Aa

μ, a ¼ 1; 2, corresponding to the off-
diagonal generators of SUð2Þ, are expected to acquire a
mass through a dynamical mechanism, thus decoupling at
low energies. This phenomenon is known as Abelian
dominance and is the object of intensive investigation,
both from analytic and from numerical lattice simulations.
From the analytic side, evidence for the dynamical mass

generation for the off-diagonal components of the gauge
field can be found in [10–12], while [13–15] are devoted to
numerical studies.
Besides being a renormalizable gauge [16–18], the

maximal Abelian gauge enjoys the important property of
exhibiting a lattice formulation [13–15,19,20], a property
which allows us to compare analytic and numerical results.
In particular, this important feature of the maximal Abelian
gauge has made possible the study, from the numerical
lattice point of view, of the behavior of the two-point gluon
correlation function in the nonperturbative infrared region,

providing evidence for the Abelian dominance as well as for
the confining character of the propagator of the Abelian
gluon component [13–15,19,20]. This issue has also been
addressed through analyticalmethods by taking into account
the existence of the Gribov copies [21] which, as in any
covariant and renormalizable gauge, affect the maximal
Abelian gauge [22–24]. Here, proceeding in away similar to
the Landau gauge [25,26], a few properties of the so-called
Gribov region have been derived together with the restric-
tion of the domain of integration in the functional integral to
the Gribov horizon; see for instance Refs. [27–31] for the
details of the Gribov issue on the maximal Abelian gauge.
Remarkably, the agreement between the lattice numerical
results and the analytic calculations based on the restriction
to the Gribov region looks quite good [19,29], confirming
the expectation that the study of the Gribov problem is of
great relevance for gluon confinement.
Nevertheless, so far, the study of the correlation function in

the maximal Abelian gauge has been done only for the gluon
sector, without including matter fields, i.e. spinor and scalar
fields. To our knowledge, unlike the Landau gauge, no avail-
able nonperturbative studies of the two-point matter correla-
tion functions are available in themaximalAbelian gauge, and
this from analytical results and numerical data simulations.
This work aims at starting an analytic study of the non-

perturbative behavior of the correlation functions for matter
fields in the maximal Abelian gauge, along the lines recently
outlined in the case of theLandau gauge [32–34], where it has
been possible to recover the behavior of the propagators for
scalar and spinor fields observed in lattice simulations
[35–38] from an analytic point of view [34]. This study
might be of relevance for several reasons, such as, for
instance, to investigate towhat extent the Abelian dominance
affects the matter sector, to make a prediction for the
propagator of scalars and quark fields which might be
compared with lattice numerical simulations, or to study
the confining character of the correlation functions. As a first
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step in this endeavor, we need to establish the all orders
multiplicative renormalizability of the maximal Abelian
gauge in presence of matter fields, a topic which, till now,
has not yet been addressed. This is the goal of the present
paper.Although the renormalizability of themaximalAbelian
gauge in presence of the matter fields is an expected feature,
we shall see that it is not a straightforwardmatter, requiring in
fact a nontrivial analysis. This is due to thenonlinear character
of the maximal Abelian gauge which gives rise to a rather
complex Faddeev-Popov operator. It was already pointed out
that the structure of this operator requires the introduction of a
quartic interaction between ghosts [16–18]. Only at the very
end of the whole renormalization process can the gauge
parameter entering the quartic interaction be set to zero
[16–18], thus recovering the genuinemaximal Abelian gauge
condition. In this work, we shall see that this feature general-
izes to the case of scalar matter fields; i.e. a quartic interaction
between scalar fields and Faddeev-Popov ghosts naturally
arises due to the nonlinearity of the gauge condition. As a
consequence, a second gauge parameter associated to this
new term has to be introduced. As in the case of the quartic
ghost term, this second gauge parameter can be set to zero
only at the very end of the renormalization process.
The present work is organized as follows. In Sec. II we

briefly discuss the maximal Abelian gauge and the corre-
sponding gauge fixing. In Sec. III we elaborate on the
quartic interactions required to renormalize the theory.
Section IV is devoted to establishing the set of Ward
identities needed for the all orders proof of the renormaliz-
ability. In Sec. V we present the algebraic characterization
of the most general invariant local counterterm, establish-
ing the all orders multiplicative renormalizability of the
theory. Section VI collects our conclusions.

II. QUANTIZING GAUGE THEORIES IN THE
MAXIMAL ABELIAN GAUGE

In order to introduce the maximal Abelian gauge, we
start by considering a Lie algebra valued gauge fieldAμ for
the gauge group SUð2Þ, whose generators TAðA ¼ 1; ::; 3Þ

½TA; TB� ¼ εABCTC ð1Þ

are chosen to be anti-Hermitian and to obey the orthonor-
mality condition TrðTATBÞ ¼ δAB. Following [1–3] we
decompose Aμ into off-diagonal and diagonal components

Aμ ¼ AA
μTA ¼ Aa

μTa þ AμT3; ð2Þ

where a ¼ 1; 2 and T3 is the diagonal generator of the
Cartan subgroup sf SUð2Þ. Analogously, decomposing the
field strength, we obtain

F μν ¼ FA
μνTA ¼ Fa

μνTa þ FμνT3; ð3Þ

with the off-diagonal and diagonal components given,
respectively, by

Fa
μν ¼ Dab

μ Ab
ν −Dab

ν Ab
μ;

Fμν ¼ ∂μAν − ∂νAμ þ gεabAa
μAb

ν ; ð4Þ

where the covariant derivative Dab
μ is defined with respect

to the diagonal component Aμ

Dab
μ ≡ ∂μδ

ab − gεabAμ; εab ≡ εab3: ð5Þ

For the classical gauge invariant starting action, we have

Scl ¼ SYM þ Smatter; ð6Þ

where SYM stands for the Yang-Mills action

SYM ¼
Z

d4x
1

4
ðFa

μνFa
μν þ FμνFμνÞ; ð7Þ

while Smatter denotes the action of real scalar matter fields in
the adjoint representation of the gauge group SUð2Þ,
namely

