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Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of
four-dimensional N ¼ 2 supersymmetric gauge theories. The specific model considered here possesses
Uð2Þlocal × SUð2Þglobal symmetry, with two scalar doublets in the fundamental representation of SU(2).

We construct string solutions that are stationary and translationally symmetric along the x3 direction, and
they are characterized by a matrix phase between the two doublets, referred to as “twist.” Consequently,
twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per
unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged
non-Abelian vortex, satisfying first-order Bogomolny-type equations and second-order Gauss constraints.
Interestingly, depending on the nature of the matrix phase, some of these solutions even break cylindrical
symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected
to be linearly stable since one can keep their charge (or twist) fixed with respect to small perturbations.
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I. INTRODUCTION

Vortex and string-type solutions appear in many models,
and as they have many applications there is an enduring
interest for them. In the plane, a vortex corresponds to a
cross section of a straight string in three spatial dimensions
in the plane orthogonal to its direction. In the context of
spontaneously broken gauge field theories by scalar fields,
the paradigm is the Abrikosov-Nielsen-Olesen (ANO)
vortex [1] associated to the breaking of an Abelian gauge
group. The ANO vortex corresponds to the planar cross
section of a static straight, infinitely long magnetic flux
tube, with quantized magnetic flux and SO(2) cylindrical
symmetry. ANO vortices have an (integer) winding num-
ber, proportional to their quantized magnetic flux, which
is also responsible for their stability. For a fixed winding
number, ANO solutions form a one-parameter family,
depending on the mass ratio β ¼ ms=mv, where ms, and
mv denote the masses of the scalar and vector fields. In the
special case β ¼ 1, the energy of a vortex is proportional to
its winding number [2,3], and surprisingly vortices of like
fluxes do not interact [2]. For this special value of the
coupling, minimal energy vortices satisfy a set of first-order
Bogomolny equations, which are easier to solve than the
field equations [2,3].
In non-Abelian gauge theories with or without a Chern-

Simons term, non-Abelian vortices (some of them with an
electric charge) were first obtained in Ref. [4]. Since the
seminal papers [5] started the investigation of vortex-string
solutions in supersymmetric non-Abelian gauge theories,
the subject continues to attract attention. A simple model

containing the essential features is an UðNcÞ gauge theory,
coupled to Nf scalar fields in the fundamental representa-
tion, where Nf ≥ Nc. Vortex solutions in such theories are
usually referred to as non-Abelian vortices (NAVs). NAVs
have attracted considerable interest, since they are at the
heart of intriguing relationships between two-dimensional
sigma-models and four-dimensional gauge theories. NAVs
in a UðNÞ gauge theory possess “orientational moduli”
whose low-energy dynamics is described by versions of
CPN−1 sigma-models on the string worldsheet. Moreover,
NAVs also held the promise to be relevant to bring us closer
to a description of quark confinement; for a review, see
Ref. [6] and references therein. Static NAVs are absolute
minima of the energy functional in a fixed topological
sector, characterized by the winding numbers associated to
the Cartan subalgebra of the gauge group. Moreover NAVs
satisfy first-order, Bogomolny-type equations admitting
rather complicated, static multivortex solutions. Most
remarkably a complete description of the NAV moduli
space has been found [7,8]. An interesting application of
non-Abelian vortices is illustrated by confined monopoles
emerging as junctions of NAVs with different moduli
[9,10]. The dynamics of NAVs based on the moduli
approximation has been worked out in Refs. [11–13]. In
addition to NAVs and related monopoles, domain walls
have also received due attention [6,14], and a number of
intriguing relations between moduli spaces of monopoles
and domain walls have been discovered [15].
In this paper we point out that by allowing for space-

time-dependent phases among the scalar fields, which we
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shall call “twisting,” new families of charged vortex-strings
arise. We shall restrict our attention to a U(2) gauge group
broken by two scalar doublets with an appropriate scalar
potential compatible with supersymmetry (SUSY), but a
generalization to other groups should not be too difficult.
It is known, that by imposing the usual space-time
symmetries on field configurations leading to vortex-type
solutions, such as translational invariance in time and along
the, say, x3 or z direction, scalar fields may have a phase,
with a linear dependence on ðt; zÞ [16–18]. In general, the
energy of stationary configurations with a nontrivial ðt; zÞ-
dependent phase is bigger than that of the static ones;
however this does not make them necessarily unstable [16].
In this paper we systematically investigate straight

vortex-string solutions in the simplest theory admitting
non-Abelian vortices, when the scalar fields, Φ, possess a
ðt; zÞ-dependent phase, i.e.

ΦðxνÞ ¼ ΦðxiÞei
2
Mωαxα ; i ¼ 1; 2; α ¼ 0; 3;

where the flavors correspond to the columns of the (2 × 2)
matrix Φ, M is a constant Hermitian matrix acting on the
flavor indices, and ωα is a vector in the ðt; zÞ plane. As it is
well known [16,17,19] when ωα is a light-like vector, the
field equations in the ðx1; x2Þ plane decouple completely
from those in the ðt; zÞ directions. The chromoelectric
components in the ðt; zÞ plane are determined by a set of
linear, second-order equations, (Gauss constraints),
depending on the solution in the ðx1; x2Þ plane. Simple
analysis of the Gauss constraints makes it very plausible
that any NAV can be twisted by an arbitrary twisting
matrix, although we have not attempted to formally prove
this. There are global currents flowing in the z direction of
an M-twisted vortex-string which has nonzero charge,
momentum and, unless M is specially aligned in internal
space, angular momentum. A twisted NAV has some
genuine three-dimensional structure, as there are global
currents flowing along its axis, the fields have some
nontrivial components orthogonal to its symmetry plane,
and hence it is more conveniently thought of as a twisted
string.
The simplest twisted NAV can be obtained from the

