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The critical behavior of a relativistic Z2-symmetric Yukawa model at zero temperature and density is
discussed for a continuous number of fermion degrees of freedom and of spacetime dimensions, with
emphasis on the role played by multimeson exchange in the Yukawa sector. We argue that this should be
generically taken into account in studies based on the functional renormalization group, either in four-
dimensional high-energy models or in lower-dimensional condensed-matter systems. By means of the latter
method, we describe the generation of multicritical models in less than three dimensions, both at infinite
and finite numbers of flavors. We also provide different estimates of the critical exponents of the chiral
Ising universality class in three dimensions for various field contents, from a couple of massless Dirac
fermions down to the supersymmetric theory with a single Majorana spinor.
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I. INTRODUCTION

In this paper we will study the renormalization group
(RG) flow of a simple Yukawa model describing relativistic
fermions interacting through the exchange of scalar fluc-
tuations. We will discuss some of its critical properties in a
continuum of spacetime dimensions 2 < d ≤ 4, dedicating
most of the analysis to the d ¼ 3 case. The class of models
we want to consider is described by the generic bare
Lagrangian

L ¼ 1

2
∂μϕ∂μϕþ VðϕÞ þ ψ̄γμi∂μψ þ iHðϕÞψ̄ψ ; ð1:1Þ

where we have Nf copies of fermions, the representation of
which will be kept general in the following, and one real
scalar field. The requirement of power-counting renorma-
lizability would further restrict the interactions inside the
potentials V and H (and would generically require the
inclusion of derivative interactions, too), but we are not
going to impose such conditions, since we are interested in
describing the possible conformal models in this family,
even if strongly coupled. In case the potentials V and H are
even and odd, respectively, the system is characterized by a
chiral Z2 symmetry, besides the U(Nf) symmetry. For this
reason, the model with bare potentials

VðϕÞ ¼ m̄2

2
ϕ2 þ λ̄2

2
ϕ4; HðϕÞ ¼ ȳϕ ð1:2Þ

is often called the Gross–Neveu–Yukawa model, since
it shares these symmetries with the purely fermionic

Gross–Neveu model [1] and can be obtained from it by
means of a Hubbard–Stratonovich transformation.
Even for more general bare Lagrangians that are not

related by any bosonization technique, the Yukawa models
and chiral fermionic models remain deeply connected. The
three-dimensional Gross–Neveu model shows a second-
order quantum phase transition that separates the phase
with preserved chiral symmetry from the one where this is
spontaneously broken and a chiral condensate of fermions
appears. The latter can be effectively described as a scalar
degree of freedom, and therefore this transition can be
unveiled also as a dynamical effect in interacting scalar-
spinor systems. Indeed, it is found that the critical proper-
ties of the Gross–Neveu model in 2 < d < 4 dimensions
are compatible with the ones of the Yukawa model, thus
indicating that the two are in the same universality class,
which for a generic but nonvanishing flavor number is also
called the chiral Ising universality class. In both para-
metrizations, this is described by a non-Gaussian fixed
point (FP) of the RG flow. As a consequence, nonpertur-
bative tools are best suited for the investigation of its
properties and for the extraction of key quantities such
as the corresponding critical exponents. Indeed several
methods have been applied to this problem, including ϵ
expansions [2–6], large-Nf expansions [4,7,8], lattice
simulations [9–13], and functional RG equations [14–19].
These critical properties have great physical relevance

for the description of several systems. Three-dimensional
relativistic fermionic systems, appear in several interesting
condensed matter problems. For instance, QED and the
Thirring model in 2þ 1 dimensions have been considered
for theories of high-TC superconductivity [20]. Concerning
the description of electrons in graphene, one can make use
of slight variants of these lower-dimensional models [21],
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as well as of theories in which gauge fields can propagate
out of the plane [22]. Understanding the phase diagram and
critical properties of these models at variable Nf represents
pretty much the same challenge as the one posed by the
Gross–Neveu and Yukawa models, and one can even
address them in a unified picture [23]. Even the simple
Yukawa model discussed in this work can find applications
to extremely nontrivial phenomena in condensed matter.
For the case of two massless Dirac fermions, its quantum
critical phase transition in d ¼ 3might be a close relative of
the putative transition between the semimetallic and the
Mott-insulating phases of electrons in graphene [18]. For a
single Dirac field instead, it is considered to be in the same
universality class of spinless fermions on the honeycomb
lattice with repulsive nearest neighbors interactions [13].
For a single Majorana spinor, it is a precious example of a

three-dimensional model showing emergent supersymmetry.
Indeed, it is known that in this case the critical theory not
only enjoys N ¼ 1 supersymmetry but also possesses only
one relevant component, which means that by tuning a single
macroscopic parameter one can discriminate between two
distinct phases with preserved or spontaneously broken
supersymmetry [17,24]. On these grounds, a potential
experimental realization of supersymmetry was proposed
in Ref. [24], at the boundary of topological superconductors.
A similar phenomenon occurs for Yukawa systems with
complex scalars and spinors, which have been argued to give
rise to an emergent N ¼ 2 supersymmetry [25].
The phase diagram of Gross–Neveu and Yukawa models

has been analysed in d < 4 also for a better understanding
of their d → 4 limit. Clearly, nonperturbative phenomena in
the latter case can have many applications in particle
physics. These range from the chiral phase transition in
QCD [26], where these models serve as simplified versions
of quark-meson models [27], to the Higgs sector of the
standard model [28,29] and to toy models of composite-
Higgs extensions [30].
In the present work, we will analyze a more general

truncation scheme for the functional renormalization group
(FRG) study of these systems, showing under which
conditions this brings important improvements in the
results obtained by means of the latter nonperturbative
method. Such a truncation scheme amounts to allowing for
a generic potential HðϕÞ, that essentially describes vertices
with two fermions and an arbitrary number of scalars. This
kind of interactions has been neglected in the FRG studies
of fermionic models for a long time. Only recently have
they been discussed in other works considering more
complicated models and different but related questions.
For example, in Ref. [31] the flow equations for this
Yukawa system coupled to quantum gravity were derived,
but only the linear coupling HðϕÞ ¼ ȳϕ was considered in
explicit studies of these equations. Most prominently, in
Ref. [32] the effect of higher Yukawa couplings on the
chiral phase structure of QCD at finite temperature and

chemical potential was analyzed by means of an effective
quark-meson model. It was observed, within polynomial
truncations of a Yukawa potential HðϕÞ, that higher-order
quark-meson interactions are quantitatively important in
the description of the chiral transition.
A similar but different study will be performed here, for

the present Z2-symmetric Yukawa model, in lower dimen-
sionality and for a generic number of flavors. We will
confine ourselves to the study of the zero-temperature
system at criticality, looking for scaling solutions for
various d and Nf and comparing the results obtained with
different methods. In Sec. III we start with the leading order
of the 1=Nf expansion, reproducing known results in three
dimensions and generalizing them to multicritical theories
below three dimensions. Technical details regarding this
analysis are sketched in Appendix B. In Sec. IV we turn to a
finite number of fermions and, by neglecting the wave
function renormalization of the fields, we observe how
critical Yukawa theories arise while continuously lowering
the dimensionality toward 2. To this end, we consider the
FP equations for the two generic functions VðϕÞ and HðϕÞ
and solve them numerically without resorting to any
truncation. In Sec. V, still neglecting the wave function
renormalizations, we adopt a different strategy for the
numerical integration of the FP equations and compute
the global FP potentials in three dimensions, for various
flavor numbers. For the case of a single Majorana spinor,
we also apply these numerical methods to the computation
of the critical exponents and perturbations. In Sec. VI we
discuss polynomial truncations, showing how these can
give results in satisfactory agreement with the global
numerical analysis. As a consequence, we use them for
a self-consistent inclusion of the wave function renormal-
izations and produce estimates of the critical exponents in
three dimensions and for various numbers of fermions,
which we compare with some of the existing literature.
Finally, in Sec. VII we address the d → 4 limit at a low
number of fermions, and in Sec. VIII we draw a summary
of our results. Yet, to introduce our work, we need to
provide the reader with the definition of the approximations
involved in the computation of the flow equations, and with
the resulting beta-functions. This is the object of the next
section and of Appendix A.

II. RG FLOW OF A SIMPLE YUKAWA MODEL
WITH MULTIMESON EXCHANGE

The FRG is a representation of quantum dynamics based
on Wilson’s idea of floating cutoff k. In this work we will
adopt its formulation in terms of a scale-dependent one
particle irreducible effective action [33], often called the
average effective action. For a given system, the form of
this action is determined by the field content Φ and by the
symmetry properties, as well as by an initial condition (bare
action) and boundary conditions for the integration of the
flow equation
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_Γk½Φ� ¼
1

2
STr½ðΓð2Þ

k ½Φ� þ RkÞ−1 _Rk�: ð2:1Þ

Here ðΓð2Þ
k ½Φ� þ RkÞ−1 represents the matrix of regularized

propagators, while Rk is a momentum-dependent masslike
regulator. Since the dot stands for differentiation with respect
to the RG time t ¼ log k, this flow equation comprehends
the infinite set of beta-functions for the infinitely many
allowed interactions inside Γk. Extracting them amounts to

projecting both sides of the equation on each separate
interaction functional. In practical computations, one drops
infinitely many operators, thus performing a nonperturbative
approximation called truncation of the theory space. To this
end, several systematic strategies are available and appro-
priate in different circumstances, such as the vertex expan-
sion or the derivate expansion. For reviews see Ref. [34].
In this work we will consider the following truncation:

Γk½ϕ;ψ ; ψ̄ � ¼
Z

ddx

�
1

2
Zϕ;k∂μϕ∂μϕþ VkðϕÞ þ Zψ ;kψ̄γ

μi∂μψ þ iHkðϕÞψ̄ψ
�
: ð2:2Þ

Here ϕ is a real scalar field, while ψ denotes Nf copies of a
spinor field with dγ real components. The latter parameter
is related to the symmetries of the system and plays
therefore a crucial role in pure fermionic as well as in
fermion-boson models. Yet, as long as we truncate the
theory space to the Ansatz of Eq. (2.2), focusing on the
mechanism of Z2-symmetry breaking, we can simply deal
with the total number of real Grassmannian degrees of
freedom Xf ¼ dγNf, considering it as an arbitrary real
number. As soon as Xf ≥ 2, the truncation above is missing
purely fermionic derivative-free interactions, that are in-
deed symmetry sensitive and that would contribute to the
leading (zeroth) order of the derivative expansion. Fur-
thermore, it is also missing field-dependent contributions
to the wave function renormalizations Zϕ and Zψ , which
would appear in the next-to-leading (first) order of the
derivative expansion. In the following we will call the
Ansatz of Eq. (2.2) a local potential approximation (LPA)
for this simple Yukawa model, whenever the wave function
renormalizations are neglected (Zϕ;k ¼ Zψ ;k ¼ 1), and
therefore the fields have no anomalous dimensions
ηϕ;ψ ¼ −∂t logZϕ;ψ . The inclusion of the latter will be
named LPA0. Our justification for the choice of this
truncation is in the exhaustive evidence that similar Ansätze

give a good description of the existence and properties of
conformal models in 2 < d ≤ 4 for linear systems with
scalar degrees of freedom [34].
Projection of the Wetterich equation on the truncation of

Eq. (2.2) yields the running of the corresponding param-
eters. Since we are interested in reproducing conformal
models, that correspond to scaling solutions of the RG flow,
it is useful to consider rescaled amplitudes

ϕ ⟶
kðd−2Þ=2

Z1=2
ϕ

ϕ; ψ ⟶
kðd−1Þ=2

Z1=2
ψ

ψ ;

since the new dimensionless renormalized field would then
be constant at criticality. As a consequence wewill focus on
the potentials for these fields,

vkðϕÞ ¼ k−dVk

�
Z1=2
ϕ ϕ

kðd−2Þ=2

�
;

hkðϕÞ ¼
k−1

Zψ
Hk

�
Z1=2
ϕ ϕ

kðd−2Þ=2

�
:

In this new set of variables, the flow equations read

_v ¼ −dvþ d − 2þ ηϕ
2

ϕv0 þ 2vdflðBÞd0 ðv00Þ − Xfl
ðFÞd
0 ðh2Þg ð2:3Þ

_h ¼ hðηψ − 1Þ þ d − 2þ ηϕ
2

ϕh0 þ 2vdf2hðh0Þ2lðFBÞd1;1 ðh2; v00Þ − h00lðBÞd1 ðv00Þg ð2:4Þ

ηϕ ¼ 4vd
d

fðvð3ÞÞ2mðBÞd
4 ðv00Þ þ 2Xfðh0Þ2½mðFÞd

4 ðh2Þ − h2mðFÞd
2 ðh2Þ�gϕ0

ð2:5Þ

ηψ ¼ 8vd
d

fðh0Þ2mðFBÞd
1;2 ðh2; v00Þg

ϕ0
; ð2:6Þ

where vd ¼ ð2dþ1πd=2Γðd=2ÞÞ−1, the threshold functions lðF=BÞd and mðF=BÞd on the right hand side denote regulator-
dependent contributions from loops containing fermionic or bosonic propagators, and the equations for the anomalous
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dimensions are to be evaluated at the minimum ϕ0 of the scalar potential. Their definition can be found in Appendix A,
together with the explicit form they take for the linear regulator, which is our choice in this work, since it allows for a simple
analytic computation of such integrals and, for scalar OðNÞ models, it optimizes the performance of truncations based on
low orders of the derivative expansion [35]. For this linear regulator, the flow equations of the two potentials read

_v ¼ −dvþ d − 2þ ηϕ
2

ϕv0 þ Cd

�
1 − ηϕ

dþ2

1þ v″
− Xf

1 − ηψ
dþ1

1þ h2

�
ð2:7Þ

_h ¼ hðηψ − 1Þ þ d − 2þ ηϕ
2

ϕh0 þ Cd

�
2hðh0Þ2

�
1 − ηψ

dþ1

ð1þ h2Þ2ð1þ v00Þ þ
1 − ηϕ

dþ2

ð1þ h2Þð1þ v00Þ2
�
−
h00ð1 − ηϕ

dþ2
Þ

ð1þ v00Þ2
�
; ð2:8Þ

where we have denoted for convenience Cd ¼ 4vd=d.
A simple way of facilitating the stability of the vacuum is

the requirement of Z2 symmetry, i.e. invariance over
ϕ → −ϕ. For a standard Yukawa system, with a linear
bare Yukawa interaction HðϕÞ ¼ yϕ, this requires a dis-
crete chiral symmetry ψ → iψ and ψ̄ → iψ̄ . A generaliza-
tion of local interactions with such a symmetry then
requires an odd HðϕÞ. There is also the possibility to
leave the spinors unchanged under the transformation,
which would require an even function HðϕÞ.
The goal of this work is to construct global FP solutions of

the flow equations compatible with the symmetry conditions
and to study the properties of the RG flow in their
neighborhood. The FPs, which describe scaling solutions,
are computed by solving the coupled system of two ordinary
differential equations _v ¼ 0 and _h ¼ 0 or, in some cases,
from the equivalent system for the quantities (v, y ¼ h2).
The dependence of such scaling solutions on the two
parameters d and Xf is one of the main themes discussed
in the literature as well as in the present work. Regarding the
former, we will assume 2 < d ≤ 4 and qualitatively discuss
how the number of critical models varies with d, but we will
especially concentrate on the properties of the d ¼ 3 system.
For the latter, we restrict ourselves to a non-negative number
of degrees of freedom, and we start from the two simple
limiting cases one can address. The simplest is Xf → 0. In
this case, the fermion sector remains nontrivial, see
Eqs. (2.4) and (2.6), but is not allowed to influence the
scalar dynamics, which is therefore identical to the fermion-
free model; see Eqs. (2.3) and (2.5). Hence, as far as
criticality is concerned, we expect to observe the same
pattern of FPs that can be observed without fermions, with
the same critical exponents in the scalar sector, even if at
generically nonvanishing values of the Yukawa couplings.
The second limit which brings radical simplifications is
Xf → ∞, and it is discussed in the next section.