Smatter ¼
Z

d4x

�
1

2
ðDAB

μ ϕBÞ2 þm2
ϕ

2
ϕAϕA þ λ

4!
ðϕAϕAÞ2

�

¼
Z

d4x
�
1

2
ð∂μϕ

aÞð∂μϕ
aÞ þ 1

2
ð∂μϕÞð∂μϕÞ − g2εab½ð∂μϕÞϕaAb

μ − ð∂μϕ
aÞϕAb

μ þ ð∂μϕ
aÞϕbAμ�

þ g2

2
½Aa

μAa
μðϕbϕb þ ϕϕÞ þ AμAμϕ

aϕa − Aa
μAb

μϕ
aϕb − 2Aa

μAμϕ
aϕ�

þm2
ϕ

2
ðϕaϕa þ ϕϕÞ þ λ

4!
½ðϕaϕaÞ2 þ 2ϕ2ϕaϕa þ ϕ4�

�
; ð8Þ

where, as in Eq. (2), the scalar field Φ ¼ ϕATA is decomposed into off-diagonal and diagonal components, i.e.

ϕATA ¼ ϕaTa þ ϕT3: ð9Þ
The classical action (6) is left invariant by the gauge transformations
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δAa
μ¼−Dab

μ ωb−gεabAb
μω; δAμ¼−∂μω−gεabAa

μω
b;

ð10Þ

and

δϕa¼gεabϕωb−gεabϕbω; δϕ¼−gεabϕaωb: ð11Þ

The maximal Abelian gauge condition amounts to impos-
ing that the off-diagonal components Aa

μ of the gauge field
obey the following nonlinear condition

Dab
μ Ab

μ ¼ 0; ð12Þ

which follows by requiring that the auxiliary functional,

R½A� ¼
Z

d4xAa
μAa

μ; ð13Þ

be stationary with respect to the gauge transformations
(10). Moreover, as it is apparent from the presence of the
covariant derivativeDab

μ , Eq. (12) allows for a residual local
Uð1Þ invariance corresponding to the diagonal subgroup of
SUð2Þ. This additional invariance has to be fixed by means
of a further gauge condition on the diagonal component Aμ,
which is usually chosen to be of the Landau type, namely

∂μAμ ¼ 0: ð14Þ

The Faddeev-Popov operator, Mab, corresponding to the
gauge condition (12) is easily derived by taking the second
variation of the auxiliary functional R½A�, being given by

Mab ¼ −Dac
μ Dcb

μ − g2εacεbdAc
μAd

μ: ð15Þ

It enjoys the property of being Hermitian and, as pointed
out in [22], is the difference of two positive semidefinite
operators given, respectively, by −Dac

μ Dcb
μ and

g2εacεbdAc
μAd

μ.
It is worth pointing out that the operator Mab is

nonlinear in the gauge fields, a feature which has nontrivial
consequences in the renormalization process.

III. BRST SYMMETRY AND EMERGENCE OF
QUARTIC INTERACTION TERMS

In order to construct the Faddeev-Popov action corre-
sponding to the gauge conditions (12), (14), we proceed by
introducing the nilpotent Becchi-Rouet-Stora-Tyutin
(BRST) transformations

sAa
μ ¼ −ðDab

μ cb þ gεabAb
μcÞ;

sAμ ¼ −ð∂μcþ gεabAa
μcbÞ

sca ¼ gεabcbc; sc ¼ g
2
εabcacb;

sc̄a ¼ ba; sc̄ ¼ b;

sba ¼ sb ¼ 0; sϕa ¼ gεabϕcb − gεabϕbc;

sϕ ¼ −gεabϕacb; ð16Þ

where ðc̄a; c̄; ca; cÞ are the Faddeev-Popov ghosts and
ðba; bÞ are the Nakanishi-Lautrup fields. Further, we
introduce the s-exact gauge-fixing term

SMAG ¼ s
Z

d4xfc̄aDab
μ Ab

μ þ c̄∂μAμg

¼
Z

d4xfbaDab
μ Ab

μ − c̄aMabcb

þ gεabc̄acDbc
μ Ac

μ þ b∂μAμc̄∂μð∂μcþ gεabAa
μcbÞg;
ð17Þ

where Mab stands for the Faddeev-Popov operator (15).
Evidently, the gauge-fixed action

Scl þ SMAG; ð18Þ

with Scl given in Eq. (6), turns out to be BRST invariant.
The action (18) is the gauge-fixed action obtained from
the BRST construction, usually taken as the starting
action in order to evaluate the quantum corrections
arising in the renormalization process. However, in the
present case, expression (18) has to be supplemented by
the introduction of further quartic terms which originate
from the nonlinearity of the Faddeev-Popov operator
Mab, Eq. (15). In fact, as one can observe from
expression (17), the interaction term g2c̄aεacεbdAc

μAd
μcb

gives rise to divergent Feynman diagrams with four
external Faddeev-Popov legs, as one immediately real-
izes already at one-loop level by considering the diver-
gent one Particle Irreducible (1PI) diagram with four
external Faddeev-Popov ghosts and two internal off-
diagonal gauge lines. As already pointed out in [16–18],
such diagrams give rise to counterterms in the Faddeev-
Popov ghosts which are not contained in the action (18).
Such additional divergences can be taken into account by
introducing the following BRST exact terms [16–18]

