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Within the framework of adiabatic regularization, we present a simple formalism to calculate number
density and renormalized energy-momentum density of spin 1=2 particles in spatially flat FLRW
spacetimes using an appropriate WKB ansatz for the adiabatic expansion for the field modes.
The conformal and axial anomalies thus found are in exact agreement with those obtained from other
renormalization methods. This formalism can be considered as an appropriate extension of the techniques
originally introduced for scalar fields, applicable to fermions in curved space.
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I. INTRODUCTION

Quantum field theory in curved spacetime [1–5] has been
developed as an approximate quantum theory of gravity in
order to study particle creation by evolving universes [6–9]
and black holes [10], as well as inhomogeneities in the
cosmic microwave background radiation and the large-
scale structure of the Universe [11]. Parker [6] conceptu-
alized the so-called adiabatic vacuum in order to obtain a
notion of particles in curved space that comes closest to the
usual one in flat space. For scalar fields in spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
times: (i) in a comoving volume, the particle number
density (jβkj2) is an adiabatic invariant, (ii) particles of
conformally invariant field with zero mass will not be
created, (iii) the total number density of created particles of
specific mass, summed over all modes, is ultraviolet (UV)
divergent and (iv) the stress tensor (Tμν) of created particles
has quadratic and logarithmic UV divergences in addition
to the expected quartic divergence.
Various renormalization methods were developed to

tame these infinities. The concept of adiabatic regulariza-
tion was introduced by Parker [12] to make the total particle
number density for scalar particles finite, and was later
extended to tame the UV divergences in Tμν by Parker and
Fulling [13]. In adiabatic regularization, the physically
relevant finite expression is obtained from the formal one
containing UV divergences by subtracting mode by mode
(under the integral sign) each term in the adiabatic
expansion of the integrand that contains at least one UV
divergent part for arbitrary values of the parameters of the
theory. The number of time derivatives of the cosmological
scale factor aðtÞ that appear in a term of the expansion is
called the adiabatic order of the term. The adiabatic
regularization scheme is particularly useful for numerical
calculations. In [13], the authors also showed that the
adiabatic regularization is equivalent to the n-wave regu-
larization (which is essentially a variant of Pauli-Villars

regularization [5]) used by Zeldovich and Starobinsky [14]
to renormalize the divergent Tμν for scalar fields in an
anisotropic universe. Like adiabatic regularization scheme,
this method is also particularly suited for numerical
computations [15,16].
Among other standard techniques, proper-time regulari-

zation, point-splitting regularization (particularly by the
Hadamard method), zeta-function regularization and
dimensional regularization have been applied to curved
space [1–5]. The DeWitt-Schwinger point-splitting regu-
larization [17–21] has been recently used in [22,23] to
construct an approximate Tμν of the quantized massive
scalar, spinor and vector fields in the spatially flat FLRW
universe using asymptotic expansion of the Green function
constructed within the framework of the n-wave regulari-
zation [14,24] and reproduced the leading-order contribu-
tion to the stress tensor derived in [25]. All these methods
are equivalent and lead to the same output [5]. Production
of spin 1=2 particles in various cosmological scenarios have
been studied by many [26–31]. Recently, fundamental
issues like the problem of defining a preferred vacuum
state at a given time have been addressed in [32,33].
Analysis of the approximate definition of the particle
number via an adiabatic WKB ansatz can be found in
[34]. A systematic adiabatic expansion for spin 1=2 modes
has been recently constructed in [35–37] to analyze jβkj2
for fermions and the corresponding renormalization of Tμν

in a FLRWuniverse, and it is used to prove the equivalence
between adiabatic regularization and point-splitting
DeWitt-Schwinger renormalization [38]. It was argued in
[35] that a WKB ansatz is specifically designed to preserve
the Klein-Gordon product and the associated Wronskian
condition, but not the Dirac product or the normalization
condition.
In the following, we present a simple formalism to