III. LEADING-ORDER LARGE −Xf EXPANSION

Large-Nf methods are a traditional and successful way
to analyze the strongly coupled domain of the three-
dimensional Gross–Neveu model, which is renormalizable
at any order in a 1=Nf expansion [4,7,8]. As a

consequence, any other nonperturbative method is chal-
lenged to reproduce known results in this limit. For this
reason, before moving to the finite-Xf results provided by
the FRG, let us start with discussing the behavior of this
simple Yukawa model with many fermionic degrees of
freedom, within the basic parametrization of its dynamics
provided by Eq. (2.2), in a continuous set of dimensions
2 < d < 4. This FRG analysis, for the case of a linear
Yukawa function, has already been performed in Ref. [16].
Our results can be considered as an extension of it, to
include a generic function hðϕÞ. As we will see, the main
advantage that this brings at large Xf is the possibility to
describe also multicritical models in d < 3.
In this section let us replace v with Xfv, as well as ηϕ

with Xfηϕ, and look at the leading order in 1=Xf. The first
simplification is the fact that only canonical scaling terms
and pure fermion loops survive. Therefore, the flow
equations at this order reduce to

_v ¼ −dvþ d − 2þ ηϕ
2

ϕv0 − 2vdl
ðFÞd
0 ðh2Þ ð3:1Þ

_h ¼ hðηψ − 1Þ þ d − 2þ ηϕ
2

ϕh0 ð3:2Þ

ηϕ ¼ 4vd
d

ðh0Þ2½mðFÞd
4 ðh2Þ − 2h2mðFÞd

2 ðh2Þ� ð3:3Þ

ηψ ¼ 0: ð3:4Þ

Let us draw some general considerations about the FP
solutions, by postponing the task of consistently solving the
flow equation for ηϕ. The equation for h is almost regulator
independent (apart for the value of ηϕ), and the solution is a
simple power,

hðϕÞ ¼ chϕ2=ðd−2þηϕÞ: ð3:5Þ
This is real only if the exponent is rational and with an odd
denominator. Furthermore it is smooth only if the exponent
is a positive integer. The FP solution for v is instead
regulator dependent. Adopting the linear regulator, in
2 < d < 4 it reads
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vðϕÞ ¼ cvϕ2d=ðd−2þηϕÞ −
4vd
d2 2F1

�
1;−

d
2
; 1 −

d
2
;−hðϕÞ2

�
:

ð3:6Þ

The function 2F1ð1;− d
2
; 1 − d

2
;−xÞ, which actually can be

reduced to a Hurwitz–Lerch function − d
2
Φð−x; 1;− d

2
Þ, has

a logarithmic singularity at x ¼ −1, and therefore the
condition that hðϕÞ be real entails that this singularity is
always avoided, and that the potential is globally defined.
On the other hand, the smoothness of v is not taken for
granted. Since

2F1

�
1;−

d
2
; 1 −

d
2
;−x

�
¼ 1 −

d
d − 2

x −
d

4 − d
x2 þOðx3Þ

ð3:7Þ
and since this function is always convex, the leading ϕ
dependence of v at its minimum, i.e. at the origin, is
provided by h2ðϕÞ itself. Hence, the latter must be a smooth
function because we want the couplings associated to the
derivatives of the potential at the minimum to be well
defined at the FP. The same reasoning, if applied to the
Yukawa couplings, leads to the requirement that hðϕÞ be
smooth at the origin. This translates into a quantization
condition on the dimensionality of the scalar field

d − 2þ ηϕ
2

¼ 1

n
; n ∈ N ð3:8Þ

which is a consequence of the large-Xf limit.
We find it helpful, for the interpretation of this relation,

to consider a similar condition at the purely scalar FPs, with
trivial Yukawa interaction. With this we mean the limit
Xf → ∞ followed by ch → 0, which is clearly not the same
as the fermion-free model; yet, by consistency, this limit
should describe the classical properties of the latter model.
Indeed, if ch ¼ 0 the only condition left is that the
homogeneous part of the FP scalar potential be smooth
and stable; that is

d − 2þ ηϕ
2

¼ d
2n

; n ∈ N: ð3:9Þ

The meaning of this constraint is well known. By neglect-
ing the quantum corrections, hence setting ηϕ ¼ 0, one
would deduce that the smooth bounded solutions vðϕÞ ¼
cvϕ2n are allowed only in

dn ¼
2n

n − 1
¼ 2þ 2

n − 1
; n ∈ N: ð3:10Þ

This is the usual tree-level counting according to which the
interaction ϕ2n is marginal in dn and becomes relevant for
d < dn. From the quantum point of view, these dimensions
are the corresponding upper critical dimensions for multi-
critical universality classes. For any n, below dn a new FP

with nontrivial ηϕ branches from the Gaussian FP and
survives for 2 ≤ d < dn [36,37]. In the purely scalar model,
this is already visible within a simple LPA of the FRG,
where it is indeed possible to unveil and describe some
properties of these universality classes in a whole con-
tinuum of dimensions 2 < d < dm. In the leading order of
the large-Xf expansion, the fact that quantum effects allow
for these FPs at any 2 ≤ d < dn remains invisible. This is
because in the LPA one sets ηϕ ¼ 0, and in the LPA0 the
ch → 0 limit again forces a vanishing anomalous dimen-
sion. This simply signals that the two limits Xf → ∞ and
hðϕÞ → 0 do not commute.
A similar analysis can be applied to the Yukawa system.

Namely, if one forces classical scaling and sets ηϕ ¼ 0, the
large-Xf limit constrains d to the critical values

dn ¼ 2þ 2

n
; n ∈ N ð3:11Þ

that are exactly the dimensions at which the interaction
terms ϕnψ̄ψ become marginal. Notice that they coincide
with the critical dimensions of an even scalar potential and
that by selecting odd or even functions hðϕÞ one can reduce
the number of critical dimensions for h by a factor of 2. As
soon as anomalous scaling is allowed, the large-Xf limit
tells us that the nontrivial FPs can indeed exist for d < dn
and quantizes the corresponding anomalous dimensions

ηϕ ¼ 2

n
þ 2 − d ¼ dn − d; n ∈ N: ð3:12Þ

Notice that they get smaller and smaller, the closer d is to
the upper critical dimension dn. As a consequence, the
value of Xf at which one expects a breakdown of the LPA
with ηϕ ¼ 0 must be a decreasing function of ðdn − dÞ.
Unfortunately, the latter is maximum for the very interest-
ing n ¼ 1 scaling solution, which includes the d ¼ 3
Gross–Neveu universality class. However, even in this
case, for small enough Xf we have no a priori reason to
discard the use of the LPA for a first study of the critical
Yukawa models. On the other hand, for the n ¼ 1 scaling
solution, the LPA0 is able to reproduce Eq. (3.12) and
therefore provides a consistent picture of this critical model
for any Xf; see Appendix B. This is not the case for the
n > 1multicritical models, the nontrivial scaling properties
of which require larger truncations of the FRG.
Before going on and discussing the finite-Xf results, let

us comment on the universal critical exponents that one
should approach in a large-Xf limit, since they provide an
important reference point for the finite-Xf investigations.
The eigenvalue problem for the linearized flow in vicinity
of the large-Xf FPs is solved in Appendix B, both in the
LPA and in the LPA0. The result is that one can safely split
the problem into two classes of perturbations. The former
have δhðϕÞ ¼ 0 and δvðϕÞ ¼ δcvϕM, where we required
the potential to be smooth, thus quantizing the correspond-
ing critical exponents to the values
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θM ¼ d−M

�
d− 2þ ηϕ

2

�
¼ d−

M
n
; M ∈N; ð3:13Þ

i.e. the dimensionality of the couplings in front of δvðϕÞ.
The latter have δhðϕÞ ¼ δchϕN , a nontrivial δvðϕÞ, and
again

θN ¼ 1 − N

�
d − 2þ ηϕ

2

�
¼ 1 −

N
n
; N ∈ N;

ð3:14Þ
where we used Eq. (3.8) as before. As a consequence, the
large-Xf exponents are independent of ch and cv. They are
Gaussian in the sense that they are directly linked to the
dimensionality of the fields by naive dimensional counting,
but the latter dimensionality, as far as the scalar is
concerned, is deeply non-Gaussian and actually indepen-
dent of d.
As usual one can observe a hierarchy among FPs with

different n. For example, let us restrict ourselves to the slice
of theory space parametrized by the couplings inside hðϕÞ
only. Then, for a FP labelled by the integer n, there are n
relevant operators, namely ϕ0;…;ϕn−1, and one marginal
operator, ϕn itself. Within the LPA, the latter can be exactly
marginal, since it corresponds to shifts in ch. For the n ¼ 1
FP, the LPA0 is enough to change this conclusion, since the
flow equation for ηϕ provides a condition that fixes the FP
value of ch. For n > 1, higher truncations are needed. Thus,
the n̄th FP can provide UV completion for theories
approaching the nth FP in the IR, only if n < n̄. The
detailed study of the global flows among these FPs is in
principle a straightforward task in the large-Xf approxi-
mation, but it is out of the purposes of the present work. We
confine ourselves to sketching some properties of the FP
potentials and of the linearized perturbations in vicinity of
the FPs, which can be found in Appendix B, together with
some comments on how these nontrivial critical theories
disappear in d ¼ 4.

IV. LPA AT FINITE Xf AND GENERIC d. SOME
FEATURES FROM NUMERICAL

INVESTIGATIONS

In the previous section, we described how the large-Xf
expansion supports the expectation that, as the number of
dimensions is lowered from d ¼ 4 toward d ¼ 2, across the
upper critical dimensions of Eq. (3.11), new universality
classes become accessible in the theory space of Yukawa
models. In this section we are going to present evidence
that this happens also at finite Xf. Here and in the rest of
this work, we restrict our analysis to the subset of theory
space which enjoys a conventional Z2 symmetry, such that
v is even and h is odd. Furthermore we adopt the LPA and
neglect the flow equations for the wave function renorm-
alization of the fields. As it was argued in the previous

section, as well as in Appendix B with more details, one
cannot expect this approximation to perform well for any n
and Xf. Therefore, the following studies should be under-
stood as a first step toward a proper description of these
universality classes. Only the d ¼ 3 chiral Ising universal-
ity class will be later analyzed also in the LPA0, by resorting
to polynomial truncations of the potentials; see Sec. VI.
Since we look for odd Yukawa potentials, we can restrict

the list of the operators that become relevant at the
corresponding critical dimensions:

ϕ2n∶ dvcðn ≥ 2Þ ¼ 2n
n − 1

¼ 4; 3;
8

3
;
5

2
;
12

5
� � �

ϕ2nþ1ψ̄ψ∶ dhcðn ≥ 0Þ ¼ 4ðnþ 1Þ
2nþ 1

¼ 4;
8

3
;
12

5
� � � ð4:1Þ

To reveal the new universality classes appearing below
these dimensions, we follow the strategy developed in
Refs. [38,39], that has already been successfully applied to
the purely scalar model in continuous dimensions [37].
This consists of solving the FP condition, which is a
Cauchy problem involving a system of two coupled
second-order ordinary differential equations (ODEs), by
a numerical shooting method, i.e. varying the initial
conditions in a space of parameters which is two dimen-
sional, since two of the four boundary conditions are fixed
by the symmetry requirements (v0ð0Þ ¼ 0 and hð0Þ ¼ 0).
For the potential v, we choose as parameter σ ¼ v00ð0Þ,
relating it to vð0Þ using the differential equation. For h we
use h1 ¼ h0ð0Þ. Trying to numerically solve the nonlinear
differential equations with generic initial conditions, one
typically encounters a singularity at some value of
ϕcðσ; h1Þ where the algorithm stops. Such a value increases
in a steep way close to the initial conditions which
correspond to a global solution, even if the numerical
errors mask partially this behavior. As a consequence, in
our case a three-dimensional plot for ϕcðσ; h1Þ is very
useful to gain a first understanding of the positions of the
possible FPs.
In Fig. 1 we show the results of this analysis, for Xf ¼ 1

and for several dimensions: d¼ 5;4;3.9;3.5;3;8
3
;8
3
− 1

10
;5
2
;12
5
.

For d ¼ 5 and d ¼ 4, as it is expected, we see a single spike
in ðσ; h1Þ ¼ ð0; 0Þ which corresponds to the Gaussian
solution. More details on this are given, for Xf < 1, in
Sec. VII. In 3 < d < 4we have crossed the threshold below
which both the operators ϕ4 and ϕψ̄ψ become relevant, as
is shown in Eq. (4.1). In this interval, it is evident from the
figure that we find three new spikes. One is characterized
by h1 ¼ 0 and σ < 0 and corresponds to the Ising critical
solution. It is clearly visible in the fourth and fifth panels of
Fig. 1, but not in the third, since it is very close to the
Gaussian FP. The other two are physically equivalent, since
they lie at opposite values of h1, and correspond to the
chiral Ising universality class. They have σ < 0, which
suggests that also these scaling solutions are in a broken
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regime for Xf ¼ 1, at least in the LPA approximation.
Moving to 8

3
< d < 3we cross the marginality threshold for

the operator ϕ6, but no other operators involving fermions
have to be added to the set of the relevant ones. This
corresponds to the appearance of the tricritical theory in the
pure scalar sector, as we see from the new spike which
develops with σ > 0 and h1 ¼ 0. Once d < 8

3
also the new

operators ϕ8 and ϕ3ψ̄ψ become relevant, and new critical
solutions may appear. Indeed, in the left and the central
plots of the third line of Fig. 1, we see two new spikes,
which again occur at opposite values of h1 and are therefore
equivalent, this time with σ > 0. Finally in the lower-right
plot, where we present the case d ¼ 12

5
, which is lower than

5
2
enough to clearly see the effects of the new relevant scalar

operator ϕ8, one can appreciate the third new spike at σ < 0

and h1 ¼ 0. The latter FP corresponds to the quadricritical
scalar model as described for example in Refs. [37,40]. The
former solutions, already assuming that they globally exist,
define what one could call the chiral quadricritical Ising
universality class, since they originate from the Gaussian
FP together with the purely scalar quadricritical model.
We do not show more plots with lower values of d, since

the pattern is pretty clear. Pushing further this analysis
toward dimensions close to d ¼ 2, though conceptually
straightforward, would probably anyway require more than
the LPA. To provide the reader with some more details, in
Fig. 2 we zoom in the panel of Fig. 1 that refers to
d ¼ 8

3
− 1

10
. The three nontrivial spikes which appeared at

higher values of d > 3 are now out of this graph. From this
figure one can see with more accuracy the presence of the
three new nontrivial solutions. The two of them which lie at

FIG. 1 (color online). Spike plots for Xf ¼ 1 on varying the dimension, d ¼ 5; 4; 3.9; 3.5; 3; 8
3
; 8
3
− 1

10
; 5
2
; 12
5
, from left to right and from

top to bottom.