Sα ¼ s
Z

d4x
α

2
ðc̄aba − 2gεabc̄ac̄bcÞ

¼ α

2

Z
d4xfbaba − 2gεabbac̄bcþ g2c̄ac̄bcacbg; ð19Þ
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where α stands for a suitable gauge parameter. As one
can easily figure out, the quartic divergent terms origi-
nating from the action (18) can now be reabsorbed in the
renormalization of the gauge parameter α.
Nevertheless, the term (19) is not the unique new

quartic interaction present in the theory when scalar
matter fields are added. In fact, it turns out that, due
to the presence of the interaction vertices ðϕϕAAÞ and
ðϕð∂ϕÞAÞ, a novel quartic term between scalar fields and
Faddeev-Popov ghosts, i.e. ðϕϕc̄cÞ, is generated at the
quantum level. For example, the 1PI one-loop diagram
with two external ϕ-legs and two external ghost legs
connected by two internal gluon lines is logarithmic
divergent, giving rise to a quartic divergent term precisely
of the kind of ðϕϕc̄cÞ. Once again, such divergent terms
are not contained in the action (18). As such, they would
be not reabsorbable. We see therefore that, due to the
nonlinearity of the gauge condition, Eq. (12), and of the
Faddeev-Popov operator, Eq. (15), a second quartic term
is needed for renormalizability. In the present case, this
novel term is accounted for by introducing the following
exact BRST expression

Sβ ¼ s
Z

d4x

�
β

2
εabϕϕac̄b

�

¼ β

2

Z
d4xfgϕaϕacbc̄b þ gϕaϕbcac̄b

þ ϕϕaðεabbb − gcc̄aÞ þ gϕϕcac̄ag; ð20Þ

where β stands for a second gauge parameter. The
emergency of divergent terms of the type ðϕϕc̄cÞ is
now taken into account by an appropriate renormalization
of the second gauge parameter β. Relying only on power
counting and dimensional analysis, the reader might
wonder why in fact expression (20) is the only additional
quartic term which is needed as, in principle, other terms
can be easily constructed. Here, we have anticipated our
main result which shows that expression (20) is in fact
the only term which survives the whole set of Ward
identities and discrete symmetries which characterize the
model. The proof of this statement will be given in detail
in Sec. V, where we shall discuss the construction of the
most general invariant possible term compatible with all
Ward identities and discrete symmetries.
In conclusion, taking into account the emergency of

quartic interaction terms, for the starting gauge-fixed
Faddeev-Popov action we have

S ¼ Scl þ SMAG þ Sα þ Sβ: ð21Þ

Looking at the equations of motion of the field ba, namely

δS
δba

¼ Dab
μ Ab

μ þ αðba − gεabc̄bcÞ þ β

2
gεbaϕϕb; ð22Þ

we see that the original maximal Abelian gauge condition
(12) is recovered in the limit α; β → 0, which has to be
taken at the very end of the whole renormalization process.
Although being outside of the main aim of the present
work, it is worthwhile to spend a few words on what we
mean by taking the limit α; β → 0. To that end, let us first
eliminate the Lagrange multiplier ba by means of its
equation of motion (22), yielding the following action
suitable for practical calculations [18]

S¼ SYMþSmatterþ
Z

d4x

�
−

1

2α
ðDab

μ Ab
μÞ2þb∂μAμ

− c̄aMabcbþ c̄∂μð∂μcþgεabAa
μcbÞ

þα

2
g2c̄ac̄bcacbþβ

2
gðϕaϕacbc̄bþϕaϕbcac̄bþϕ2cac̄aÞ

−
β

2α
gϕϕbεbaDac

μ Ac
μ−

β2

8α
g2ϕ2ϕaϕa

�
: ð23Þ

As one immediately sees, the above expression reveals the
full complexity of working with a nonlinear gauge such as
the maximal Abelian gauge. In fact, already without the
second gauge parameter β, one observes the appearance of
the term 1

2α ðDab
μ Ab

μÞ2 which, besides the standard quadratic
term 1

2α ð∂μAa
μÞ2, gives rise to delicate interaction terms like

1
α ðAμAa

μÞ2, for which the existence of the limit α → 0 looks
not so obvious. Of course, the same feature remains when
the second gauge parameter β is introduced, as one learns
from the presence of the terms β

2α ðϕϕbεbaDac
μ Ac

μÞ and
β2

8α ðϕ2ϕaϕaÞ in the last line of expression (23).
Nevertheless, despite the presence of these terms, all
anomalous dimensions of the fields have been evaluated
till three-loop in the pure maximal Abelian gauge, i.e.
without the inclusion of scalar fields, as reported in Sec. 3
of [18]. From the explicit expressions given in [18]1 one
sees that the anomalous dimensions of the fields do admit
the limit α → 0. This is precisely what we mean when we
speak about the limit α → 0. In other words, quantities like
the β-function of the theory as well as the anomalous
dimensions of the elementary fields and of suitable gauge
invariant composite operators should admit a safe limit
α → 0, as shown in the explicit three-loop calculations

1See, in particular, Eqs. (3.7)–(3.15) of [18], where the
three-loop anomalous dimensions of all fields are explicitly
given. From those expressions, it turns out that all field
anomalous dimensions admit a safe limit α → 0. Concerning
now the anomalous dimension of the gauge parameter itself
α, i.e. γα, given in Eq. (3.8) of [18], we recall that this quantity
enters always in the combination αγα, as one can observe from
Eq. (3.6). This precise combination also displays a safe α → 0
limit.
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reported in [18]. We expect that such a feature will be
maintained also when scalar fields are included; i.e. we
expect that the β-functions of the theory as well as the
anomalous dimensions of the elementary fields and of
gauge invariant composite operators should display a
smooth α; β → 0 limit.
Having identified a suitable starting action, Eq. (21), we

now must prove that it is multiplicative renormalizable to
all order, a task which we shall face in the following
sections by making use of the algebraic renormaliza-
tion [39].