rotationally symmetric “elementary” vortex solution of
Ref. [5], in which case, for a general twisting matrix the
problem reduces to a single second-order Gauss con-
straint, which can be easily analyzed. In fact our twisted
NAV solution turns out to be the same object as the
“dyonic” vortex solution found in a “mass-deformed”
SUSY gauge-field theory [12]. The bulk of our paper
concerns the twisting of “composite-coincident” NAVs
[7], corresponding to the rotationally symmetric super-
imposition of elementary vortices. We characterize these
superimposed NAVs by a relative winding number and a
moduli parameter. Interestingly we find that when the
twisting matrix M, contains off-diagonal components the

twisted string looses cylindrical symmetry in three
dimensions.
The energy of an M-twisted string is higher than that of

an untwisted one; it is given as a sum of the usual
“magnetic” energy per unit length proportional to the
magnetic flux, and of an “electric” contribution due to
the rotating phase. The actual magnitude of the “electric”
contribution depends essentially on the components of the
twisting matrix, M. When M is diagonal the magnitude of
the electric energy of a twisted NAV is typically much
smaller than its magnetic one; in fact, it can be made
arbitrarily small when the untwisted NAV is sufficiently
close to a diagonal one. In the case when M contains off-
diagonal components, the magnitude of the electric energy
is comparable to the magnetic one.
It seems to us that all the above-mentioned properties

make twisted NA vortex-strings of some interest and
worthy of further investigations.
The plan of the paper is the following. We introduce in

Sec. II the theory that we shall study and proceed to the
dimensional reduction by splitting four-dimensional
Minkowski space into planar and temporal-longitudinal
coordinates. Making an appropriate ansatz we get a dimen-
sionally reduced Lagrangian. Assuming that coupling
constants satisfy Bogomolny conditions we present the
minimal energy first-order equations satisfied by untwisted
solutions and write the energy as a sum of electric and
magnetic contributions. We discuss how the rotational
symmetry of the ansatz, or the absence thereof, depends
on the properties of the twisting. In Sec. III we consider
twisted vortices, both elementary (Sec. III A) and
composite (Sec. III B) ones, presenting the numerical study
of the solutions. In Sec. IV we summarize the results and
present our conclusions. Finally our notations and con-
ventions are given in Appendix A, and some numerical data
is given in Appendix B.

II. DIMENSIONAL REDUCTION

The 3þ 1-dimensional theory we consider is defined by
the following Lagrangian:

L ¼ −
1

4g21
FμνFμν −

1

4g22
Ga

μνGμνa þ TrðDμΦÞ†DμΦ − V;

ð1Þ

where Fμν is the Abelian field strength tensor and
Ga

μν ða ¼ 1; 2; 3Þ is the non-Abelian, SUð2Þ one. The
two scalar doublets are encoded in the matrix ðΦÞiA
with i ¼ 1; 2 being the gauge (“color”) and A ¼ 1; 2 the
“flavor” indices; the trace is taken over the flavor indices;
the scalar potential, V ¼ V1 þ V2, can be written more
explicitly as
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V1 ¼
λ1
8
ðTrΦ†Φ − 2ξÞ2 ¼ λ1

8
ðΦ†

AΦA − 2ξÞ2; ð2Þ

V2 ¼
λ2
8
ðTrΦ†σaΦÞ2

¼ λ2
8
ðΦ⋆

Aiσ
a
ijΦjAÞ2

¼ λ2
8
½ðΦ†

1Φ1 − Φ†
2Φ2Þ2 þ 4jΦ†

2Φ1j2�; ð3Þ

where summation over repeated indices is understood,
except when the contrary is indicated. For more details
on notations and conventions, see Appendix A.
The fields transform under the Uð2Þ gauge symmetry as

Φ → expðiΛÞUΦ;

Cμ → UCμU† þ 2iU∂μU†;

Aμ → Aμ þ 2∂μΛ; ð4Þ

where UðxÞ ∈ SUð2Þ, ΛðxÞ is a real function. The flavor
symmetry acts from the right on the scalars as

Φ → ΦV; V ∈ SUð2Þ: ð5Þ

Let us now consider stationary and translationally
symmetric fields in the x3 direction. It will turn out to
be convenient to split four-dimensional Minkowski coor-
dinates as xμ ¼ ðxα; xiÞ with α ¼ 0; 3, i ¼ 1; 2. Since the
symmetries are generated by two commuting vector fields,
there exists a gauge where the symmetric gauge fields are
simply independent of the coordinates xα [20]. At the same
time, however, the scalar doublets, Φ, may still depend
linearly on xα through an SU(2) phase, i.e. the most general
symmetric ansatz can be written as

AμðxνÞ ¼ ðAiðxjÞ; AαðxjÞÞ; ð6aÞ

Ca
μðxνÞ ¼ ðCa

i ðxjÞ; Ca
αðxjÞÞ; ð6bÞ

ΦðxνÞ ¼ ΦðxiÞei
2
Mωαxα ; ð6cÞ

where M is a constant Hermitian matrix,

M ¼ mâσâ ¼ m01þmaσa; ð7Þ

ωα is a vector in the ðt; zÞ plane. Straight flux-tube/string
solutions of the theory defined by Eq. (1), described by the
ansatz (6) with a nontrivial M, will be referred to as
“twisted” strings.
The form of the ansatz, Eq. (6) also restricts the

symmetries of the model. Those symmetries, which pre-
serve the ansatz are flavor transformations which commute
with the twist matrix M,

Φ → ΦV; V ¼ expðiMδÞ; ð8Þ

and all gauge transformations where U∂αU† and ∂αΛ only
depend on xi and not on xα. The flavor current generating
the transformations (8) is

Kμ ¼ mâKâ
μ; ð9Þ

with Kâ
μ defined in Eq. (A4).

Being Hermitian, the twist matrix, M, can always be
diagonalized by a unitary matrix, VM, such that
M ¼ VMMDVM

†, with MD being diagonal, i.e.