MULTIMESON YUKAWA INTERACTIONS AT CRITICALITY PHYSICAL REVIEW D 91, 125003 (2015)

125003-7



h1 ≠ 0 can also be visualized by a plot at constant value of
σ, approximately corresponding to the position of the
peaks; see Fig. 3. Here the range of h1 is wider than in
Fig. 2, so that one can see also a trace of the FPs generated
at d < 4, which are nevertheless located at a different value
of σ.
The analysis we discussed in this section can be repeated

for other values of Xf, thus getting a qualitative under-
standing of the position of the FPs as a function of both d
and Xf. However, because of the uncertainties in the
location of these peaks, it is hard to get a good qualitative
knowledge of this function. Nevertheless, the latter is
needed to prove that the arguments presented in this section
are rigorous, that each of the peaks corresponds to one FP,
and to compute the corresponding critical exponents. For
this reason, in the next section, we are going to adopt a
different numerical method that will allow us to precisely
answer these questions, focusing on d ¼ 3 for definiteness,
but allowing for a generic Xf.

V. d ¼ 3 LPA AT FINITE Xf . NUMERICAL
SOLUTION OF THE FP EQUATIONS

In this section we construct, for some specific cases,
the numerical solutions for v and h of the FP differential
equations, obtained by setting Eqs. (2.7) and (2.8) equal to
zero, in a domain for the dimensionless field ϕ that covers
the asymptotic region. This is what might be called a global
scaling solution. For convenience, we have actually con-
sidered the equivalent system for the quantities vðϕÞ and

yðϕÞ ¼ h2ðϕÞ. We focus here on d ¼ 3 for which, from the
analysis at Xf ¼ 1 performed in the previous section, we
expect a FP with nontrivial scalar potential and Yukawa
function. In the following we are going to take several
values of Xf into account. After having found the corre-
sponding nontrivial FP potentials, we determine the asso-
ciated critical exponents and eigenperturbations. The
knowledge of the global scaling solutions will be important
for a study of the quality of polynomial expansions,
presented in Sec. VI. The latter approach is very useful
especially in the case of the LPA0, which gives us access to
a self-consistent computation of the anomalous dimensions
without enlarging the truncation to a full next-to-leading
order of the derivative expansion. Clearly this program-
matic analysis can be repeated for other values of d.
We choose to construct a global numerical solution by

starting from the knowledge of the asymptotic behavior
allowed by the FP equations. Once the asymptotic expan-
sions are determined with sufficient accuracy, we proceed,
with a shooting method, to the numerical integration from
the asymptotic region toward the origin. The properties of
the solutions which reach the origin depend on the free
parameters in the asymptotic expansions. By requiring the
solutions to transform correctly under Z2, one can uniquely
fix the latter parameters to their FP values [41]. The leading
term of the asymptotic expansion for both v and h is
determined, in the LPA with vanishing anomalous dimen-
sions, by the classical scaling. Here we report the first
correction to it. Denoting α ¼ 2=ðd − 2Þ, the asymptotic
behavior of the solution of the FP equations in the
LPA reads

vasymptðϕÞ≃ Aϕ2αþ2 þ ϕ−2α CdðB − 2AXfðαþ 1Þð2αþ 1ÞÞ
2ABðαþ 1Þð2αþ 1Þðdþ 2Þ þ � � �

h2asymptðϕÞ≃ Bϕ2α þ ϕ−2−2α Cdαð4αð2αþ 1ÞAþ BÞ
2A2ðαþ 1Þð2αþ 1Þ2ðdþ 2Þ þ � � � ð5:1Þ

FIG. 2 (color online). Spike plot for d ¼ 8
3
− 1

10
and Xf ¼ 1,

zoomed area around the origin.

FIG. 3. Spike plot for d ¼ 8
3
− 1

10
and Xf ¼ 1, zoomed area

around the origin.
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and depends on two real parameters A and B. In our
analysis we have computed and used asymptotic expan-
sions with eight terms for each potential. Starting the
numerical evolution from some large value for ϕ ¼ ϕmax,
we have then investigated v0ð0Þ and hð0Þ as functions of

A and B. Computing numerically the gradient of these
two functions, we were able to employ a kind of
Newton–Raphson method to determine their zeros, i.e.
the values of A and B corresponding to Z2-symmetric
scaling solutions. In Fig. 4 we present two examples of

FIG. 4 (color online). The potentials v and h at the global scaling solution, computed numerically within the LPA. The case Xf ¼ 1,
which is in the broken regime, appears in the first two panels (top), while Xf ¼ 2, in the symmetric regime, is shown in the last two
panels (bottom).

0.5 1.0 1.5 2.0 2.5 3.0
X f

1000

2000

3000

4000

A

0.5 1.0 1.5 2.0 2.5 3.0
X f

B

2000

4000

6000

8000

FIG. 5 (color online). The values of the asymptotic parameters (A,B) defined by Eq. (5.1) at the scaling solutions, varying Xf in the
range 10−3 < Xf < 3.
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global solutions for the cases Xf ¼ 1 and Xf ¼ 2. The
former is in the broken regime, since the Z2 symmetric
scalar potential has a nontrivial minimum, while the latter
is in the symmetric regime. Any solution (v, h) is
characterized by two parameters, such as for example
A and B, or v00ð0Þ and h0ð0Þ, which indeed fix completely
the Cauchy problem once they are complemented by the
symmetry conditions. In Fig. 5 we show the FP values of
the integration constants A and B as defined by Eq. (5.1).
The locus of the FP solutions in the plane [v00ð0Þ; h0ð0Þ]
as a function of Xf ∈ ½10−3; 3� is instead presented in
Fig. 6. Notice that as Xf approaches zero, in the lower
left end of the curve, h0ð0Þ attains a finite value, which is
situated around 3.3. It is evident that the two regimes,
broken and symmetric, are realized in two complemen-
tary intervals of Xf. The transition between the two
occurs at Xf ≃ 1.64 for the LPA. In the next section, we
will see that this value is slightly modified in the LPA0
and becomes Xf ≃ 1.62. The vacuum expectation value
ϕ0 and the value of h0ðϕ0Þ as functions of Xf are
presented in Fig. 7.
The critical exponents of these scaling solutions and

the corresponding eigenperturbations are an important
piece of information. This is obtained by studying the
evolution of the small perturbations around the FPs.
Therefore, the linearized flow equations are the main
tool to study such a problem. They are constructed,
taking advantage of the separation of variables in ϕ and
k, by substituting into the flow equations

vkðϕÞ ¼ v�ðϕÞ þ ϵδvðϕÞeλt;
ykðϕÞ ¼ y�ðϕÞ þ ϵδyðϕÞeλt

ð5:2Þ

and then keeping the first term in ϵ, for ϵ ≪ 1. Such a
procedure leads to the eigenvalue problem

0 ¼ ðλ − dÞδvþ 1

2
ðd − 2Þϕδv0

þ Cd

�
Xf

ð1þ yÞ2 δy −
1

ð1þ v00Þ2 δv
00
�

ð5:3Þ

and

0 ¼ ðλ − 2Þδyþ
�
d
2
− 1

�
ϕδy0 þ Cd

�
δv00

ð2yðyþ 1Þ2y00 − ðy0Þ2ðyðv00 þ 5Þ þ 3y2 þ 1ÞÞ
yð1þ yÞ2ð1þ v00Þ3

− δyðy0Þ2
�

2

ð1þ yÞ3ðv00 þ 1Þ þ
ð3y2 þ 2yþ 1Þ

2y2ð1þ yÞ2ð1þ v00Þ2
�

þ δy0y0
�

2

ð1þ yÞ2ð1þ v00Þ þ
ð3yþ 1Þ

yð1þ yÞð1þ v00Þ2
�
−

δy00

ð1þ v00Þ2
�
; ð5:4Þ

where for simplicity we have renamed v� and y� as v and y.
This system is of the form

ðÔ − λÞδf ¼ 0; ð5:5Þ

if δf is the vector of perturbations, δfT ¼ ðδv; δyÞ, and
Ô is the corresponding differential operator. We have
considered two different ways to solve this eigenvalue
problem.

The first approach is a direct generalization of the
one we have already discussed for scaling solutions, in
this case applied to the full set of equations: FP plus
linearized flow. The asymptotic behavior of the eigen-
perturbations is computed by solving the asymptotic
form of the linearized equations for a large field,
which is obtained using the known asymptotic expan-
sion for v and y at the FP, given in Eq. (5.1). In d ¼ 3
one finds

FIG. 6 (color online). The values of (v00ð0Þ,h0ð0Þ) from the
numerical global scaling solutions, varying Xf in the range
10−3 < Xf < 3. One can notice the transition from the broken to
the symmetric regime, which occurs at Xf ≃ 1.64 for the
present LPA.
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δvasympt ¼ ϕ6−2λ þ ϕ−2λ−4 ð450A2βXf þ B2ð−2λ2 þ 11λ − 15ÞÞ
13500π2A2B2

þOðϕ−8−2λÞ

δyasympt ¼ βϕ4−2λ − ϕ−2λ−6
�ð2λ2 − 11λþ 15Þð20Aþ BÞ

16875π2A3
þ βð240Aλþ Bð2λ2 þ 5λ − 6ÞÞ

13500π2A2B

�
þOðϕ−10−2λÞ: ð5:6Þ

In practice we used an asymptotic expansion with up to
three terms per perturbation. We note that in a linear
homogeneous problem the overall normalization of the
eigenvector δf plays no role. Therefore, the asymptotic
form of δf depends only on a relative real parameter β,
which we choose to be a constant multiplying the leading
term of δy. One more free parameter is needed for tuning
the behavior of the solutions at the origin, such that
they fulfill the symmetry requirements δv0ð0Þ ¼ 0 and
δyð0Þ ¼ 0. This can be interpreted as the eigenvalue λ
itself. As a consequence, one expects a discrete spectrum of
allowed values for λ and β. Unfortunately, due to numerical
uncertainties, with this method we have been able only to
restrict the eigenvalues to an interval described by a
continuous function λðβÞ. Indeed one has to remember
that the global numerical solutions have been constructed
on some bounded neighborhood of the origin, even if the
latter overlaps with the region where the large field
asymptotic behavior becomes dominant. Moreover, the
linearized equations depend on derivatives of the numerical
global FP solutions, for which the accuracy is reduced.
The second approach we considered consists of inserting

the known numerical FP solutions in the linearized equa-
tions, computing a numerical expression for all the
ϕ-dependent coefficients of this eigenvalue problem and
then solving them by means of a pseudospectral method
based on Chebyshev polynomials. Also in this case, some
uncertainties remain, for the same reasons mentioned
above. As an example, for Xf ¼ 1 the leading critical
exponent we find is θ1 ¼ −λ1 ¼ 1.2279, which refers to the

only relevant direction (we do not consider θ0 ¼ 3, since it
is related to an additive constant in the potential and it is
unphysical in flat space). All the other eigenvalues λi are
positive and associated to irrelevant operators, for instance
θ2 ¼ −λ2 ¼ −0.6236 and θ3 ¼ −λ3 ¼ −1.5842. The rel-
evant direction corresponds to the eigenperturbation
δf1 ¼ ðδv; δhÞ shown in Fig 8. Notice the fact that the
relevant eigenpertubation has δhðϕÞ ≠ 0 unlike in the
large-Xf analysis, where the only relevant perturbation
compatible with symmetry requirements is δvðϕÞ ¼ δcvϕ2,
which corresponds to θ1 ¼ 1. Even if Xf ¼ 1 is quite
away from this limit, it is know that in this case the FP
theory is a N ¼ 1 Wess–Zumino model [17,24] and that
the supersymmetry-preserving relevant perturbation is a
change in the mass of the scalar field [17,42], which
therefore leaves the Yukawa sector unchanged. Hence,
δh ≠ 0 is probably a consequence of the explicit breaking
of supersymmetry introduced by our regularization scheme.
We do not push further here the spectral analysis of the

critical exponents and associated perturbations as a func-
tion of Xf, leaving it for a future study based on algorithms
giving better control on the numerical errors. In the present
work, these global numerical computations at Xf ¼ 1 will
serve as a reference for the development of a different,
local, approximation method, based on polynomial trun-
cations of the functions vðϕÞ and hðϕÞ. The latter will be
discussed in the next section and will be also used for a
more reliable discussion of the dependence of the critical
exponents on the number of fermion degrees of freedom.

FIG. 7 (color online). The vacuum expectation value ϕ0ðXfÞ from the numerical global scaling solutions is shown in the left panel,
while in the right panel, we plot the corresponding value of h0ðϕ0ÞðXfÞ, both in the LPA.
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VI. POLYNOMIAL ANALYSIS IN d ¼ 3

In this section we are going to discuss the use of
polynomial parametrizations and consequent truncations
of the functions vðϕÞ and hðϕÞ. Though for definiteness
we will address the specific case of the unique d ¼ 3
nontrivial critical Yukawa theory, similar techniques can
be applied to the other scaling solutions in 2 < d < 3,
presumably with the same degree of success. Section VI A
will present results obtained within the LPA, which can be
directly compared to the full functional analysis developed in
the previous section. This will make us confident about the
effectiveness and soundness of polynomial truncations, as
well as of the necessity to go beyond a simple linear Yukawa
coupling for an accurate description of critical properties of
the theory. On these grounds, Sec. VI B will push forward
the analysis to a self-consistent inclusion of the wave
function renormalization of the fields, which is essential
for quantitative estimates of the critical exponents, which
will be compared with some literature for several values of
Xf. Polynomial truncations will be also used in Sec. VII for
some comments on the four-dimensional model.
Let us start by presenting the truncation schemes we are

going to analyze. Since we restrict ourselves to d ¼ 3, we
will demand vðϕÞ and hðϕÞ to be even and odd, respec-
tively. We will use the common notation ρ ¼ ϕ2=2, and we
will adopt only one name for one and the same quantity,
regardless of whether it is considered as a function of ϕ or
as a function of ρ. In the symmetric regime, the physically
meaningful parametrization of the scalar potential is a
Taylor expansion around vanishing field

vðρÞ ¼
XNv

n¼0

λn
n!

ρn: ð6:1Þ

Regarding the Yukawa potential, we are interested in two
possible Taylor expansions, one for hðϕÞ, already adopted
in Ref. [32], and one for yðρÞ ¼ ½hðϕÞ�2. In the symmetric
regime, they read

hðϕÞ ¼ ϕ
XNh−1

n¼0

hn
n!

ρn ð6:2Þ

yðρÞ ¼
XNh

n¼1

yn
n!