IV. WARD IDENTITIES

Having identified a suitable gauge-fixed action, Eq. (21),
we proceed to write down the set of Ward identities which
we shall employ in the proof of the all orders multiplicative
renormalizability of expression (21). To that end, following
the algebraic renormalization procedure [39], we need to
introduce a set of BRST invariant external sources
ðΩa

μ;Ωμ; La; L; Fa; FÞ coupled to the nonlinear BRST
variations of the fields ðAa

μ; Aμ; ca; c;ϕa;ϕÞ, Eqs. (16),
namely

Sext ¼
Z

d4xfΩa
μðsAa

μÞ þ ΩμðsAμÞ þ LaðscaÞ þ LðscÞ þ FaðsϕaÞ þ FðsϕÞg

¼
Z

d4x
n
Ωa

μð−Dab
μ cb − gεabAb

μcÞ þ Ωμð−∂μc − gεabAa
μcbÞ þ gεabLacbc

þ g
2
εabLcacb þ gεabFaðϕcb − ϕbcÞ − gεabFϕacb

o
; ð24Þ

with

sΩa
μ ¼ sΩμ ¼ sFa ¼ sF ¼ sLa ¼ sL ¼ 0: ð25Þ

Therefore, for the complete BRST invariant starting action Σ, we get

Σ ¼ SYM þ Smatter þ SMAG þ Sα þ Sβ þ Sext

¼
Z

d4x

�
1

4
ðFa

μνFa
μν þ FμνFμνÞ þ baDab

μ Ab
μ − c̄aMabcb þ gεabc̄acDbc

μ Ac
μ þ b∂μAμ

þ c̄∂μð∂μcþ gεabAa
μcbÞ þ Ωa

μð−Dab
μ cb − gεabAb

μcÞ þΩμð−∂μc − gεabAa
μcbÞ

þ gεabLacbcþ g
2
εabLcacb þ gεabFaðϕcb − ϕbcÞ − gεabFϕacb þ α

2
½baba − 2gεabbac̄bc

þ g2c̄ac̄bcacb� þ β

2
½gϕaϕacbc̄b þ gϕaϕbcac̄b þ ϕϕaðεabbb − gcc̄aÞ þ gϕϕcac̄a�

þ 1

2
ð∂μϕ

aÞð∂μϕ
aÞ þ 1

2
ð∂μϕÞð∂μϕÞ − g2εab½ð∂μϕÞϕaAb

μ − ð∂μϕ
aÞϕAb

μ þ ð∂μϕ
aÞϕbAμ�

þ 1

2
g2½Aa

μAa
μðϕbϕb þ ϕϕÞ þ AμAμϕ

aϕa − Aa
μAb

μϕ
aϕb − 2Aa

μAμϕ
aϕ�

þm2
ϕ

2
ðϕaϕa þ ϕϕÞ λ

4!
½ðϕaϕaÞ2 þ 2ϕ2ϕaϕa þ ϕ4�

�
: ð26Þ

Let us display in Table I and Table II the quantum numbers of all elds and sources, respectively (with “B" standing for
bosonic and “F” for fermionic nature):The complete action Σ turns out to fulfill a large set of Ward identities, which we
enlist below:

(i) The Slavnov-Taylor identity:

SðΣÞ ¼ 0; ð27Þ

with

SðΣÞ≡
Z

d4x

�
δΣ
δΩa

μ

δΣ
δAa

μ
þ δΣ
δΩμ

δΣ
δAμ

þ δΣ
δFa

δΣ
δϕa þ

δΣ
δF

δΣ
δϕ

þ δΣ
δLa

δΣ
δca

þ δΣ
δL

δΣ
δc

þ ba
δΣ
δc̄a

þ b
δΣ
δc̄

�
: ð28Þ
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Let us also introduce, for further use, the so-called linearized Slavnov-Taylor operator BΣ, defined as [39]

BΣ ¼
Z

d4x

�
δΣ
δΩa

μ

δ

δAa
μ
þ δΣ
δAa

μ

δ

δΩa
μ
þ δΣ
δΩμ

δ

δAμ
þ δΣ
δAμ

δ

δΩμ
þ δΣ
δFa

δ

δϕa þ
δΣ
δϕa

δ

δFa

þ δΣ
δF

δ

δϕ
þ δΣ
δϕ

δ

δF
þ δΣ
δLa

δ

δca
þ δΣ
δca

δ

δLa þ
δΣ
δL

δ

δc
þ δΣ

δc
δ

δL
þ ba

δ

δc̄a
þ b

δ

δc̄

�
: ð29Þ

The operator BΣ has the important property of being
nilpotent [39], i.e.

BΣBΣ ¼ 0: ð30Þ

(ii) The diagonal Nakanishi-Lautrup field equation:

δΣ
δb

¼ ∂μAμ: ð31Þ

(iii) The diagonal antighost equation:

δΣ
δc̄

þ ∂μ
δΣ
δΩμ

¼ 0: ð32Þ

(iv) The local diagonal ghost equation [17]:

δΣ
δc

þ gεabc̄a
δΣ
δbb

¼ −∂2c̄ − ∂μΩμ

þ gεabðΩa
μAa

μ − Lacb þ FaϕbÞ:
ð33Þ

Notice that the right-hand side of Eq. (33) is linear in
the quantum fields. As such, it is a linear breaking,
not affected by the quantum correction [39].

(v) The Uð1Þ residual local symmetry:

WUð1ÞΣ ¼ −∂2b; ð34Þ

where

WUð1Þ ≡ ∂μ
δ

δAμ
þ gεab

�
Aa
μ

δ

δAb
μ
þ ϕa δ

δϕb

þ ca
δ

δcb
þ c̄a

δ

δc̄b
þ ba

δ

δbb
þ Ωa

μ
δ

δΩb
μ

þ Fa δ

δFb þ La δ

δLb

�
: ð35Þ

As noticed in [17], the Uð1Þ Ward identity (34) can
be obtained by anticommuting the diagonal ghost
equation, Eq. (33), with the Slavnov-Taylor identity,
Eq. (27). This identity shows in a very clear way the
fact that the diagonal component Aμ of the gauge
field behaves like a Uð1Þ Abelian connection, while
all off-diagonal components of the gauge and matter
fields play the role of a kind of charged Uð1Þ field,
precisely like in a QED-like theory. As already
mentioned in the Introduction, this identity ex-
presses one of the most important characteristics
of the maximal Abelian gauge.

(vi) The discrete symmetry

Ψ1 → Ψ1; Ψ2 → −Ψ2; Ψdiag → −Ψdiag;

ð36Þ

where Ψa and Ψdiag stand, respectively, for all off-
diagonal and diagonal fields and sources. As pointed
out in [17], this discrete symmetry plays the role of
the charge conjugation with respect to the Uð1Þ
Cartan subgroup of SUð2Þ.