ΦðxiÞei
2
Mωαxα ¼ ΦðxiÞVMe

i
2
MDωαxαVM

†: ð10Þ
Therefore, twisting a configuration with the matrix M, is
equivalent to twisting a suitably flavor-transformed (with
VM) configuration with the diagonal matrix, MD. As the
theory considered is SU(2) flavor symmetric it makes no
difference which form of twisting one uses. In what follows
we shall work with the nontransformed twisting matrix, M
in Eq. (6c).
The ansatz (6) yields the dimensionally reduced

Lagrangian

L¼ −
1

4g21
F2
ij þ

1

2g21
∂iAα∂iAα −

1

4g22
ðGa

ijÞ2

þ 1

2g22
DiCa

αDiCαa −
1

4g22
½ðCa

αCaαÞ2 − ðCa
αCa

βÞðCbαCbβÞ�

−TrðDiΦÞ†DiΦþ 1

4
TrðωαΦM −CαΦÞ†

× ðωαΦM −CαΦÞ−V; ð11Þ

where Cα ¼ Aα þ Ca
ασ

a. It is now convenient to introduce
basis vectors in the xα plane, (ωα; ω̄α) such that ωαω̄

α ¼ 0

if ω2 ¼ ωαω
α ≠ 0, while for the light-like case

(ω2 ¼ ω̄2 ¼ 0) ωαω̄
α ≠ 0. We remark that in Eq. (11) only

the α indices are raised or lowered by the induced
Minkowskian metric in the ðx0; x3Þ plane, and the repeated
i; j-type lower indices are summed with ðþ;þÞ signature.
It turns out that the dimensionally reduced Lagrangian (11),
is closely related to the trivial reduction from four to two
dimensions of the “mass deformed” theory considered in
Ref. [12]. In the absence of twist, M ≡ 0, Eq. (11)
corresponds to the trivial reduction of the theory to two
dimensions, whose solutions are the non-Abelian vortices
discussed in detail in Ref. [8]. With respect to the ω; ω̄ basis
the gauge field components in the ðx0; x3Þ plane are
expressed as

Aα ¼ ωαAþ ω̄αĀ; Ca
α ¼ ωαCa þ ω̄αC̄a: ð12Þ

The field equations can be grouped according to variations
with respect to Ā; C̄ and A;C. Consider first the variational
equations with respect to Ā; C̄:
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ΔĀ ¼ g21
2
TrðΦ†C̄ΦÞ; ð13aÞ

D̂iD̂iC̄a ¼ g22
2
Φ†

AðĀσa þ C̄aÞΦA − Δa; ð13bÞ

Δa¼
�
ω2CbðCbC̄a− C̄bCaÞ if ω2≠0;

2ðωω̄ÞC̄bðCbC̄a− C̄bCaÞ if ω2¼ ω̄2¼0;
ð13cÞ

where Δ ¼ ∂i∂i with Euclidean metric summation. From
Eqs. (13a)–(13c) we obtain the following integral identity:

Z
d2x

�
1

2
Δ̄ −

1

g21
ð∂iĀÞ2 −

1

g22
ð∂iC̄aÞ2

−
1

2
Φ†

AC̄
2ΦA þ 1

g22
C̄aΔa

�
¼ 0; ð14Þ

where Δ̄ ¼ ΔðĀ2=g21 þ C̄aC̄a=g22Þ. Assuming finite-energy
boundary conditions and global regularity, the integral of Δ̄
is zero. For the case when ω is light-like, ω2 ¼ 0, one finds
C̄aΔa ¼ 0, and therefore Eq. (14) enforces Ā≡ 0, C̄≡ 0.
When ω2 < 0, Eq. (14) implies once more the vanishing of
Ā and C̄, since then C̄aΔa ≤ 0. In the case of a space-like ω
vector, ω2 > 0, Eq. (14) is not sufficient to exclude the
existence of nontrivial solutions of the Gauss constraints,
(14). It is consistent, however, to assume Ā≡ 0, C̄≡ 0,
even for ω2 > 0, since Ā, C̄ satisfy homogenous equations.
Assuming Ā≡ 0, C̄≡ 0 the remaining field equations
are

1

g21
ΔA ¼ 1

2
Tr½ðΦ†C −MΦ†ÞΦ�; ð15aÞ

1

g22
D̂iD̂iCa ¼ 1

2
Tr½ðCaΦ† þ ðA −MÞΦ†σaÞΦ�; ð15bÞ

1

g21
∂iFij ¼

i
2
Tr½Φ†DjΦ −DjΦ†Φ�; ð15cÞ

1

g22
D̂iGa

ij ¼
i
2
Tr½Φ†σaDjΦ −DjΦ†σaΦ� − ω2

g22
εabcCbDjCc;

ð15dÞ

DiDiΦ ¼ ∂V
∂Φ† −

ω2

4
½ðΦM − 2CΦÞM þ C2Φ�: ð15eÞ

The total energy of an M-twisted string can be written as
the sum of an “electric” and of a “magnetic” part:

E ¼
Z

d2xT0
0 ¼

Z
ðE0 þ E1Þd2x≡ E0 þ E1; ð16Þ

where the “electric” and “magnetic” densities, E0; E1 are
defined as

E0 ¼
1

2g22
Ga

αiG
a
αi þ

1

2g21
FαiFαi þ ðDαΦAÞ†DαΦA

¼ ðω2
0 þ ω2

3Þ
�
1

2g21
ð∂iAÞ2 þ

1

2g22
ðDiCaÞ2

þ 1

4
TrðΦM − CΦÞ†ðΦM − CΦÞ

�
; ð17Þ

E1 ¼
1

4g22
ðGa

ikÞ2 þ
1

4g21
ðFikÞ2 þ jDiΦAj2 þ V: ð18Þ

A straightforward computation shows that using the Gauss
constraints, Eqs. (15a)–(15b), the “electric” density, E0 can
be expressed as

E0 ¼
1

4
ðω2

0 þ ω2
3ÞðΔþQÞ; ð19Þ

where Δ ¼ △ðA2=g21 þ CaCa=g22Þ and

Q ¼ Tr½Φ†ðΦM − CΦÞM�: ð20Þ

Note that the ðt; zÞ-components of the flavor current in
Eq. (9) can also be expressed in terms of ω and Q as