ρn: ð6:3Þ

In the regime of spontaneous symmetry breaking (SSB),
the potential vðρÞ develops a nontrivial minimum κ¼ϕ2

0=2,
which becomes the preferred reference point for a different
Taylor expansion,

vðρÞ ¼ λ0 þ
XNv

n≥2

λn
n!

ðρ − κÞn: ð6:4Þ

Though, in general, κ is no special point for the function
hðϕÞ, it still enters in the definition of the vertex functions,
from which one extracts the physical multimeson Yukawa
couplings. As a consequence, in this regime it is necessary
to change also the parametrizations of hðϕÞ and yðρÞ, as
follows:

hðϕÞ ¼ ϕ
XNh−1

n¼0

hn
n!

ðρ − κÞn ð6:5Þ

yðρÞ ¼
XNh

n¼1

yn
n!

½ðρ − κÞn − ð−κÞn�: ð6:6Þ

The pair ðNv; NhÞ, or more generally an ordering of the
polynomial couplings by priority of inclusion in the
truncations, can be chosen by relying on naive dimensional
counting, as in an effective field theory setup, or on the
knowledge of the dynamics at a deeper level, e.g. a global
numerical solution for the FP functionals and the critical

FIG. 8 (color online). Case d ¼ 3 and Xf ¼ 1: the components δv and δh of the relevant eigenperturbation, from the global numerical
analysis of the LPA.
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exponents. In the latter strategy, one would sort the critical
exponents in order of relevance and would try to accurately
describe the corresponding perturbations. Alternatively,
and maybe less efficiently, one could scan over the results
produced by different pairs ðNv; NhÞ and select them on the
base of a comparison to the global numerical solution. In
the former strategy instead, since the dimension of a scalar
self-interaction ϕ2n is n and the one of a multimeson
Yukawa coupling ψ̄ϕ2nþ1ψ is 5=2þ n, we would expect
that the pairs ðNv ¼ D;Nh ¼ D − 2Þ, for the truncation of
hðϕÞ given in Eqs. (6.2) and (6.5), correspond to including
operators up to dimension D. However, since by truncating
at level Nh ¼ D − 2 we loose information about an
operator of dimension Dþ 1=2, if we want to be slightly
more accurate, we could include the latter and consider the
pairs ðNv ¼ D;Nh ¼ D − 1Þ. In our analysis we did
perform to some extent a random scan over different pairs
ðNv; NhÞ, and we found that the two strategies nicely agree,
so that ðNv ¼ D;Nh ¼ D − 1Þ is a very good systematic
choice for polynomial truncations. For similar reasons, as
well as for the sake of comparison, we made the same
choice also for the truncation of yðρÞ given in Eqs. (6.3)
and (6.6).
It is necessary to stress that, in both the parametrizations

given above, even at lowest order in the truncation for
the Yukawa coupling, the beta-functions for h0 or y1 are
different from the classic result [27] illustrated in the
reviews [34] and used for the present d ¼ 3 critical theory
for instance in Refs. [14–16,18,19]. This happens because
∂thðϕÞ, which comes from the projection of the rhs of the
flow equation on the term iψ̄ψ , is a nonlinear function of ϕ,
independent of the parametrization of hðϕÞ, be it linear in ϕ
or not. Hence, in order to define the running of a linear
Yukawa coupling, a further projection is needed. The
prescription adopted by the above-mentioned studies is
to identify the beta-function of the linear Yukawa coupling
with the first ϕ-derivative of ∂thðϕÞ at the minimum of
the potential. For the truncations under consideration in
this work instead, ∂th0 comes from the zeroth-order
ϕ-derivative of ∂thðϕÞ=ϕ, while ∂ty1 is defined as the first-
order ρ-derivative of ∂tyðρÞ ¼ 2hðϕÞ∂thðϕÞ, always evalu-
ated at the minimum of the potential. Simplicity is our main
motivation for choosing a parametrization of the running
Yukawa sector which does not include the traditional
Yukawa beta-function, as we are now going to explain.
The traditional projection has the structure of a Taylor

expansion of ∂thðϕÞ about ϕ ¼ ϕ0 [ϕ0 being the minimum
of vðϕÞ]. The choice of such an expansion for the para-
metrization of hðϕÞ would entail an explicit breaking of Z2

symmetry, which requires this function to be odd. Ideally,
one would need to match two Taylor expansions, one about
ϕ ¼ ϕ0 and another one about ϕ ¼ −ϕ0, by imposing
suitable conditions at the origin. These are just provided by
Z2 symmetry. The result of this construction, however, is
not a simple Taylor expansion anymore,

hðϕÞ ¼ 1

2

XNh

n¼1

gn
n!

½ðϕ − ϕ0Þn þ ð−1Þnþ1ðϕþ ϕ0Þn�; ð6:7Þ

and the projection rule on the generic coupling gn is more
involved than simply taking the nth ϕ-derivative and
evaluating it at ϕ ¼ ϕ0. Yet it is true that the latter
projection works for the Nhth coupling, such that this
truncation does include the traditional beta-function of the
linear Yukawa coupling as theNh ¼ 1 case. In this work we
preferred to consider and compare only the two truncation
schemes presented in Eqs. (6.2) and (6.5) and Eqs. (6.3)
and (6.6), leaving the one in Eq. (6.7) aside. In the next
sections, we are going to show that both polynomial
truncations converge to the same results for large enough
Nv and Nh, an observation that clearly should apply to all
possible parametrizations. Furthermore, in both polynomial
truncations, simply by setting Nh ¼ 1, one gets estimates
that are significantly different from the full truncation-
independent results. That the latter statement also applies to
the truncation in Eq. (6.7) can be assessed by comparison to
the literature, which the reader can find in Sec. VI B.

A. LPA

In Sec. V we looked for the d ¼ 3 nontrivial critical
theories at varying Xf within the LPA, by means of
numerical solvers for the ODEs defining the FP potentials.
Here we repeat this analysis with the different method of
polynomial truncations, and we compare the results with
the ones we previously found. The FPs emerge from the
solution of a system of coupled nonlinear algebraic
equations for the couplings. The critical exponents are
defined by (minus) the eigenvalues of the stability matrix at
the FP, i.e. the matrix of derivatives of the beta-functions
with respect to the couplings [34]. The anomalous dimen-
sions are computed in a non-self-consistent way, by
neglecting them in the FP equations descending from
Eqs. (2.3) and (2.4) and then by evaluating the flow
equations for the wave function renormalizations
Eqs. (2.5) and (2.6) at this FP position.
Let us start from the standard way of describing the

Yukawa models, that is by approximating the Yukawa
potential hðϕÞwith a single linear coupling. On the grounds
of the results of the full functional analysis presented in
Sec. V, one could expect that this approximation performs
well, since far enough from the large-field region the FP
function hðϕÞ does not strongly deviate from a straight line;
see Fig. 4. For a linear Yukawa function, the expansions
around the origin of hðϕÞ and yðρÞ give results which are
identical order by order in Nv, both in the shape of the FP
functions (in the sense that y1 ¼ 2h20 at the FP) and in the
critical exponents. As a consequence we can present them
in a single table for the former parametrization, the latter
providing the same results. This is Table I, where we set e.g.
Xf ¼ 1. The first two critical exponents form a complex
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conjugate pair, which is clearly unsatisfactory. This is
produced by the expansion around a trivial minimum of
vðϕÞ, that for Xf ¼ 1 is not justified. Once we turn to the
SSB parametrization of hðϕÞ, which is given on the top
panel of Table II, they become real. However, things
become cumbersome for the single-coupling SSB para-
metrization of yðρÞ, since we were not able to find any FP at
all (which might nevertheless exist). Let us recall that, even
in the case of a single Yukawa coupling, the beta-functions
descending from the two different polynomial truncations
of hðϕÞ and yðρÞ are different, and hence one cannot simply
translate the FP position from one parametrization to the
other. As soon as we add y2, the FP can be easily found.
This then stimulates considering the general effect of
allowing for higher polynomial Yukawa couplings.

The immediate observation is that their inclusion sig-
nificantly alters the position of the FP and the critical
exponents. Some degree of convergence is observed in
several systematic strategies for the increase of Nv and/or
Nh, but this can be convergence to the wrong results, i.e. to
FP functions that do not agree with the numerical global
solution. The linear Yukawa truncations provide one
example of this fact. This is visible by comparing the
two panels of Table II, where on the rhs we show the results
provided by the ðNv ¼ D;Nh ¼ D − 1Þ systematic choice
that we have already discussed above. The latter turns out to
converge to the correct value of the FP couplings, as we
are now going to argue. In Table III we show the results

TABLE I. Case d ¼ 3 and Xf ¼ 1, polynomial expansion of hðϕÞ around a trivial vacuum of the potential, with a fixed linear Yukawa
function (standard Yukawa interaction), in the LPA.

ðNv; NhÞ (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1) (9,1) (10,1)

λ1 −0.04901−0.1225 −0.1602 −0.1743 −0.1765 −0.1740 −0.1720 −0.1716 −0.1721
λ2 5.887 6.841 7.128 7.204 7.214 7.203 7.193 7.191 7.193
λ3 � � � 84.22 121.9 134.7 136.7 134.5 132.7 132.4 132.8
h0 2.620 2.464 2.382 2.351 2.347 2.352 2.356 2.357 2.356
θ1 1.701 1.546 1.438 1.378 1.358 1.362 1.372 1.376 1.375
θ2 −1.050 −1.156 −1.246þ i0.2686 −1.068þ i0.3386 −0.9602þ i0.3238 −0.9119þ i0.2933 −0.9150þ i0.2844 −0.9386þ i0.2941 −0.9526þ i0.3044
θ3 � � � −1.864 −1.246 − i0.2686 −1.068 − i0.3386 −0.9602 − i0.3238 −0.9119 − i0.2933 −0.9150 − i0.2844 −0.9386 − i0.2941 −0.9526 − i0.3044
ηψ 0.2395 0.2510 0.2572 0.2595 0.2599 0.2595 0.2591 0.2591 0.2592
ηϕ 0.2620 0.2306 0.2150 0.2092 0.2083 0.2093 0.2101 0.2103 0.2101

TABLE II. Case d ¼ 3 and Xf ¼ 1, polynomial expansion of
hðϕÞ around a nontrivial vacuum for both the potential and the
Yukawa function, in the LPA, with or without the inclusion of
multiple-meson-exchange interactions (top and bottom panels,
respectively).

ðNv;NhÞ (5,1) (6,1) (7,1) (8,1) (9,1)

κ 0.01114 0.01115 0.01114 0.01114 0.01114
λ2 25.08 24.88 24.80 24.84 24.85
λ3 813.8 800.3 793.33 796.5 797.5
h0 5.716 5.690 5.674 5.681 5.683
θ1 1.338 1.333 1.336 1.336 1.335
θ2 −0.2461 −0.2466 −0.2490 −0.2484 −0.2483
θ3 −2.232 −2.060 −2.033 −2.067 −2.075
ηψ 0.2629 0.2288 0.2288 0.2288 0.2288
ηϕ 0.5259 0.5166 0.5155 0.5160 0.5162

ðNv;NhÞ (5,4) (6,5) (7,6) (8,7) (9,8)

κ 0.01002 0.01009 0.01008 0.01007 0.01007
λ2 15.34 15.32 15.30 15.28 15.28
λ3 508.3 506.8 503.6 502.1 502.1
h0 4.220 4.211 4.207 4.206 4.207
h1 48.23 47.73 47.46 47.43 47.48
θ1 1.231 1.234 1.236 1.236 1.235
θ2 −0.6144 −0.6078 −0.6080 −0.6106 −0.6117
θ3 −1.649 −1.551 −1.520 −1.521 −1.531
ηψ 0.3435 0.3409 0.3402 0.3404 0.3407
ηϕ 0.4916 0.4910 0.4899 0.4895 0.4895

TABLE III. Case d ¼ 3 and Xf ¼ 1, polynomial expansion of
yðρÞ in the LPA. Top panel: expansion around the origin, for
which the global numerical solution provides λ1 ¼ −0.1313,
y1 ¼ 28.47, and unstable higher couplings. Bottom panel: ex-
pansion around a nontrivial vacuum and, in the last column, the
corresponding couplings extracted from the global numerical
solution.

ðNv;NhÞ (4,3) (5,4) (6,5) (8,7) (9,8)

λ1 −0.1209 −0.1315 −0.1339 −0.1315 −0.1309
λ2 10.60 11.05 11.16 11.09 11.06
λ3 293.2 339.6 351.0 342.7 340.1
y1 26.84 28.38 28.76 28.53 28.44
y2 986.6 1161 1206 1178 1167
θ1 1.324 1.253 1.226 1.230 1.236
θ2 −0.8293 −0.7186 −0.6410 −0.5892 −0.5989
θ3 −2.690 −2.215 −1.838 −1.460 −1.446
ηψ 0.5209 0.5615 0.5716 0.5642 0.5618
ηϕ 0.4486 0.4645 0.4683 0.4663 0.4654

ðNv;NhÞ (5,4) (6,5) (7,6) (8,7) (9,8) (∞;∞)

κ 0.01000 0.01013 0.01006 0.01006 0.01007 0.01007
λ2 15.58 15.17 15.30 15.28 15.28 15.28
λ3 521.8 498.9 503.0 502.0 502.3 502.8
y1 44.59 43.00 43.51 43.44 43.43 43.45
y2 1925 1818 1842 1837 1837 1839
θ1 1.260 1.221 1.236 1.236 1.235 1.228
θ2 −0.6849 −0.7738 −0.5964 −0.6111 −0.6127 −0.624
θ3 −1.693 −1.077 −1.511 −1.522 −1.537 −1.584
ηψ 0.3458 0.3384 0.3410 0.3406 0.3406 � � �
ηϕ 0.4955 0.4887 0.4897 0.4894 0.4895 � � �
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obtained by the systematic ðD;D − 1Þ extension of poly-
nomial truncations for yðρÞ. Comparing the two panels, one
can see how the critical exponents can be computed by
large polynomial truncations independently of whether
these are around the origin or a nontrivial vacuum.
Furthermore, comparing the bottom panels of Tables III
and II, it can be observed how both the FP potentials and
the critical exponents converge to values that are indepen-
dent of the chosen parametrization. That these values are
the ones corresponding to the full global solution provided
in Sec. V is shown in the bottom panel of Table III. Notice,
however, that there is a 0.6% difference between the
relevant exponent computed with the polynomial trunca-
tions and the one obtained by the global numerical analysis.
Even if we feel that we have the former method under a
better control, we cannot give our preference to any of these
estimates.