(vii) Finally, looking at the matter sector of the complete
action Σ, we have a second discrete symmetry

ϕa→−ϕa; ϕ→−ϕ; Fa→−Fa; F→−F;

ð37Þ

TABLE I. The quantum numbers of the fields.

Fields A ϕ b c̄ c

Dimension 1 1 2 2 0
Ghost number 0 0 0 1 −1
Nature B B B F F

TABLE II. The quantum numbers of the external BRST
sources.

Sources Ωa
μ Ωμ La L Fa F

Dimension 3 3 4 4 2 2
Ghost number −1 −1 −2 −2 −1 −1
Nature F F B B F F
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forbidding the appearance of pure matter terms
containing odd powers of the scalar fields ðϕa;ϕÞ.

V. ALGEBRAIC CHARACTERIZATION OF THE
INVARIANT COUNTERTERM AND

MULTIPLICATIVE RENORMALIZABILITY

In order to prove that the complete action Σ, Eq. (26), is
multiplicative renormalizable, we follow the algebraic
renormalization setup [39], and characterize, by means
of the Ward identities previously derived, the most general
invariant local counterterm, Σct, which can be freely added
to the starting action Σ. According to the power counting,
Σct is an integrated local polynomial in the fields and
external sources of dimension bounded by four and with
zero ghost number. Further, we require that the perturbed
action, ðΣþ ϵΣctÞ, satisfies the same Ward identities and
constraints of Σ [39], to the first order in the perturbation
parameter ϵ, obtaining the following set of constraints:

BΣΣct ¼ 0; ð38Þ

and

δΣct

δc̄
þ ∂μ

δΣct

δΩμ
¼ 0;

δΣct

δc
þ gεabc̄a

δΣct

δbb
¼ 0;

WUð1ÞΣct ¼ 0;
δΣct

δb
¼ 0: ð39Þ

The first constraint, Eq. (38), tells us that Σct belongs to the
cohomology of the nilpotent linearized operator BΣ in the
space of the integrated local polynomials in the fields and
sources bounded by dimension 4. From the general results
on the BRST cohomolgy of Yang-Mills theories, it follows
that Σct can be parametrized as follows:

Σct ¼ Σ0 þ BΣΔ−1; ð40Þ
where Σ0 stands for the nontrivial part of the cohomolgy of
the operator BΣ, being given by

Σ0 ¼ a0SYM þ
Z

d4x

�
a1

m2
ϕ

2
ϕAϕA þ a2

λ

4!
ðϕAϕAÞ2

�
;

ð41Þ
where a0; a1; a2 are free arbitrary coefficients. The second
term,Δ−1, in Eq. (40) is a local integrated polynomial in the
fields and sources with dimension 4 and ghost number −1.
This term represents the trivial part of the cohomolgy, being
parametrized as

Δ−1 ¼
Z

d4xfCab
4 Aa

μΩb
μ þ C5AμΩμ þ Cab

6 ϕaFb þ C7ϕF þ Cab
8 Lacb þ C9Lcþ Cab

10 c̄
abb

þ C11c̄bþ Cab
12 c̄

ac̄bcþ Cab
13 c̄

ac̄cb þ Cab
14ϕ

aϕc̄b þ Cab
15ϕ

aϕbc̄þ Cab
16A

a
μAμc̄b þ Cab

17A
a
μAb

μc̄

þ Cab
18mϕϕ

ac̄b þ C19mϕϕc̄þ Cab
21ð∂μAa

μÞc̄b þ C21ð∂μAμÞc̄g; ð42Þ

where Ci; i ¼ 4;…; 21 are free parameters.
After imposition of the conditions (39), of the discrete symmetries (36), (37), and after a rather lengthy algebraic

calculation, we get

C5 ¼ C9 ¼ C11 ¼ Cab
13 ¼ Cab

15 ¼ Cab
17 ¼ Ca

18b ¼ C19 ¼ C21 ¼ 0 ð43Þ

and

Cab
4 ¼ δabC4; Cab

6 ¼ δabC6; C7 ¼ −C6; Cab
8 ¼ δabC8; Cab

10 ¼ αδabC10;

Cab
12 ¼ −αgεabC10; Cab

14 ¼ βεabC14; Cab
16 ¼ εabC16; Cab

20 ¼ δabC20 ¼ −δabC16; ð44Þ

Therefore, for the final expression of the most general counterterm Σct, we obtain

YANG-MILLS THEORY IN THE MAXIMAL ABELIAN … PHYSICAL REVIEW D 91, 125004 (2015)