Kα ¼ −ωα

2
Q ð21Þ

In most work on non-Abelian vortices the supersym-
metry-induced relations between the couplings, λ1 ¼ g21,
λ2 ¼ g22, have been assumed. These relations ensure that E1

can be expressed as a sum of squares and a topological
term, leading to first-order, Bogomolny-type equations in
the ðx1; x2Þ plane. Then minimal-energy, untwisted solu-
tions of the second-order field equations (15c)–(15e) are
obtained by solving the following first-order equations:

Fik ¼ ∓ g21
2
ϵikðTrΦ†Φ − 2ξÞ; ð22aÞ

Ga
ik ¼ ∓ g22

2
ϵikTrΦ†σaΦ; ð22bÞ

DiΦ ¼ ∓iϵikDkΦ; ð22cÞ

while for solutions of Eqs. (22a)–(22c) the “magnetic”
energy density simplifies to

E1 ¼ � ξ

2
ϵikFik∓iϵik∂iðΦ†

ADkΦAÞ: ð23Þ

Equation (23) implies that the total “magnetic” energy, E1,
is given by the net Abelian flux through the ðx1; x2Þ plane.
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Let us quote here the actual value of the “magnetic energy”
in Eq. (23), E1, for configurations considered in this paper,
characterized by winding numbers nA;mA as in Eq. (27)
and subject to the first-order equations (22):

E1 ¼ 2πξjn1 þm2j ¼ 2πξjn1 þm1 þ Nj; ð24Þ
which of course also holds for the ansatz (31). In the case
when ωα is light-like, the field equations in the ðx1; x2Þ
plane, Eqs. (15c)–(15e), decouple from the Gauss-type
constraints, Eqs. (15a)–(15b), and become identical to
those corresponding to untwisted vortices. Therefore the
problem of finding twisted non-Abelian strings for ω2 ¼ 0
reduces to solving Eqs. (15a)–(15b) in the background of a
non-Abelian vortex in the ðx1; x2Þ plane. In the present
paper we shall consider a light-like ω vector, and concen-
trate on twisting vortex solutions of minimal energy
satisfying the first-order equations (22). It is left for future
work to clarify if for ω2 ≠ 0 there exists solutions analo-
gous to the twisted vortices of Refs. [17,18].
An M-twisted string has momentum flowing along the z

direction, which is easily obtained from the stress-energy
tensor. The longitudinal momentum, P ¼ T03, carried by a
twisted string, can be recast exploiting the Gauss con-
straints, Eqs. (15a)–(15b), as

P ¼ T03 ¼
1

2
ω0ω3ðΔþQÞ: ð25Þ

M-twisted strings may also have angular momentum, J, as
it can be seen from the angular momentum density

J ¼ T0ϑ

¼ 1

g21
F0rFϑr þ

1

g22
Ga

0rG
a
ϑr þ TrD0Φ†DϑΦ

þ TrDϑΦ†D0Φ; ð26Þ

however, to compute J in a more explicit form, one needs a
parametrization of the angle dependence of the fields. This
will be presented in the next section.

A. The ansatz; rotational symmetry and its loss

Let us now impose rotational symmetry in the x1; x2

plane to the fields. Denoting the usual polar coordinates in
the plane as x1 ¼ r cos ϑ, x2 ¼ r sin ϑ, rotational symmetry
implies that by ϑ-dependent gauge transformations one can
always achieve

∂ϑfAμ; Ca
μg ¼ 0;

ΦAðxiÞ ¼ ðexpðinAϑÞΦA1ðrÞ; expðimAϑÞΦA2ðrÞÞ;
A ¼ 1; 2: ð27Þ

In order to ensure consistency with the U(2) gauge and the
global SU(2) flavor symmetry, the integers, nA;mA, satisfy

the following relation: n2 − n1 ¼ m2 −m1 ¼ N, which can
also be expressed on the two scalar doublets as

ΦðxiÞ ¼
�
ϕ1ðrÞein1ϑ ψ1ðrÞein1ϑ
ϕ2ðrÞeim1ϑ ψ2ðrÞeim1ϑ

��
1 0

0 eiNϑ

�

¼ Φ0ðxiÞeiNϑ; ð28Þ

where N ¼ Diagf0; Ng, which encodes the relative wind-
ing between the two flavors. Since in general the twisting
matrix, M, mixes the two flavors, when N ≠ 0 in Eq. (28)
one can immediately see, that the right-hand sides of
Eqs. (15a)–(15b) depend explicitly on ϑ, breaking rota-
tional symmetry in the xα direction, i.e.

∂ϑfAα; Ca
αg ≠ 0: ð29Þ

It is easy to see that the condition to ensure rotational
symmetry of solutions of the field equations (15) can be
written as

½M;N� ¼ 0; ð30Þ

implying that the twisting matrix is diagonal. This happens
whenever M does not contain terms proportional to σ1; σ2.
Obviously, the anisotropy generated by twisting matrices
not commuting with N, would simply rule out the pos-
sibility to consider rotationally symmetric configurations.
Remarkably in the case of a light-like twist vector, the
decoupling of the field equations in the ðx1; x2Þ plane from
the equations with components xα ¼ ðx0; x3Þ, (15a)–(15b),
allows for solutions which actually break rotational sym-
metry in the xα direction. Whenever M does not commute
with N the corresponding M-twisted strings have rotation-
ally symmetric spatial sections in any plane orthogonal to
the x3 axis; however, the complete configuration is not
rotationally symmetric in the whole space-time.
Keeping the possibility of breaking rotational symmetry

in mind, we now present our ansatz. By singular U(2)
gauge transformations (linear in ϑ) on the scalars in
Eq. (28) we can achieve n1 ¼ m1 ¼ 0. Furthermore, by
assuming that the functions, ΦAiðrÞ, are all real, one
reduces the number of scalar fields from eight to four
(minimality of the ansatz). Then from Eq. (22b) it follows
that C2