determine jβkj2 and also to regularize the resulting Tμν for
spin 1=2 particles in spatially flat FLRW universe. The
essential difference between our formalism and that intro-
duced in [35] is explicit in the corresponding expressions of
so-called “out” states. In our case, the entire nonadiabaticity*smnphy@gmail.com
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is incorporated in the Bogoliubov coefficients, whereas in
[35], the Bogoliubov coefficients are defined to be of
particular adiabatic order. Further, we have expressed quan-
tum fields and other quantities as functions of conformal
time, which is useful particularly in conformally flat space-
times and leads us to simple structure of field equations. We
define our “in” state as the adiabatic vacuum given by the
WKB solution to the field equations and the “out” state as a
mixture of positive and negative frequency in states via time-
dependent Bogoliubov coefficients αkðtÞ and βkðtÞ. Next we
use the field equations to derive the governing equations for
jβkj2 in terms of a set of three real and independent variables
sk; uk and τk

1 (to be defined later), which were introduced in
[14] in the context of scalar particle creation during aniso-
tropic collapse. It is then straightforward to regularize Tμν by
subtracting leading-order terms from the adiabatic mode
expansions of these variables. The renormalized quantities
thus derived match exactly with the known results found by
other methods [1,5,35].

II. DIRAC FIELD IN FLRW SPACETIME

The homogeneous and isotropic FLRW spacetime geom-
etry is given by

ds2 ¼ a2ðtÞð−dt2 þ d~x2Þ; ð1Þ

where t is the conformal time and aðtÞ is the conformal
scale factor. The Dirac equation in generic curved space-
time for a field ψð~x; tÞ with mass m is given by [1–5],

ðeμaγa∇μ −mÞψ ¼ 0; ð2Þ

where eaμ are the vierbeins, γa’s are standard Dirac matrices
(defined in terms of usual Pauli matrices σi) in Minkowski
space satisfying fγa; γbg ¼ ηab and ∇μ ¼ ∂μ − Γμ is the
covariant derivative, with Γμ being the spin connection
[1,5]. The Dirac matrices (compatible with signature
−;þ;þ;þ) in the Dirac-Pauli representation is given by

γ0 ¼ i

�
I 0

0 −I

�
; γi ¼ i

�
0 σi

−σi 0

�
ð3Þ

where σi are the usual Pauli matrices given by

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ð4Þ

For metric (1), Eq. (2) leads to�
γ0
�
∂0 þ

3_a
2a

�
þ γi∂i þma

�
ψ ¼ 0: ð5Þ

The Dirac field ψ can be written in terms of a time-
dependent annihilation operator for particles [B~kλðtÞ] and a
creation operator for antiparticles [D†

~kλ
ðtÞ] as

ψ ¼
X
λ

Z
d3kðB~kλu~kλ þD†

~kλ
v~kλÞ; ð6Þ

where momentum expansion of the eigenfunctions u~kλð~x; tÞ
and v~kλð~x; tÞ, which is obtained by a charge conjugation
(v ¼ γ2u�) operation on u~kλð~x; tÞ, are given by, in terms of
two-component spinors [35],

u~kλð~x; tÞ ¼
ei~k:~x

ð2πaÞ3=2
�hIkðtÞξλðkÞ
hIIk ðtÞ ~σ:~k

k ξλðkÞ

�
ð7Þ

v~kλð~x; tÞ ¼
e−i~k:~x

ð2πaÞ3=2
�
−hII�k ðtÞ ~σ:~k

k ξ−λðkÞ
−hI�k ðtÞξ−λðkÞ

�
ð8Þ

where ξλðkÞ is the normalized two-component spinor

satisfying ξ†λξλ ¼ 1 and ~σ:~k
2k ξλ ¼ λξλ where λ ¼ �1=2 rep-

resents the helicity.2 The normalization condition in terms
of the Dirac product for ψ, ðu~kλ; u~k0λ0 Þ ¼ ðv~kλ; v ~k0λ0 Þ ¼
δλλ0δð~k − ~k0Þ, implies

jhIkðtÞj2 þ jhIIk ðtÞj2 ¼ 1: ð9Þ

This condition guarantees the standard anticommutation
relations for creation and annihilation operators. Putting
Eq. (7) in Eq. (5) we get the following first-order coupled
differential equations:

_hIk þ imahIk þ ikhIIk ¼ 0; ð10Þ

_hIIk − imahIIk þ ikhIk ¼ 0; ð11Þ

and the Wronskian is given by

_hIkhII�k − hIk _h
II�
k ¼ −ik: ð12Þ

Here (_) means derivative with respect to the conformal time
t. Equations (10) and (11) lead to the following decoupled
second-order equations:

ḧIk þ ½Ω2
kðtÞ þ iQðtÞ�hIk ¼ 0; ð13Þ

ḧIIk þ ½Ω2
kðtÞ − iQðtÞ�hIIk ¼ 0; ð14Þ

where ΩkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ k2

p
and QðtÞ ¼ m _a. Note that the

followingmethodology is applicable to generic backgrounds
where equations of structure similar to Eqs. (13) and (14)

1Similarly, in [35], one has to solve for three complex
quantities, namely, ω, F and G.

2Note that using either value of helicity, or either u~kλ or v~kλ,
leads to exactly same end results in the following calculations.
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appear. The “in” adiabatic vacuum (i.e. the state of
adiabatic order zero) is given by the WKB solution
(which naturally generalizes the standard Minkowski space
solution) of the field equations (see Appendix A),

hIð0Þk ðtÞ ¼ f1e−; hIIð0Þk ðtÞ ¼ f2e− ð15Þ

with f1¼
ffiffiffiffiffiffiffiffiffiffiffi
Ωkþma
2Ωk

q
, f2¼

ffiffiffiffiffiffiffiffiffiffiffi
Ωk−ma
2Ωk

q
and e�¼expð�i

R
ΩkdtÞ.

This implies that we shall seek the general solution
corresponding to the out state in the form

hIkðtÞ ¼ αkðtÞhIð0Þ − βkðtÞhIIð0Þ�; ð16Þ
hIIk ðtÞ ¼ αkðtÞhIIð0Þ þ βkðtÞhIð0Þ�; ð17Þ

where αkðtÞ and βkðtÞ are the Bogoliubov coefficients.
Equations (16) and (17) further imply

αkðtÞ ¼ ðf1hIk þ f2hIIk Þeþ; ð18Þ

βkðtÞ ¼ ðf1hIIk − f2hIkÞe−: ð19Þ

The normalization condition (9) leads to

jαkðtÞj2 þ jβkðtÞj2 ¼ 1: ð20Þ

Then the average number of spin 1=2 particles of specific

helicity and charge with momentum ~k created per unit
volume is given by [1]

hN~ki ¼ hB†
~kλ
B~kλi ¼ hD†

~kλ
D~kλi ¼ jβkðtÞj2: ð21Þ

Note that, the WKB solutions (15) obey the following
Wronskian condition:

_hIð0Þk hIIð0Þ�k − hIð0Þk
_hIIð0Þ�k ¼ F − ik; F ¼ kQ

2Ω2
k

: ð22Þ

The function FðtÞ is of adiabatic order 1 and contains the
factor QðtÞ, which breaks the conformal invariance in
the field equations. Thus, the Wronskian is satisfied in
the adiabatic limit and FðtÞ is a measure of nonadiabaticity
of the cosmological evolution. Equation (22) also implies
that the WKB ansatz is not an exact solution of the field
equation during the nonadiabatic expansion, which is the
desired condition for any particle creation [12]. In Eq. (6),
the creation and annihilation operators carry this non-
adiabaticity, and so do the Bogoliubov coefficients in
Eqs. (16) and (17). Thus jβkj2 is expected to depend on
FðtÞ, as particle creation can be considered as a result of
this nonadiabaticity. Putting Eqs. (16) and (17) in Eqs. (10)
and (11) and simplifying, a system of two linear first-order
differential equations is obtained for αkðtÞ and βkðtÞ,

_αk ¼ −Fβke2þ; _βk ¼ Fαke2−; ð23Þ

which were first derived by Parker [9] in exactly this
particular form. It is obvious from Eq. (23) that creation of
massless particles in conformally flat spacetimes is pro-
hibited, and it also indicates that fermions at rest shall not
be created. Similar results were found in [39], where the
authors used Newman-Penrose formalism.
To determine jβkj2 and the resulting Tμν, let us define the

following three real and independent variables [14] (for
later convenience), in terms of the two complex variables
αk and βk that are related by condition (20):

sk ¼ jβkj2;
uk ¼ αkβ

�
ke

2
− þ α�kβke

2þ;