125004-7



Σct ¼
Z

d4x

�
a0
4
ðFa

μνFa
μν þ FμνFμνÞ þ a1

m2
ϕ

2
ϕAϕA þ a2

λ

4!
ðϕAϕAÞ2

�

þ BΣ

Z
d4x½C4Aa

μΩa
μ þ C6ðϕaFa − ϕFÞ þ C8Laca þ C10αðc̄aba − gεabc̄ac̄bcÞ�

þ BΣ

Z
d4x½C14βε

abϕaϕc̄b þ C16c̄aDab
μ Ab

μ�

¼
Z

d4x

�
a0
4
ðFa

μνFa
μν þ FμνFμνÞ þ a1

m2
ϕ

2
ϕAϕA þ a2

λ

4!
ðϕAϕAÞ2 þ C4

�
δSYM
δAa

μ
Aa
μ þ baDab

μ Ab
μ

þ gεabðc̄acDbc
μ Ac

μ − ΩμAa
μcb þ c̄∂μðAa

μcbÞÞ þ 2g2ðc̄aca þ ϕaϕa þ ϕϕÞAb
μAb

μ

− 2g2ðc̄acb þ ϕaϕbÞAa
μAb

μ þ 2gεabAa
μðð∂μϕÞϕb − ð∂μϕ

bÞϕÞ
�
þ C6½2ð∂μϕ

aÞð∂μϕ
aÞ

− 2ð∂μϕÞð∂μϕÞ − 4g2εabð∂μϕ
aÞϕAb

μ þ 2g2Aa
μAa

μðϕaϕa − ϕϕÞ þ 2g2ðAμAμϕ
aϕa − Aa

μAb
μϕ

aϕbÞ

þm2
ϕðϕaϕa − ϕϕÞ þ λ

3!
ððϕaϕaÞ2 − ϕ4Þ þ βgðϕaϕacbc̄b þ ϕaϕbcac̄b − ϕϕcac̄aÞ�

þ C8½−c̄a∂2ca þ 2gεabc̄aAμ∂μcb þ g2c̄acaðAμAμ − Ab
μAb

μÞ þ g2c̄acbAa
μAb

μ − gεabLcacb

þ Ωa
μDab

μ cb þ gεabΩμcaAb
μ − gεabFaϕcb þ gεabFϕacb − αg2c̄acac̄bcb þ β

2
gc̄acaðϕbϕb þ ϕ2Þ

þ β

2
ϕaϕbc̄bca� þ C10α½baba − 2gεabbac̄bcþ g2c̄acac̄bcb� þ C14β½ϕϕaðεabbb þ gcc̄aÞ

× gcac̄aðϕbϕb þ ϕ2Þ þ gϕaϕbcac̄b� þ C16½c̄a∂2ca − 2gεabc̄aAμ∂μcb − g2c̄acbAa
μAb

μ

þ g2c̄acaðAb
μAb

μ þ AμAμÞþ2εabc̄acDbc
μ Ac

μ þ baDab
μ Ab

μ�
�
: ð45Þ

A. Renormalization factors

After having identified the most general counterterm,
expression (45), we now must check if it can be reabsorbed
through a multiplicative redefinition of the fields, sources,
coupling constant and parameters of the starting action,
according to

ΣðΨ0;Γ0; ξ0Þ ¼ ΣðΨ;Γ; ξÞ þ ϵΣctðΨ;Γ; ξÞ þOðϵ2Þ;
ð46Þ

where

Ψ ¼ fAa
μ; Aμ;ϕa;ϕ; ba; b; c̄a; cag;

Γ ¼ fΩa
μ;Ωμ; Fa; F; La; L; g;

ξ ¼ fg;mϕ; λ; α; βg; ð47Þ

and the so-called bare quantities ðΨ0;Γ0; ξ0Þ are defined as

Ψ0 ¼ Z1=2
Ψ Ψ; Γ0 ¼ ZΓΓ; ξ0 ¼ Zξξ: ð48Þ

By direct inspection of Eq. (46), for the renormalization
factors we obtain

Z1=2
A ¼ 1þ ϵð2a0 þ C4Þ; ð49Þ

ðZdiag
A Þ1=2 ¼ 1þ 2ϵa0; ð50Þ

Z1=2
b ¼ 1þ ϵð−2a0 þ C16Þ; ð51Þ

ðZdiag
b Þ1=2 ¼ 1 − 2ϵa0; ð52Þ

Z1=2
c ¼ 1 − ϵC8; ð53Þ

Z1=2
c̄ ¼ 1þ ϵC16; ð54Þ

Z1=2
ϕ ¼ 1þ ϵC6; ð55Þ

ðZdiag
ϕ Þ1=2 ¼ 1 − ϵC6; ð56Þ

Zg ¼ 1 − 2ϵa0; ð57Þ

Zmϕ
¼ 1þ ϵ

2
a1; ð58Þ

Zα ¼ 1þ 2ϵð2a0 þ C10 − C16Þ; ð59Þ
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Zβ ¼ 1þ ϵð−2a0 þ 2C14 þ C16Þ; ð60Þ

Zλ ¼ 1þ ϵa2: ð61Þ

It is worth noticing that the diagonal ghosts do not need to
be renormalized, a property which follows directly from the
diagonal ghost equation (33). This concludes the algebraic
proof of the all orders multiplicative renormalizability of
the action Σ, Eq. (26). Finally, we note that the non-
renormalization theorem of the maximal Abelian gauge
[17]

ZgðZdiag
A Þ1=2 ¼ 1; ð62Þ

remains true in the presence of matter fields.

VI. CONCLUSION

In this work we have addressed the issue of the
renormalization of Yang-Mills theories in the maximal
Abelian gauge in the presence of scalar matter fields. Our
main observation is that, due to the nonlinearity of the
gauge-fixing condition, Eq. (12), a new quartic interaction
term between scalar matter fields and off-diagonal
Faddeev-Popov ghosts is required for renormalizabilty.
Moreover, this new quartic interaction turns out to be
described by an exact BRST invariant term, as expressed by

Eq. (20), a feature which ensures that the final gauge-fixed
action, Eq. (26), is BRST invariant and multiplicative
renormalizable to all orders, as proven in Sec. V.
Although the proof of the renormalizability given here

refers to the gauge group SUð2Þ, it can be easily gener-
alized to other gauge groups as well as to other represen-
tations of the scalar fields. The inclusion of the usual Dirac
action for spinors does not pose any additional problem.
Also, unlike the case of scalar matter fields, BRST
invariance and power counting do not allow for additional
interaction terms between spinors and Faddeev-Popov
ghosts.
The analysis of the all orders perturbative renormaliz-

ability of the maximal Abelian gauge in presence of matter
fields is the first necessary step towards the investigation of
the nonperturbative effects of the Gribov copies, which
deeply affect the maximal Abelian gauge [27–31]. The
study of this issue in presence of matter fields is currently
under investigation [40].

ACKNOWLEDGMENTS

The Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq-Brazil), the Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ), and the
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) are gratefully acknowledged.

[1] G. ’t Hooft, Topology of the gauge condition and new
confinement phases in non-abelian gauge theories, Nucl.
Phys. B190, 455 (1981).

[2] A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Topology
and dynamics of the confinement mechanism, Nucl. Phys.
B293, 461 (1987).

[3] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J.
Wiese, Monopole condensation and color confinement,
Phys. Lett. B 198, 516 (1987).