ϑ ¼ const, which can be set to zero.
Finally choosing the radial gauge, our ansatz can be

written as

Aα ¼ Aðr; ϑÞωα; Ar ¼ 0; Aϑ ¼ aðrÞ; ð31aÞ

Ca
α¼Caðr;ϑÞωα; Ca

r ¼0; Ca
ϑ¼fc1ðrÞ;0;c3ðrÞg;

ΦðxiÞ¼
�
ϕ1ðrÞ ψ1ðrÞeiNϑ

ϕ2ðrÞ ψ2ðrÞeiNϑ

�
: ð31bÞ
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We can now display the angular momentum, J for our
ansatz (31) in a more explicit form. Exploiting
Eqs. (15a)–(15b) we obtain

J ¼ ω0ð ~Δþ ~QÞ;
~Q ¼ Tr½Φ†ΦðNM þMNÞ − 2Φ†CΦN�

ð32Þ

where ~Δ ¼ ∂iða∂iAÞ=g21 þ ∂iðCa
ϑD̂iCaÞ=g22. It is worth-

while to point out, that ~Q is a combination of the flavor
charge densities [see Eq. (A4)], ~Q ¼ −4nâKâ

0=ω0, with the
coefficients na ¼ TrðNσaÞ=2, n0 ¼ TrN=2.
Let us now write out the explicit form of the first-order

equations (22) for our ansatz:

a0 � g21
2
rðϕ2

1 þ ϕ2
2 þ ψ2

1 þ ψ2
2 − 2Þ ¼ 0; ð33aÞ

c03 �
g22
2
rðϕ2

1 − ϕ2
2 þ ψ2

1 − ψ2
2Þ ¼ 0; ð33bÞ

rϕ0
1 �

1

2
½ðaþ c3Þϕ1 þ c1ϕ2� ¼ 0; ð33cÞ

rψ 0
2 �

1

2
½ða − c3 − 2NÞψ2 þ c1ψ1� ¼ 0; ð33dÞ

c01 � g22rðϕ1ϕ2 þ ψ1ψ2Þ ¼ 0; ð33eÞ

rϕ0
2 �

1

2
½ða − c3Þϕ2 þ c1ϕ1� ¼ 0; ð33fÞ

rψ 0
1 �

1

2
½ðaþ c3 − 2NÞψ1 þ c1ψ2� ¼ 0; ð33gÞ

where for convenience we have chosen units such that
ξ ¼ 1. The vacuum manifold of E1 for the ansatz (31)
corresponds to the fix-point manifold of Eq. (33), a curve,
which can be parametrized as

ϕ1¼cosα; ϕ2¼sinα; ψ1¼−sinα; ψ2¼cosα;

a¼N; c1¼−N sinð2αÞ; c3¼−Ncosð2αÞ; 0≤α≤2π:

ð34Þ

III. TWISTED VORTICES

A. Twisted elementary vortices

The simplest non-Abelian vortex solution is a “diagonal”
one, with just ϕ1, ψ2, a, c3 being nontrivial and subject to
Eq. (33), while ϕ2, ψ1, c1 are all zero. In this case the
“vacuum angle,” α ¼ 0. Such solutions have been thor-
oughly investigated in Ref. [8]. A larger family of
“elementary” vortex solutions of Eq. (33), with ϕ2, ψ1,
c1 being also nontrivial, can be obtained by a “color-flavor”

transformation from a “diagonal” one [8]. We note that for
nondiagonal NAVs the parameter α is different from zero.
For diagonal vortices the relative winding between the two
doublets is always trivial, N ¼ 0, which remains so for the
general elementary vortices. The general form of the
elementary solution can be written as

Φ ¼ ϕþ1þ ϕ−naσa; Aϑ ¼ aðrÞ;
Ca
ϑ ¼ nac3; ϕ� ¼ ðϕ1 � ψ2Þ=2; ð35Þ

where na is the “orientational” unit vector of an elementary
NAV, which can be parametrized by the two spherical
angles as na ¼ ðsin α cos β; sin α sin β; cos αÞ. In this case
the two moduli parameters are just the angles, α and β [6,8].
We note here that for the most general (with the two

moduli) elementary vortex solution in Eq. (35) C2
ϑ ≠ 0, and

hence for β ≠ 0 it is not in the form of the minimal ansatz
(30); this has no influence, however, on our twisting of this
solution. It is now simple to generalize, or deform the
elementary vortex solution by M. Parametrizing the twist-
ing matrix as in Eq. (7), a short computation shows that the
ansatz

A ¼ m0; Ca ¼ ðm · nÞ½1 − CðrÞ�na þ CðrÞma;

m · n ¼ mana;
ð36Þ

containing just a single radial function, CðrÞ, reduces the
Gauss constraints, Eqs. (15a)–(15b), to a single second-
order inhomogeneous equation for CðrÞ:

1

r
ðrC0Þ0 − c23

r2
C ¼ g22½ϕ2þðC − 1Þ þ ϕ2

−ðCþ 1Þ�: ð37Þ

Without going into more rigorous mathematics one can
easily convince oneself that Eq. (37) admits a unique
solution subject to boundary conditions guaranteeing
regularity at r ¼ 0 and at r → ∞. Conversely, using
maximum-principle-type arguments it is not difficult to
show that all globally regular solutions are necessarily of
the form of the ansatz in Eq. (36).
The charge density Q, determining the energy and

momentum, of the elementary string, is given as:

Q ¼ ðm ·m − ðn ·mÞ2Þ½ϕ2
1 þ ψ2

2 − 2CðrÞϕ1ψ2�: ð38Þ

As one can easily see from Eq. (32) the angular momentum
density of twisted elementary vortices vanishes. As already
pointed out, this subsection reproduces and extends pre-
viously obtained results of Ref. [12] using different
methods, although our starting point was rather different.