τk ¼ iðαkβ�ke2− − α�kβke
2þÞ: ð24Þ

For these variables one gets a system of three linear first-
order differential equations,

_sk ¼ Fuk; ð25Þ

_uk ¼ 2Fð1 − 2skÞ − 2Ωkτk; ð26Þ

_τk ¼ 2Ωkuk; ð27Þ

with initial conditions sk ¼ uk ¼ τk ¼ 0 at some suitably
chosen t ¼ t0.
From Eqs. (25)–(27) one can further decouple the

equation for jβkj2 or sk given as

s
…

k þ F1 ̈sk þ F2 _sk þ F3ð1 − 2skÞ ¼ 0; ð28Þ

where

F1 ¼ −
�
2 _F
F

þ
_Ωk

Ωk

�
; ð29Þ

F2 ¼
�
4F2 þ 4Ω2

k þ
2 _F2

F
þ

_F _Ωk

FΩk
−
F̈
F

�
; ð30Þ

F3 ¼ −2F2

�
_F
F
−

_Ωk

Ωk

�
: ð31Þ

Note that once hIk and hIIk are derived (analytically or
numerically) from the field equations, one can find jβkj2
directly from Eq. (19). Alternatively, when such a closed
form solution to the field equations is not available, one can
solve the set of equations (25)–(27) numerically (or
analytically whenever possible). Below we discuss how
one can find the renormalized stress tensor by solving
Eqs. (25)–(27).
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A. Energy-momentum tensor

The energy-momentum tensor for the Dirac field in
curved spacetime is given by

Tμν ¼
i
2
½ψ̄γðμ∇νÞψ − ð∇ðμψ̄ÞγνÞψ �: ð32Þ

The independent components of Tμν are given by

T0
0 ¼ −

i
2a

ðψ̄γ0 _ψ − _̄ψγ0ψÞ; ð33Þ

Ti
i ¼

i
2a

ðψ̄γiψ 0 − ψ̄ 0γiψÞ; ð34Þ

where ( 0) denotes derivative with respect to xi. The vacuum
expectation value of the above quantities leads to

hT0
0i ¼

1

ð2πaÞ3
Z

d3kρk; ð35Þ

hTi
ii ¼

1

ð2πaÞ3
Z

d3kpk; ð36Þ

with energy density ρk and pressure density pk are given,
respectively, as

ρk ¼
i
a
ðhIk _hI�k þ hIIk _hII�k − hI�k _hIk − hII�k

_hIIk Þ; ð37Þ

pk ¼
2k
3a

ðhIkhII�k þ hI�k h
II
k Þ: ð38Þ

Using Eqs. (16), (17), (20) and (24), we get from Eqs. (37)
and (38)

ρk ¼ −
2Ωk

a
ð1 − 2skÞ; ð39Þ

pk ¼
2k
3a

�
k
Ωk

ð1 − 2skÞ þ
ma
Ωk

uk

�
: ð40Þ

The vacuum energy (when sk ¼ uk ¼ τk ¼ 0) matches
with the standard result. We discuss below how to remove
the divergences in Tμν by subtracting the leading-order
terms from the adiabatic expansion of sk; uk and τk.

B. Renormalization

Let us consider the case of large momenta (Ωk → ∞) and
expand the solutions of the system of Eqs. (25)–(27) in an
asymptotic series in powers of Ω−1

k . This is essentially the
same as the adiabatic expansion that is valid in the
quasiclassical region where j _Ωkj ≪ Ω2

k. It is straightfor-

ward to see that τk ¼ τð1Þk þ τð3Þk þ…, uk ¼ uð2Þk þuð4Þk þ…

and sk ¼ sð2Þk þ sð4Þk þ…, where the superscripts inside

the brackets indicate the adiabatic order (Appendix B).
Equations (25)–(27) lead to the following recursion
relations:

uðrÞk ¼ _τðr−1Þk

2Ωk
; ð41Þ

sðrÞk ¼
Z

FuðrÞk dt; ð42Þ

τðrþ1Þ
k ¼ −

4FsðrÞk þ _uðrÞk

2Ωk
; ð43Þ

with r ¼ 2; 4;… and τð1Þk ¼ F
Ωk
. It is straightforward to solve

these equations analytically to arbitrary order. Further, as
k → ∞, we have

sðrÞk ∼k−ðrþ2Þ; uðrÞk ∼k−ðrþ1Þ; τðrÞk ∼k−ðrþ1Þ: ð44Þ

This implies the well-known logarithmic UV divergences
of the total energy and pressure density. Note that no
quadratic divergence appears for fermions as it does for
scalar fields [1]. To remove these infinities, we need to
subtract leading terms up to second order from the
expansion of sk and uk. This prescription is thus equivalent
to adiabatic regularization. The total particle number
density of a specific mass with summed-over momenta
is simply given as

Nm ¼ 1

ð2πaÞ3
Z

d3ksk: ð45Þ

The renormalized total energy and momentum density
(after subtracting the vacuum contribution i.e. the quartic
divergence) are given by

hT0
0iren ¼

2

π2a4

Z
dkk2Ωkðsk − sð2Þk Þ; ð46Þ

hTi
iiren ¼

1

3π2a4

Z
dk

k3

Ωk

h
−2kðsk − sð2Þk Þ

þmaðuk − uð2Þk Þ
i
: ð47Þ

Note that in more generic spacetimes the fourth-order
adiabatic terms may give rise to proper UV divergences
[21] and the renormalized quantities become

hT0
0iren ¼

2

π2a4

Z
dkk2Ωkðsk − sð2Þk − sð4Þk Þ; ð48Þ

hTi
iiren ¼

1

3π2a4

Z
dk

k3

Ωk
½−2kðsk − sð2Þk − sð4Þk Þ

þmaðuk − uð2Þk − uð4Þk Þ�: ð49Þ
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According to the standard approach of regularization one
considers the fourth-order adiabatic terms as potentially
divergent [1,5]; to compute the trace anomaly, Eqs. (48)
and (49) are used instead of Eqs. (46) and (47).

C. Conformal and axial anomalies

The trace of the energy-momentum tensor (32) is
Tμ
μ ¼ mψ̄ψ . Thus, the trace vanishes for massless fields.

However, the renormalization procedure renders the quan-
tum counterpart of Tμ

μ finite. This phenomenon is known as
the conformal anomaly. The vacuum expectation value of
the trace of stress tensor is given by

hTμ
μi ¼ 1

ð2πaÞ3
Z

d3khTμ
μik ð50Þ

with

hTμ
μik ¼ −2mðjhIkj2 − jhIIk j2Þ ð51Þ

¼ −2m
�
ma
Ωk

ð1 − 2skÞ −
k
Ωk

uk

�
; ð52Þ

where we have again used Eqs. (16), (17), (20) and (24).
One can also derive Eq. (52) using the identity
hTμ

μik ¼ ρk þ 3pk. In the limit m → 0, it is enough to

subtract terms up to the second order (i.e. sð2Þk and uð2Þk ) to
remove the UV divergence from hTμ

μi. After subtracting the
vacuum contribution, the resulting renormalized trace
anomaly is given by

hTμ
μiren ¼ lim

m→0

2m
ð2πaÞ3

Z
d3k

�
2ma
Ωk

sð4Þk þ k
Ωk

uð4Þk

�
; ð53Þ

as only the fourth-order term in the expansions of skðtÞ and
ukðtÞ survives in them → 0 limit and in fact is independent

ofm. Using explicit expressions of sð4Þk and uð4Þk in Eq. (53),
we get

hTμ
μiren¼

11_a4−29a _a2äþ12a2 _aa
…þ9a2ä2−3a3a

⃜

240π2a8
: ð54Þ

To cross-check the above expression, note that the con-
formal anomaly can be expressed in terms of the curvature
invariants by the following generic expression [1,5]:

hTμ
μiren ¼

1

ð4πÞ2 ðACαβγδCαβγδ þ BGþ C□RÞ; ð55Þ

where Cαβγδ is the Weyl tensor, R is the Ricci scalar
and G is the Gauss-Bonnet invariant, given by G ¼
−2ðRαβRαβ − R2=3Þ with Rαβ as the Ricci tensor. For
conformally flat spacetimes (Appendix C), the Weyl tensor
vanishes identically. Equating Eq. (55) with Eq. (54), we get
B ¼ −11=360 andC ¼ 1=30, which agrees with the known

results [1,5]. This proves the viability of the methodology
presented here.
The classical axial current (Jμ ¼ ψ̄γ5γμψ where