In Fig. 9 we plot different kinds of polynomial solutions,
all in a ðNv ¼ 9; Nh ¼ 8Þ truncation, against the numerical
global FP functions, still for Xf ¼ 1. For the potential v, we
show only the domain ϕ ≥ 0.3, the agreement among all
the curves being perfect for smaller values. The expansion
around the origin has a smaller domain of validity as
expected. Regarding the two sets of expansions around a
nontrivial vacuum, the scalar potentials for the two cases
are almost indistinguishable, while for the Yukawa func-
tion, we obtain a slightly better result employing the one of
Eq. (6.6), as it is shown in the right panel of the figure. The
same kind of plots can be obtained for the polynomial
truncations based on a single Yukawa coupling, corre-
sponding to a linear Yukawa function. These are shown in
Fig. 10, where we consider both polynomial expansions,
around the origin and the nontrivial minimum, for Nv ¼ 9.
The left panel is especially interesting since it shows how, if

FIG. 10 (color online). Comparison of the Xf ¼ 1 global numerical solution in the LPA (blue, continuous) with the corresponding
ðNv ¼ 9; Nh ¼ 1Þ polynomial solutions, around the origin as in Eqs. (6.1)–(6.3) (red, dotted) and around a nontrivial vacuum as in
Eqs. (6.4) and (6.5) (green, dot-dashed), for the potential vðϕÞ (left panel) and the Yukawa function hðϕÞ (right panel).

FIG. 9 (color online). Comparison of the Xf ¼ 1 global numerical solution in the LPA (blue, continuous) with the corresponding
ðNv ¼ 9; Nh ¼ 8Þ polynomial solutions, around the origin as in Eqs. (6.1)–(6.3) (red, dotted), around a nontrivial vacuum as in
Eqs. (6.4)–(6.6) (brown, dashed) and in Eqs. (6.4)–(6.5) (green, dot-dashed), for the potential vðϕÞ (left panel) and the Yukawa function
yðϕÞ ¼ h2ðϕÞ (right panel).
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one forces a linear Yukawa function, even with the SSB
expansion, the shape of the potential is poorly reproduced.
Having observed that in the LPA the ðD;D − 1Þ-

systematic polynomial expansions converge to the global
solution for Xf ¼ 1, we assume that this is always the
case and make use of them for addressing how the FP and
the critical exponents depend on Xf within the LPA.
In Sec. III we have argued that when Xf is not small there
is no reason to trust the LPA for the d ¼ 3 critical theory,
since ηϕ should approach unity as Xf increases. This is
what the global numerical analysis also indicates. Indeed
in Sec. V we found that the constants A and B wildly grow
from Xf ¼ 3 on, in practice making the construction
of FP potentials harder and harder. This problem is easily
addressed by means of the polynomial expansions. The
results obtained with a (9,8) truncation, both for hðϕÞ and
yðρÞ, are shown in Tables IV and V.
As expected, the anomalous dimensions show a very

different Xf dependence. Starting with ηψ > ηϕ for very
small Xf, the former decreases, and the latter increases as
Xf is increased. Still for Xf around 1, the two are small
enough for qualitatively trusting the LPA, though for
estimates of the critical exponents, the LPA0 provides
different and more accurate results. The polynomial trun-
cations agree with the global analysis and locate around
Xf ¼ 1.64 the transition from the SSB to the SYM
(symmetric) regime for the FP potential. Around this value

ηϕ reaches unity, thus signalling the inconsistent use of the
LPA. Yet, if we insist on using this approximation for larger
values of Xf, the breakdown of the approach is signalled by
different phenomena. First of all the critical exponents
become complex, from about Xf ¼ 2 on. Then the anoma-
lous dimensions ηϕ and ηψ , which are determined in a
somehow unlegitimate way, become much bigger than
unity and negative, respectively. At the same time, the
couplings at the FP increase very rapidly, similarly to what
was observed in Fig. 5. Actually in LPA it is easier than in
the global numerical analysis to understand how quickly
they grow. The result of a (6,5)-polynomial truncation of
yðρÞ around a trivial minimum is shown in Fig. 11. It is
quite accurate to fit the behavior of the coupling y1 close to
Xf ¼ 4 with a simple pole y1 ≈ 121.2=ð3.999 − XfÞ. Also
the remaining couplings have a rate of growth that is
compatible to a divergence at a finite value of Xf, but these
values would lie beyond the pole of y1.
Also the comparison between the polynomial truncations

and the global numerical results illustrates the appearance
of severe problems as Xf increases. Moving to larger values
of Xf and entering the symmetric regime, one sees, again
comparing against the numerical solution of the ODEs, that
the polynomial approximation has a smaller radius of
convergence and therefore leads to a less trustworthy
estimate of the LPA results. As an example we present
the case Xf ¼ 2.5 in Fig. 12. Here the two curves show a

TABLE IV. Case d ¼ 3 and varying Xf , polynomial expansion of hðϕÞ around the nontrivial (top panel) or trivial (bottom panel)
minimum for both the potential and the Yukawa function, with Nh ¼ 8 and Nv ¼ 9 in the LPA.

Xf 0.3 0.6 0.9 1.2 1.5 1.64

κ 2.311 × 10−2 1.704 × 10−2 1.173 × 10−2 6.845 × 10−3 2.219 × 10−3 1.126 × 10−4

λ2 9.872 12.21 14.52 16.75 18.77 19.61
λ3 183.6 294.3 443.4 632.5 856.0 967.6
h0 4.154 4.178 4.200 4.218 4.227 4.230
h1 35.08 40.29 45.66 51.12 56.52 59.04
θ1 1.435 1.344 1.261 1.185 1.117 1.087
θ2 −0.6683 −0.6481 −0.6216 −0.5896 −0.5466 −0.5212
θ3 −1.022 −1.250 −1.464 −1.656 −1.887 −2.096
ηψ 0.2780 0.3000 0.3292 0.3667 0.4164 0.4482
ηϕ 0.2366 0.3111 0.4342 0.6249 0.8850 1.014

Xf 1.64 2 2.5 3 3.5

λ1 −2.267 × 10−3 0.1403 0.5480 1.705 6.165
λ2 19.50 29.48 65.58 232.9 1698
λ3 960.5 1955 7265 5.313 × 104 1.090 × 106

h0 4.223 4.600 5.422 7.041 10.88
h1 58.84 79.82 142.6 353.6 1505
θ1 1.071 0.9976 0.9336 0.9538 1.041
θ2 −0.5212 −0.4661 −0.3727 −0.2725 −0.1783
θ3 −2.063 −2.725� i0.2953 −2.763� i0.8557 −2.507� i1.242 −1.956� i1.695
ηψ 0.4521 0.3372 0.1066 −0.1522 −0.3048
ηϕ 1.012 1.545 2.971 6.660 19.64
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good overlap for ϕ < 0.18, both for vðϕÞ and yðϕÞ, while
at Xf ¼ 1 the same grade of agreement was found for
ϕ < 0.28. Again the strongest restriction is imposed by
the Yukawa function. Instead of interpreting these problems
as a sign of the generic weakness of the polynomial
truncations for large Xf, we take the point of view that
they are the way in which these truncations manifest the
failure of the LPA for Xf roughly bigger than 1.6. We
think that the results of the next section support this
interpretation.

B. LPA0

In the LPA0 the anomalous dimensions are consistently
determined by solving the FP equations together with
the flow equations for the wave function renormaliza-
tions. In the previous sections, we have shown that this is
necessary for a correct qualitative description of the
dynamics of the model, roughly above Xf ≈ 1.6. The
expectation is that, thanks to the wave function renorm-
alizations, the system should gradually move toward the
large-Xf limit, as it was already checked for truncations
with a linear Yukawa function [14–17]. In this section we
want also to understand how big are the effects of the
wave function renormalizations on the critical exponents,
already for small Xf.
As in the previous section, let us start our discussion with

the Xf ¼ 1model. Table VI is the LPA0 version of Table II,
which considers the truncation of hðϕÞ with or without
higher Yukawa couplings. If the effect of the inclusion of
multimeson exchange on the relevant exponent θ1 was of
the 8% in the LPA, it got reduced to the 7% in the LPA0.
However, in the truncation of yðρÞ, the effect is of the 20%,
see Table VII. Also, the convergence of the polynomial
truncations seems quicker in the LPA0. A comparison
between the top panels of Tables VI and VII illustrates
how the predictions of the FRG can be made independent
of the truncation scheme, here in the form of a different
definition of Yukawa couplings, only by including full

TABLE V. Case d ¼ 3 and varying Xf , polynomial expansion of yðρÞ around the nontrivial (top panel) or trivial (bottom panel)
minimum for both the potential and the Yukawa function, with Nh ¼ 8 and Nv ¼ 9 in the LPA.

Xf 0.3 0.6 0.9 1.2 1.5 1.64

κ 2.310 × 10−2 1.705 × 10−2 1.174 × 10−2 6.846 × 10−3 2.187 × 10−3 3.115 × 10−5

λ2 9.889 12.21 14.52 16.75 18.75 19.56
λ3 184.1 294.1 443.4 632.6 853.3 961.5
y1 48.27 46.33 44.26 41.48 37.82 35.78
y2 1413 1600 1783 1927 1997 1997
θ1 1.436 1.344 1.261 1.184 1.112 1.077
θ2 −0.6818 −0.6643 −0.6245 −0.5897 −0.5459 −0.7877
θ3 −1.021 −1.242 −1.467 −1.665 −1.864 −0.5190
ηψ 0.2789 0.2998 0.3290 0.3667 0.4171 0.4498
ηϕ 0.2367 0.3111 0.4342 0.6249 0.8850 1.014

Xf 1.64 2 2.5 3 3.5

λ1 −6.085 × 10−4 0.1424 0.5501 1.706 6.164
λ2 19.53 29.52 65.65 232.8 1698
λ3 959.5 1954 7258 5.301 × 104 1.089 × 106

y1 35.72 42.37 58.84 99.13 236.9
y2 1993 2944 6192 1.990 × 104 1.310 × 105

θ1 1.076 1.003 0.9374 0.9551 1.041
θ2 −0.5196 −0.4652 −0.3727 −0.2726 −0.1783
θ3 −2.006 −2.582 −2.794� i0.8023 −2.520� i1.231 −1.958� i1.694
ηψ 0.4509 0.3360 0.1061 −0.1520 −0.3048
ηϕ 1.014 1.548 2.974 6.659 19.64

3.6 3.7 3.8 3.9 4.0

5
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15

X f

log y1

FIG. 11 (color online). Behavior of the coupling y1 in aNh ¼ 5,
Nv ¼ 6 polynomial truncation of yðρÞ around a trivial vacuum,
within the LPA. The curve is a fit of data from Xf ¼ 3.5
to Xf ¼ 4–10−7.
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functions of field amplitudes, that is by allowing for higher
polynomial couplings.
Once we turn to the dependence of the results on Xf,

which is shown in Tables VIII and IX, it becomes visible
how the difference between the LPA and the LPA0 can be
negligible only for unphysical very small values of Xf. For
θ1, it is the 7% at Xf ¼ 0.3 and the 14% already at Xf ¼ 1.

On the contrary, as we will see later in this section by
comparing our results to the literature, the effect of the
inclusion of higher Yukawa couplings decreases with
increasing Xf. The transition between the SSB and the
symmetric regime for the FP potential in the LPA0 is around
Xf ¼ 1.62, while it occurs at Xf ¼ 2.31 for truncations
with a linear Yukawa function [19]. From these tables it
also seems reasonable to expect that in the Xf → 0 limit the
Yukawa couplings attain finite nonvanishing values, as it
was observed already in the LPA; see Fig. 6. Also, the trend
in the change of θ1 and ηϕ is compatible with an approach
to the corresponding Ising values, thus further supporting
the discussion at the end of Sec. II. As far as the Xf → ∞
limit is concerned instead, the smooth transition to the
large-Xf exponents is evident in the bottom panels of
Tables VIII and IX.
Let us now come to the comparison of our results with

the literature. The classic methods for the investigation of
the critical properties of the Gross–Neveu and Yukawa
models are the ϵ and the 1=Nf expansions [2–8]. The
former can be of great utility, since both expansions around
the upper and the lower critical dimensions give compa-
rable results, such that d ¼ 3 does not seem a too wild
extrapolation. Yet, some treatment for these asymptotic
series is needed. Resummation is unfortunately out of
reach, since they are known only up to the second or third
orders [3,5], apart for the anomalous dimensions for
which the computations have been pushed up to the fourth
order [6]. Polynomial interpolations of the two different ϵ
expansions have been studied in Ref. [18] for the case
Xf ¼ 8, and we report their results, borrowing their
notations, such that Pi;j denotes a polynomial which is
i-loop exact near the lower critical dimension and j-loop
exact near the upper. We also report the crude extrapola-
tions that are obtained by simply setting ϵ ¼ 1 in the

FIG. 12 (color online). Comparison of the numerical solution in the LPA (blue, continuous) with the corresponding
ðNv ¼ 9; Nh ¼ 8Þ-polynomial solutions, for Xf ¼ 2, around the origin as in Eqs. (6.1)–(6.3) (red, dotted), around a nontrivial
vacuum as in Eqs. (6.4)–(6.6) (brown, dashed), and in Eqs. (6.4) and (6.5) (green, dot-dashed), for the potential v (left panel) and the
Yukawa function yðϕÞ ¼ h2ðϕÞ (right panel).

TABLE VI. Case d ¼ 3 and Xf ¼ 1, polynomial expansion of
hðϕÞ around a nontrivial vacuum for both the potential and the
Yukawa function, in the LPA0, with or without the inclusion of
multiple-meson-exchange interactions (bottom and top panels,
respectively).

ðNv;NhÞ (5,1) (6,1) (7,1) (8,1) (9,1)

κ 6.250 × 10−3 0.01261 0.01262 0.01262 0.01262
λ2 6.299 6.995 7.000 7.001 7.000
λ3 52.38 64.06 64.28 64.33 64.29
h0 2.139 2.533 2.534 2.534 2.534
θ1 1.595 1.548 1.548 1.548 1.548
θ2 −0.7528 −0.6828 −0.6832 −0.6828 −0.6828
θ3 −1.241 −1.289 −1.299 −1.297 −1.294
ηψ 0.1168 0.1273 0.1272 0.1272 0.1272
ηϕ 0.2807 0.2237 0.2238 0.2238 0.2238

ðNv;NhÞ (5,4) (6,5) (7,6) (8,7) (9,8)

κ 0.01080 0.01078 0.01077 0.01078 0.01078
λ2 6.009 5.998 5.997 5.998 5.999
λ3 61.01 60.50 60.47 60.54 60.56
h0 2.474 2.473 2.474 2.474 2.474
h1 7.548 7.530 7.542 7.545 7.544
θ1 1.444 1.443 1.443 1.443 1.443
θ2 −0.7721 −0.7739 −0.7745 −0.7743 −0.7741
θ3 −1.078 −1.077 −1.084 −1.086 −1.085
ηψ 0.1535 0.1535 0.1536 0.1536 0.1536
ηϕ 0.2214 0.2211 0.2211 0.2212 0.2212
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TABLE VII. Case d ¼ 3 and Xf ¼ 1, polynomial expansion of yðρÞ around a nontrivial vacuum for both the potential and the Yukawa
function, in the LPA0, with or without the inclusion of multiple-meson-exchange interactions (bottom and top panels, respectively).