B. Twisted coincident composite vortices

Next we consider a vortex solution with nonzero relative
winding between the two flavors. Assuming the minimal
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ansatz, the vortex in the ðx1; x2Þ plane is rotationally
symmetric, satisfying the first-order equations (33). Such
solutions have already been analyzed in Ref. [7], where it
has also been pointed out that they correspond to super-
imposed vortices on top of each other. Therefore such
vortices can be considered as composed of elementary
ones. As we have already argued, deforming composite
vortices with a general matrix,M induces a nontrivial angle
dependence in the ðx0; x3Þ plane.
Without losing generality one can parametrize the twist-

ing matrix as

M ¼ s
2
ð1 − σ3Þ þm

2
ðcosðμÞσ1 þ sinðμÞσ2Þ: ð39Þ

Taking into account the possible angle dependence of the
ωα components of the gauge fields, we introduce the
following decomposition:

A ¼ sA0 þmAþeiðNϑþμÞ þmA−e−iðNϑþμÞ;

Ca ¼ sCa
0 þmCaþeiðNϑþμÞ þmCa

−e−iðNϑþμÞ;
ð40Þ

together with the conditions Aþ ¼ A�
−, Caþ ¼ ðCa

−Þ� ensur-
ing the reality of the fields; moreover A0; A�, and Ca

0; C
a
�

are functions of r. Then the corresponding Gauss con-
straints can be put in the form

ΔrA0 ¼ g21

�
ηA0 þ ηāCā

0 −
1

2
η02

�
; ð41aÞ

ΔrCā
0 þ

ϵā b̄cb̄
r2

Cð13Þ
0 ¼ g22

�
ηCā

0 þ ηāA0 −
1

2
ηā2

�
; ð41bÞ

ΔðNÞA� ¼ g21

�
ηA� þ ηāCā

� −
1

4
χ0
�
; ð41cÞ

ΔðNÞCā
� þ ϵā b̄cb̄

r2
ðCð13Þ

� � 2iNC2
�Þ

¼ g22

�
ηCā

� þ ηāA� −
1

4
χā
�
; ð41dÞ

ΔðNÞC2
� −

cācā
r2

C2
� � 2iN

r2
Cð13Þ
� ¼ g22

�
ηC2

�∓ 1

4
χ2
�
; ð41eÞ

where the SU(2) gauge fields have been split as
Ca ¼ fCā; C2g, ā ¼ 1; 3; ϵ13 ¼ −1, ϵ31 ¼ 1; Δr is the
radial part of the two-dimensional Laplacian,
ΔðNÞ ¼ Δr − N2=r2. Furthermore we introduce the nota-
tions â ¼ f0; ag and σ0 ≡ 1, to present more compactly the
often appearing combinations

χâ ¼ Φ⋆
1iσ

â
ijΦj2e−iNϑ; ηâA ¼ Φ⋆

Aiσ
â
ijΦjA;

no sum over A;

Cð13Þ ¼ c3C1 − c1C3; ηâ� ¼ ðηâ1 � ηâ2Þ=2; ð42Þ

moreover to simplify the formulas somewhat we write
η≡ η0þ, ηā ≡ ηāþ. We have omitted the equation forC2

0 from
Eqs. (41a)–(41e), since a straightforward application of the
maximum principle leads to C2

0 ≡ 0. The reason behind
C2
0 ≡ 0 is the minimality of the ansatz (31). As one can see,

the Gauss-type Eqs. (41a)–(41e) can be decomposed into
three equation groups, one for fA0; Cā

0g, and one for each
fA�; Cā

�g, decoupled from each other. In fact it is sufficient
to consider only one of the set of equations for �
components and impose reality on the solutions.
From Eqs. (41a)–(41e) one can easily deduce the

asymptotic r → ∞ behavior of the ωα components of
the gauge potentials. We note first that for r → ∞

χ0 → 0; χ1 → cosð2αÞ;
χ2 → −i; χ3 → − sinð2αÞ; ð43Þ

η11 → −η12 → sinð2αÞ; η31 → −η32 → cosð2αÞ;
ηā → 0; η0A → 1; ð44Þ

then one finds that for r → ∞

A0 →
1

2
; A� → 0; Cā

0 →
1

2
ηā2;

Cā
� →

1

4
χā; C2

� → ∓ i
4
: ð45Þ

Quite interestingly, the equations for the angle-dependent
components, (41c)–(41e) can be reduced to a quadrature,
i.e. to solve a single first-order, linear ordinary differential
equation. The key observation is that A� ¼ 0 is a solution
of Eq. (41c). This is not completely obvious at first sight,
since assuming A� ¼ 0, Eq. (41c) leads to an algebraic
relation/constraint between C1

� and C3
�. A straightforward

computation shows that this constraint is compatible with
the remaining two coupled second-order equations (41d)
and (41e). As a matter of fact one can find yet another
simple algebraic relation among the Ca

�. In conclusion
Eqs. (41c)–(41e) admit a globally regular solution, which
can be given as

A� ¼ 0; ð46aÞ

rη3C1
�
0 ¼ −ðc3ηþ Nη3−ÞC1

� þ ðc3χ1 þ iNη31η
3
2=χ

2Þ=4;
ð46bÞ

and in terms of the solution of Eq. (46b), the remaining
functions C2

�; C
3
� can be found from the following alge-

braic relations:
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η1C1
� þ η3C3

� −
1

4
χ0 ¼ 0; ð47aÞ

χ1C1
� � χ2C2

� þ χ3C3
� ¼ 0: ð47bÞ

It follows from Eqs. (46)–(47) that Cā
− ¼ Cāþ and

C2
− ¼ −C2þ�, which implies that Cā

� are real and C2
� are

imaginary.
Using the solution of the Gauss constraints (47), the

electric energy density, Q, simplifies to

Q ¼ s2Qs þm2Qm þmsQmsTðϑÞ;
Qs ¼ ½η02ð1 − A0Þ − Cā

0η
ā
2�;

Qm ¼
�
2C1þ

�
η1χ3

η3
− χ1

�
þ η0−η

3
−

2η3

�
;

Qms ¼
�
−A0χ

0 − Cā
0χ

ā þ 2C1þ

�
η1η32
η3

− η12

�
þ η31χ

0

2η3

�
;

ð48Þ

where TðϑÞ ¼ cosðNϑþ μÞ. In the angular momentum
density J [Eq. (32)], ~Q takes the form