γ5 ¼ iγ1γ2γ3γ4) is conserved for a massless Dirac field.
The quantum counterpart of the divergence of the axial
current is given by

h∇μjμi ¼ 2imhψ̄γ5ψi ð56Þ

¼ −
4im

ð2πaÞ3
Z

d3kðhI�k hIIk − hIkh
II�
k Þ ð57Þ

¼ 4m
ð2πaÞ3

Z
d3kτk: ð58Þ

This implies that the renormalized axial anomaly is
given by

h∇μjμiren ¼ lim
m→0

4m
ð2πaÞ3

Z
d3kðτk − τð1Þk Þ: ð59Þ

In m → 0, none of the terms in the right-hand side of
Eq. (59) survive and the resulting axial anomaly vanishes as
expected [1].

III. SUMMARY

We have constructed a simple formalism, within the
framework developed in [6,13,14], to compute number
density and renormalized energy-momentum density of
spin 1=2 particles created during the evolution of spatially
flat FLRW universes. We introduced an appropriate WKB
ansatz that satisfies the normalization condition and the
Wronskian condition up to the desired adiabatic order. The
role of nonadiabaticity is crucial in defining the out
vacuum. Here the Bogoliubov coefficients carry all the
adiabatic orders (so to speak), unlike [35], where the
Bogoliubov coefficients are defined to be of some particu-
lar adiabatic order. We have expressed the physical quan-
tities as simple linear combinations of three real and
independent variables sk; uk and τk, which are defined in
terms of the usual Bogoliubov coefficients. The role of
these variables is a distinguishing feature of the algorithm
presented here and makes the process of renormalization
simple. The evolution of these three variables is governed
by three linear first-order coupled differential equations. It
is easy to solve these equations with appropriate boundary
conditions. Further, using adiabatic approximation, one can
find the adiabatic expansion of these variables in powers of
momenta. Subtracting up to necessary leading-order terms
from the expansion of hTμνi, renormalization is achieved in
the usual manner. The conformal and axial anomalies thus
found are in exact agreement with those obtained from
other renormalization methods that involve tedious calcu-
lations. To carry out all the steps, one need not solve the
field equations analytically for the out vacuum, and the
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whole process is also suitable for numerical calculations.
This work gives us a simple alternative to [35] as well as an
appropriate extension and unification of standard tech-
niques (within the framework of adiabatic regularization),
originally introduced for scalar fields, that are applicable to
fermions in curved space. Application of this formalism to
interesting cosmological scenarios and the corresponding
results will be reported elsewhere.
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APPENDIX A: WKB SOLUTION

To find the WKB solution to

ḧIk þ ½Ω2
kðtÞ þ iQðtÞ�hIk ¼ 0; ðA1Þ

ḧIIk þ ½Ω2
kðtÞ − iQðtÞ�hIIk ¼ 0; ðA2Þ

let us assume

hIkðtÞ ∼ exp

�Z
ðXðtÞ þ iYðtÞÞdt

�
ðA3Þ

where

XðtÞ ¼ 1

ℏ

X∞
n¼0

ℏnXnðtÞ; YðtÞ ¼ 1

ℏ

X∞
n¼0

ℏnYnðtÞ: ðA4Þ

Putting Eq. (A3) in Eq. (A1) and equating the terms of
zeroth order in n, we get

X2
0 − Y2

0 þΩ2
k ¼ 0; ðA5Þ

2X0Y0 þQ ¼ 0: ðA6Þ

Similarly, solving for the first order in n leads to

_X0 þ 2X0X1 − 2Y0Y1 ¼ 0; ðA7Þ

_Y0 þ 2X0Y1 − 2Y0X1 ¼ 0: ðA8Þ

Higher-order terms can be neglected in the adiabatic
approximation. Solving Eqs. (A5) and (A6) we get

X0 ≈
Q
2Ωk

; Y0 ≈Ωk: ðA9Þ

Similarly, Eqs. (A7) and (A8) give

X1 ≈ −
_Ωk

2Ωk
; Y1 ≈ 0: ðA10Þ

This leads to

hIkðtÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk þma

2Ωk

s
exp

�
i
Z

Ωkdt

�
: ðA11Þ

One can solve Eq. (A2) similarly. Note that the approx-
imations made above are valid in the adiabatic limit;
therefore, Eq. (15) represents the adiabatic vacuum.

APPENDIX B: sk, uk AND τk OF DIFFERENT
ADIABATIC ORDERS

Terms in the adiabatic expansion of sk, uk and τk can be
derived solving Eqs. (25)–(27) in the following way. For
k → ∞, sk, uk, τk and their temporal variations must tend to
zero. Therefore, Eq. (26) for large k implies

0 ∼ 2F − 2Ωkτk; ðB1Þ

which further implies that the leading term in the adiabatic
expansion of τk is of adiabatic order 1, i.e.

τð1Þk ∼
F
Ωk

¼ mk _a
2Ω3

k

: ðB2Þ

Putting Eq. (B2) in Eq. (27) we get the leading term in the
adiabatic expansion of uk, which is of order 2,

uð2Þk ∼
_τð1Þk

2Ωk
¼ −

3m3ka _a2

4Ω6
k

þmkä
4Ω4

k

: ðB3Þ

Similarly, by putting Eq. (B3) in Eq. (25) we get the leading
term in the adiabatic expansion of sk, which is again of
order 2,

sð2Þk ∼
Z

Fuð2Þk dt ¼ m2k2 _a2

16Ω6
k

: ðB4Þ

Now putting Eq. (B4) again back in Eq. (26) we get the
next-to-leading term in the adiabatic expansion of τk, which
is of adiabatic order 3. This iteration leads to Eqs. (41)–(43)
that give e.g.

τð3Þk ¼ 5m3k3 _a3

16Ω9
k

−
15m5ka2 _a3

8Ω9
k

þ 5m3k _a ä
4Ω7

k
−
mka

…

8Ω5
k

; ðB5Þ
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uð4Þk ¼ 35m3k5 _a2ä
32Ω12

k

þ5m7ka5ä2

8Ω12
k

−
15m7ka5 _aa

…

16Ω12
k

þ5m3k5aä2

8Ω12
k

−
105m5k3a _a4

32Ω12
k

þ15m3k5a _aa
…

16Ω12
k

þ105m7ka3 _a4

16Ω12
k

þ5m5k3a3ä2

4Ω12
k

þ15m5k3a3 _aa
…

8Ω12
k

−
mk7a

⃜

16Ω12
k

−
175m5k3a2 _a2ä

32Ω12
k

−
3m3k3a2a

⃜

16Ω10
k

−
105m7k _a2ä

16Ω12
k

; ðB6Þ

sð4Þk ¼ m4k4 _a4

16Ω12
k

−
m6k2a2 _a4

4Ω12
k

þ 7m4k2a _a2ä
32Ω10

k

þm2k2ä2

64Ω8
k

−
m2k2 _a a

…

32Ω8
k

: ðB7Þ

Higher-order terms can be derived in similar way. The
Mathematica file containing these results is available on
correspondence. This particular methodology, introduced
in [14] for scalars, has not been extended to deal with
fermions as such.

APPENDIX C: USEFUL CURVATURE
QUANTITIES

The following are a few useful formulas for FLRW
geometry:

R ¼ 6
ä
a
; ðC1Þ

□R ¼ 6

�
3ä2

a6
−
6_a2ä
a7

þ 4_a a
…

a6
−

a
…

a5

�
; ðC2Þ

RμνRμν ¼ 12

�
_a4

a8
−

_a2ä
a7

þ ä2

a6

�
: ðC3Þ
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