ðNv;NhÞ (5,1) (6,1) (7,1) (8,1) (9,1)

κ 9.208 × 10−3 9.210 × 10−3 9.212 × 10−3 9.213 × 10−3 9.212 × 10−3

λ2 8.300 8.307 8.315 8.316 8.314
λ3 72.23 72.45 72.77 72.82 72.71
y1 18.64 18.65 18.67 18.67 18.67
θ1 1.732 1.731 1.732 1.732 1.732
θ2 −0.5319 −0.5324 −0.5325 −0.5318 −0.5321
θ3 −1.626 −1.657 −1.676 −1.672 −1.664
ηψ 0.1886 0.1887 0.1887 0.1887 0.1887
ηϕ 0.2680 0.2681 0.2683 0.2684 0.2683

ðNv;NhÞ (5,4) (6,5) (7,6) (8,7) (9,8)

κ 0.01079 0.01077 0.01078 0.01078 0.01078
λ2 6.005 5.997 5.997 5.999 5.999
λ3 60.83 60.43 60.50 60.59 60.56
y1 13.05 13.04 13.04 13.04 13.04
y2 152.0 151.4 151.7 151.8 151.7
θ1 1.444 1.443 1.443 1.443 1.443
θ2 −0.7710 −0.7738 −0.7745 −0.7743 −0.7741
θ3 −1.072 −1.077 −1.086 −1.086 −1.084
ηψ 0.1536 0.1536 0.1536 0.1536 0.1536
ηϕ 0.2214 0.2211 0.2211 0.2212 0.2212

TABLE VIII. Case d ¼ 3 and various Xf, polynomial expansion of hðϕÞ around the nontrivial (top panel) or trivial (bottom panel)
minimum for both the potential and the Yukawa function, with Nh ¼ 8 and Nv ¼ 9 in the LPA0.

Xf 0.3 0.6 0.9 1.2 1.5 1.62

κ 2.377 × 10−2 1.793 × 10−2 1.253 × 10−2 7.316 × 10−3 2.171 × 10−3 1.164 × 10−4

λ2 5.719 6.028 6.045 5.849 5.530 5.385
λ3 55.00 61.19 61.55 57.38 50.81 47.92
h0 2.745 2.641 2.518 2.385 2.252 2.201
h1 9.355 8.798 7.890 6.831 5.789 5.400
θ1 1.537 1.490 1.453 1.427 1.411 1.407
θ2 −0.8158 −0.7883 −0.7755 −0.7751 −0.7833 −0.7879
θ3 −0.9829 −1.066 −1.089 −1.063 −1.004 −0.9742
ηψ 0.1510 0.1529 0.1537 0.1531 0.1514 0.1505
ηϕ 0.1366 0.1687 0.2073 0.2499 0.2936 0.3108

Xf 1.62 2 3 4 6 8

λ1 −7.622 × 10−4 4.135 × 10−2 0.1443 0.2316 0.3602 0.4448
λ2 5.375 5.472 5.604 5.562 5.185 4.701
λ3 47.83 43.65 32.95 23.64 11.05 4.560
h0 2.198 2.157 2.037 1.915 1.703 1.538
h1 5.388 4.863 3.635 2.694 1.537 0.9481
θ1 1.277 1.229 1.134 1.077 1.024 1.004
θ2 −0.7776 −0.7742 −0.7794 −0.7962 −0.8345 −0.8649
θ3 −0.8944 −0.9581 −1.101 −1.196 −1.287 −1.311
ηψ 0.1508 0.1314 9.347 × 10−2 6.939 × 10−2 4.341 × 10−2 3.073 × 10−2

ηϕ 0.3106 0.3721 0.5057 0.6024 0.7223 0.7894
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expansions of θ1 ¼ ν−1, ηϕ, and ηψ .
1 Also the 1=Nf

expansion clearly needs some care, since we are interested
in a low number of fermions. Actually we are going to refer
to this method only for Xf ¼ 8 and Xf ¼ 4, corresponding
to Nf ¼ 2 and Nf ¼ 1, respectively. Again only the second
or third order is known [7,8]. For the correlation-length
exponent θ1 ¼ ν−1, we adopt the Padé approximant used in
Ref. [18], while for the anomalous dimensions, we refer to
the Padé–Borel treatment reported in Ref. [15].
The available FRG literature is rich, and it offers a

precious background on which we can measure the effects
of the enlargement of the truncation discussed in this work.
Essentially all the past studies considered the LPA0, includ-
ing a scalar potential and a simple linear Yukawa coupling
[14–19], that can be considered as the first order in the
truncation of Eq. (6.7). The only exception in this sense is
provided by the supersymmetry-preserving scheme that has
been applied to the Xf ¼ 1 case, which retained a full
superpotential [42–44], thus including multimeson exchange
in the Yukawa sector, and sometimes was pushed to the next-
to-next-to-leading order of the (supercovariant) derivative
expansion. Also the choice of regulators is diverse, com-
prehending the linear, the sharp, and the exponential ones
(which in the tables we abbreviate with lin, sha, and exp).

In some studies the scalar potential was approximated by
polynomial truncations in the symmetric regime, for which
we provide the corresponding Nv (Nw in case of truncations
of the superpotential for supersymmetric flows). In others,
that we label by Nv ¼ ∞ (or Nw ¼ ∞), the differential
equations for the FP and the perturbations around it were
solved by numerical methods, which are different from paper
to paper. Our results are labeled by Nh > 1.
Other methods to which we can compare in special cases

are Monte Carlo simulations and the conformal bootstrap.
Both of them can give high-precision computations of the
critical exponents, but so far they have had a limited
application to low-Xf Yukawa models. For Xf ¼ 8 two
lattice calculations of the critical exponents are available.
One, based on staggered fermions [10], though ignoring a
sign problem, provides results which are in good agreement
with continuum methods, as it appears from Table X. An
independent work applying the fermion bag approach [12],
that is free from the sign problem, is instead offering very
different results: ν ¼ 0.83ð1Þ, ηϕ ¼ 0.62ð1Þ, and ηψ ¼
0.38ð1Þ. In both cases it is not clear whether the symmetry
of the lattice model is the expected one in the continuum
limit.2 Recently, another sign-problem-free simulation
adopting the continuous time quantum Monte Carlo method
for a model of spinless fermions on a honeycomb lattice

TABLE IX. Case d ¼ 3 and various Xf, polynomial expansion of yðρÞ around the nontrivial (top panel) or trivial (bottom panel)
minimum for both the potential and the Yukawa function, with Nh ¼ 8 and Nv ¼ 9 in the LPA0.

Xf 0.3 0.6 0.9 1.2 1.5 1.62

κ 2.377 × 10−2 1.793 × 10−2 1.253 × 10−2 7.315 × 10−3 2.169 × 10−3 1.125 × 10−4

λ2 5.719 6.028 6.045 5.849 5.530 5.384
λ3 55.00 61.19 61.55 57.37 50.79 47.90
y1 17.51 15.62 13.67 11.85 10.26 9.690
y2 214.7 192.0 162.1 131.55 104.5 95.07
θ1 1.537 1.490 1.453 1.427 1.411 1.407
θ2 −0.8152 −0.7882 −0.7755 −0.7751 −0.7831 −0.7877
θ3 −0.9833 −1.066 −1.088 −1.062 −1.003 −0.9727
ηψ 0.1510 0.1529 0.1537 0.1531 0.1514 0.1505
ηϕ 0.1366 0.1687 0.2073 0.2499 0.2936 0.3108

Xf 1.62 2 3 4 6 8

λ1 −7.366 × 10−4 4.137 × 10−2 0.1443 0.2316 0.3602 0.4448
λ2 5.374 5.471 5.604 5.562 5.185 4.701
λ3 47.81 43.63 32.95 23.64 11.05 4.560
y1 9.667 9.304 8.296 7.338 5.804 4.733
y2 94.77 83.91 59.23 41.28 20.95 11.67
θ1 1.277 1.229 1.134 1.077 1.024 1.004
θ2 −0.7775 −0.7742 −0.7794 −0.7962 −0.8345 −0.8649
θ3 −0.8935 −0.9578 −1.101 −1.196 −1.287 −1.311
ηψ 0.1508 0.1314 9.347 × 10−2 6.939 × 10−2 4.341 × 10−2 3.073 × 10−2

ηϕ 0.3106 0.3721 0.5057 0.6024 0.7223 0.7894

1We made use of the formulas reported in Ref. [3], with typos
corrected according to the observations of Ref. [18].

2We are grateful to H. Gies for informing us about these
discussions.
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provided estimates of the critical exponents of the chiral
Ising universality class for Xf ¼ 4, i.e. a single Dirac field
[13]. These results are compared to those emerging from the
continuum methods in Table XI. Surprisingly they are much
closer to our estimates for the case Xf ¼ 2; see Table XII.
Regarding the latter case, notice that the results from

Ref. [15] are affected by the absence of some terms in the
flow equations that, being proportional to the vacuum
expectation value of the scalar, become important for
Xf ≤ 2.3 Their effect significantly reduces the value

of ν. Since upon inclusion of multimeson exchange the
transition from the symmetric to the SSB regime occurs
at lower values of Xf, our computations are still in the
symmetric regime. This might qualitatively explain the
drastic departure from the results of Ref. [19].
Also the comparison for Xf ¼ 1, which is presented

in Table XIII, requires some comments. Let us recall
that for this field content the system at criticality is
described by a N ¼ 1 Wess–Zumino model [17,24].
Hence, if the regularization does not break supersym-
metry, the critical anomalous dimensions of the scalar
and of the spinor should be equal. Furthermore, a
superscaling relation ν−1 ¼ ðd − ηÞ=2, which was first

TABLE X. Critical exponents for Xf ¼ 8. For a short description of the approximations involved in each method,
see the main text.

ν θ1 ηϕ ηψ

FRG ðNv ¼ 9; Nh ¼ 8Þ lin (this work) 1.004 0.996 0.789 0.031
FRG ðNv ¼ 3; Nh ¼ 1Þ exp [15] 1.016 0.984 0.786 0.028
FRG ðNv ¼ 6; Nh ¼ 1Þ sha [18] 1.022 0.978 0.767 0.033
FRG ðNv ¼ 11; Nh ¼ 1Þ lin [16] 1.018 0.982 0.760 0.032
FRG ðNv ¼ ∞; Nh ¼ 1Þ lin [15] 1.018 0.982 0.756 0.032
FRG ðNv ¼ ∞; Nh ¼ 1Þ lin [19] 1.018 0.982 0.760 0.032
Monte-Carlo [10] 1.00(4) 1.00(4) 0.754(8) � � �
1=Nf 2nd/3rd order [8,18] 1.040 0.962 0.776 0.044
ð2þ ϵÞ 3rd order [5] 1.309 0.764 0.602 0.081
ð4 − ϵÞ 2nd order [3] 0.948 1.055 0.695 0.065
P2;2 interpolated ϵ-expansion [18] 1.005 0.995 0.753 0.034
P3;2 interpolated ϵ-expansion [18] 1.054 0.949 0.716 0.041

TABLE XI. Critical exponents for Xf ¼ 4. For a short description of the approximations involved in each method,
see the main text.

ν θ1 ηϕ ηψ

FRG ðNv ¼ 9; Nh ¼ 8Þ lin (this work) 0.929 1.077 0.602 0.069
FRG ðNv ¼ 3; Nh ¼ 1Þ exp [15] 0.962 1.040 0.554 0.067
FRG ðNv ¼ ∞; Nh ¼ 1Þ lin [15,19] 0.927 1.079 0.525 0.071
Monte-Carlo [13] 0.80(3) 1.25(3) 0.302(7) � � �
1=Nf 2nd/3rd order [7,8,18] 0.955 1.361 0.635 0.105
ð4 − ϵÞ 2nd order [3] 0.862 1.160 0.502 0.110

TABLE XII. Critical exponents for Xf ¼ 2. For a short description of the approximations involved in each
method, see the main text.

ν θ1 ηϕ ηψ

FRG ðNv ¼ 9; Nh ¼ 8Þ lin (this work) 0.814 1.229 0.372 0.131
FRG ðNv ¼ 3; Nh ¼ 1Þ exp [15] 0.633 1.580 0.319 0.113
FRG ðNv ¼ 3; Nh ¼ 1Þ lin [15] 0.623 1.605 0.308 0.112
FRG ðNv ¼ ∞; Nh ¼ 1Þ exp [15] 0.640 1.563 0.319 0.114
FRG ðNv ¼ ∞; Nh ¼ 1Þ lin [15] 0.621 1.610 0.308 0.112
FRG ðNv ¼ ∞; Nh ¼ 1Þ lin [19] 0.4836 2.068 0.3227 0.1204
ð4 − ϵÞ 2nd order [3] 0.773 1.293 0.317 0.154

3See the discussion in Ref. [19].
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observed in Ref. [45] and later proved to hold at any
order in the supercovariant derivative expansion in
Ref. [43], is expected to hold. This is what happens
for example in the ϵ expansions or in the supersym-
metry-preserving FRG (SUSY FRG). Since the scheme
adopted in the present work explicitly breaks super-
symmetry, we expect and observe violations of these
properties. Also in Ref. [17] supersymmetry is broken
by regularization, and these violations are present, but
they could be partially reduced or canceled by tuning
the regulator. This tuning gives the results reported in
Table XIII. A similar analysis of the regulator depend-
ence of universal quantities and of the consequent
breaking of supersymmetry could be performed in
future studies for the present family of truncations.
Yet, even by explicitly breaking the FP supersymmetry,
we get exponents which are not very far from the ones
produced by the above-mentioned methods. Let us add
few details on the SUSY FRG results shown in
Table XIII. They are obtained by setting one of the
regulators to zero and choosing a shape similar to the
linear regulator for the other, with an exponent n that
differentiates between the conventional linear regulator
(opt n ¼ 2) and a slight variant (opt n ¼ 1). Also the
truncation scheme is different from the one discussed in
the present paper, since it is related to an expansion in
powers of the supercovariant derivative, that has been
considered at the level of the LPA0 [42,44], at next-to-
leading order (NLO) or at next-to-next-to-leading order
(NNLO) [43]. For the case Xf ¼ 1, we can also
compare with a pioneering study based on the con-
formal bootstrap [46]. In Table XIII we included the
one-loop computations of Refs. [17,24], even if two-
loop results are on the market [3], on the basis of the
naive observation that for Yukawa systems with com-
plex scalars and spinors, the FP of which should
effectively show N ¼ 2 supersymmetry [25], the
anomalous dimensions obtained from the first order
of the ð4 − ϵÞ expansion, ηϕ ¼ ηψ ¼ 1=3, agree with the
available exact results [47].

VII. d=4

From the leading order of the 1=Xf expansion, one
expects that for large enough Xf the chiral Ising FP
merges with the Gaussian FP in the d → 4 limit. Also at
Xf ¼ 0, for which we know from the discussion at the
end of Sec. II that only mirrored images of the purely
scalar FPs can exist, one can observe that the latter merge
with the Gaussian FP for d → 4, compatibly with the
presumed triviality of four-dimensional scalar theory.
This is illustrated in Fig. 13, which is produced as
Fig. 3 but integrates only the FP equation for hðϕÞ at
vðϕÞ ¼ 0 and Xf ¼ 0 in the LPA0. Yet it remains to be
shown what happens for a small nonvanishing number of
fermions. Dimensional analysis indicates d ¼ 4 as the
upper critical dimension for any Xf. This can be checked
by means of the FRG, either by numerical integration of
the FP equation, as it was shown for example in Sec. IV
for Xf ¼ 1, or by the polynomial truncations discussed in
the last sections. Indeed, the latter have already been used
in the past, precisely to address this question.
In fact, an exploratory study of what happens to the

d → 4 limit in a Z2-symmetric Yukawa model with very

TABLE XIII. Critical exponents for Xf ¼ 1. About the FRG results, the schemes, the regulators, and the
approximations being very different, see the main text.

ν θ1 θ2 ηϕ ηψ 3-2θ1

FRG ðNv ¼ 9; Nh ¼ 8Þ lin (this work) 0.693 1.443 −0.796 0.154 0.221 0.114
SUSY FRG ðNw ¼ ∞Þ opt n ¼ 2 NLO [43] 0.711 1.407 −0.771 0.186 0.186 0.186
SUSY FRG ðNw ¼ ∞Þ opt n ¼ 2 NNLO [43] 0.710 1.410 −0.715 0.180 0.180 0.180
SUSY FRG ðNw ¼ ∞Þ opt n ¼ 1 [44] 0.708 1.413 −0.381 0.174 0.174 0.174
SUSY FRG ðNw ¼ ∞Þ opt n ¼ 2 [44] 0.706 1.417 −0.377 0.167 0.167 0.167
FRG ðNv ¼ 2; Nh ¼ 1Þ 1-loop [17] 0.72 1.39 −0.71 0.15 0.15 0.22
ð4 − ϵÞ 1st order [24] � � � � � � � � � 0.143 0.143 � � �
ð4 − ϵÞ 2nd order [3] 0.710 1.408 � � � 0.184 0.184 0.184
Conformal Bootstrap [46] � � � � � � � � � 0.13 0.13 � � �
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FIG. 13 (color online). Spike plots for Xf ¼ 0, vðϕÞ ¼ 0, and
d ∈ f3.5; 3.7; 3.9; 3.99; 3.999g from red (upper) to blue (lower)
in the LPA0.
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small Xf was performed in Ref. [28], in order to test a
mechanism for the generation of nontrivial FPs in
fermion-boson models, that has subsequently found in
chiral-Yukawa models some natural candidates [29]. That
analysis pointed out that, within a ðNv ¼ 2; Nh ¼ 1Þ
polynomial truncation, according to the scheme of
Eq. (6.7), the FRG detects nontrivial FPs also in
d ¼ 4, for unphysical small values of Xf. This holds
both in the LPA and in the LPA0. However, the fact that
the FP position and the critical exponents are signifi-
cantly different in the two approximations was interpreted
as a signal of the need to include further boson-fermion
interactions in the truncation, in order to understand if
these FPs are physical or merely an artifact of the
approximations. This section reports on the changes
brought by the different treatment of the Yukawa sector
presented in this work.
At the level of the LPA, we generated three-

dimensional plots similar to the ones illustrated in
Fig. 1, second panel, by shooting from the origin with
random values of ðv00ð0Þ; h0ð0ÞÞ, for several values of
Xf < 1, and we looked for spikes signalling possible FPs,
but we have not found any of them. We were also not able
to produce any global solution studying numerically the
Cauchy problem from the asymptotic region, along the
lines of Sec. V. We then reconsidered the analysis at
the level of polynomial truncations. Already trying to
reproduce the results of Ref. [28] in other truncations with
Nv ¼ 2 and Nh ¼ 1 can be a nontrivial test, because of
the different beta-function of the Yukawa coupling, asso-
ciated to different projection rules. We have already argued
that a change of the results depending on the parametri-
zation employed signals the presence of errors induced by
the use of inconsistent truncations. We first concentrated
on the LPA, which at least for d < 4 is able to reproduce
the right number of nontrivial FPs. In this case, the
truncation adopted in Ref. [28] allows for non-Gaussian
FPs approximately for Xf ≤ 1. For instance, at Xf ¼ 0.4
one can find the FP

κ ¼ 0.00165; λ2 ¼ 27.26; g21 ¼ 81.13 ð7:1Þ

with two relevant directions

θ1 ¼ 2.372; θ2 ¼ 0.592; θ3 ¼ −2.859: ð7:2Þ

We observed that in a polynomial truncation of yðρÞ as in
Eq. (6.6) the FP position is different,

κ ¼ 0.00167; λ2 ¼ 54.18; y1 ¼ 494.0; ð7:3Þ

as well as the critical exponents,

θ1 ¼ 1.653; θ2 ¼ 0.932; θ3 ¼ −3.445: ð7:4Þ

Still, the changes are not dramatic. On the other hand,
we could not find any real FP within the same order of
the truncation of hðϕÞ given in Eq. (6.5). We tried to
circumvent this problem as in d ¼ 3, by following the
FP found in one parametrization to higher orders and
then translating back to the other parametrization. Yet
we were not able to reveal the FP for yðρÞ for bigger
values of Nv and Nh nor find it by chance in different
orders of the truncation of hðϕÞ.
Hoping that the inclusion of the wave function

renormalizations could stabilize the polynomial trunca-
tions and help us in the search for FPs, we then
considered LPA0, using the results of Ref. [28] as a
guide for the localization of the interesting region in the
space of couplings. While the FP is present in the first
order of the truncation of Eq. (6.7), we could not find it
in the parametrizations considered in this paper. Let us
once more stress that this does not completely exclude
that it can be found by other methods, even if we
consider this very unlikely. Nevertheless, for the LPA0
we have not tried a numerical shooting at nonvanishing
Xf as in the LPA. Hence, a more careful numerical
analysis is needed, to exclude with a higher level of
confidence the presence of low-Xf FPs in the theory
space described by the truncation in Eq. (2.2). An even
better test would be to consider the full next-to-leading
order of the derivative expansion.

VIII. CONCLUSIONS

A proper quantitative control of the quantum dynam-
ics of the Z2-symmetric Yukawa model, beyond the
domain of applicability of perturbative methods, is
important not only from a generic field-theoretical point
of view but also for phenomenological reasons, since
the latter is very useful as a toy model of numerous
condensed matter systems, as well as of specific sectors
of modern particle theory; see Sec. I for more details.
The functional renormalization group is a simple ana-
lytic nonperturbative method that can provide a detailed
description of strongly coupled systems, under approx-
imations that are testable and improvable in several
systematic ways. Furthermore, these results can be
produced, almost simultaneously, in a continuous num-
ber of spacetime dimensions d and fermionic degrees of
freedom Xf, thus allowing for a quick analysis of the
dependence of the dynamics on the latter parameters.
In this work we focused on the critical behavior of

the Z2-symmetric Yukawa model at zero temperature
and density. Our principal aim was to test the impact of
multimeson exchange, encoded in a Yukawa coupling
which is a full function of the scalar field, on the
FRG description of the latter behavior, a question that
to our knowledge has never been considered before.
Nevertheless, our analysis is relevant not only for the
FRG community. For instance, in Sec. III we discussed
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the leading order of the 1=Xf expansion, the results of
which can be directly exported out of the FRG frame-
work in which we produced them and recovered also by
different methods. This study illustrated how, by
allowing for multimeson exchange, one can describe
the generation of multicritical conformal Yukawa mod-
els as d is lowered from d ¼ 3 toward d ¼ 2, across the
corresponding upper critical dimensions dn ¼ 2þ 2=n,
with n a positive integer. We also showed how the large-
Xf limit quantizes the corresponding critical anomalous
dimension ηϕ ¼ dn − d. In Sec. IV we checked that this
pattern of generation of critical theories as a function of
d holds also at Xf ¼ 1, and presumably at any other
finite Xf. This would imply that in the d → 4 limit only
the Gaussian fixed point survives. The latter statement,
being of special relevance for particle physics, was
further analyzed in Sec. VII, where we argued that it
applies also for Xf < 1, at least within the Ansatz of
Eq. (2.2). Let us remark that, as far as we know, the
observation of multicritical conformal Yukawa models at
finite Xf and in continuous fractal dimensions 2<d<3

is a novel result.
Concerning the finite-Xf results, they indicate that in

several cases the effect of multimeson exchange cannot
be neglected, either quantitatively or even qualitatively.
We argued that these higher Yukawa interactions are
required by consistency of the truncation; otherwise the
solutions of the system of differential equations defining
the flow of the scalar potential vðϕÞ and of the Yukawa
“potential” hðϕÞ would depend on the chosen para-
metrization of these functions. For instance, the same FP
solutions should be reproduced using any polynomial
truncation of these functions, at least within a certain
domain. On these grounds we believe that general FRG
studies of Yukawa models should at least consider the
inclusion of these interactions, and possibly check when
they can actually be neglected.
On the quantitative side, in Sec. V we explicitly

numerically constructed these global FP solutions for
d ¼ 3 and several values of Xf. These results include
the Gross–Neveu universality class for Xf ≥ 2 and the
superconformal N ¼ 1 Wess–Zumino model for Xf ¼ 1.
At Xf ¼ 1 we also numerically computed the critical
exponent ν and the corresponding linear perturbation
around the FP. In Sec. VI we showed how the results of
the global analysis can be easily reproduced by two
different kinds of high-order polynomial truncations.
However, these studies were performed in the local-
potential approximation, that is by neglecting the
renormalization of the fields. Taking into account the
anomalous dimensions (LPA0) was crucial to obtain a
more accurate picture, especially for Xf > 1, so that in
Sec. VI B we developed a LPA0 analysis, based on the

same polynomial truncations which were proved to be
trustworthy in the LPA studies.
This allowed us to produce estimates of the critical

exponents ν, ηϕ, and ηψ , in d ¼ 3 and various Xf and to
compare them with some of the existing literature. We
concentrated on the especially interesting cases of two
and one massless Dirac (Xf ¼ 8 and 4), of a Weyl
(Xf ¼ 2), and of a Majorana spinor (Xf ¼ 1). They can
be found in Tables X, XI, XII, and XIII. Often, there
still exists some significant mismatch among the avail-
able estimates, such that more studies by all kinds of
methods, including Monte Carlo simulations and higher-
order ϵ or 1=Nf expansions, are welcome. As far as the
FRG is concerned, the results seem stable for Xf ≥ 4,
while for a lower number of fermions, there is still room
for debate, and probably larger truncations are needed.
The supersymmetric case Xf ¼ 1 is an exception also in
this sense, since it enjoys a good agreement among the
results produced with different methods.
Larger truncations, such as a next-to-leading order of

the derivative expansion, are anyway needed for a
quantitative analysis of multicritical models in
2 < d < 3, as we argue in Appendix III in the large-
Xf limit. Still within the LPA0, the next natural step is to
produce global numerical studies similar to the ones
presented for the LPA in Secs. IV and V. Regarding the
possible applications of the present analysis to different
models, one possibility is to enlarge the symmetry group
from Z2 to OðNÞ. The N ¼ 3 three-dimensional chiral
Heisenberg universality class, for instance, can be
interesting for the physics of electrons in graphene
[18]. With an enlarged symmetry, the effect of different
representations would become a natural case study and
would further widen the class of physical applications
of these studies [48]. Furthermore, larger symmetry
groups could lead to other interesting playgrounds for
describing supersymmetric FPs within a supersymmetry-
breaking FRG scheme. In particular, supersymmetric
FRG studies of OðNÞ models [49] provide a stimulating
challenge for future generalizations of the present work.
A truncation similar to the one discussed in this paper
can also be used in the context of a Yukawa model
interacting with gravity, along the lines of Ref. [50], to
investigate first the asymptotic safety properties of the
model and then to construct global flows from the UV
to the IR. Some scenarios could be of particular interest
for cosmology.
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APPENDIX A: REGULATORS AND
THRESHOLD FUNCTIONS

We have to evaluate the rhs of Eq. (2.1), for which we
need the Γð2Þ

k matrix. Considering the field ψ as a column
and ψ̄ as a row vector, let us denote byΦTðqÞ the row vector
with components ϕðqÞ, ψTðqÞ, and ψ̄ð−qÞ and by ΦðpÞ the
column vector given by its transposition. Then Γð2Þ

k is
obtained by the formula

Γð2Þ
k ¼

~δ
δΦTð−pÞΓk

δ
←

δΦðqÞ :

This inverse propagator is regularized by the addition of the
regulator

Rkðq; pÞ ¼ δðp − qÞ
�
RBðpÞ 0

0 RFðpÞ

�
;

where

RBðpÞ ¼ Zϕp2rBðp2Þ;

RFðpÞ ¼ −
�

0 δijpT

δijp 0

�
ZψrFðp2Þ

is a 2dγNf × 2dγNf matrix. In principle one can have
different regulators for the scalar (B) and for the spinors (F).
A compact way to rewrite the flow equation is

∂tΓk ¼
1

2
~∂tSTr logðΓð2Þ

k þ RkÞ;

where

~∂t ≡ ∂tðZϕrBÞ
Zϕ

·
δ

δrB
þ ∂tðZψrFÞ

Zψ
·
δ

δrF

and · denotes multiplication as well as integration over
the common argument of the shape functions of the
two factors. Then the regularized kinetic (or squared
kinetic) terms are given by PBðxÞ ¼ xð1þ rBðxÞÞ and
PFðxÞ ¼ xð1þ rFðxÞÞ2, and the loop momentum integrals
appearing on the rhs of the flow equation give rise to
corresponding regulator dependent threshold functions.

Introducing the abbreviation
R
p ≡

R ddp
ð2πÞd, these threshold

functions read

lðB=FÞd0 ðωÞ ¼ k−d

4vd

Z
p

~∂t log ðPB=F þ ωk2Þ

lðB=FÞd1 ðωÞ ¼ −
k2−d

4vd

Z
p

~∂t
1

PB=F þ ωk2

lðFBÞdn1;n2 ðω1;ω2Þ ¼ −
k2ðn1þn2Þ−d

4vd

Z
p

~∂t
1

ðPF þ ω1k2Þn1ðPB þ ω2k2Þn2

mðFÞd
2 ðωÞ ¼ −

k6−d

4vd

Z
p
p2 ~∂t

� ∂
∂p2

1

PF þ ωk2

�
2

mðFÞd
4 ðωÞ ¼ −

k4−d

4vd

Z
p
p4 ~∂t

� ∂
∂p2

1þ rF
PF þ ωk2

�
2

mðBÞd
4 ðω1Þ ¼ −

k6−d

4vd

Z
p
p2 ~∂t

� ∂
∂p2 PB

ðPB þ ω1k2Þ2
�2

mðFBÞd
1;2 ðω1;ω2Þ ¼ −

k4−d

4vd

Z
p
p2 ~∂t

�
1þ rF

PF þ ω1k2

∂
∂p2 PB

ðPB þ ω2k2Þ2
�
:

In this work we adopted the linear regulator xrBðxÞ ¼ ð1 − xÞθð1 − xÞ, where x ¼ q2=k2. For spinors this corresponds to a
shape function rF such that xð1þ rBðxÞÞ ¼ xð1þ rFðxÞÞ2. For it the threshold functions can be computed analytically and
give
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lðBÞd0 ðωÞ ¼ 2

d

1 − ηϕ
dþ2

1þ ω
;

lðFÞd0 ðωÞ ¼ 2

d

1 − ηψ
dþ1

1þ ω
;

lðB=FÞd1 ðωÞ ¼ −
∂
∂ω lðB=FÞd0 ðωÞ;

lðFBÞdn1;n2 ðω1;ω2Þ ¼
2

d

�
n1

1 − ηψ
dþ1

ð1þ ω1Þ1þn1ð1þ ω2Þn2
þ n2

1 − ηϕ
dþ2

ð1þ ω1Þn1ð1þ ω2Þ1þn2

�
;

mðFÞd
2 ðωÞ ¼ 1

ð1þ ωÞ4 ;

mðFÞd
4 ðωÞ ¼ 1

ð1þ ωÞ4 þ
1 − ηψ

ðd − 2Þð1þ ωÞ3 −
�
1 − ηψ
2d − 4

þ 1

4

�
1

ð1þ ωÞ2 ;

mðBÞd
4 ðω1Þ ¼

1

ð1þ ω1Þ4
;

mðFBÞd
1;2 ðω1;ω2Þ ¼

1 − ηϕ
dþ1

ð1þ ω1Þð1þ ω2Þ2
:

APPENDIX B: PROPERTIES OF THE
LARGE-Xf SOLUTIONS

In both versions of the LPA, with or without ηϕ ¼ 0, and
also in the LPA0, Eq. (3.8) enables us to write the potentials
in the form

hðϕÞ ¼ chϕn;

vðϕÞ ¼ cvϕdn −
4vd
d2 2F1

�
1;−

d
2
; 1 −

d
2
;−c2hϕ2n

�
: ðB1Þ

The behavior of v for ϕ → �∞ is

vasymptðϕÞ≃
�
sgnðϕÞdncv þ

Γð−d=2Þ
2dþ1πd=2

jchjd
�
jϕjdn; ðB2Þ

and, since we are assuming 2 < d < 4, the gamma function
in front of jchjd is positive. If cv ≠ 0, the scalar potential
can be real only if ð−1Þdn has a real branch, that is if

d ¼ m
nj

; j ∈ f1; 3; 5;…g; m ∈ N;

2nj < m < 4nj:
ðB3Þ

Its stability further requires

jchjd ≥
2dþ1πd=2

Γð−d=2Þmaxf−cv; ð−1Þ1þdncvg ¼ cdh;crit; ðB4Þ

and for special values of cv and ch, namely when
jchj ¼ jch;critj, it can become asymptotically flat (possibly
only on one side) instead of growing like ϕdn.

To understand the physical properties of the large-Xf
FPs, we need to consider the RG flow in the vicinity of the
corresponding critical points. In particular we consider the
linearization of the flow, by looking at small fluctuations of
the potentials v ¼ vþ δv, h ¼ hþ δh and for eigenvalue
solutions

_δv ¼ −θδv; _δh ¼ −θδh:

These equations at large Xf are extremely simple, and for
the linearized regulator, they read

− θδv ¼ −dδvþ 1

n
ϕδv0 þ δηϕ

2
ϕv0 þ 4vd

d
2hδh

ð1þ h2Þ2
ðB5Þ

−θδh ¼ −δhþ 1

n
ϕδh0 þ δηϕ

2
ϕh0: ðB6Þ

In this Appendix we want to sketch a study of the properties
of these FPs as well as of the linearized flow around them.
We believe it can be instructive to consider separately the
results obtained with or without the inclusion of the flow
equation for ηϕ. This will make evident that larger trunca-
tions, out of the reach of the present work, are necessary to
get a complete picture of the large-Xf multicritical Yukawa
theories.

1. LPA

If we set by hand ηϕ ¼ 0, regardless of cv or ch, Eq. (3.8)
leaves a discrete set of dimensions as the only possibility,
the ones in Eq. (3.11). As a consequence dn ¼ 2ðnþ 1Þ,
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and the scalar potential is real, and even also in case cv ≠ 0.
The stability properties, depending on ch and cv according
to Eq. (B4), are illustrated in the plots of Figs. 14 and 15.
The special case cv ¼ 0 is shown in Fig. 16.

Let us now turn to the linear perturbations of these FPs.
By definition in the LPA one neglects a possible change
of the anomalous dimension. Thus, setting δηϕ ¼ 0, the
solution for the perturbations reads

δhðϕÞ ¼ δchϕN

δvðϕÞ ¼ δcvϕðd−1ÞnþN −
4vd
d

chδchϕnþN

�
1

1þ c2hϕ
2n −

d
d − 2 2F1

�
1; 1 −

d
2
; 2 −

d
2
;−c2hϕ2n

��
: ðB7Þ

Here we restricted our analysis to the perturbations with
δch ≠ 0 and required their smoothness by setting
ð1 − θÞn ¼ N ∈ N. For the special case δch ¼ 0, the
solution is simply δvðϕÞ ¼ δcvϕM with critical exponent
θM ¼ d −M=n and will not be discussed any further.
Notice that these eigenfunctions are independent of cv,
which is due to the suppression of scalar loops in the

large-Xf limit. They are regular at the origin, since the
leading behavior is

δvðϕÞ ∼
ϕ→0

8vd
dðd − 2Þ chδchϕ

nþN: ðB8Þ

Recall that the FP potential had, as leading small
field dependence, ϕ2n; as a consequence, the relevant
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FIG. 14 (color online). The d ¼ 3, n ¼ 2, FP scalar potential at nonvanishing cv. Left panel: cv ¼ −1 and
ch ∈ fch;crit þ 10−3; ch;crit; ch;crit − 10−3g, from bounded (green) to unbounded (blue). Right panel: cv ¼ 1 and
ch ∈ fch;crit þ 2; ch;crit; ch;crit − 2g, from steeper (green) to broader (blue).
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FIG. 15 (color online). The d ¼ 8=3, n ¼ 3, FP scalar potential at nonvanishing cv. Left panel: cv ¼ −1 and
ch ∈ fch;crit þ 10−3; ch;crit; ch;crit − 10−3g, from bounded (green) to unbounded (blue). Right panel: cv ¼ 1 and
ch ∈ fch;crit þ 2; ch;crit; ch;crit − 2g, from steeper (green) to broader (blue).
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FIG. 16 (color online). The even FP scalar potentials for cv ¼ 0. For illustration the value of ch has been chosen according to
Eq. (B12), even if this is mandatory only for n ¼ 1 in the LPA0. Left panel: n ¼ 1 and d ∈ f3.5; 3; 2.5g, from steeper (green) to broader
(blue). Right panel: n ∈ f2; 3; 4; 5g, in the corresponding dimension d ¼ 2þ 2=n, from steeper (green) to broader (blue).
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FIG. 17 (color online). The d ¼ 3 and n ¼ 1 FP scalar potential at nonvanishing cv. Left panel: cv ∈ fcv;crit − 1; cv;crit; cv;crit þ 1g,
from bounded (green) to unbounded (blue). Right panel: cv ∈ f−cv;crit − 1;−cv;crit;−cv;crit þ 1g, from unbounded (blue) to bounded
(green). Notice that the value of the potential at the origin is arbitrary, while its behavior for large fields is not.
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FIG. 18 (color online). The d ¼ 7=3 and n ¼ 1 FP scalar potential at nonvanishing cv. Left panel: cv ∈ fcv;crit − 1; cv;crit; cv;crit þ 1g,
from bounded (green) to unbounded (blue). Right panel: cv ∈ f−cv;crit − 1;−cv;crit;−cv;crit þ 1g, from bounded (green)
to unbounded (blue).
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perturbations with N < n change the behavior of the
potential at the origin, the marginal ones only change
the coefficient in front of ϕ2n, and the irrelevant ones leave
the leading term unaltered. For a large value of the field,

δvðϕÞ ∼
ϕ→∞

�
δcv þ sgnðϕÞdn dΓð−d=2Þ

2dþ1πd=2
jchjd−2chδch

�

× ϕdnþN−n; ðB9Þ

while the FP potential behaves like jϕjdn at infinity. As a
consequence, the irrelevant perturbations with N > n
completely change the asymptotic behavior of the potential
for large fields, the marginal ones with N ¼ n only change
the coefficient in front of the leading power, and the
relevant ones only change the subleading terms. Clearly
this is not the case for those potentials, with special values
of cv, that are asymptotically flat.
Let us now discuss the symmetry properties of the

perturbations. Trivially, the symmetry of Yukawa potential
under Z2 is preserved or violated depending on n and N.
We now want to understand what this entails for the scalar
potential. Recall that in the LPA dn ¼ 2ðnþ 1Þ, and the FP
v is always even. Then the fluctuations behave as ϕnþNþ2,
and wheneverN þ n is odd, theZ2 symmetry of both h and
v at the FP is spoiled by the perturbations. Among these
symmetry breaking perturbations, the irrelevant ones, with
N > n, give rise to unstable potentials. Notice that the
relevant perturbations, even if spoiling symmetry, do not
directly cause instabilities (though they might induce them
indirectly, i.e. beyond linearization). The possibility to have
stable theories with no definite Z2 symmetry emanating
from symmetric FPs in the UV or IR is in any case a
question that requires a global study of the RG flow, and it
is beyond the scope of this work.

2. LPA0

So far we have not used the flow equation for ηϕ. To do
so, we first have to analyze the possible presence of a
nontrivial minimum for v. The general expectation is that,
since only fermion loops survive in the leading order of the
1=Xf expansion, the potential is always in the symmetric
regime. This is suggested by the expansion of the potential
around the origin, based on Eq. (3.7). We assume that this
is always the case for the time being, as it is indeed for
every specific example we have considered. Under this
assumption, we need to take the ϕ → 0 limit of the equation
for ηϕ, which is proportional to h0ðϕÞ2, i.e. to ϕ2ðn−1Þ.
Therefore, only for n ¼ 1 can such a limit be nonvanishing.
This shows how LPA0 is an improvement of LPA only for
the n ¼ 1 critical theory. For the remaining values of n, one
finds again ηϕ ¼ 0, which artificially forces the dimension
d to its critical value. We expect this condition to be lifted
by more general truncations, and a nontrivial ηϕ should
emerge for any n.

Let us then discuss the change brought by LPA0 in the
description of the large-Xf n ¼ 1 FP. As argued in Sec. III,
the nontrivial ηϕ allows for the existence of the non
Gaussian FP in any d < 4, as long as

ηϕ ¼ 4 − d; n ¼ 1: ðB10Þ

Actually this is the case only for the Z2 symmetric solution
with cv ¼ 0. As soon as cv ≠ 0 the reality of the potential
requires

d ¼ m
j
; j ∈ f1; 3; 5;…g; m ∈ N;

2j < m < 4j: ðB11Þ

Regardless of cv, by using Eq. (B10), the flow equation for
Zϕ can be solved for ch as a function of d, giving [16]

c2h ¼
dð4 − dÞðd − 2Þ

vdð6d − 8Þ : ðB12Þ

Then, the stability condition Eq. (B4) for the nonvanishing
cv FPs is best phrased as a bound on cv,

cv ≥ −cv;crit; cv;crit ¼
Γð−d=2Þ
2dþ1πd=2

�
dð4 − dÞðd − 2Þ

vdð6d − 8Þ
�
d=2

;

ðB13Þ
and additionally, only for odd m, cv ≤ cv;crit. This is
illustrated in Figs. 17 and 18. The scalar FP potential with
cv ≠ 0 is an even function if and only if m is even.
Let us then turn to perturbations and allow for a non-

trivial δηϕ. We postpone for a while the task of solving the
linearized equation for ηϕ, which provides us the first
correction δηϕ to the anomalous dimension, as a function of
the FP h and δh. This is because such an equation involves
the variation δϕ0 in the location of the minimum of the
potential, which in turn can be computed from the variation
of the potential by the formula

δϕ0 ¼ −
δv0ð0Þ
v″ð0Þ ; ðB14Þ

where we stuck to our assumption that the minimum of the
FP potential is always trivial. As a consequence we first
solve for δv and δh as parametric functions of δηϕ and then
plug Eq. (B14) into the linearized equation for ηϕ, to
compute the actual δηϕ. Solving for δh is again trivial, and
it immediately allows us to extract the eigenvalues of the
linearized flow. When θ ≠ 0 the solution for δh is

δhðϕÞ ¼ δchϕN −
δηϕ
2

n2

n−N
chϕn; N ∈ N; N ≠ n;

ðB15Þ
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where again we focused on δch ≠ 0 and set
N ¼ ð1 − θÞn ∈ N. For θ ¼ 0 instead

δhðϕÞ ¼ δchϕn −
δηϕ
2

n2chϕn logðϕÞ: ðB16Þ

Notice that the second term in the last equation is simply
the first order in the expansion of chϕ2=ðd−2þηϕÞ, which is
the exactly marginal h, around the nth FP. As a conse-
quence, the apparent instability that can come from the
second term in Eq. (B16) is actually a fake of linearization,
as long as δηϕ > −2=n. On the other hand, a logarithmic
singularity at the origin appears even beyond linearization,
and we believe this to be a pathology produced by the
leading order in 1=Xf. The solution to this pathology will
come soon, in the form of the constraint δηϕ ¼ 0 for these
perturbations.
The equation for δv is much more involved in the LPA0

than in the LPA, since it now depends on the FP potential.
Yet its solutions for generic δηϕ can be easily given
analytically. It is not necessary to show them here. It
suffices to report that quite in general they have the
property δv0ð0Þ ¼ 0, as it could be expected by the argu-
ment that fermion loops are generally associated with scalar
potentials with a trivial minimum.4 As a consequence the
scalar potential stays in the symmetric regime. Notice that
this does not entail that the δvðϕÞ is also in the symmetric
regime.
With this piece of information, one can work out the

linearized δηϕ, by varying the rhs of the flow equation for
Zϕ with respect to h and v (the fluctuations of which still
depend parametrically on δηϕ itself) and ηϕ, while keeping

ϕ0 fixed, and then taking ϕ0 → 0. The latter limit makes
the rhs vanish unless n ¼ 1, in which case it reaches a
d-dependent constant times c2hδηϕ.

5 Hence, for general n
and N, we find δηϕ ¼ 0, which boils the analysis of the
linearized perturbations down to the one sketched in the last
section within the LPA.

3. d ¼ 4

The expression in Eq. (B1) cannot be used in d ¼ 4
nor in d ¼ 2, since the hypergeometric function in v has
simple poles at these values. The d → 2 case is out of the
reach of the present paper. In the d → 4 limit, instead,
the canonical dimensional terms survive also in the LPA,
and by integrating the large-Xf system of flow equations,
one can find the FP solutions

hðϕÞ ¼ chϕn;

vðϕÞ ¼ cvϕ4n þ 1

64π2
ðc2hϕ2n − c4hϕ

4n logðc2h þ ϕ−2nÞÞ;
ðB17Þ

where we already demanded the Yukawa potential to be
smooth, according to Eq. (3.8). The crucial fact is again that
the minimum of v is always trivial. This allow us to take the
ϕ0 → 0 limit of the equation for ηϕ. For n ¼ 1 this leaves us
with the equation c2h ¼ ηϕ ¼ 0, thus boiling every feature
of the critical theory down to the classical counting. For
n ≥ 2 we find the constraint ηϕ ¼ 0, which is inconsistent
with Eq. (3.8) and therefore eliminates these solutions.
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