[4] Y. Nambu, Strings, monopoles, and gauge fields, Phys. Rev.
D 10, 4262 (1974); G. ’t Hooft, Phys. Script. 25, 133 (1982);
S. Mandelstam, II. Vortices and quark confinement in non-
Abelian gauge theories, Phys. Rep. 23, 245 (1976).

[5] Z. F. Ezawa and A. Iwazaki, Abelian dominance and quark
confinement in Yang-Mills theories, Phys. Rev. D 25, 2681
(1982).

[6] T. Suzuki and I. Yotsuyanagi, Evidence for Abelian domi-
nance in quark confinement, Phys. Rev. D 42, 4257 (1990).

[7] T. Suzuki, S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O.
Miyamura, and S. Ohno, Abelian dominance in SUð2Þ color
confinement, Nucl. Phys. B, Proc. Suppl. 26, 441 (1992).

[8] S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura,
S. Ohno, and T. Suzuki, Abelian dominance in SUð2Þ color

confinement, Phys. Lett. B 272, 326 (1991); 281, 416(E)
(1992).

[9] N. Sakumichi and H. Suganuma, Perfect Abelian domi-
nance of quark confinement in SU(3) QCD, Phys. Rev. D
90, 111501 (2014).

[10] M. Schaden, Mass generation in continuum SU(2) gauge
theory in covariant Abelian gauges, arXiv:hep-th/9909011.

[11] K. I. Kondo, Vacuum condensate of mass dimension 2 as the
origin of mass gap and quark confinement, Phys. Lett. B
514, 335 (2001).

[12] D. Dudal, J. A. Gracey, V. E. R. Lemes, M. S. Sarandy, R. F.
Sobreiro, S. P. Sorella, and H. Verschelde, An analytic study
of the off-diagonal mass generation for Yang-Mills theories
in the maximal Abelian gauge, Phys. Rev. D 70, 114038
(2004).

[13] K. Amemiya and H. Suganuma, Off diagonal gluon mass
generation and infrared Abelian dominance in the maxi-
mally Abelian gauge in lattice QCD, Phys. Rev. D 60,
114509 (1999).

[14] V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, S. M.
Morozov, and M. I. Polikarpov, Abelian dominance and
gluon propagators in the maximally Abelian gauge of SUð2Þ
lattice gauge theory, Phys. Lett. B 559, 214 (2003).

YANG-MILLS THEORY IN THE MAXIMAL ABELIAN … PHYSICAL REVIEW D 91, 125004 (2015)

125004-9

http://dx.doi.org/10.1016/0550-3213(81)90442-9
http://dx.doi.org/10.1016/0550-3213(81)90442-9
http://dx.doi.org/10.1016/0550-3213(87)90080-0
http://dx.doi.org/10.1016/0550-3213(87)90080-0
http://dx.doi.org/10.1016/0370-2693(87)90910-5
http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1103/PhysRevD.25.2681
http://dx.doi.org/10.1103/PhysRevD.25.2681
http://dx.doi.org/10.1103/PhysRevD.42.4257
http://dx.doi.org/10.1016/0920-5632(92)90298-7
http://dx.doi.org/10.1016/0370-2693(91)91838-M
http://dx.doi.org/10.1016/0370-2693(92)91162-3
http://dx.doi.org/10.1016/0370-2693(92)91162-3
http://dx.doi.org/10.1103/PhysRevD.90.111501
http://dx.doi.org/10.1103/PhysRevD.90.111501
http://arXiv.org/abs/hep-th/9909011
http://dx.doi.org/10.1016/S0370-2693(01)00817-6
http://dx.doi.org/10.1016/S0370-2693(01)00817-6
http://dx.doi.org/10.1103/PhysRevD.70.114038
http://dx.doi.org/10.1103/PhysRevD.70.114038
http://dx.doi.org/10.1103/PhysRevD.60.114509
http://dx.doi.org/10.1103/PhysRevD.60.114509
http://dx.doi.org/10.1016/S0370-2693(03)00368-X


[15] S. Gongyo and H. Suganuma, Gluon propagators in
maximally Abelian gauge in SU(3) lattice QCD, Phys.
Rev. D 87, 074506 (2013).

[16] H. Min, T. Lee, and P. Y. Pac, Renormalization of Yang-
Mills theory in the Abelian gauge, Phys. Rev. D 32, 440
(1985).

[17] A. R. Fazio, V. E. R. Lemes, M. S. Sarandy, and S. P.
Sorella, The diagonal ghost equation Ward identity for
Yang-Mills theories in the maximal Abelian gauge, Phys.
Rev. D 64, 085003 (2001).

[18] J. A. Gracey, Three loop MS-bar renormalization of QCD in
the maximal Abelian gauge, J. High Energy Phys. 04 (2005)
012.

[19] T. Mendes, A. Cucchieri, and A. Mihara, Infrared
maximally Abelian gauge, AIP Conf. Proc. 892, 203
(2007).

[20] A. Mihara, A. Cucchieri, and T. Mendes, Study of ghosts in
maximally Abelian gauge on the lattice, Int. J. Mod. Phys. E
16, 2935 (2007).

[21] V. N. Gribov, Quantization of non-Abelian gauge theories,
Nucl. Phys. B139, 1 (1978).

[22] F. Bruckmann, T. Heinzl, A. Wipf, and T. Tok, Instantons
and Gribov copies in the maximally Abelian gauge, Nucl.
Phys. B584, 589 (2000).

[23] M. S. Guimaraes and S. P. Sorella, A few remarks on the
zero modes of the Faddeev-Popov operator in the Landau
and maximal Abelian gauges, J. Math. Phys. (N.Y.) 52,
092302 (2011).

[24] M. A. L. Capri, M. S. Guimaraes, V. E. R. Lemes, S. P.
Sorella, and D. G. Tedesco, Study of the zero modes of
the Faddeev-Popov operator in the maximal Abelian gauge,
Ann. Phys. (N.Y.) 344, 275 (2014).

[25] R. F. Sobreiro and S. P. Sorella, Introduction to the Gribov
ambiguities in Euclidean Yang-Mills theories, arXiv:hep-th/
0504095.

