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To guarantee the stability of the cosmological constant sector against radiative corrections coming from
quantum matter fields, one of the most natural ingredients to invoke is the symmetry under scale
transformations of the gravitational field. Previous attempts to follow this path have nevertheless failed in
providing a consistent picture. Here, we point out that this failure is intimately tied up to an assumption that
is typically embedded in modern studies of the gravitational interaction: invariance under the full group of
diffeomorphisms. We base the discussion on the gravitational theory known as Weyl transverse gravity.
While leading to the same classical solutions as general relativity, and so to the same classical
phenomenology, we show that in the presence of quantum matter (i) the degeneracy between these
theories is broken (general relativity exhibits the well-known cosmological constant problem, while in
Weyl transverse gravity, the cosmological constant sector is protected due to gravitational scale invariance),
and (ii) this is possible as the result of abandoning the assumption of full diffeomorphism invariance, which
permits circumventing classic results on scale-invariance anomalies and guarantees that gravitational scale
invariance survives quantum corrections. Both results signal new directions in the quest of finding an
ultraviolet completion of gravity.
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I. INTRODUCTION

The fact that vacuum zero-point energies of matter do
not gravitate can be considered as the only available glance
into the realm of quantum gravity with which we have been
experimentally rewarded up to now. This view appears
precisely because the application of effective field theory
arguments to the combination of general relativity and the
standard model of particle physics strongly suggests that
what is reasonable from the theoretical perspective is,
indeed, the contrary [1]. Finding a mechanism that can
forbid these energies to gravitate (or, more formally, to
prevent matter radiative corrections to affect the value of
the cosmological constant), while keeping intact the low-
energy physics so as to pass the stringent experimental tests
on deviations from these theories, is what is usually known
as the cosmological constant problem [1–3].
From an effective field theory perspective, it is well

understood that radiative corrections will generate all the
terms in the Lagrangian density that are compatible with
the symmetries of a given system. In this framework,
the cosmological constant term corresponds to a relevant
operator that is, however, not natural [3,4]. Therefore, the
value of the cosmological constant is highly sensitive to the
ultraviolet details beyond the effective theory, and it has
to be fine-tuned in order to match the experiments. On the
one hand, this observation is compelling: the value of the
cosmological constant is an issue to be treated in a theory
that consistently unifies the ultraviolet and infrared details
of our Universe, that is, a theory of quantum gravity. On

the other hand, it challenges the basic working principle
according to which the behavior of physics at a given
distance scale is insensitive to the fine details of the
dynamics at much shorter distances.
It is therefore desirable that an effective theory rationale

exists that permits working consistently at low energies,
leaving the question about the value of the cosmological
constant unanswered until we are able to construct a more
complete theory. As long as we are concerned only with
the gravitational sector, it is straightforward to check
that a global symmetry in the form of constant Weyl
transformations,

gab → ζ2gab; ð1Þ
with ζ a real constant would suffice to forbid the occurrence
in the effective Lagrangian density of any cosmological
constant term. However, when one adds matter, one rapidly
realizes that there is no way out of the cosmological
constant problem by following this path (see, e.g., the
discussion in Ref. [3]). First, only massless fields are
allowed in order to preserve the symmetry classically;
even in this case, in general the symmetry can no longer be
maintained when the matter fields are quantized, with the
occurrence of what is known as the Weyl or conformal
anomaly [5–7].
In this paper, we show that there is a way to embed the

symmetry (1) in a consistent effective field theory frame-
work that identifies an alternative gauge structure, distinct
from the diffeomorphism group of the spacetime manifold,
underneath the classical phenomenology of general rela-
tivity. Such a symmetry structure is composed of transverse*raulc@iaa.es
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diffeomorphisms and local Weyl transformations, and to
our knowledge, it was first discussed in Ref. [8]. Although
different from the symmetry structure usually associated
with gravity, it is naturally motivated by the field-
theoretical representation and self-coupling problem of
gravitons [9,10]. In this paper, we introduce the geometric
conceptualization of these ideas in the framework of
conformal manifolds.
Even if the different spacetime structure has no effect at

the classical level as we will argue below, one may expect
differences triggered by quantum effects. We may use the
following clear analogy: as radiative corrections can be
understood as perturbations with respect to the tree-level
physics, this would be equivalent to the (quite common)
degeneracy breaking by perturbations in eigenvalue prob-
lems. The first of these differences, which affects the
renormalization group of the gravitational action in the
presence of quantum matter fields, is reported here.

II. MOTIVATION AND GEOMETRIC
CONSTRUCTION

Within the classification of fundamental interactions in
terms of the unitary representations of the Poincaré group
[11], gravity is expected to be mediated by a particle
corresponding to the massless spin-2 representation. The
massless character of the representation means that only
the states with helicity �2 are physical. This representation
has a direct on-shell implementation in field theory [12]: a
second-rank symmetric, transverse, and traceless tensor
field hab that satisfies free equations of motion. In fact,
the physical objects are equivalence classes of hab defined
by the equivalence relation of being related through gauge
transformations.
Let us stress that this on-shell description is the sole firm

statement one can draw from the assumption that gravity is
mediated by a helicity �2 graviton exclusively, with no
admixture of spin 1 or 0. One can take this description as the
basis to discuss the self-coupling problem [13]. This
procedure has some (tractable) drawbacks that can be
avoided by slightly modifying the starting point: the usual
way to proceed is to relax the transverse and traceless
conditions while enlarging the gauge symmetry, thus main-
taining the number of degrees of freedom. This procedure
leads to thewell-known Fierz–Pauli theory [14]. However, it
is quite remarkable that there exists an alternative extension
that also reduces on shell to a helicity-�2 graviton, which is
calledWeyl transverse theory [8]. As the name suggests, the
internal gauge symmetry of the theory is given by

h0ab ∼ hab; h0ab ¼ hab þ ηac∂cξ
b þ ηbc∂cξ

a þ ϕηab;

ð2Þ

with generators satisfying ∂aξ
a ¼ 0, ϕ being an

arbitrary scalar function and ηab being the Minkowski

metric. Fierz–Pauli theory and Weyl transverse theory are
the only two embeddings in a linear gauge theory of the
on-shell description of gravitons sketched above [8,9]. This
fact alone is interesting enough to explore this last theory to
its ultimate consequences. In principle, even if both are by
construction completely equivalent as linear theories, their
nonlinear completions could substantially differ. Most
importantly, the internal transformations corresponding to
the last term inEq. (2) can be identified as the local and linear
version of a constant Weyl transformation (1), thus making
the discussion of fundamental interest for the cosmological
constant problem.
The nonlinear completions of these theories can be

motivated by symmetry considerations [8,9] or through
the self-coupling problem of gravitons [10,13,15]. A
detailed analysis shows that these ways are not independent
but are intimately related [13]. The nonlinear completion
of Fierz–Pauli theory leads to general relativity, or more
precisely to Rosen’s reformulation of Einstein’s theory
as a nonlinear field theory over a flat background (see
Refs. [12,13] for a thorough discussion of the history of the
subject and the different assumptions needed to obtain the
result). On the other hand, the solution to the self-coupling
problem of gravitons that has as its noninteracting limit the
free Weyl transverse theory is given by the action of Weyl
transverse gravity [8–10]:

A ≔
1

2κ

Z
dDx

ffiffiffiffiffiffi
jωj

p
R½jωj1=Djgj−1=Dgab�: ð3Þ

Here, R½ĝab� has the same functional form as the Ricci
scalar of a metric ĝab ≔ jωj1=Djgj−1=Dgab, with g the
determinant of gab. We have introduced an auxiliary
volume form ω (a nowhere-vanishing differential form
of degree D), with dDx

ffiffiffiffiffiffijωjp
the corresponding volume

element in D ≥ 4 spacetime dimensions, in order to define
the action (more details are below).
On the other hand, from the perspective of the self-

coupling problem, gab is just a tensor field with no a priori
metric interpretation. Moreover, the resulting internal
symmetries (transverse diffeomorphisms and local Weyl
transformations) do not suggest such interpretation, con-
trary to what happens in the standard construction of
general relativity. Although reminiscent of unimodular
gravity as presented, e.g., in Refs. [2,16], the theory
described by the action (3) has as its field variable an
unconstrained second-rank tensor field gab.
The introduction of the volume formω is useful to recast

the theory in geometric terms and to compare it with the
usual formulations of conformal gravity (see, e.g. the recent
reviews [17,18]). The built-in invariance under Weyl
transformations makes conformal manifolds, in which
the metric is only defined up to scale, the natural arena
to express the theory. The canonical volume form in
(pseudo-)Riemannian geometry is not available in a
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conformal manifold. To find a Weyl-invariant differential
form of degreeDmade up from the gravitational field only,
one needs to consider expressions that are at least quartic in
the derivatives of the gravitational field, i.e., quadratic in
the Weyl tensor [18]. When integrated, this form leads
to the usual action of Weyl conformal gravity, which
defines a higher-derivative field theory.
We can dispose, however, of additional structures com-

patible with the definition of a differentiable manifold; any
orientable manifold naturally admits a space of volume
forms [19] (for nonorientable manifolds, we could equally
work with the weaker notion of a density). Although
unrelated to the gravitational field, these differential forms
can be used to define a useful notion of integration in the
conformal manifold (see, e.g., Appendix B in Ref. [20]).
Indeed, using this additional structure permits writing down
a second-order action in the derivatives of the gravitational
field, thus defining a second-order theory of gravity, in the
following way. Given an auxiliary volume form ω, con-
struct another differential form of degree D by multiplying
it by the scalar curvature ĝcdRcdðΓ̂Þ of the Weyl connection
Γ̂ [17], the components of which are given by

Γ̂c
ab ¼

1

2
ĝcdð∂aĝbd þ ∂bĝad − ∂dĝabÞ

¼ 1

2
gcdð∂agbd þ ∂bgad − ∂dgabÞ

þ 1

2D
½δcb∂a þ δca∂b − gab∂c� lnðjωj=jgjÞ: ð4Þ

The integral of the differential form constructed in this
way leads to the coordinate-free geometric version of the
action (3),

A ¼ 1

2κ

Z
M

ω ĝabRabðΓ̂Þ; ð5Þ

where we have explicitly displayed the domain of integra-
tion over the entire spacetime manifold M. This formu-
lation makes explicit the geometric content of the theory: a
dynamical conformal structure and an auxiliary volume
form.1

III. RADIATIVE STABILITY

Matter is included in the discussion by following a
minimal coupling approach but replacing ηab with the
composite field ĝab ¼ jωj1=Djgj−1=Dgab. This can be deter-
mined again through symmetry considerations or the self-
coupling problem itself. The resulting gravity-matter action
is invariant under gravitational scale transformations,

or local scale transformations of the gravitational field,
defined as the local extension of the transformations (1)
which do not affect matter fields. The space of solutions
of such a classical theory is equivalent to the space of
solutions of general relativity plus matter, by means of the
following argument. The invariance under gravitational
scale transformations can be exploited to fix a gauge in
which jgj ¼ jωj. In this gauge, the field equations take
the same form as the traceless Einstein field equa-
tions [10,21,22]. These are known to be equivalent to
the Einstein field equations, with the cosmological constant
appearing as an integration constant [23,24]. Notice that
different choices of the volume form ω make no difference
from the standpoint of the gravitational field equations, as
locally these just correspond to picking out different charts
on the manifold.
As we discuss in the following, this equivalence breaks

up within the semiclassical realm; the radiative corrections
to the cosmological constant sector of the theory are
identically zero. It is interesting to rephrase the discussion
in terms of the Feynman diagrams known as vacuum
bubbles. These are diagrams with no external legs, so that
they represent the (perturbative) view of the quantum
vacuum as a “sea” of virtual particles [25]. In flat-spacetime
quantum field theory, the linked-cluster theorem (see, e.g.,
Ref. [26] for a textbook discussion of the theorem) permits
showing explicitly that the contributions of vacuum bub-
bles cancel out of correlation functions so that they do not
have any physical consequence. If we include gravity in
the discussion by means of general relativity and consider
the resulting effective quantum field theory [27,28], this
decoupling no longer holds as a result of the dependence
of the spacetime volume form on the gravitational field;
diffeomorphism invariance implies the coupling of gravity
to these diagrams, leading to the cosmological constant
problem [1,29].
In the framework of Weyl transverse gravity, the corre-

sponding (regulated) radiative corrections to the effective
action take the form of a mere constant shift, as we are used
to in any special relativistic quantum field theory which
does not contain gravity. The fact that the spacetime
volume form cannot depend on the gravitational field, as
discussed above, implies the decoupling of the contribu-
tions of vacuum bubbles. In terms of symmetries, we may
interpret this result as a consequence of the invariance of
the theory under scale transformations of the gravitational
field (1). This symmetry forbids radiative corrections that
would otherwise couple to the determinant of the field gab.
This can be shown explicitly at one-loop level through,
e.g., the effective action scheme [30–32]. Given a theory of
matter with an arbitrary combination of matter fields with
different spin (0, 1=2, and 1), minimally coupled to ĝab ¼
jωj1=Djgj−1=Dgab as we have argued above, the heat kernel
expansion [30] permits writing the regulated effective

1It may also suggest looking for ultraviolet completions with
a dynamical differential D-form, the dynamics of which is
effectively frozen below certain energy scale.
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action in terms of a cutoff μ so that one can take account of
the necessary counterterms.
Let us work this out for a scalar field in four dimensions

only, as the generalization to other kinds of matter fields
and dimensions is straightforward. We will follow closely
the discussions in Refs. [30,31]. The evolution equations
are given by

Ogabϕ ¼ 1ffiffiffiffiffiffijωjp ∂að
ffiffiffiffiffiffi
jωj

p
ĝab∂bϕÞ þm2ϕþ ξR½ĝab�ϕ ¼ 0:

ð6Þ

The parameters m and ξ are real, but otherwise arbitrary.
The first part of the differential operator corresponds
to the d’Alembertian operator associated with ĝab ¼
jωj1=Djgj−1=Dgab.
Let us now extract the information encoded in the one-

loop effective action Sgab , which is essentially the func-
tional determinant of the differential operator Ogab (a brief
discussion of the necessary background is given in
Appendix). Given a fiduciary reference gravitational field
g0ab, the following relation is satisfied by the effective
action Sgab :

Sgab −Sg0ab
¼1

2

Z
d4x

Z
∞

μ−2

ds
s
½expð−sOg0ab

Þ−expð−sOgabÞ�:
ð7Þ

This expression has been regulated with the introduction of
a cutoff μ. Divergences occur when the cutoff is removed,
i.e., in the limit μ → ∞. To isolate these divergences, we
can use the heat kernel expansion in the s → 0 limit,

expð−sOgabÞ ¼
ffiffiffiffiffiffijωjp

ð4πsÞ2 ½a0ðĝabÞ þ a1ðĝabÞs

þ a2ðