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Analyzing the squeezed state generated by a twist deformation
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The D1D5 conformal field theory has provided a useful microscopic model for studying black holes. The
coupling in this theory is a twist deformation whose action on the vacuum generates a squeezed state. We
give a new derivation of the expression for this squeezed state using the conformal Ward identity; this
derivation provides an insight into several features of the state. We also examine the squeezed state in a
continuum limit where we describe it in terms of position space correlations created by the twist.
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I. INTRODUCTION

A very useful microscopic model for the study of black
holes [1-5] has been the D1D5 conformal field theory
(CFT) [6]. One makes a bound state of D1 and D5 branes,
and the CFT emerges as a description of the low-energy
dynamics of this bound state. While this CFT is compli-
cated in general, it has been conjectured that there is a point
in its moduli space of couplings where it becomes par-
ticularly simple. At this orbifold point the theory is
described by a sigma model whose target space is a
symmetric orbifold [7].

At the orbifold point, the CFT is free; using this free
theory enables us to extend the Strominger-Vafa computa-
tion [8] from extremal to near-extremal black holes [9]. Such
couplings do not describe the point in moduli space where
the dual gravity theory is weakly coupled, giving the
supergravity approximation. In order to work towards
describing interesting gravity processes such as black hole
formation, one therefore needs to turn on an exactly marginal
deformation operator in the CFT, which deforms the theory
by “blowing up” the orbifold singularities of the target space.
The deformation operator is built out of a twist operator of
the orbifold theory dressed with a supercharge [6].

It is interesting and important to study the effect of this
deformation operator Op on states of the CFT [10-19].
[12,13] described the effect of O on the Ramond vacuum
and on states containing one or two initial quanta.
Reference [14] considered transitions between different
Ramond vacua via absorption and emission of chiral
primaries; processes involving the change of angular
momentum by k units were found to be suppressed as
1/N*. References [15,16] took a different tack, studying
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the computation of anomalous dimensions at first order in
conformal perturbation theory for low-lying string states in
the CFT and operator mixing. Reference [17] studied the
effect of Op for bosonic fields, when the twist links
together winding numbers M and N to winding number
M + N. Reference [18] looked at the effect of Op in the
limit when excitation wavelengths are short compared to
the gap. The method of [19] also allows handling fermions.

Overall, it was found that the twist involved in the
deformation operator converts the vacuum into a squeezed
state, with a schematic form e?m%n®it7md-nd-1|0). The
coefficients y2, y¥ in the above squeezed state are given by
closed form expressions, but the derivation of these
expressions was somewhat lengthy. In the present paper
we find a much more direct way of obtaining y2, y*. In our
new method, we consider the OPE of the stress tensor 7'
with the deformation operator O(w). The conformal Ward
identity relates this OPE to a derivative 0,,O(w). We then
find that this derivative has a simple expression, and
performing an integral then gives the y2,,y% . . This
derivation also gives insight into the structure of these
coefficients: they are seen to be given by an integral of an
expression that is a product of factors, one depending only
on m and the other depending only on n.

One may consider a continuum limit where m,n > 1;
this corresponds to looking at wavelengths much shorter
than the “box size” set by the circle on which the D1D5
CFT lives (see Fig. 3). We obtain the expression of the
squeezed state in this limit, by recasting the y%,y/ as
position space kernels; thus, the squeezed state is written in
terms of 2-point correlations of fields generated after the
twist. The product structure in the derivatives of y® and y©
mentioned earlier becomes a product structure for the
position space kernel found in the continuum limit: the
kernel IC(wy, wy; wy) becomes a product of two terms, one
depending only on w; and one depending only on w,.

We organize the paper as follows. First we summarize
earlier work in Sec. II. In Sec. III we consider the action of
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the stress tensor to re-derive the form of the squeezed state
using the conformal Ward identity. Finally in Sec. IV, we
compute the continuum limit of the squeezed state,
expressing it in terms of a position space kernel. In
Sec. V. we comment on the utility of the stress-tensor
method and on the form of the squeezed state.

II. SUMMARY OF EARLIER RESULTS

In this section we review some facts about the D1D5
CFT and summarize some results from [12,13].

A. The D1D5 CFT

We compactify IIB string theory as Mg | —> My xS xT*.
Wrapping N; D1 branes on S' and N5 D5 branes on
S x T4, we get a bound state that is described at low
energy by the D1D5 CFT.

It is believed that there is an orbifold point in the moduli
space of couplings where the CFT is given by a sigma
model with target space the symmetric product of NN
copies of T* [7]. At this point the CFT is given by NN
copies of a ¢ = 6 CFT containing four free bosons and four
free fermions. The fact that we have a symmetric product in
the target space implies that we get twist sectors where
different copies of the ¢ = 6 CFT get twisted together to
make a ¢ = 6 CFT living on a longer circle.

The CFT has N = (4,4) supersymmetry; we list the
algebra generators and their commutators in Appendix A.
The N = 4 superalgebra contains a SU(2) current algebra
under which the fermions form doublets, labeled by an
index a. [This doublet structure is described in Eqgs. (Al)
and (A2).] The four bosons are grouped into representa-
tions of the SO(4) ~ SU,(2) x SU,(2) symmetry group of
the T*; the doublets under these two SU(2) groups are
labeled by indices A, A [Eq. (A6)].

We consider the Euclidean theory for which the base
space is a cylinder with coordinates z and o where
—o00o <7< o0 and 0 <o <27 We deform the CFT off
the orbifold point by the operators

0, 3(wo) = Bﬂ/wo dWGZ(W)}
X [1 /W 0 deg(w)]aﬁ(wo).

. (2.1)
i
The operator o, (wy) is a twist which links together two
copies of the CFT at the point wy; the + superscript
indicates that it carries a charge 1 under the SU(2)
contained in the superalgebra. GZ is the supercurrent.
The left and right moving parts of all operators and states
are decoupled in our computations and, thus, in what
follows we will write only the left movers. The D1D5
bound state as constructed above gives fermions that are
periodic around the S', so they are in the Ramond sector.
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We can map Ramond sector states to Neveu—Schwarz (NS)
sector states by spectral flow, which is a symmetry that
changes dimensions and charges as follows [20],

2

ca ca
W=h 4+ — f=j+ = 2.2
+aj+ TR J =]+ ER (2.2)
while the operators themselves change as
P eT-a 4+, pop_ (2.3)
= — Q. _— v = T ——— .
24° 12

(Thus, we get (y|Loly) = (w'|Lgly’) and (w|Joly) =
(W'|733w')). The transformations of the stress-energy
tensor and the R current under the spectral flow have been
explicitly derived in Appendix B.

In [12,13] the situation in Fig. 1 was studied. We start
with two copies of the ¢ = 6 CFT, each on a singly wound
circle. The twist o, joins these copies into one copy of the
¢ =6 CFT living on a doubly wound circle. The twist
operator is inserted at the point wy = 75+ iop on the
cylinder.

The Ramond sector ground states are doublets under
SU(2), and we choose the initial state

107) ) @ [07) (2:4)

which has spin —% for each copy. The twist o, is

normalized so that
o5 (wo)10x) V) ® [0) ) = [0%) + ... (2.5)

where |0%) is the (normalised) negative charge Ramond
ground state of the CFT on the doubly wound circle.

_ — T

—

=

— = — =
(@) (b)

FIG. 1. The twist operator joins two copies of the CFT on two
singly wound circles (a) into one copy of the CFT on a doubly
wound circle (b).
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B. The mode expansions and the exponential ansatz

We first expand the modes of bosonic and fermionic
fields on the cylinder. For 7 < 7, i.e. below the twist
insertion, these modes are given by

w o _ 1 [

Dain = 27 Jo anXf)"(W)ende, i=1,2 (2.6)
d(i)aA _ L 2 l//(i)aA (W)enwdw i=1.2 (2 7)
! 27i Joo ’ , '
and their (anti-)commutation relations are
[06@ ) | = —eupe; 567 ms (2.8)
AA,m’ "BB.n ABYAB 'm-+n,0> .
{dﬁ,’?“A, dE,MB} _ _€a/}€AB(3ij5m+n70. (2.9)

Above the twist insertion (z > 7)), the CFT lives on a
doubly twisted circle and the boson and fermion modes are

1 4z .
Dain T op | DX s a(w)edw, (2.10)
doA 1 /47z aA( ) tw g (211)
- 5 . w)ez2 w. .
Y

The (anti-)commutation relations for these modes read

(2.12)

[aAA.m’ aBB,n] = _€AB€ABm5m+n,Ov

{d®A, &P} = —2¢% 285, . (2.13)

We would like to find an expression for the state

(wo)) = o5 () 0R)V ® [07)2 (2.14)
in terms of operator modes acting on |0%). To do so, [12,13]
started from the initial state defined in the Ramond sector
on the cylinder and then performed a series of spectral flow
transformations and coordinate changes and map the state
to a state of simpler form. We briefly describe the
process below:

(1) The first step is to perform a spectral flow on the
cylinder (2.2) with parameter @ = 1. This takes the
two copies of the CFT from the Ramond sector to
the NS sector. The bosons are not affected by the
spectral flow, while the fermions transform as

y A (w) = ey (w).
(2.15)

yHi(w) = eyt (w),

(i1) We next map the cylinder with coordinate w to the
complex plane with coordinate z via the map
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z=-e". (2.16)

The two NS vacua at 7 — —oo on the cylinder are
mapped into two NS vacua at z = 0 on the complex
plane. The location of the twist operator is mapped
into zy = e".

(iii) We pass from the complex plane to its covering
surface through the map

7=2z0+1, (2.17)

where
(2.18)

This transformation is described in Fig. 2. Passing to
the covering space allows us to analyze explicitly the
action of &5 on the initial state. The two NS vacua at
z = 0 in the z-plane are mapped into two NS vacua
at the two punctures at t = +ia in the ¢ plane. Since
there are no operator insertions at these punctures,
we can close them smoothly. The twist operator o5
at 7 = zo gets mapped into the spin up Ramond
vacuum state of the covering space, |0%),, at £ = 0.

(iv) We finally perform a spectral flow with parameter
a = —1 on the covering space. This operation maps
the Ramond vacuum state at # = O to the NS vacuum
in the ¢ space. There no other insertions at this point
on the 7 plane, so we can smoothly close the
puncture at + = 0. The bosons are not affected by
the spectral flow transformation but the fermions
transform as

i oy, w - A (2.19)
We, thus, find that the above sequence of spectral flow

and coordinate transformations maps the initial state |y) in

z plane t plane
020 2 = 2 Ot=1a
0z=0 Ot=0
Ot=—ia

(@) (b)

FIG. 2. The map from the complex plane (a) to its covering
surface (b) is given by z = z;, + >, where z is the coordinate on
the complex plane and ¢ is the coordinate on the covering space.
The two NS vacua at z = 0 are mapped to two NS vacua at
t = +ia (these correspond the original two Ramond vacua
at 7 - —oo on the cylinder). The location of the twist insertion
at z = z, is mapped to t = 0 on the cover.
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(2.14) to the NS vacuum state in the ¢ plane at large ¢
(i.e. T = o0). This vacuum state is then expressed in terms
of the original modes on the cylinder at 7 > 7. In order
to do so, [12] computes how the bosonic and fermionic
modes on the cylinder are transformed under the operations
(D)—(iv). At T < 7 the t-plane modes are

(1) 1

Uin ~ 27 | 0K+ £2)dr. - (2.20)
1
G . [ X0z +2)ndr(221)
21
d£1)+A N 2_2/ W (1) (zo + )" 11, (2.22)
7l Jt=ia
2l
dslz)‘f’A N 2_2 l//"rA(t)(ZO + tz)n—ltdt’ (223)
Tl Jt=—ia
a2
d - = / w (1) (z0 + 2)"dt,  (2.24)
2mi t=ia
a2
d™ i / w A (1) (zo +72)"dr,  (2.25)
Tl Jt=—ia
and at 7 > 7, the modes read
1 n
Ui = 5 [ 0Xua(0)(z0 + 2)3dr, (226

=00

B F [ g4+ g——_gt= -+

where the coefficients y5 , and yk , are given by

2
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1

22 e
I / WA (o + 2, (2.27)
270 Ji—o

z / pA (D) (o + 21, (2.28)

d—A
n 2ri

In the ¢ plane, we will also define operator modes that are
natural to the ¢ plane. Thus, we write

- 1 )

qn =752 / B 9, X4 (0)1"dt, (2.29)

= / YA (1)1 1. (2.30)
" 270 Ji

Note that the bosonic index n is an integer, while the
fermionic index r is a half integer. We have

aA.A,m|0>t = 07 m 2 0, (231)

d*0), =0, r>0. (2.32)

The computation of [12] found that the state |y) has the
structure of a squeezed state,

0%). (2.33)

20T 4 m)UR 4 ]

The full state (2.1) is then obtained by the action of the
supercharge on the squeezed state. We refer the reader to
[12] for the details of the computation of the full state.

B 0
’ ’ - N 234
7/Zm +1,2n'+1 (2m/ 4 1)(2”’ 4 1) (1 4 m/ 4 n/)ﬂr[m/ 4 I}F[n’ 4 1} ( )
}/F - ZéH—m +n )F[% + ml]l—‘[% + I’l/] (2 35)
2m'+1,2n"+1 (2nl + 1)71'(1 +m + n’)y[m’ I l]F[n’ I 1] . .
[
dw
F om0 G000 @ o)
= 8,05 (W0)[0) Y ® [07)? = 9y, lx(wp))  (3.1)

III. ACTION OF THE STRESS TENSOR

Consider the cylinder shown in Fig. 1, with state
107)) ® |0%)? at 7 — —oo and the twist o5 inserted at
wy. Let T be the stress tensor of the CFT, given in (A12).
We integrate 7 around a small contour around wy,
getting

where we have used the fact that o5 is a primary of the
Virasoro algebra. Thus, if we can understand the action of T’
in some other description, then we can arrive at a
description of 0,, [(wy)) and, by integration, at a descrip-
tion for |y(wy)) itself. This then gives a simple method to
evaluate the coefficients y2, and y/, by only using basic
properties of the CFT.
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A. Computation of 9,, [x(w,))

To get this alternative description, we follow the steps in subsection II B.
(i) We first start from the contour integral on the cylinder and consider a description which is spectral flowed by a = 1.