~Q ¼ sNQs þmNJmTðϑÞ;

Jm ¼ −
1

2η3
½4iχ0χ2C1þ − χ0η3−�: ð49Þ

The total electric energy, and the longitudinal and the
angular momenta are given as
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FIG. 1. Scalar field profiles of a coincident composite vortex for
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-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10
r

 a(r)

 c1(r)α-1

 c3(r)

FIG. 2. Gauge field profiles of a coincident composite vortex
for g1 ¼ 0.4, g2 ¼ 1, α ¼ 0.05.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8
r

α-2(A0(r)-1/2)

α-1(C1
0(r)+sin(2α)/2)

α-2(C3
0(r)+cos(2α)/2)

FIG. 3. Out-of-plane gauge field components, A0, C1
0, C

3
0, for

g1 ¼ 0.4, g2 ¼ 1, α ¼ 0.0.5.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8
r

 C1
+(r) -(cos 2α)/4

 C2
+(r)/i + 1/4

α-1(C3(r)+ + (sin 2α)/4)

FIG. 4. Out-of-plane gauge field components, C1þ, C2þ, C3þ for
g1 ¼ 0.4, g2 ¼ 1, α ¼ 0.05.

FORGÁCS, LUKÁCS, AND SCHAPOSNIK PHYSICAL REVIEW D 91, 125001 (2015)

125001-8



E0 ¼
ω2
0 þ ω2

3

4
ðs2Qtot

s þm2Qtot
m Þ;

P ¼ ω0ω3

2
ðs2Qtot

s þm2Qtot
m Þ;

Jtot ¼ ω0sNQtot
s ; ð50Þ

where Qtot
m;s ¼

R
d2xQm;s.

We have plotted the radial components of twisted
coincident vortices for N ¼ −1. In Figs. 1 and 2, the
planar components are displayed (the background, planar
solution). In Figs. 3, and 4, the Fourier components of the
out-of-plane gauge fields are shown. The charge density

terms Qs and Qm are plotted in Fig. 5. Their integrals over
the plane are given in Table I.
In Table I, there is a striking difference between the

energy of a vortex string with s ≠ 0, m ¼ 0 and s ¼ 0,
m ≠ 0, although they are counterparts in the sense that they
have the same frequency. Noting that the vortex withm ¼ 0
is rotationally symmetric, while the one with m ≠ 0 is not,
only the magnitude of the difference is surprising.
For an explanation of the magnitude of the above-

mentioned energy difference, let us apply perturbation
theory, expanding the solution in powers of α [see
Eq. (34)], assuming α ≪ 1. An expansion of the back-
ground vortex as

ϕ1 ¼ ϕð0Þ
1 þ α2ϕð2Þ

1 þ…;

ϕ2 ¼ αϕð1Þ
2 þ…;

ψ1 ¼ αψ ð1Þ
1 þ…;

ψ2 ¼ ψ ð0Þ
2 þ α2ψ ð2Þ

2 þ…;

a ¼ að0Þ þ α2að2Þ þ…;
c3 ¼ cð0Þ3 þ α2cð2Þ3 þ…;

c1 ¼ αcð1Þ1 þ…

ð51Þ

can be substituted into Eqs. (33a)–(33g), yielding a con-
sistent solution. Note, that in the α0 order, the vortex is
always gauge equivalent to a diagonal one. If α ¼ π=2, the
configuration can also be brought to a diagonal form [7].
The field components A0; A�; Cā

0; C
a
� are expanded as

A0 ¼
1

2
þ α2Að2Þ

0 ; C1
� ¼ C1ð0Þ

� þ α2C1ð2Þ
� ;

C1
0 ¼ αC1ð1Þ

0 ; C2
� ¼ C2ð0Þ

� þ α2C2ð2Þ
� ;

C3
0 ¼ −

1

2
þ α2C3ð2Þ

0 ; C3
� ¼ αC3ð1Þ

� ; ð52Þ

and substituting into Eq. (48) yields

Qs ¼ α2½ðψ ð1Þ
1 Þ2 − 2C1ð1Þ

0 ψ ð1Þ
1 − ðAð2Þ

0 −C3ð2Þ
0 Þðψ ð0Þ

2 Þ2� þ…;

Qm ¼ −2C1ð0Þ
þ ϕð0Þ

1 ψ ð0Þ
2 þ 1

2
½ðϕð0Þ

1 Þ2 þ ðψ ð0Þ
2 Þ2� þ…: ð53Þ

The two orders of α between the leading terms of Qs and
Qm in Eq. (53) explain the magnitude of the energy
difference between the same planar vortex twisted with
the same frequency, either with a diagonal or with an off-
diagonal twisting matrix.
Finally, we give some arguments for the stability. The

conserved charge Q is strongly localized, and therefore
small perturbations cannot change its value. Planar vorti-
ces, being absolute minima of the energy in their topo-
logical sector, are stable. If there were an instability, it
would be expected to manifest itself as an energy-reducing
deformation along the z axis. In the case of the twisted
semilocal vortices of Ref. [17], with ωα timelike, such
deformations indeed exist [21]; however, they correspond
to the same type of instability as those of ANO vortices
embedded in a two-component extended Abelian Higgs

 0
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FIG. 5. The electric energy density terms Qs, Qm, for g1 ¼ 0.4,
g2 ¼ 1, α ¼ 0.05.

TABLE I. Qtot
m , Qtot

s for g2 ¼ 1 and for different values of g1; α.
Note that the magnetic energy is E1 ¼ 4π and 0.785398 ≈ π=4.

g1 α Qtot
s Qtot

m

0.4 0 0 6.283
0.05 0.0249 6.222
0.785398 3.118 3.591

0.77 0 0 6.507
0.05 0.0243 6.261
0.785398 2.966 3.591

2.33 0 0 6.222
0.05 0.0232 6.211
0.785398 2.683 3.586
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model [22]. In the present case, however, such potential
instabilities are absent. The spectrum of the perturbation
modes of the untwisted vortices are gapped, moreover the
planar and off-planar perturbation modes decouple.
Therefore at least for small values of the twist, it cannot
change the sign of the otherwise non-vanishing positive
eigenvalues.