[26] N. Vandersickel and D. Zwanziger, The Gribov problem and
QCD dynamics, Phys. Rep. 520, 175 (2012).

[27] M. A. L. Capri, D. Dudal, J. A. Gracey, V. E. R. Lemes, R. F.
Sobreiro, S. P. Sorella, R. Thibes, and H. Verschelde, The
infrared behavior of the gluon and ghost propagators in
SU(2) Yang-Mills theory in the maximal Abelian gauge,
Braz. J. Phys. 37, 591 (2007).

[28] M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella,
and R. Thibes, A study of the maximal Abelian gauge in

SU(2) Euclidean Yang-Mills theory in the presence of the
Gribov horizon, Phys. Rev. D 74, 105007 (2006).

[29] M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella,
and R. Thibes, The gluon and ghost propagators in
Euclidean Yang-Mills theory in the maximal Abelian gauge:
Taking into account the effects of the Gribov copies and of
the dimension two condensates, Phys. Rev. D 77, 105023
(2008).

[30] M. A. L. Capri, A. J. Gomez, V. E. R. Lemes, R. F. Sobreiro,
and S. P. Sorella, Study of the Gribov region in Euclidean
Yang-Mills theories in the maximal Abelian gauge, Phys.
Rev. D 79, 025019 (2009).

[31] M. A. L. Capri, A. J. Gomez, M. S. Guimaraes, V. E. R.
Lemes, and S. P. Sorella, Study of the properties of the
Gribov region in SU(N) Euclidean Yang-Mills theories in
the maximal Abelian gauge, J. Phys. A 43, 245402 (2010).

[32] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and
H. Verschelde, A refinement of the Gribov-Zwanziger
approach in the Landau gauge: Infrared propagators in
harmony with the lattice results, Phys. Rev. D 78, 065047
(2008).

[33] D. Dudal, S. P. Sorella, and N. Vandersickel, The dynamical
origin of the refinement of the Gribov-Zwanziger theory,
Phys. Rev. D 84, 065039 (2011).

[34] M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares,
and S. P. Sorella, Properties of the Faddeev-Popov operator
in the Landau gauge, matter confinement and soft BRST
breaking, Phys. Rev. D 90, 085010 (2014).

[35] A. Maas, Scalar-matter-gluon interaction, Proc. Sci.,
FACESQCD2010 (2010) 033 [arXiv:1102.0901].

[36] A. Maas, Accessing directly the properties of fundamental
scalars in the confinement and Higgs phase, Eur. Phys. J. C
71, 1548 (2011).

[37] S. Furui and H. Nakajima, Unquenched Kogut-Susskind
quark propagator in lattice Landau gauge QCD, Phys. Rev.
D 73, 074503 (2006).

[38] M. B. Parappilly, P. O. Bowman, U. M. Heller, D. B. Lein-
weber, A. G. Williams, and J. B. Zhang, Scaling behavior of
quark propagator in full QCD, Phys. Rev. D 73, 054504
(2006).

[39] O. Piguet and S. P. Sorella, Algebraic renormalization:
Perturbative renormalization, symmetries and anomalies,
Lect. Notes Phys., M: Monogr. 28, 1 (1995).

[40] M. A. L. Capri et al. (to be published).

M. A. L. CAPRI, D. FIORENTINI, AND S. P. SORELLA PHYSICAL REVIEW D 91, 125004 (2015)

125004-10

http://dx.doi.org/10.1103/PhysRevD.87.074506
http://dx.doi.org/10.1103/PhysRevD.87.074506
http://dx.doi.org/10.1103/PhysRevD.32.440
http://dx.doi.org/10.1103/PhysRevD.32.440
http://dx.doi.org/10.1103/PhysRevD.64.085003
http://dx.doi.org/10.1103/PhysRevD.64.085003
http://dx.doi.org/10.1088/1126-6708/2005/04/012
http://dx.doi.org/10.1088/1126-6708/2005/04/012
http://dx.doi.org/10.1063/1.2714372
http://dx.doi.org/10.1063/1.2714372
http://dx.doi.org/10.1142/S0218301307008768
http://dx.doi.org/10.1142/S0218301307008768
http://dx.doi.org/10.1016/0550-3213(78)90175-X
http://dx.doi.org/10.1016/S0550-3213(00)00355-2
http://dx.doi.org/10.1016/S0550-3213(00)00355-2
http://dx.doi.org/10.1063/1.3641892
http://dx.doi.org/10.1063/1.3641892
http://dx.doi.org/10.1016/j.aop.2014.02.016
http://arXiv.org/abs/hep-th/0504095
http://arXiv.org/abs/hep-th/0504095
http://dx.doi.org/10.1016/j.physrep.2012.07.003
http://dx.doi.org/10.1590/S0103-97332007000400019
http://dx.doi.org/10.1103/PhysRevD.74.105007
http://dx.doi.org/10.1103/PhysRevD.77.105023
http://dx.doi.org/10.1103/PhysRevD.77.105023
http://dx.doi.org/10.1103/PhysRevD.79.025019
http://dx.doi.org/10.1103/PhysRevD.79.025019
http://dx.doi.org/10.1088/1751-8113/43/24/245402
http://dx.doi.org/10.1103/PhysRevD.78.065047
http://dx.doi.org/10.1103/PhysRevD.78.065047
http://dx.doi.org/10.1103/PhysRevD.84.065039
http://dx.doi.org/10.1103/PhysRevD.90.085010
http://arXiv.org/abs/1102.0901
http://dx.doi.org/10.1140/epjc/s10052-011-1548-y
http://dx.doi.org/10.1140/epjc/s10052-011-1548-y
http://dx.doi.org/10.1103/PhysRevD.73.074503
http://dx.doi.org/10.1103/PhysRevD.73.074503
http://dx.doi.org/10.1103/PhysRevD.73.054504
http://dx.doi.org/10.1103/PhysRevD.73.054504
http://dx.doi.org/10.1007/978-3-540-49192-7

