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We study the Einstein gravity and dust system in three spacetime dimensions as an example of a
nonperturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in
the dust time gauge and show that it has a rich class of exact solutions. These include the Bañados–
Teitelboim–Zanelli black hole, static solutions with naked singularities, and traveling wave solutions with
dynamical horizons. We give a complete quantization of the wave sector of the theory, including a
definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization
of deficit angle and the fluctuation of dynamical horizons.
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I. INTRODUCTION

The difficulty in formulating a four-dimensional theory
of quantum gravity has led to the study of many simpler
models. These include symmetry reductions of four-
dimensional general relativity [1] and dimensional reduc-
tion to 3D gravity [2–7]. There is a large volume of
literature on the latter, which includes pure gravity with
point defects and/or topological degrees of freedom [8–11],
topologically massive gravity [12], and higher spin gravity.
While some of these (lower-dimensional) simplifications
have allowed for covariant quantization, there is relatively
little work on the canonical quantization of any gravity-
matter model.
Our purpose in this paper is to develop a 3D model of

gravity with matter which has the potential for complete
quantization. This would reveal insights into quantum
gravity in a setting with local degrees of freedom. The
pressureless dust matter we use is perhaps the simplest such
model, but it is sufficiently nontrivial in that there is a rich
class of classical solutions, including ones with dynamical
horizons. Such solutions are of much interest at the
quantum level; questions such as what is the quantum
analog of a classical dynamical horizon remain unanswered
and are key to understanding what is a “quantum black
hole” or a “quantum trapped surface” [13].
With these issues in mind, we begin by formulating a

canonical theory of 3D gravity coupled to pressureless dust.
This is a special case of the Brown–Kuchar [14] model
which is designed to provide a dynamical matter reference
system for gravity in 3þ 1 dimensions. It was used to give
a physical Hilbert space setting for loop quantum gravity in
the dust time gauge [15–17] and added as an additional
world sheet field in the bosonic string to yield a curious
extension of that theory [18].

We will see that in the 2þ 1 model the dust time gauge
gives a physical Hamiltonian that describes the dynamics of
one local geometry degree of freedom; this remains in the
circularly symmetric setting we consider in detail. The
model also provides an example of the transfer of a matter
degree of freedom to a geometric one; this may provide a
useful viewpoint for quantum gravity in a more general
setting, distinct from the strict conventional separation of
matter and geometry degrees of freedom. In Sec. II we
develop the circular-symmetry-reduced theory, and in
Sec. III we give the gauge fixed theory. In Sec. IV we
give several types of classical solutions, followed by the
construction of a quantum theory of the system in Sec. V,
with focus on the traveling wave solutions. The concluding
section is a summary of our results and a discussion of
further questions.

II. HAMILTONIAN THEORY

In units where 8G ¼ c ¼ 1, the action for gravity and
dust is a sum of the two components

S ¼ SG þ SD: ð1Þ

Let us consider this action defined on a three-dimensional
manifold with topology Σ ×R. The gravitational part of the
action is

SG ¼ 1

2π

Z
dx3

ffiffiffi
g

p ðð3ÞR − 2ΛÞ; ð2Þ

where ð3ÞR is the scalar curvature of spacetime and Λ is the
cosmological constant. The dust action is

SD ¼ −
1

4π

Z
dx3

ffiffiffi
g

p
mðgμν∂μϕ∂νϕþ 1Þ; ð3Þ

where mðxÞ is a function of the spacetime coordinates.
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To derive the Hamiltonian formulation, we use the
Arnowitt–Deser–Misner (ADM) parametrization of the
line element

ds2 ¼ −N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ; ð4Þ

where qab is the space metric, N is the lapse function, and
Na is the shift vector. With this the gravitational part of the
action takes the well-known canonical form (see e.g.
Ref. [6])

SG ¼ 1

2π

Z
dx3ð ~πab _qab − NHG − NaCGa Þ; ð5Þ

where ~πab is the (density weight 1) momentum conjugate to
qab. N and Na appear as the Lagrange multipliers corre-
sponding respectively to the Hamiltonian and diffeomor-
phism constraints

HG ¼ ffiffiffi
q

p �
−ð2ÞRþ 1

q
ð ~πab ~πab − ~π2Þ þ 2Λ

�
; ð6Þ

CGa ¼ −2∇a ~π
a
b; ð7Þ

where q≡ det qab, ~π ≡ ~πaa, and ð2ÞR is the Ricci scalar of
the spatial hypersurface.
The canonical dust action is obtained starting with the

momentum

Pϕ ≔
δSD
δ _ϕ

¼
ffiffiffi
q

p
m

N
ð _ϕ − Na∂aϕÞ; ð8Þ

which leads to

SD ¼ 1

2π

Z
dx3ðPϕ

_ϕ − NHD − NaCDa Þ; ð9Þ

HD ¼ 1

2

�
P2
ϕ

m
ffiffiffi
q

p þm
ffiffiffi
q

p ðqab∂aϕ∂bϕþ 1Þ
�
; ð10Þ

CDa ¼ Pϕ∂aϕ: ð11Þ

The variation of m in the dust action gives the equation of
motion

m ¼ � Pϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqab∂aϕ∂bϕþ 1Þ

p : ð12Þ

Using this we eliminatem from the Hamiltonian by writing
the dust part of the scalar constraint as

HD ¼ �Pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qab∂aϕ∂bϕþ 1

q
: ð13Þ

The sign ambiguity will be determined below when we fix a
time gauge.

A. Imposing circular symmetry

Let us now impose circular symmetry. A parametrization
of the ADM phase space variables ðqab; ~πabÞ for circular
symmetry may be prescribed by using the flat 2D metric
eabdxadxb ¼ dr2 þ r2dθ2 and the radial vector sa ¼ ½1; 0�
and sa ¼ sbeab ¼ ½1; 0�. In these coordinates

qabðt; rÞ ¼ Ω2ðt; rÞÞsasb þ
ρ2ðt; rÞ

r2
ðeabðrÞ − sasbÞ ð14Þ

~πabðt;rÞ¼PΩðt;rÞ
2Ωðt;rÞs

asbþ r2Pρðt;rÞ
2ρðt;rÞ ðeabðrÞ−sasbÞ: ð15Þ

With these definitions the symplectic term in the gravita-
tional action is

1

2π

Z
drdθdt ~πab _qab ¼

Z
drdtðPρ _ρþ PΩ _ΩÞ: ð16Þ

The ADM metric becomes

ds2 ¼ −ðN2 − ðΩNrÞ2Þdt2 þ 2Ω2Nrdrdt

þ Ω2dr2 þ ρ2dθ2; ð17Þ

and the Ricci scalar on the slice is

ð2ÞR ¼ −
2

Ωρ

�
ρ0

Ω

�0
: ð18Þ

Adding the gravitational and dust parts, with
ffiffiffi
q

p ¼ jΩρj,
gives the symmetry-reduced action

S ¼
Z

drdtðPρ _ρþ PΩ _Ωþ Pϕ
_ϕ − NH − NrCrÞ; ð19Þ

H ¼ sgnðΩρÞ
�
2

�
ρ0

Ω

�0
−
1

2
PΩPρ

�

þ 2ΛjΩρj � Pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϕ0

Ω

�
2

þ 1

s
; ð20Þ

Cr ¼ ρ0Pρ −ΩP0
Ω þ Pϕϕ

0; ð21Þ

where we have used “primes” to denote derivatives with
respect to the radial coordinate. As one would expect, the
angular component of the diffeomorphism constraint is
identically zero (Cϕ ≡ 0) so that only radial diffeomor-
phisms play a role in the symmetry-reduced theory.
The Poisson algebra of the constraints is first class

fHðNÞ; HðMÞg ¼ CrðNM0 −MN0Þ; ð22Þ
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fCrðNrÞ; CrðMrÞg ¼ CrðNrðMrÞ0 −MrðNrÞ0Þ; ð23Þ

fHðNÞ; CrðNrÞg ¼ −HðN0NrÞ; ð24Þ

being the reduced version of the Dirac/ADM algebra.
At this point, with gauge freedom remaining, there are
three pairs of conjugate variables parametrizing the six-
dimensional phase space. The physical theory obtained by
a Dirac gauge reduction, which fixes the constraints and
removes the gauge ambiguity, will leave only one pair of
conjugate variables in the two-dimensional physical phase
space. In the following we consider the case of noncompact
spatial slices with full gauge fixing and appropriate
boundary terms to obtain a well-defined variational prin-
ciple for the canonical 2þ 1 action.

III. GAUGE FIXING AND PHYSICAL
HAMILTONIAN

In this section our goal is to obtain the Hamiltonian
theory of the local physical degrees of freedom by fixing
gauges and solving the constraints.
We first fix the radial coordinate gauge by imposing

χρ ≔ ρ − r ≈ 0. This is a standard choice in spherical
symmetry and is second class with the diffeomorphsim
constraint

fχρ; CrðNrÞg ¼ Nr: ð25Þ

Keeping this constraint preserved dynamically gives a
relation between the lapse and shift functions,

Nr − sgnðΩÞNPΩ

2
¼ 0: ð26Þ

Solving the diffeomorphism constraint and imposing this
gauge condition removes ρ and Pρ from the system.
We have

Pρ ¼ ΩP0
Ω − Pϕϕ

0; ð27Þ

which leads to the partially gauge-fixed action

S ¼
Z

drdtðPΩ _Ωþ Pϕ
_ϕ − NHÞ; ð28Þ

H ¼ 1

2
sgnðΩÞPΩðPϕϕ

0 −ΩP0
ΩÞ þ 2ΛjΩjr

þ
�

2

jΩj
�0

� Pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϕ0

Ω

�
2

þ 1

s
: ð29Þ

In writing the Hamiltonian, we assume that sgnðΩÞ is fixed
since we must have jΩðt; rÞj > 0 for the metric be
nondegenerate.

We now choose the dust time gauge by adding the
constraint χϕ ≔ ϕ − t ≈ 0, a condition which is second
class with the Hamiltonian constraint:

fχϕ; HðNÞg ¼ �N: ð30Þ

Requiring that this gauge is dynamically preserved leads to

N ¼ �1: ð31Þ

Recalling now the definition of the momentum Pϕ (8), we
see that the signs of m and N are linked in this gauge by
m

ffiffiffi
q

p ¼ NPϕ. Therefore, choosingN ¼ 1, which generates
dynamics forward in time, fixes [19] the sign ambiguity
arising from (12): Pϕ ¼ þm

ffiffiffi
q

p
and the solution of the

Hamiltonian constraint give the physical Hamiltonian
density

−Hphys ¼ Pϕ ¼ jΩj
�
P2
Ω
4

�0
− 2ΛjΩjr −

�
2

jΩj
�0
: ð32Þ

The shift function is also fixed via (26)

N ¼ þ1 ⇔ Nr ¼ sgnðΩÞPΩ

2
: ð33Þ

A. Reduced action

The reduced action is obtained by substituting the gauge
fixing conditions and the solutions of the constraint (32)
into the starting action (19). This gives

S ¼
Z

dt
Z
Σ
drðPΩ _Ω −HphysÞ −

Z
∂Σ

dt
2

jΩj ; ð34Þ

where

Hphys ¼ 2ΛjΩjr − jΩj
�
P2
Ω
4

�0
: ð35Þ

The boundary term arises from the total derivative present
in (32) and comes ultimately from the Ricci scalar
density

ffiffiffi
q

p ð2ÞR ¼ ð2=jΩjÞ0.
If Σt is asymptotically flat, as will be the case for some

but not all solutions to the equations of motion, this term
evaluated at a fixed radius

2

jΩj
���
r¼r0

ð36Þ

determines the energy within a disc of radius r0 [20], and as
we shall see below, this term also gives a measure of the
deficit angle at the origin in the limit r0 → 0. This is
because in 3D gravity a conical defect represents a point
source of energy at the origin; the relationship between
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deficit angle α and the energy M of the point source (in
units 8G ¼ 1Þ is M ¼ α=π [2].
Many interesting solutions in 3D gravity are singular at

the origin [5], and in order to allow for these solutions, we
excise the origin r ¼ 0. This ensures that the metric and
curvature are well defined everywhere on each Σt. We
handle this excision by restricting the radial coordinate to
the range r ∈ ð0; rmax�. Thus, each spatial slice Σt is taken
to have an outer and an inner boundary.
With these considerations in hand, we turn to a dis-

cussion of the functional differentiability of the action. This
requires specifying what variations are to be fixed on the
boundaries and may require the addition of more boundary
terms [21]. Variation of the action (34) with respect to Ω
gives the boundary terms

lim
ϵ→0

Z
rmax

ϵ
dr½PΩδΩ�t¼tf

t¼ti ð37Þ

for some initial and final times ti and tf, and

lim
ϵ→0

Z
tf

ti

dt

�
2

Ω2
δjΩj

�
r¼rmax

r¼ϵ

: ð38Þ

And variation with respect to PΩ gives the boundary term

lim
ϵ→0

Z
dt

�jΩj
2

PΩδPΩ

�
r¼rmax

r¼ϵ

: ð39Þ

We define the variational principle by fixing Ω at the end
points by

Ωðt; rmaxÞ ¼ aðtÞ; Ωðt; ϵÞ ¼ bðtÞ: ð40Þ

With this choice the δΩ variation is well defined. The
surface term arising from the symplectic piece is zero
because initial data and its subsequent evolution fix Ω at ti
and tf. Lastly, to keep PΩ free at the boundaries, we add a
surface term to cancel the δPΩ variation. The final gauge
fixed action is

S ¼
Z

dt
Z
Σ
drðPΩ _Ω −HphysÞ

− lim
ϵ→0

Z
dt

�
2

jΩj þ
1

4
jΩjP2

Ω

�
r¼rmax

r¼ϵ

: ð41Þ

The summary so far is that, in the process of deriving this
action, the dust field and its conjugate momentum have
been eliminated from the system, and the remaining metric
field and its conjugate momentum ðΩ; PΩÞ describe the
geometry. Furthermore, as noted in Ref. [15], the dust time
gauge results in the conversion of the former Hamiltonian
constraint of pure gravity into a nonvanishing true
Hamiltonian.

There are other possibilities for fixing the variational
principle. For example, we could have gone without adding
the second boundary term and instead fixed the momentum
PΩ on the boundaries. The choice above is the simplest
since it requires boundary conditions for Ω only and still
permits a large class of interesting solutions.
With the variational principle well defined, the equations

of motions are

_Ω ¼ PΩ

2
jΩj0; ð42Þ

_PΩ ¼ sgnðΩÞ
�
PΩ

2
P0
Ω − 2Λr

�
: ð43Þ

B. Physical conditions

Let us consider the spacetime metric and physical
properties resulting from these gauge choices. In fixing a
gauge for the field variables, we obtained conditions
which fix the lapse and shift functions (33). The resulting
metric is

ds2 ¼ −
�
1 −

Ω2P2
Ω

4

�
dt2 þ sgnðΩÞΩ2PΩdrdt

þ Ω2dr2 þ r2dθ2: ð44Þ

The metric is nondegenerate so long as Ω2 > 0, which
implies that sgnðΩÞ is constant.

1. Deficit angle

Consider the ratioF of the circumference of a circle with
radius r0 > 0 divided by the proper radius

F ≔ lim
ϵ→0

R
r¼r0þϵ

ffiffiffiffiffiffi
gθθ

p
dθR

r0þϵ
ϵ

ffiffiffiffiffiffi
grr

p
dr

: ð45Þ

In flat space this is 2π, but in general we may have
F ¼ 2π − αðr0Þ where αðr0Þ is a deficit angle given by

αðr0Þ ¼ 2π

�
1 −

r0
limϵ→0

R
r0þϵ
ϵ jΩjdr

�
: ð46Þ

The limit of vanishing radius r0, after first taking the
limit ϵ → 0, gives α ¼ 2πð1 − 1

jΩðt;0ÞjÞ. This implies that

constant-time slices of the above metric generically
describe a conical geometry near the origin with a time-
dependent deficit angle. Note that in 3D gravity a negative
deficit angle corresponds to a point source with negative
energy [2,6]. To have a positive semidefinite energy at the
origin, one would require that

jΩðt; 0Þj ≥ 1: ð47Þ
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2. Energy density

The stress-energy tensor may also be written in terms of
the phase space variables. From the action we find that

Tμν ≔ −
2ffiffiffiffiffiffi−gp δSD

δgμν
¼ m

2π
δtμδ

t
ν: ð48Þ

We see that m is the time-time component of the above.
From the metric, or using (32) and (12) with the positive
choice of sign to solve for m, we obtain the energy density

2πTtt ¼
ffiffiffiffiffi
jgj

p
m ¼ jΩj _PΩ −

�
2

jΩj
�0
; ð49Þ

where the equations of motion (53), (54) have been used to
simplify the expression. A positive definite energy density
requires that the right-hand side be greater than or equal to
zero. The spacetime Ricci scalar is

ð3ÞR ¼ m ¼
_PΩ

r
−
1

r

�
1

Ω2

�0
: ð50Þ

Since we have excised the point r ¼ 0 from the spatial
manifold, the curvature scalar is missing a delta function
contribution at the origin when there is a conical
singularity.

3. Horizons

Congruences of future directed outgoing and ingoing
radial null geodesics are

uμ ¼
�
1; sgnðΩÞ

�
1

Ω
−
PΩ

2

�
; 0

�
;

vμ ¼
�
1;−sgnðΩÞ

�
1

Ω
−
PΩ

2

�
; 0

�
: ð51Þ

These satisfy uμvμ ¼ −2 and provide the null expansions.
In our context these are physical phase space observables
which are potentially useful in a quantum theory [13]. The
outward null expansion of circles embedded in a spatial
slice with unit outward normal sμ ¼ ð0; 1; 0Þ=Ω is

Θ ≔ ðqμν − sμsνÞ∇μuν ¼
1

r

�
PΩ

2
−

1

jΩj
�
: ð52Þ

Dynamical apparent horizons are obtained by solving
Θðt; rÞ ¼ 0 to give the horizon radius rhðtÞ. This may
have multiple solutions on a given time slice (see e.g.
Refs. [22,23] for explicit examples).

IV. CLASSICAL SOLUTIONS

In this section we discuss classical solutions to our
model. We find a large class of exact solutions and provide

several examples. In particular we obtain a static solution
for Λ < 0 which describes the Bañados–Teitelboim–
Zanelli (BTZ) black hole, and for Λ ¼ 0 we find traveling
wave solutions.
To this point we have left the sign of Ω arbitrary. As

noted above we must require that sgnðΩÞ is constant
throughout the spacetime in order for the action to be well
defined. This implies that the solution space is split into
sectors with sgnðΩÞ ¼ �1. To keep the presentation
simple, we assume Ω > 0 for the remainder of the article.
The solution space for Ω < 0 is nearly identical with only
trivial differences.

A. Λ ≠ 0

For the case of nonzero cosmological constant, the
equations of motion are

_Ω ¼ PΩ

2
Ω0; ð53Þ

_PΩ ¼ PΩ

2
P0
Ω − 2Λr: ð54Þ

The second equation is similar to the inviscid Burger’s
equation, but with a source term coming from the cosmo-
logical constant; it contains only the momentum and can be
solved independently. This is coupled to the first equation
which resembles the advection equation but with a variable
speed of propagation given by PΩ=2. As we will see, any
solution for the momentum then determines how initial data
Ωð0; rÞ evolve.

1. General solution

There is an auxilliary, flat spacetime with Lorentzian
signature defined by the ðt; rÞ plane. On the auxilliary
spacetime the momentum equation (54) is a conservation
equation ∂aja1 ¼ 0 for the current,

ja1 ¼
�
−PΩ;

P2
Ω
4

− Λr2
�
; ð55Þ

which has an associated conserved charge given by

q1 ¼ lim
ϵ→0

Z
rmax

ϵ
PΩdr: ð56Þ

Considering the system as a whole, there is another
conserved current,

ja2 ¼
�
Ω
�
2Λr −

PΩ

2
P0
Ω

�
;Ω

PΩ

2

�
PΩ

2
P0
Ω − 2Λr

��
; ð57Þ

where the conserved charge is
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q2 ¼ lim
ϵ→0

Z
rmax

ϵ
Ω
�
PΩ

2
P0
Ω − 2Λr

�
dr: ð58Þ

It is well known that conservative equations can be
solved by the method of characteristics. To employ this
method, we consider characteristic lines parametrized by s,
described in terms of parametric equations for the coor-
dinates rðsÞ and tðsÞ. Differentiating with respect to s, we
obtain

d
ds

PΩ ¼ _PΩ
∂t
∂sþ P0

Ω
∂r
∂s ¼ −2Λr: ð59Þ

This is equivalent to the equation of motion if we have the
following equations along each characteristic:

∂t
∂s ¼ 1;

∂r
∂s ¼ −

PΩ

2
;

d
ds

PΩ ¼ −2Λr: ð60Þ

These equations are solved by

t ¼ s; r ¼ r0 cosh
ffiffiffiffi
Λ

p
s −

P0

2
ffiffiffiffi
Λ

p sinh
ffiffiffiffi
Λ

p
s;

PΩ ¼ P0 cosh
ffiffiffiffi
Λ

p
s − 2

ffiffiffiffi
Λ

p
r0 sinh

ffiffiffiffi
Λ

p
s; ð61Þ

where the initial values are r0 ¼ rðs ¼ 0Þ and
P0 ¼ PΩðs ¼ 0Þ. Each characteristic is labelled by the
“starting point” r0, and initial data for the momentum are a
function of the radial points on the initial slice
PΩðt ¼ 0; rÞ ¼ P0ðr0Þ. (This solution was used in
Ref. [24] to construct an Oppenheimer–Snyder model in
3D gravity).
Given a solution for the momentum, we can solve (53)

for Ω using the characteristic method again. The character-
istics for this equation are the same as those for the
momentum equation of motion, but here we have

d
ds

Ω ¼ 0 ð62Þ

so that Ω is constant along each characteristic. This implies
that, given some initial data Ωð0; rÞ, the configuration field
simply flows along the characteristic lines defined by the
momentum.

2. Examples

Static solutions are obtained by setting _Ω ¼ _PΩ ¼ 0 in
(53), (54). This gives

Ω ¼ C1; ð63Þ

PΩ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ Λr2

q
: ð64Þ

The metric may be put in a more succinct form as
follows. Rescale C2 and the r and θ coordinates by

absorbing the constant C1 as ~r ¼ C1r, ~θ ¼ θ=C1, and
~C2 ¼ C2

1C2. With this rescaling the angular coordinate
has a range 0 ≤ ~θ ≤ 2π=C1 so that a choice of C1 > 0
implies a deficit angle defined by Ω as described in the
preceding section. The line element becomes

ds2 ¼ −fdt2 � 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
d~rdtþ d~r2 þ ~r2d~θ2; ð65Þ

where fð~rÞ≡ 1 − ~C2 − Λ~r2.
This solution remains well defined for any choice of

C2 > 0, which is required for PΩ to be real at each point.
For de Sitter spacetime (Λ > 0), there are no additional
restrictions, but for the anti-de Sitter (AdS) case (Λ < 0),
the radial coordinate has a limited extent in order to keep
PΩ nonimaginary:

0 < ~r ≤

ffiffiffiffiffiffi
~C2

jΛj

s
: ð66Þ

Let us consider the AdS case further. The above line
element is in fact a generalization of the BTZ black hole
which allows for a deficit angle due to the choice of C1.
This can be seen by transforming to a new time coordinate,

~t ¼ t�
Z

~r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðxÞp
fðxÞ dx; ð67Þ

which puts the line element in the form

ds2 ¼ −fd~t2 þ f−1d~r2 þ ~r2d~θ2; ð68Þ

where we note again that the angular range is
0 ≤ ~θ < 2π=C1. This spacetime has an event horizon at

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~C2 − 1Þ=jΛj

q
, and when C1 ¼ 1 it is the BTZ

spacetime in flat slice coordinates.

B. Λ ¼ 0

With zero cosmological constant, the equations of
motion have a remarkable symmetric form,

_Ω ¼ 1

2
PΩΩ0; ð69Þ

_PΩ ¼ 1

2
PΩP0

Ω: ð70Þ

The momentum equation of motion is now Burger’s
equation with vanishing viscosity. There is a substantial
volume of literature on the subject. Most notably this
equation gives shock waves when characteristics cross.
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1. General solution

The equations of motion are again conservation equa-
tions ∂aja ¼ 0 in the auxiliary flat Lorentzian spacetime
defined by the ðt; rÞ plane. With Λ ¼ 0 the currents are

ja1 ¼
�
−PΩ;

P2
Ω
4

�
; ja2 ¼

�
−Ω
�
P2
Ω
4

�0
;Ω

P2
Ω
4

P0
Ω

�
; ð71Þ

and the corresponding conserved charges are

q1 ¼ lim
ϵ→0

Z
rmax

ϵ
PΩdr; q2 ¼ lim

ϵ→0

1

2

Z
rmax

ϵ
ΩPΩP0

Ωdr:

ð72Þ

The equation of motions can again be solved by the
methods of characteristics; one needs only to put Λ ¼ 0 in
the equations from the last section. There are two classes of
solutions: 1) PΩ is constant, and Ω ¼ hðrþ PΩ

2
tÞ, and

2) PΩ is not constant, and Ω ¼ hðPΩÞ, for an arbitrary
function h. This last fact is a remarkable consequence of the
structure of the Λ ¼ 0 equations. When PΩ is constant, the
characteristics are guaranteed not to cross.
We also note that for a vanishing cosmological constant

the parametric equations (61) can be inverted to yield the
following:

2rþ PΩt − 2fðPΩÞ ¼ 0: ð73Þ

Given any choice of function fðPΩÞ of the momentum,
solutions to (70) are given by the roots to this equation.

2. Examples

Let us note three types of solutions. The first is a class of
static solutions obtained by setting PΩ ¼ 0 in (69)–(70).
This implies Ω ¼ fðrÞ, a nowhere-vanishing but otherwise
arbitrary function. The resulting metric is

ds2 ¼ −dt2 þ fðrÞ2dr2 þ r2dθ2: ð74Þ

The energy density is given by 2πTtt ¼ 2f0
f2 , and its sign is

determined by the sign of f0. The spacetime Ricci scalar is
ð3ÞR ¼ f0

rf3, and the r−1 factor indicates that solutions are

generally singular at r ¼ 0, except for the particular choice
fðrÞ ¼ �ðC1 − C2r2Þ−1=2. Constant time slices are cones
with deficit angle α ¼ 2πð1 − 1=fð0ÞÞ, and there are no
horizons in this spacetime.
The second is a self-similar solution obtained by setting

fðPΩÞ ¼ 0 in (73) to obtain

PΩ ¼ −
2r
t
: ð75Þ

It is immediate that this solves (70) and leads to the Ω
equation of motion

_Ω ¼ −
r
t
Ω0: ð76Þ

One solution of this is Ω ¼ 1, which gives the metric

ds2 ¼ −
�
1 −

r2

t2

�
dt2 −

2r
t
drdtþ dr2 þ r2dθ2: ð77Þ

The Ricci scalar from (50) is ð3ÞR ¼ 2=t2, so there is a
spacelike curvature singularity at t ¼ 0. Looking at the
condition (52), we find horizons at r ¼ −t. Constant t slices
are flat without any deficit angle due to the choice
of Ω ¼ 1.
A third class of solutions is obtained by setting PΩ ¼ 2v

for some constant v ∈ R. The Ω equation reduces to the
advection equation

_Ω ¼ vΩ0; ð78Þ

which has the general solution

Ω ¼ hðrþ vtÞ≡ hðuÞ ð79Þ

for arbitrary h and no restriction on v, where u≡ rþ vt
labels each (straight) characteristic. If we choose Ω ¼ C, a
constant, we have a flat metric with deficit angle
α ¼ 2πð1 − 1=CÞ as described in (46).
For a nonconstant Ω, the v > 0 and v < 0 solutions

describe respectively radially ingoing and outgoing
profiles. The v > 0 wave metric is

ds2 ¼ −½1 − ðvΩÞ2�dt2 þ 2vΩ2drdt

þ Ω2dr2 þ r2dθ2: ð80Þ

We note the following features of these “wave” solutions.
The Ricci scalar from (50) is

ð3ÞR ¼ 2

r
ðlnΩÞ0 ¼ 2

rh
dh
du

; ð81Þ

and there are dynamical horizons if Ωðt; rÞ ¼ 1=v. Thus,
horizons will be present if the maximum value of the wave
profile exceeds 1=v and the minimum is less than 1=v.
From the expression for energy density (49), we see that

the energy flux is positivewhereΩ0 > 0 and negativewhere
Ω0 < 0. There is a conical singularity at the origin with
deficit angle α ¼ 2πð1 − 1=Ωðt; 0ÞÞ. As the energy flux
reaches the origin, positive flux adds to the deficit angle
(which represents the mass of the singularity), and negative
flux reduces the deficit angle.

V. QUANTUM THEORY

In this section we describe a nonperturbative quantiza-
tion of the Λ ¼ 0 theory. The circularly symmetric sector of
the model we are considering has one local physical degree
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of freedom ðΩÞ, and as we have shown in the last section,
the classical theory can be solved by the method of
characteristics with the PΩ solution providing a local
ðt; rÞ-dependent speed for the Ω equation. The full quan-
tum theory of this sector is more challenging. Although
there is a physical Hamiltonian and no constraints, the
Hamiltonian is unconventional in the sense that there is no
separation of pure kinetic and potential terms. We can,
however, achieve a full quantization of the PΩ ¼ constant
sector of the solution space discussed in the last section.
As we noted, this sector of the solution space describes

either purely ingoing or outgoing waves. A first challenge
is that, since PΩ is a constant, the symplectic structure we
have been using up to now is not available. This is
overcome by noting that we can obtain a new symplectic
structure starting from the solution space of a differential
equation [25]. The basic idea involves defining geometric
structures on the solutions space that leads to a conserved
symplectic current. The integral of this current on an initial
value surface defines the desired symplectic form.
For completeness, we now derive the symplectic 2-form

for the circularly symmetric, Λ ¼ 0, PΩ ¼ 2v (where v is a
constant), sector of the solution space and refer the reader to
Ref. [25] for details. Once the symplectic structure is
obtained, we move on to the canoncial quantum theory.
In our case the differential equation is

_Ω ¼ vΩ0; ð82Þ

on the half plane t ∈ ð−∞;∞Þ, r ∈ ð0;∞Þ. For our
purposes we take this half-plane to define an auxilliary
spacetime M with a flat Lorenzian metric given
by η ¼ diagð−v2; 1Þ.
Consider the space Z of solutions to (82). A point Ω ∈ Z

represents a solution to this equation, and a tangent vector
δΩ at this point is a small displacement which must also be
in the solution space Z. Writing the displacement of the
solution asΩþ δΩ, we find that the tangent vector δΩmust
also satisfy (82).
The space of 1-forms on Z is dual to the tangent space. If

we label the spacetime points x ∈ M, then the 1-form dual
to δΩ is given by δΩðxÞ. It is important to note that these
1-forms are anticommutative,

δΩðxÞδΩðyÞ þ δΩðyÞδΩðxÞ ¼ 0: ð83Þ

The symplectic current is defined by

JaðxÞ ¼ δΩðxÞ∂aδΩðxÞ; ð84Þ

which, due to the equation of motion (82) and the
anticommutivity of one-forms, obeys the conservation
equation ηab∂aJb ¼ 0. The associated conserved charge
is given by integrating over a spatial hypersurface:

ω ¼
Z

drJt ¼
Z

drδΩδ _Ω: ð85Þ

This conserved charge is the symplectic 2-form we seek. It
implies that the momentum conjugate to Ω is Π ≔ _Ω, with
the equal-time Poisson algebra

fΩðr; tÞ;Πðr0; tÞg ¼ δðr − r0Þ;
fΩðr; tÞ;Ωðr0; tÞg ¼ fΠðr; tÞ;Πðr0; tÞg ¼ 0: ð86Þ

These are equivalent to the Poisson brackets for free scalar
field theory, but the Hilbert space we define next will differ
in that it includes only the ingoing or the outgoing modes,
depending on the sign of v chosen.
Having obtained the symplectic structure, let us consider

the Hilbert space we will use for quantization. Consider the
positive energy (dust time) mode functions

ψ�
k ðr; tÞ ¼ e−ivktðe−ikr � eikrÞ; k > 0: ð87Þ

These sets have different boundary conditions at r ¼ 0:
ψþðt; r ¼ 0Þ ¼ 2e−ivkt and ψ−ðt; r ¼ 0Þ ¼ 0. Both sets are
orthogonal and complete on the half-line,Z

∞

0

drψ̄�
k ðr; tÞψ�

k0 ðr; tÞ ¼ 2πδðk − k0Þ;Z
∞

0

dkψ̄�
k ðr; tÞψ�

k ðr0; tÞ ¼ 2πδðr − r0Þ; ð88Þ

and also satisfyZ
∞

0

drψ̄�
k ðr; tÞψ∓

k0 ðr; tÞ ¼ 0: ð89Þ

Let H�
v denote the Hilbert spaces with the bases ψ�

k ,
and let Hv ¼ Hþ

v ⊕ H−
v . The purely ingoing (outgoing)

wave solutions are obtained by the normalized linear
combination

gkðr;tÞ≔
1ffiffiffiffiffiffi
2π

p ðψþ
k ðr;tÞþψ−

k ðr;tÞÞ¼
1ffiffiffi
π

p e−ikðvtþrÞ: ð90Þ

Clearly gk ∈ Hv are solutions of our model. They may be
viewed as “quasiparticles” if the bases given above for Hþ
and H− are viewed as “particles.” The Hilbert space of the
entire wave sector (all ingoing and outgoing modes labelled
by v ∈ R) is the tensor product

H ¼ ⊗v Hv: ð91Þ

Let us demonstrate the quantization in the v ¼ 1 com-
ponent.Ωðr; tÞ and its conjugateΠðr; tÞmay be represented
as operators in H1, in the manner that is standard in field
theory:
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Ω̂ðr; tÞ ¼
Z

∞

0

dk
1ffiffiffi
k

p ðâkgkðr; tÞ þ â†kḡkðr; tÞÞ; ð92Þ

Π̂ðr; tÞ ¼ −i
Z

∞

0

dk
ffiffiffi
k

p
ðâkgkðr; tÞ − â†kḡkðr; tÞÞ: ð93Þ

Their commutator algebra implied by the Poisson algebra
(86) leads to the usual commutators for ladder operators

½â†k; â†k0 � ¼ ½âk; âk0 � ¼ 0 ½âk; â†k0 � ¼ δðk − k0Þ: ð94Þ

Fock states are constructed by starting with the vacuum state
j0ki defined by âkj0ki ¼ 0,and the n-particle states are
defined by

jnki ¼
1ffiffiffiffiffi
nk

p ½â†k�nk j0ki: ð95Þ

The Fock basis is given by products of the nk-particle states
with different k values.
This completes the specification of the quantum theory

for the PΩ ¼ constant sector of the solution space. What it
shows is that this nonperturbative sector of 2þ 1 gravity
coupled to pressureless dust in spherical symmetry is
exactly dual to the quantum theory of a massless scalar
field on the half-line.

A. Metric operator

With the above quantization, we can now proceed to
describe the “quantum geometries” for this spherically
symmetric sector of the model. The metric contains only
the functionΩ, so it is possible to define the metric operator
in the Hilbert space H by ĝab ≔ gabðΩ̂Þ. A notion of
geometry is given by the expectation value of this operator
in a quantum state. There is thus an infinite set of possible
geometries depending on the choice of state.
The metric contains the factor Ω̂2, so we need to select an

operator ordering of âk; â
†
k to define it. This is provided by

imposing the physical requirement that expectation values
in semiclassical states give recognizable classical solutions.
One choice for such states is the coherent states defined by

âkjαki ¼ αkjαki: ð96Þ

These states are explicitly given by [26]

jαki ¼ e−jαkj2=2
X∞
nk¼0

αnkkffiffiffiffiffiffiffi
nk!

p jnki: ð97Þ

It is known that the expectation values of normal ordered
operator in these states give the corresponding classical
results. We therefore define

ĝab ≔ gabð∶cΩ2∶Þ: ð98Þ

As an explicit example, let us consider the state which is the
vacuum for all modes except k, and the coherent state for
mode k,

jψi ¼ jαki
Y
j≠k

j0ji: ð99Þ

This gives

h∶cΩ2∶i ¼ 1

k
ððgkðr; tÞÞ2α2k þ ðg�kðr; tÞÞ2ðα�kÞ2 þ 2jαkj2Þ;

ð100Þ

where αk are any complex numbers specifying a classical
solution. The complex number αk must be such that the
right-hand side is positive definite in order to avoid a
degenerate metric, and depending upon the value of αk,
there may be apparent horizons. The quantum fluctuations
in these states

ΔðΩ2Þ ¼ h∶cΩ2∶∶cΩ2∶i − h∶cΩ2∶i2 ð101Þ

are of course not zero, since jαki are the minimum
uncertainty states.
The expectation value of the metric in the nk-particle

state jnki on the other hand gives the metric

ds2 ¼ −
�
1 −

2nk
k

�
dt2 þ 4nk

k
drdtþ 2nk

k
dr2 þ r2dθ2:

ð102Þ

The constant time slices are cones with deficit angle

α ¼ 2π

 
1 −

ffiffiffiffiffiffiffi
k
2nk

s !
: ð103Þ

Recall that in 3D gravity a conical singularity corresponds
to a point source with a mass proportional to the deficit
angle [2,6]. This implies a discrete mass spectrum of the nk-
particle states determined by the wave number k. It
asymptotes to 2π as nk gets large and has a positive or
zero energy for 2nk ≥ k.
For special values of the parameters satisfying 2nk ¼ k,

the apparent horizon function vanishes everywhere
Θðr; tÞ ¼ 0. With these values, the conical defect of the
spacetime slicing is such that the outward going null
geodesics remain at constant radius.
The self-adjoint metric operator defined above using the

creation and annihilation operators provides, via the expect-
ation value, a correspondence between quantum states and
spacetime geometries. The coherent states lead to classical
geometries with fluctuations. There is also the interesting
possibility of obtaining “macroscopically entangled geom-
etries” by using states that describe entangled superpositions.
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Construction of entangled states requires either two or more
systems described by a tensor product Hilbert space (such as
the Hilbert space of 2 or more spin 1/2 particles), or the
division of Hilbert space into subsystems.
In the quantum theory of the wave sector we have

discussed, it is possible to produce entangled states by
considering for example states in the subspace H1 ⊗ H−1
of the full Hilbert space (91). Let jαki1 denote a semi-
classical state inH1 and jβki−1 a semiclassical state inH−1.
Then an example of a macroscopic entangled state of
spacetime geometries is

jψi ¼ 1ffiffiffi
2

p ðjαki1jβki−1 þ jβki1jαki−1Þ: ð104Þ

There are numerous examples of this type involving two or
more subsystems, even within a fixed v sector of the Hilbert
space, but with states labelled by different k values. In a full
quantum theory of gravity, it would presumably be possible
to divide the physical Hilbert space into sectors corre-
sponding to, for example, black hole and cosmological
geometries. It would then be possible to construct inter-
pretationally challenging macroscopically entangled states.

B. Quantum horizons

From the forgoing we can consider the idea of a
“quantum horizon” defined by a horizon operator [13]

ĥ ≕ cΩ2∶ −
1

v2
I; ð105Þ

which is the operator analog of the classical apparent
horizon condition. In our gauge fixed setting, this is a
physical observable. It is clear that the fluctuation of this
operator is nonzero in a coherent state, and so the
corresponding dynamical horizons are not sharply defined
as they are in the classical theory. For a coherent state with
an αk, such that the horizon condition hĥi ¼ 0 is marginally
satisfied, fluctuations of the metric operator can lead to
uncertainty in whether or not horizons are present at all.

VI. SUMMARY AND DISCUSSION

We studied a new model for gravity in 2þ 1 dimensions.
Unlike most of the existing literature on 3D gravity, the
model has a local degree of freedom which manifests itself
as a metric function in the dust time gauge. The resulting
theory has novel aspects in circular symmetry. The equa-
tions of motion are simple, yielding several interesting

classes of solutions, including waves; the latter provide a
“midisuperspace” sector of the solution space which is
amenable to Fock quantization.
The quantization provides some interesting and precise

results. Among these is the observation that horizons
fluctuate, which we showed using semiclassical states. It
is natural to expect that this result goes over to four
dimensions where it could inform issues such as the so-
called information loss problem in black hole evaporation. In
particular metric fluctuations imply that the separation of the
Hilbert space into states which are strictly inside/outside the
horizon, as is common in computing entanglement entropy,
is an ambiguous procedure. Metric fluctuations further imply
that the time of apparent horizon formation may be ambigu-
ous for any choice of time coordinate.
Metric fluctuations also inform the “firewall” issue,

which at its core requires exactly null nonfluctuating
horizons as a fundamental assumption. If a horizon is
leaky because it has fluctuations, then it is clear that the
central argument based on the impossibility of simulta-
neous perfect correlation between modes across a horizon
on the one hand, and perfect correlation between early and
late time Hawking radiation on the other, ceases to be an
issue: no perfect null horizon implies no monogamy
problem. It is possible that horizon fluctuations are small
for large black holes if the appropriate semiclassical state is
sharply peaked. But if a firewall were to form, its
accompanying backreaction on the metric would obviously
lead to high curvature fluctuations, and in turn to large
horizon fluctuations in the early stages of its formation.
As a last comment, our quantization also demonstrates

an exact duality between (a sector) of the model and 1þ 1
free scalar field theory on the half-line. This in turn is dual
to fermionic theory via the well-known Bose–Fermi cor-
respondence in two spacetime dimensions. This means that
the quantization we have presented likely has a fermionic
description.
This work is a first exploration of the use of dust time to

study quantization of gravity. Natural extensions of our
approach are to the 3þ 1 theory Bianchi models, spheri-
cally symmetry, and other reduced sectors, such as the
Gowdy models.
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