We obtain
DY S D () |0=)D @ (0=
27”2 ()0 40) 07) ) @ [05)
. . 1
LS (100 = s ) + e () 0)) @ [0} (3:2)
2m 4
where T(w) = Y2 T/)(w) and A represents the spectral flow with @ = 1. We note that the spectral flow with

a = 1 maps the Ramond vacua |03z)() to NS vacua |0)() and acts on the chiral primary as
o5 (wy) = e o7, (3.3)
The transformation of the stress-energy tensor under the spectral flow is derived in Appendix B and is given by

T (w) % 70 (w) = O ) + . (3.4)

The integral of the constant term (1/4) on the right-hand side of (3.2) vanishes and, thus, we find

dw \fl 2 i —L,
§ S Tat0n® @ 07 S § S8 S (10 - S w)e ot ()00 @ 0).  (35)
wo 270 Wo 27”1 1
|
(ii) Next, we perform coordinate transformation z = e" / %—ZZ'%}—ZZ; -3 (‘(?;Z{ 2
to map 7'(w) to the complex plane. The NS vacua at {2} = (22)2 - (3.7)
T — —oo are mapped into vacua at z =0 and the 0z
puncture is smoothly closed since there are no
insertions at this point. We then consider how Using (3.7), Eq. (3.6) reads
T(w), J(w), and o5 (w) transform under this map. '
The stress tensor is a quasi-primary operator and is
modified by the Schwarzian derivative under the ; (i 1
coordinate transformation: T0(w) = 22T(z) - 4" (3.8)
9z (i) (ot (i) €
0z V() =T"(2) - 12 {<.z}, (3.6) The R current and the chiral primary twist operator

transform as  J(w) = zJ0)(z) and o5 (wy) =
where {7/, z} is the Schwarzian derivative 065 (z4), and we find

om0 = SP)eoa () 0)0) © 10)

wo 271 4=

dz Ow & . 1 '
- i[ Tma_zZ(ZZT(’) () -3+ zf“>3<z>)a;<zO>|o><” ® [0)®. (3.9)
<0 i=1
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(iii) We next pass from the complex plane to the covering
surface through the map z = z(, + #*. The two initial
NS vacua are mapped into punctures at ¢t = +ia
(a= Zo/ ). There are no other insertions at these two
punctures and one can smoothly close them. The
chiral primary at z = z is mapped into a puncture at
t = 0 at which we have the positive spin Ramond

]{;;ziz:( o7i(g) - - a0 )>(,—2+(ZO)|0><1> ®[0)?

dr 19z 1 3\ 1 z 4
*]{(ﬂ;a( (w””*@) “i7 ! “)) 0

where the integral of the constant term (—1/4) in the second
line vanishes. We further note that

dr t
2 04), =0, 3.12
j{()zmzz 0, (3.12)
and
dt 3z dr 3(zo+ 1)
O+ — It ol 0+
f,{ozmsﬂ R)i f{_o xi 88 0%
3
=§IOX>,. (3.13)

Using the fact that |0%), has R charge +1/2, we find

1 1
- 3 + = — + . ,14
s PO, =5107), (314)

Equation (3.11) then reads

= (im0
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vacuum |0%),. Under this coordinate transformation,
we have

T+ (@) = 2 J(). (3.10)

and the integral reads

3zt
- —— —— )0} 3.11
PO+ g5 )0 G

ffjliz( 2T0(E) = = 2(6) ) of (2

dt (Z() + tz) 1
——T(1)|0%), —=|0%),. (3.15

(iv) Finally, we perform a spectral flow in the ¢ plane
with spectral flow parameter @« = —1. This maps the
Ramond vacuum at # = 0 to a NS vacuum and we
can then smoothly close the puncture at this point on
the cover. The transformation of 7 under this
spectral flow is of the form (see Appendix B)

sfo 1

T(1)=> T()+;J3(t)—|—%, (3.16)

where ¥ corresponds to the spectral flow on the
covering surface with @ = —1. We, thus, find that

dt(z —|—t) " +sj2 dt(Z +tz) 1 3
§ ot D), -glop L f sttt (T<r>+;f 0

Let us consider the last term inside the parentheses in the right-hand side of the above equation. The contour integral
for this term reads

1 1
bar)Omgo (a7

dt (Zo +1t )
%—0 27 88 00, = |O>" (3.18)

Inserting this in Eq. (3.17), the constant parts cancel out and we obtain

2 2
]f i’,% T()]0%), -—|o+> ff i’,%(nz)%ﬁ(z))m 0), =

L 7)o 3.1
=0 2mi —0 2ri 2 ( 2t )| >t’ ( 9)

where L,, and J3, are the modes natural to the covering surface given by

i, - 7( A irp(y), (3.20)

2mi
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B = %d—t,t”ﬁ(t). (3.21)

2mi

We, thus, find that under the series of maps and spectral
flows explained above the action of T on o is given by

dw
¢ Sm Tt ()05} © [05)

, 2mi

= O lrm)— 2 (Lo +T5)[0),.  (322)

B. Writing 9, [x(w)) in terms of boson
and fermion modes on the cover

We now write the above result (3.22) in terms of boson
and fermion modes which are natural to the ¢ plane. Modes
of bosonic fields are

& .
o . AA,m
a,XAA——zE P

mezZ

(3.23)

and modes of fermionic fields in the NS sector are

ZlaA
aA __ r
v = Z tr+% ’

rEZ-‘r%

(3.24)

L5[0), = (=5 ey + e g ,)[0), +

~ 1, mpm  mym el e el e
T5|0), = 5 (~dZdy —dfdy +didT +dld)|0),

Adding together the above two equations we obtain

(Lo +T25)|0), = (=g Ge g + @z @y — Zlf;&:; + Zlf%‘c}:;)m),.
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These give
~ 1
Apam = 5 d”matXAA(l)y nez, (325)
' 27 Ji—o
A 1 1 A 1
d =— ¢ du—y 1), reZ+-. (3.26)
7l Ji=0 2

Inserting these expansions in the stress-energy tensor (A12)
and the R current (A10), we expand the generators I:,, and
J3 in terms of @y, and d*t:

Inserting this expression back in (3.22), the action of T on [y) is given by

Z - - - - ~ g~ e~
awo ly(wp)) — ?0(—“++.—10‘—;,—1 +oy - o — df;d_% + dir% d_;)|0>z-

C. Computing the coefficients y2, and %,

We express the above result in terms of modes
on the cylinder. The modes a,,; , (3.25) and d’,’A (3.26)
where defined by contour integrals over circles around
t = 0. Since there are no singularities at any point in
the ¢ plane, we can stretch the contours to circles at
large ¢

n ~ ~ ~ ~
——r|dd " —dd " 3.27
£ 3 (3-r)@na-ana. e
reZ+
and
~ 1 ~ ~ ~ ~
3 _ ++ - = T+
hi=3 Zl(—d,,_rd, +diodT).  (3.28)
r€Z+§
For n = -2 we find that
|
1 ~ - I -~ -~
Sy —dlydy —did +dd))0),  (3.29)
(3.30)
(3.31)
(3.32)
_ 1 ”
Apjm =5 e, X,,, meZzZ, (3.33)
T Ji=c0
“0A 1 _L aA 1
d’ = — dir—y*, reZ+-. (3.34)
7Tl Ji—eo 2

We can now convert these modes to the modes on the
cylinder at 7 — oo derived in Sec. II. Under the spectral

124072-7
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flows and coordinate maps that we explained above, the
modes on the cylinder at 7 — oo transform into (2.26),
(2.27), and (2.28). We write

"= (429 —20)7 = (20 + 2)2(1 = z9(29 + 1*)71)?

= ¥Cu(—20)"(z0 + 2)FF, (3.35)
k>0
where C; = ({) is the binomial coefficient. Substituting

this in the mode expansion (3.33) we have

1 Z
~ . _ m 2
Yadm = 2 /:oo dtk>02 = ZO) 0 XAA(ZO te)e

m— 2A

= Z%Ck(—zo)kam,m—w (3.36)

k>0

where we used (2.26) to get to the second line. Similarly,
we write

tr_% = t(tz + ZO — ZO)%(r_%)

ZZ Z()+f2)( Dk,

k>0

(3.37)

Substituting this in Eq. (3.34) we find that

PHYSICAL REVIEW D 91, 124072 (2015)

- 1
d? = — / dt
" 271 Ji—o Z

k>0

= 2‘52%(’_%) Ck(—Zo)kd:ék%’

r=2k-3

(=z0)futh, (zo +2) Tt

(3.38)

where we used (2.27) in the second line. To find the
negatively charged fermionic modes we write

tr_% = (t2 + ZO — ZO)%(’_%)

= Z Zo (Zo-l-lz) H(r—o)—k,

k>0

(3.39)

Substituting this in Eq. (3.34) and using (2.28) we have

r—Zk——

At =—— [ dr) DC (=g y (o + )Tt
271 J 1= >0
=27y i) Ck(—zo)kdr‘ka_%. (3.40)
k>0

We finally express (3.32) in terms of the operator modes on
the cylinder

Dol (wo)) = [—zo (%Z‘%Ck(—zo)ka#,_l_z,()( Z 2Cp(—20) a_;,_l_zy>

k>0

k’>0

+Zo< Z 2Ck —z0)f o 2k>< Z 2Clc’ —20) 0‘—%.—1—2/&)
k>()

k’>0

1 ! /
) <§ Z_%Ck(—zo)kdfltzk> <§ Z_%Ck’ (=20)" diizk’)
=0

k>0

+ 2 (%Z‘%Ck(—zo)kdff_2k> (%%—%Ck,( 2)Vd=} 2k>]o>,.

k>0

(3.41)

We evaluate the coefficients v, and y%,, by integrating the above equation. As explained in Sec. II, the state [y(wy)) =

a5 (w0)|0%)") ® |0%)

is mapped into the ¢ plane NS vacuum under the spectral flows and coordinate transformations that

we apply. It was shown in [12] that |y(w)) has the form of a squeezed state (2.33). We, thus, obtain that for this squeezed

state,

w(,|)((w()) ( Z aw(,ymn( Xyt —m ———n+a—+ —m -, —rz)

m>1,n>1

p>

m>0,n>1

Oyt (dd= d+-d-+>)a;<»vo>ro,s><'> ® [05)

(3.42)

Comparing (3.41) and (3.42) we find that for m and n being odd and positive integers m = 2m’ + 1, m’ > 0 and

n=2n+1,n >0, we have

B _ B _
aWOyZm'+1,2n’+l = ZOazo7’2m'+1,2n'+1 = ZO(

\ﬁ_%cm'(—zo)"’) <\/L§‘%Cn/(—10)”’),

! (3.43)
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This then gives
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and

We observe that the derivative of |y) is given in terms of a product of two factors f(m) and f(n).
Using (3.45) and (3.46), we integrate (3.42) with respect to z, and find that

where

1 / 1 _1 n

8Wnylzpmurl,2n’+1 = Zoaz()ylzpm’ﬂ,zn’ﬂ = 20 <ﬁgcm’(_Z0)m> <7§ éCn’(_ZO) > (3.44)
200, B —. ﬁ Zg{ %—i—m’] Q Zg’ F[%+ n’] (3 45)

09207 2/ +1 20/ +1 0 \/E(zml + 1) F[l + m/] \/J—T(an n 1) F[l + n/] ’ .
200, 7% =—z ! 2 T + ] @ @ bt (3.46)

0 107/2m’+1,2n’+1 - 0 \/2—71_ 0 F[l +m/] \/7—1_(2”/ + I)F[l +n/] . .

i O A T A {1:”1 ir;; e t'; :lJIr -

[ (w0)) = 03 (w0)|0R) ) ® [07)?) = e2mstan : eXmamthe =t j0gy - (3.47)
. B 2Z81+m/+n/) FE + ml}l—*[% + n’] (3 48)

Vom' 12041 = Jz'(2m/ T 1)(2”' + 1)(1 +m + n/) F[l I ml}r‘[l ¥ n/} ’ .
o " TR mTG 4] (3.49)

F = —
Vom' 412041 (20’ + 1)(1 +m' +n)T[1 +m'[T[1 + 1]

The result agrees with the coefficients ng' o (2.34)
and ygm, 12041 (2.35) previously computed in [12].

IV. CONTINUUM LIMIT

The D1-D5 system is constructed by wrapping the D1
branes on the circle S! and the D5 branes on S' x T*. In the
regime where the volume of the compactification circle is
larger than the size of the torus, the D1-D5 CFT is a two-
dimensional CFT which lives on S!. In the previous section
we studied the action of the deformation operator on the
vacuum state of the CFT. The deformation operator was
inserted at the point wy = 7y + io( on the cylinder corre-
sponding to the two-dimensional CFT.

In this section we would like to study the behaviour of
the final state in a region close to the insertion point of the
twist operator. In this limit, the CFT lives on the non-
compact infinite line R rather than the circle S! (see Fig. 3).
We refer to this limit as the continuum limit.

(a) (b)

FIG. 3. The circles becomes infinite lines in the continuum limit
(a), but the twist operator still works locally as it did in the
compact case (b).

I

There are several places where this “local” description of
the twist can be useful. First, if we are studying the CFT
dual to the Poincare patch of AdS; x S x T4, then the CFT
lives on R instead of S'. Second, even if we have an S’
compactification, the generic state dual to a black hole has a
highly twisted sector of the orbifold CFT, thus creating a
CFT that lives on an effectively infinite line. Third, when
we are at strong coupling we expect that the quanta
created by on twist insertion will be picked up and modified
by another twist insertion before they have had time to
travel around the closed loop on which the CFT lives;
thus, the CFT would again behave as if it lived on an
infinite line.

In this section we will evaluate expressions describing
the squeezed state in the continuum limit. These expres-
sions enable us to better understand the physics of the
excitations on top of the vacuum state created by the
deformation operator as one deforms the CFT away from
the orbifold point. We will first analyze the bosonic part of
the final state in Sec. IV A and then consider the fermionic
part in Sec. IV B. We will finally write down the full
expression in the continuum limit in Sec. IV C. These
computations can be verified by directly exploring the
squeezed state (2.33) in the continuum limit, which we do
in Appendix C.
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A. Bosonic part of the squeezed state in the continuum limit

We consider again the expression that we obtained in Sec. III for the stress energy tensor method

dwT( )o3 (wo)[0g) Y & [05) ) = D, 1)

27i

_ %0

where the arrow in the second line refers to the series of
spectral flows and coordinate maps and a,; , and d;’,’f‘ are
the bosonic and fermionic operator modes natural to the
covering space. We consider the bosonic part of d,, |y) in

this subsection and analyze the term a,; ;a_-_;. The
analysis for the other bosonic term a, - _ja_; _; follows
similarly.

Using the mode expansions in Sec. II we have

1 dt
= ¢ Dox,..
- ft X (1)

We map the complex plane to the cylinder via the map
z = ¢€". In the region close to the insertion of the defor-
mation operator, wy = 7, + ioy, we have

aAA.—l = 8ZXAA (O) (4-2)

€
— <1,

|Z| — 7 = €T°+€,
0

(4.3)

where € is a positive real number. On passing to the
covering surface, we have

1=204 12 = 1t = £(z— z9)7 = H(ePTeHo — grotioo);
— ie%o+i"7°(es+i(a—ao) _ 1)5

R £e7 T (W — o). (4.4)

We then use this expression to rewrite the factor 1/¢ in the
integrand of (4.2) in terms of the cylinder coordinates w:
1 e ?
S (4.5)
o (w—w)

20 ~ ~ 20 d[]
o 1% |0), = 27{_027”@

(wi —

/dWI/dwza X1 (W), X2 (W) KB (wy, wa) [y (),

= 0,05 (w0)|0%)")

=3 ( Qi g0y F o _ag l—d d__ Zifg&:g)m)t,

Wo)%

_ 07
® 7)) — 2 (L, +72,)/0),

(4.1)

Under the coordinate transformations which map the ¢
plane to the w plane, we have

A,X(1)dt = 9, X(w)dw (4.6)

We note that the bosons do not transform under the spectral
flow transformations. Thus, we only need to consider the
conformal transformation properties of the boson fields in
order to map them back to the cylinder. This is, however,
not the case for fermions which carry R-charges and
transform nontrivially under the spectral flows. We will
discuss this in more detail in Sec. IV B.

For 7 > 7, we have a single copy of the CFT on a doubly
wound circle on the cylinder. The mode integrals on the
cylinder in this region are then defined on this double circle.
The positive and negative roots of (4.4) correspond to the
two 2z turns around the doubly twisted circle. The contour
integral (4.2) in the cover then gives the sum over the two
parts of the integral on the cylinder. Using (4.5) and (4.6)
the contour integral (4.2) reads

- dt dw
i 0= § Shoxun= [Sre

"0 anAA (W)

(w—wyp)

=

(4.7)

We now analyze the first bosonic term of [y) in (4.1)
in the continuum limit. Under the series of spectral flows
and coordinate transformations which map the covering
surface to the cylinder, the NS vacuum |0), on the cover is
mapped into the state [y(wg)) on the cylinder. We then
obtain

dt
Xoalt) 220X -0))

e dWl e 6w1X++(W1) /%e_%a‘wx—;(wﬁ

br(wo))

2 (wy —wy)?

(4.8)
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where the bosons are normal ordered and the arrow in the second line denotes the maps and spectral flows from the covering

space to the cylinder. The kernel K2 is defined as

1 1
KE(wyowy) == . (4.9)
2(wy - Wo)%(Wz - Wo)%
The same results hold for the second bosonic term in (4.1), i.e., $a - _ja_; _,. Thus, we have
20 ~ ~
_(—“++ 10 g Fags a_;_4)[0),
dw dw
= [ G [ G =00 X 00X 02) 0y X (00)0, X (02K (1wl (). (410)

B. Fermionic part of the squeezed state
in the continuum limit

In this section we analyze the fermionic contribution to
the squeezed state in the continuum limit. We consider the
fermionic part of the state [y) (4.1) which is expressed in
terms of the modes EZ?A (4.11) natural to the ¢ plane. We
perform the calculations for the term Eifj/zgiif/z. The
analysis for the other term ZZH /2212]72 will follow analo-

gously. The modes of fermions natural to the covering
surface are given by

1
™ = dit (1), reZ+ 5. (@)

2ri =0

Under the coordinate transformations which map the cover
to the cylinder coordinates we have

vt = (D20 y .

Using the expression we obtained in (4.5) we find that

<dt(w)>%_<ﬂ£)%_i et
daw ) \dzdw 7\/§(w—w0)4l

in the continuum limit. For Zlfj/z and ;l:f/z we have

(4.12)

(4.13)

~ dt w** (1)
=0yt (0) = — 4.14
d' =0yt (0) 7{0 i G
-~ dt y=(1)
D= =¢ — . 4.1
0=y (0) ]gozm' ; (4.15)

Let us first consider Zlff/z and use (4.12) and (4.5) to
write (4.14) in terms of the w coordinates. There is an
important point to note here before we perform these
calculations. In the process of computing the state |y)

(4.1) we performed two spectral flow transformations: one
on the cylinder with the spectral flow parameter a = —1
and one on the cover with @ = 1. Fermionic fields carry
SU(2) charges and acquire a phase under the spectral flow
transformation. In order to express w®(¢) in terms of
w™(w) in the integrand of (4.14), one not only needs to
take into account the conformal transformation properties
of the fermion field, but also the spectral flow trans-
formations on the cover and the cylinder. These two
spectral flows have parameters @ = —1 on the cover and
a = 1 on the cylinder. Let us first consider (). We use
(2.15) and (2.19) and find that w**(r) — e%t‘%yﬁ*(w).
We then obtain

Fars _% dt y (1)

3 — N .

2 o2mi 1
_/dw}f“(w wo) "y

2ri e (w—wy)
/ dw l// e 7
f 2ri W WO % )

(1) > e_%t%u/“

() w = wo)

(4.16)

(1) we have =~ (w) and

~___7{ dt y~(t)
2 —0 27l t

B / dw %53%(“’ — wo) Ty (w)e T (w = wp )i
2mi enTo(w — WO)%

dw z// (w)e™ £
f 27i (w—wp) % '
We can now write the full expression for fermions. Under
the spectral flows and coordinate transformations, the NS

vacuum |0), on the cover is mapped to the state |y(w))
(4.1) on the cylinder. We then have

For =~

(4.17)
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(2)e™ | (o))

20 ~ ~
Edj; _% |0>t -

B / dw, / dw2
a 2mi 27n
where the fermions are normal ordered and the fermion

kernel IC'F is defined as

l 1
4( Wo)%( Wo)%'

K'E(wy,wy) = (4.19)

The boson kernel K2 (4.9) and the fermion kernel in the
above equation are related to each other as we now
describe. The boson kernel K? acts as 0X,;KB0X,;
and the fermion kernel acts as y* K'FyPB. If we integrate

( —d? 3/2d 1/2+d 3/2d 1/2)|0>z

/ dWI/ D (O = (2) = O~ oy ™ () (o w2) ().

Fm)e? / dwyy~

- Wo)%

ev dwy
2(@2/ 210 (w,

27i (wy — wy)?

= (wa) K (wywa) [y (o). (4.18)

the fermion kernel K'F' (4.19) by parts over w;, we get
O™ ICFyPB | where
1 1

KF=KP =~ I I
2 (wy —wp)2(wsy —wy)?

(4.20)

The kernels for 90X ,;KB0X ; and Oy KFy?? are, thus,
the same.

The same results obtalned above hold for the second
fermionic term in (4.1): 3 0 4 3 /Qd_f/z. The total fermionic
contribution reads

(4.21)

C. The complete squeezed state in the continuum limit

It is now straightforward to combine the results of the bosonic and fermionic contributions (4.10) and fermion (4.21).

This gives

Z ~
S L+ T5)0), =

2( A i 0+ o l—d

L+ d+ )|O)

{/dWI/dwz =00, X1 (W1)0,, X2 (w2) 4 0y, X2 (w1)0,,X_1 (w2)

0 (o) = o ) ). (422
This yields a differential equation for the state [y(wp))
D = | [ 5 [ 2 (00X 01)0 X 02) 00 X 01)0, X )
O ) =0y ) ). 42

Note that the location of the twist insertion w,, only appears in the kernel. This allows us to integrate this expression, and

find

dW] dW2
L7 (w0)) = exp

+ _6WIW++(W1)W__(W2) =+ 8wll//

X Wl)a X_

w)y ™ (wy)) In (Vwy

( ) 8wl (Wl)awzx—%(w2)

—wo + /w2 = wp) | |0%), (4.24)
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up to an overall normalization. This normalization is fixed
by the earlier convention that &3 (w,)|0z)") ® |07)?) =
|0z) + - - -. A second way to arrive at this state is by directly
analyzing the sums in the exponentials of the squeezed state
(2.33), and replacing these sums with integrals in the
continuum limit. We do this in Appendix C.

V. DISCUSSION

If we could understand the D1D5 CFT away from the
orbifold point, then we would be able to unravel many
mysteries about the black hole. In particular, we could ask
how the black hole forms from the infalling matter, or how
it reacts when additional matter falls in; this is expected to
correspond to a thermalization process in the dual CFT. The
CFT at the orbifold point is essentially free and so does not
thermalize. It is hoped that with a study of the deformations
away from the orbifold point we would be able to get a
qualitative picture of the thermalization process.

Since thermalization is likely to involve many orders of
deformation from the orbifold point, it is useful to have a
good understanding of the effect of the deformation
operator. In the present paper we have seen that while
the coefficients y%,y" look complicated, their derivative
with respect to z, is in fact simple: in the covering space it
has the schematic form a_,a_; + Zi_%Zi_%.

We have also investigated the squeezed state produced by
the twist deformation in the continuum limit. In a position
space representation, the exponential in the squeezed state is
given through kernels K2(s,0,), Kf (6,,0,). Looking at
these kernels gives a useful physical picture of the effect of
the twist; one can see the correlations produced in the fields
around the location of the twist insertion.

In future work, we hope to return to the results here to
extract a general qualitative picture of deforming away
from the orbifold point as well as to apply the stress-tensor
method to higher twist states.
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APPENDIX A: NOTATION AND THE
CFT ALGEBRA

In the D1D5 CFT at the orbifold point, we have four real
left moving fermions y!,y?, w3, y*. We group these into
complex doublets 4

PHYSICAL REVIEW D 91, 124072 (2015)

C)=50r) W
C)=H( )

The first index, which we label a = (+, —), denotes the
transformation properties under SU(2);, which is a sub-
group of rotations on S*. The second index, which we label
A= (+,-), is an index of the subgroup SU(2), of
rotations in T*. These four complex fermions have a reality
condition because they are constructed from only four real
fermions:

(l//-‘-)aA = _€aﬂ€ABWﬂB- (A3)

The two-point function for these complex fermions are

1

aA T __ sasA
(% (Z)WﬂB(W)> = 5/353 —w

(W (P (w)) = —ePel? (A4)
Z=w
where the e symbol is defined as
ep =1 e? =1, wa = eapy’®, pt =By,
(AS)

In addition to the fermions, there are four real left moving
bosons X, X», X3, X4 which can be grouped into a matrix

1 ) 1 /X53+iX X, —iX
XAA:—Xigl:—< 3 .4 1 .2> (Aﬁ)
V2 V2 \ X, +iX, —-X5+iX,
where o' for i = 1,2, 3 are the usual Pauli matrices, and

o* = il. The complex conjugate of the above fields are
given by

X, +iX,

1 <X3 —iX,
-X; — iX,

=k i, > (A7

leading again to a reality condition,

_ yAA,
(Xu0) =X (A8)
which is expected because we constructed four complex
bosons from four real bosons, so there must be a condition
of this sort to reduce the number of degrees of freedom.
From these definitions, the 2-point functions are
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(0X (20X () =~ s ek
(0X 3(2)0X () :(Z_lw)zeABeAB (A9)
The symmetry currents
I = = )7 (Al0)
GL =y ™aX,y, (G = (), 0xHM (A1)

1 i 1 .
T =—5(0X)M0X 5 =5 (W adw™  (A12)
(GN)d = —epe? BGL. GY = —ePe; 3 (GNE (A13)
obey the following OPE algebra
1 c
Ja(z)Jb ~ §ab 2 i nabc Al4
@IP0) ~ o 2 et (ALY
a a (., 1 1 aT\a P
J <Z)GA(Z)N(Z—Z/)§(G ) ﬁGA (AIS)
o T Bt 2 o SB
GA(Z)(G )ﬂ (') ~ _méﬂéja
; 2J¢ aJe
_ 5B Ta\a
30 (z—7) (z—7)
1 .
- mé};éﬁT (A16)
3 2T oT
T()T(Z) ~ Al7
(Z) (Z ) (Z _ Z/)4 (Z _ Z/)Z (Z _ Z/) ( )
J¢ aJe
T(z)J%(Z) ~ Al8
@I~ ot oy (A1)
3 G“ oG<
T(2)G% ~ =4 4 A19
(Z) A (Z _ Z/)z (Z _ Z/) ( )
Working on the fundamental y fields, note that
a yC 1 1 al\y ,,pC
J @) ~ 5= (T (A20)

The above OPE:s lead to the following algebra for modes
of the symmetry currents

m

[Jam7 JZ} - 2 5ab5m+n,0 + ieabc‘]rcn—&-n (AZI)
1
i G5, ) =506, (A22)
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1
{GZ,m’ G[;n} = €A |:<m2 - 4) e{lﬁ6m+n,0

+ <m - n)(O-aT>ay€},ﬂJ?n+n + €aﬂLm+n
(A23)
m? -1
L L) =" 5 g (m =L, (A24)
[ —r (A25)
a J— m a
L GE ) = <2 - n> s (A26)

APPENDIX B: SPECTRAL FLOW

Consider a state |y, ;) with dimension / and charge ;.
Under spectral flow by a parameter a, this state changes to a
different state with dimension A’ and charge ;' [20]:

W) = [y i) (B1)
where
Wb aj+ 58 (B2)
= (04 —_—
DY
, . ac
i % B3
=ity (B3)

Consider a primary operator O; carrying charge j on the
cylinder with coordinate w. Under spectral flow this
operator changes as

0;-0;= Oje ™" 4 ... (B4)
The operator J is neutral, but is modified by spectral flow
due to the current anomaly. The operator 7 is not a primary,

and also has the conformal anomaly. Our goal is to see how
these operators change under spectral flow.

1. Changes in J, and L,

The current operator J, is neutral, but changes by an
additive constant due to the current anomaly:
J0—>J6:J0+Cll. (BS)

We can find a; by using the change in charge under spectral
flow. We have

Jolwn) = jlwn)- (B6)

If we spectral flow both the state and the charge operator,
we will get the same eigenvalue
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J6|W;l',j/> = (Jo+ al)"///h/.j» = j|l//;l/_j/>' (B7)
From (B3) we have
. oac
Jolll/;l/,j/> — (J +E> |l/];l/,j/>' (BS)
Thus, we get a; = — 45 and the operator J, transforms as
ac
‘]0_)‘]6:‘]0_5' <B9)

Let us now consider the energy operator L, for which
we can follow a similar procedure. The change in L, has the
form

LO—)L6:L0+02J0+Q3, (BlO)
where a,, a; are constants. We have
LO"//h,j> = h|‘//h,j>‘ (Bll)

If we spectral flow both the state and the energy operator,
we will get the same eigenvalue

Loy ) = (Lo +asdy + @yl ) = Wy ). (B12)

Using (B8), this gives

. ac
<L0 +a, (] +E> + a3> W ) = hlwy ). (B13)

From (B2) we have
(12C

s B9

L0|l//;1/.j/> = <h + aj +

Substituting (B14) in (B13) we find

. dPe . ac
<h+a]+ﬁ>+a2(J+E>+a3—h. (BIS)

Thus, we get a, = —a, a3 =2¢ and the operator L,

4 9
transforms as
a*e

L L =Ly—al .
0> Ly oao+24

(B16)

2. Changes in J(w) and T(w) on the cylinder

From the shifts of Jy, L, under spectral flow, we can
find the shifts of the operators J(w), T(w) on the cylinder.
We have

PHYSICAL REVIEW D 91, 124072 (2015)

1 27
JO :g 7OdWJ(W>,
1 ;ﬂ
Ly=— dwT(w). (B17)
T J6=0
Thus,
J(w) = J'(w) = J(w) - % (B18)
a*c
T(w)—>T'(w)=T(w)—aJ(w)+ e (B19)

3. Changes in J(z) and T(z) on the plane

We will also need to find the effect of spectral flow on
operators on the complex plane. Consider the plane z
defined through z = ¢". The analog of (B4) is

0, =0, =0;77%+ ... (B20)

Consider the operator J(z), and spectral flow by param-

eter a around the origin z = 0. To find the change in J(z),

we proceed in three steps:
(i) We map J(z) to the cylinder, getting

J(w) = (%)J(Z) ~ k). (B21)

(i) We perform the spectral flow by parameter a on the
cylinder, getting

ac

J(w) = J(w) 1

(B22)

(iii) We then map back to the plane, getting

- (35t

ac
=J(z) ——.
(2) 12z

We can perform the same steps to find the change
in T(z);
(i) We map T(z) to the cylinder, getting

0z

T(w) = (%)QT(Z) + %{z w} = 22T(2) —%.
(B24)

(i) We perform the spectral flow by parameter a, getting

2c

T(w) - T(w)—aJ(w)+ 0;—4. (B25)
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(ili) We map back to the plane, getting

T'(w)=T(w)—=J(w) +4—11. (B27)
, ow\? ¢ c
T'(z) = <8_Z> {T(w) —aJ(w)+ 7 + E{W’ z}

(b) On the ¢ plane we spectral flow by @ = —1. This then

_ l 2T(z) - l — azJ(2) +@ + L gives Eq. (3.6):

Z2 4 2 4Z2
2 , J(t 1

_T() - al(z)  a’c (B26) (1) = T(1) + % +z (B28)

APPENDIX C: DIRECTLY ANALYZING THE

4. Spectral flows used in our computations SQUEEZED STATE

Let us now see how we use the above relations in our

computations in Sec. Il A. 1. Bosonic contribution

(a) On the cylinder we perform a spectral flow trans- The results obtained in Sec. IV for the continuum limit
formation with parameter « = 1. Using ¢ = 6 we find  can be obtained by performing computations directly on the
Eq. (3.4): cylinder using |y(wy)) (2.33):

I/Y(WO)> — 0’3‘ (WO) |01;><1) ® |OE>(2) — eZmzl,nzl}lﬁ”(_(brjr-‘”’a_;'_"Jﬂl_jr-""a*;’”)ezmzo_nzlyf’”(dir;d:;_dj’;d::>

0z). (C1)

|

We focus on the bosonic part in this section. Let us consider ~ This is not the full X operator. Rather, it is the holomorphic
the bosonic term part of X with both the center of mass mode x,; and the

momentum mode a,; , removed. It would be sufficient to
, (C2) simply remove the center of mass mode, given that this

operator acts on the zero momentum Ramond vacuum. We
where we have set m = 2m’ + 1 and n = 21’ + 1 because suppress this subtlety here, writing X to simplify notation in
the coefficients yfm and }/fnn are nonzero On]y for odd values this section. At the end, we will integrate by parts to put the
of m and n (see Sec. II). The bosonic modes a; ,, are defined derivative back on the X operator, which automatically
on the doubly wound circle in the region 7 > 7, above the removes the center of mass mode x, and because the operator

insertion point of the twist operator. These modes are given by 15 acting on the Ramond vacuum, the momentum modes
evaluate to 0. This will reinstate the 9X as being the full

— B . X
e Zn;'ZO.A/ZOyZ/n/+l ,2n/+la++~’(2’7’/+l)a**-*(zn/*l)

1 [o+4n y operator. Thus, in our final answer, we will be using conven-
CBppm = b / dw0,,X 44 (w)e>". (C3) tional notation.
’ This subtlety being noted, we write the odd modes m =
We then obtain 2m’ + 1 in (C3) and find
i m
0w X i === ay; e 2", (C4) 1 [otdn —m .
AA sz: AA,m aAA,m:ﬂ ; dW 7 XAA(W)ezw
In what follows, it will be more convenient to write the L [fotan ;] (4L
; ’ et H =— d +2 ) X4 (43w (C6
modes in terms of X rather than 0X. We write, with a caveat, 27 ), W\ Ty ) ad (w)e (Co)
i 2 m, ) .
Xalw) = EZEQAA,me 2 (Cs) We use the above expression and rewrite the exponent
m#0 of (C2),

/61+4ﬂ dW1 o, +4rn sz
- 27 ), 2r

2

- Z ng’+1,2n’+1a++,—(zm’+1)0‘—4,—(2n’+l) == Xy g (wi)X_:(wr)

m'>0,n'>0
1 1 / /
X E : Vo1 2041 (m/ + 5) (’1' + 5) e EIm =l me - (C7)

m'>0,n">0

1
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where

274 TB+ m'TE + n

B —
Pon 12040 = 20 £ 1) (20" + 1)(1+m' + ) T+ w01+ 7]

(C8)

In the continuum limit, ZU -1, ZO — 1,m' - oo, n’ - oo, and the summation is replaced with integrals over dm’ and dn’. In
this limit we obtain

PONPROLE: kN i LY R (©9)
22 T 0 m! 0’ T[4+ m/]T[1 4 1]
Using properties of the gamma functions
r
im LA s, (C10)

m—co T'(m)m’

allows us to approximate the coefficients y2, (C9). We then replace the remaining sums over m’ and n’ as integrals in (C7)
giving

o +4rn dWl oy +H4rn sz
Z 7§m/+1,2n/+1a+ir,—(2m/+1)a—;.—(2n’+1) / o EX++ (w1)X_-(w2)

m'>0,n'>0 o] [

m+n’+l I
/ dm / dn B0 Tl s (C1 1)

2 m' 4+ n' mhnt
recalling that we have taken m’ and n’ to be large. We switch to coordinates
m, =m'+n', m_=m—n'. (C12)

Thus, our approximation becomes

o +4r dw oy +4r dw.
} : B ) ~— 1 2y . )
Yo/ +1.20 +1 %44 —2m'+1) O—= — 20/ +1) ~ / ) 2 X++ (Wl)X__(Wz)
- T V4

m'>0,n'>0 1 o2
1 my+1 m
x—/ dm., o, %<’"+“)W+/ T dm_(m2 — m2)rem - (C13)
2 Jo 4zrm+ —m,
where w, and w_ are defined as
Wy = wy + wy, W_=w; —w,. (C14)

We first evaluate the integral over dm_, which gives a Bessel function as the solution. We find

/m+ dm—(mi - m%)%e‘%m—w— = 2][&11 <m+w—> )
—m w D)

(C15)
Inserting this result back in (C13) we obtain the following integral over m
1 [ Zm++l m,
EA dm., 4(7)rm+ ealmi+ 1w, /_m+ dm_(m% — m%)%e_%m-w-
—5(w—2wy) oo
e 2 1 w_m
R d —2wa=2woyma g () Cl16
4w_ /) e 2 (Cl6)
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We use the table of integrals for the modified Bessel functions and consider the expression

Rev > -1, Rea > |Rep|. (C17)

We identify @ = (w, —2wy)/2, p = w_/2. The first condition for the integral above is clearly satisfied because v = 1. For
the second, we recall that we are working in a region just above the insertion of the twist operator, and so

W0:T0+i60, w1 :To+€1+i01, W2:T0+€2+i02, (C]S)
wy =210+ (€1 +6) +i(o)+02).  w_=(e1—€)+ilo)—0y) (C19)

with €, > 0,¢e, > 0. Hence,

(e1 +e) (o1 + 02 —20) (e1—€)  .(01—0))
= , = C20
a 5 +i > p 5 +i 5 (C20)
and the second condition Rea > |[Ref| is met as well. The integral over dm  then reads
/oo dm+e—%(w+_2“}0>m+]1 w_m_ _ i 1(\/W] — Wy — \/WZ — w0)2
0 2 w_\2 /Wi —wo/wr =W
1
_ - i (c21)
(VWi =Wo + /W2 =Wo)” /Wi = Wo /Wy =W
after some algebraic simplification. Thus,
_l(W+_2W0) 0
e my+ly (MG W\ 1y 4w
T/0 dm+zo ]1< +2 >e s(me 1w,
— le—%[(wl—wo)Jr(Wz—WU)] 1 5 1
(VW1 =W + /Wy — W)~ /W1 — Wy /Wy — W
1 1
(C22)

(VW1 =W + /W3 = Wp)? /W1 — Woy /W2 — Wo
where in the last expression, we use that z,/z; — 1 and zy/z, — 1, and so the exponential becomes 1 in the continuum
limit.

We use this to compute the exponent (C11). Therefore, in the continuum limit we obtain

B . .
- Z Vo1 2041 ¥4, - (2m'+1) F—= — 20/ +1)
m'>0,n'>0

o +4r dw oy +4n dw N
~ - o S X ()X = () K (wy, wy), (€23)
(o2 2]7'- O

] . 2

where the kernel is of the form

1

! I
4 (wy —wo)2(wy — w)2 [(wy = wo)2 + (wy — wo)2]?

A

KE(wi,wy) =

(C24)

In Sec. III C we will see how the kernel KZ obtained above through direct computations on the cylinder is related to the
kernel KB (4.9) obtained in the main text. Essentially, this comes down to integrating by parts to put the derivatives back on
X(wp) and X(w,). As mentioned earlier in this section, this will be important to bring us back to more conventional
notation. The calculation for the other bosonic contribution is identical, and so we find the total bosonic contribution to be
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B . . . .
Z 7/2m’+1.2n’+1(_°'4r+~—<2m’+1)“’——-,—(211’+1) + 0‘+—,—(2m’+1)a—+,—<2n'+1))

m'>0,n">0
o1+ dw o +4r dw ~
o [T [ T X ()X 02) X ()X ()R ). (c25)
) T Jo, T
|
2. Fermionic contribution A ( Zd‘”‘ W, (C28)

In this subsection we consider the fermion part of the
state |y(wp)) (2.33) on the cylinder in the continuum limit.

The fermion part is of the form For the odd modes m = 2m' 4+ 1 in (C27) we find
eZm/z[).n/zoygml+l.2n’+] (d:r(;m/+l)d:(_Zn’Jrl)_dt(_Zm/+l)d:(+2n’+l)) (C26) o+4x dw /1
, dzran _ / Z_”iwaA (W)e—(m 2w (C29)
o
where the modes of fermions d%! are defined on the doubly
twisted circle in the region 7 > 7, and are given by We write the exponent of (C26) using the above relation.
: i We perform the computations for the term
dod = P / dwy® (w)e?". (C27) d+(;m )4 (1) and note the calculations for the other
’ termd (o +l)d:zr2n' ) follow analogously. The exponent is
We then find given by

o1 +4n dWl oy +4n dW2 ! /1
—_ E F —(m'+3)wy ,—(n'+3)w
/ . l// (Wl)l// (WZ) 7/2m'+172n'+1e ( 2) te ( 2) 2

F ——
E: Voms1ow 414 (2m+l)d Qn'+1) =

m'>0,n">0 2mi 02 2mi m'>0,n">0
(C30)
where
yF - Z((Jm +n'+1) F[% + m/]r[% + 1) 31)
241,20 +1 220 + 1)(1+m' +n")T[1 +m/[T[1 +n']’

In the continuum limit, {ZO ZO} — 1,and {m',n'} - oo. Again, applying the property of gamma matrices (C10) we find

7 : L’mwm ik (C32)
D R Y +n' pi
After replacing the sums with integrals, the exponent (C30) then reads
oi+an dw, (ot dw
m,;n,mygm’“’z”’“ et +1) 4 +1)/ 2—,”1 . 7 12‘//++(W1)‘//——(W2)
/ dm’ / dn (D Hm—/%e_(””%)wl e~ (C33)
27r m' +n' phs

We want to evaluate the integrals over m’ and n’ in the second line. Let us rewrite the second line of the above expression as

m +n'+1 m .
dm d / e —(m’ +2)wle (n'+3)w,
2n' m +n' s

Wyt , [ 1 /
=——c¢ #ew / dm' m'ze=vi=wo)m / dn' —————— e~ (mamwo)’ (C34)
2” 0 0 n2(n’ +m')
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We first evaluate the integral over n’. Using table of integrals for exponentials we consider the following expression

0 1 ,—pux
/ dx% — 1M (W)I(1 — v, pu),  |arg | < 7. Reu > 0, Rev > 0, (C35)
0 X

where I'(#, x) is the upper incomplete gamma function. In our case, v = 1/2, u = w, — wy, # = m’, and so the conditions in
(C35) are satisfied. The integral over dn’ in (C34) then reads

o 1 . o1
/ dn' ——————— e~ o’ — ﬂ—z,e(WZ‘WO)’” F(, (wy — wo)m’>. (C36)
0 n'2(n' +m') m' 2

Putting this expression back in (C34), we obtain

1
2 w+w o , 1
T= —%e‘( 7 2)eWO/O dm'e=(wi=w2)m F(E’ (wy — wo)m’>. (C37)

We define a new parameter m” = (w, — wy)m'. The above integral then reads

T - _Le S . R / dm’e —%mﬂpG,m”). (C38)
22 (w2 —wo) 2

We next use the table of integrals for the incomplete gamma functions to evaluate the integral over m”. We have

Aw dxe™ T (£, x) = ér(g) [1 - ﬁ} o, c39)

Comparing this expression to (C38) we find that @ = (w; —w,)/(wy — wy), and & = 1/2 > 0. We then obtain

1

\/Wl — Wy \/Wl %) + /W WO

T — — L mwo)rammo)]

(C40)

1 1
N~ (C41)

2wy =wo(y/wWi = wo + /wy —wy))

where we have used the continuum limit z,/z; — 1 and zy/z, — 1 to remove the preceding exponentials. Inserting this into
the exponent (C30), we find

Sy (i) () K (wywa), (C42)

F —
Z 7/2m’+1,2n'+1 (2m +1)d @n'+1) ~ i 27
o2

m'>0,n'>0

/0‘1+4ﬂ' dWl oy +4rn dW2

o]
where the kernel is given by

l 1 1
2 (wy = wo)? [(wy = wp)? + (wy — wo)2]

A

’CF(Wl’Wz) = -

(C43)

In Sec. III C we will compare the fermion kernel KT obtained in the above equation to the fermion kernel KF (4.20)
computed in the main text. As mentioned before, the kernel for the other fermionic term d”7, (an +1)dj2n/ 1) is the same as

(C43). Therefore, the fermionic contribution to the squeezed state in the continuum limit is given by
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} : F — - +
7’2m/+1,2n’+1 (d-} (2m'+1) dZ (2n'+1) —d! (2m'+1) dz (2n’+1))
m'>0,n'>0
/6]+47z dWl oy +arn dW2
(o2

o S [T St e ) = v (2R (), (c44)

3. Squeezed state on the cylinder

In subsections C 1 and C2 we considered the squeezed state on the cylinder (C1) and investigated the bosonic and
fermionic contributions in the continuum limit. Combining the bosonic (C25) and fermionic (C44) parts, we obtain the full
expression

B - A _pTO_1 0y _p mn\%—m —didz -
I)((WO)>:U;(WO)|O1_3><1) ®|Ol_€>(2) :ez,,,z]@l?mn( b em Ozt )ezmzo_nzl}’ (dtd=y—dtnd=t |OR>

1
o) +4ndw)  [og+4ndwy . . 1
J;Il 7]:,22 2—”<—X++(W1)X,;(W2)+X+;<W1)X_+(W2))WW

~e 0(,/w=wo+ wz—wo)z

=D
n]+4ﬂd»1]f62+47!dw2< b e\ e .t > |
S [T (e r (wa) =y (W )y () e 1
x elor TSy VA0 [0 ). (C45)

In order to compare this expression to (4.24), we perform integration by parts over w; and w, for the bosonic terms and over
w, for the fermionic terms. We then find

A dw 4 d
(w)) = e SO [T G 00, X ) Dy X (92) 404y X2 (91) Dy X (92) (= I (7= 3720))

o o d N LT R Oy T ()= ey (w) (= In (T ) 107)
R .

o2 (C46)
We note that the boson and fermion kernels are the same after performing integration by parts:
’AC/B(Wth) = ’AC'F(Wl,Wz) =In (\/Wl —wo + /Wy —wp). (C47)
We then have
o +4n dWl oy, +4n sz
lx(wo)) = exp [/ o o (6W1X++(W1)a X_=(wy) = 8WIX+;(W1)<9W2X—+(W2)+
o 03
= Oy (w)y ™" (W) + 0w~ (w)y ™" (w2)) In (y/wy = wo + \/wa —wo) | [0%), (C48)
yielding the same result as the main text.
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