IV. CONCLUSIONS

In this paper, we have constructed charged, stationary
rotating non-Abelian vortex strings in a Uð2Þgauge ×
SUð2Þflavor theory. The scalar fields rotate around the string
axis, and they have a (matrix) phase depending linearly on
xα ¼ ðt; zÞ as

ΦðxμÞ ¼ ΦðxiÞ exp
�
i
2
Mωαxα

�
;

which is referred to as a twist. We considered here the
case ωαω

α ¼ 0, in which, the planar equations decouple
from those of the t; z components. The energy contribu-
tion due to the twist, and the z component of the
momentum are both proportional to the Noether charge
corresponding to the flavor symmetry generated by the
matrix M.
Adding twist to the coincident composite vortices of

Ref. [7], leads to some striking phenomena. These
vortex strings carry total angular momentum, unless
M is purely off-diagonal. If M is nondiagonal, the
vortex strings are not rotationally symmetric, although,
all their planar cross sections are. This is explained by
the fact, that the nontrivial realizations of rotations and
z translations act on them noncommutatively. The
energy of a solution, which breaks rotational symmetry,
is significantly larger than that of its rotationally
symmetric counterpart.
The analysis of vortex hair for charged rotating asymp-

totically anti–de Sitter black holes has revealed interesting
features particularly in the holographic context of the
gauge/gravity duality [23]. The interplay between the
angular momentum of vortices such as those constructed
here and the black hole angular momentum could give rise
to interesting effects. We hope to discuss this issue in a
forthcoming work.
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APPENDIX A: NOTATION AND CONVENTIONS

Here we summarize the definition of the gauge-field
strength tensor, covariant derivatives, etc. The signature of
the flat Minkowskian metric used here is ðþ;−;−;−Þ,

Fμν ¼ ∂μAν − ∂νAμ;

Ga
μν ¼ ∂μCa

ν − ∂νCa
μ þ ϵabcCb

μCc
ν;

DμΦA ¼
�
∂μ −

i
2
Aμ −

i
2
σaCa

μ

�
ΦA; ðA1Þ

with σa, (a ¼ 1; 2; 3) denoting the Pauli matrices, σaσb ¼
δab þ iϵabcσc. For later use, the covariant derivative of
adjoint representation fields, D̂μΣa ¼ ∂μΣa þ εabcCb

μΣc.
The Yang-Mills-Higgs equations are

∂μFμν ¼ g21J
0
ν; D̂μGa

μν ¼ g22J
a
ν ; ðA2Þ

where the color currents are

J0μ ¼
i
2
Tr½ðDμΦÞ†Φ − Φ†DμΦ�;

Jaμ ¼
i
2
Tr½ðDμΦÞ†σaΦ − Φ†σaDμΦ�: ðA3Þ

The flavor current, i.e., the Noether current correspond-
ing to the global SUð2Þ flavor symmetry is

Kâ
μ ¼

i
2
Tr½DμΦσâΦ† − ΦσâDμΦ†�; ðA4Þ

where the component K0
μ ¼ −J0μ has been introduced for

the sake of convenience, and a Uð1Þ transformation agrees
with a gauge transformation with a constant (global) phase.

APPENDIX B: NUMERICAL DATA

In this Appendix, we present some numerical data of the
untwisted vortices (Table II) and of the twisted strings
(Table III). The shooting parameters in the tables are
defined at the origin as

TABLE II. Shooting parameters of planar vortices for g2 ¼ 1
and for different values of g1; α.

g1 α f1 f2 p1 p2

0.4 0 0.07863 0 0 0.6672
0.05 0.07855 0.009484 −0.01094 0.6666
0.785398 0.05975 0.1485 −0.1617 0.5176

0.77 0 0.1786 0 0 0.9002
0.05 0.1785 0.01635 −0.01908 0.8996
0.785398 0.1435 0.2665 −0.2930 0.7188

2.33 0 0.4397 0 0 1.2724
0.05 0.4397 0.02963 −0.03542 1.2720
0.785398 0.4350 0.5589 −0.6301 1.1314
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ϕ1ðrÞ ¼ f1r2 þOðr4Þ; ψ1ðrÞ ¼ p1rþOðr3Þ;
ϕ2ðrÞ ¼ f2rþOðr3Þ; ψ2ðrÞ ¼ p2 þOðr2Þ; ðB1Þ

and similarly

A0 ¼ s00 þOðr2Þ; Cp ¼ spr2 þOðr4Þ;
C1
0 ¼ s10rþOðr3Þ; Cm ¼ sm þOðr2Þ;

C3
0 ¼ s30 þOðr2Þ; C3þ ¼ s3rþOðr3Þ ðB2Þ

where Cp ¼ C1þ þ iC2þ and Cm ¼ C1þ − iC2þ.
We recall that A� ¼ 0, C2

0 ¼ 0, C1þ ¼ C1
−, C3þ ¼ C3

−,
C2þ ¼ −C2

− and that for α ¼ 0, s00 ¼ s10 ¼ s30 ¼
sm ¼ s3 ¼ 0. The relations (47) give

−p1sm þ p2s3 þ f2 ¼ 0; ðB3aÞ

f1sm − f2s3 ¼ 0: ðB3bÞ

Equation (B3a) and (B3b) are trivially satisfied for α ¼ 0.
For nonzero values of α, the numerical errors in Eqs. (B3a)
and (B3b) vary between 10−11–10−8. Of the values consid-
ered, the minimal error occurs for g2 ¼ 2.33, α ¼ 0.05,
whenEq. (B3b) is satisfied to a precision of 3 × 10−12, while
the maximal error occurs for g2 ¼ 2.33, α ¼ 0.785398,
when Eq. (B3a) is satisfied to a precision of 4 × 10−8.
Over the intervals shown in the figures, the errors in the
algebraic constraints (47a)–(47b) remain below 6 × 10−5.
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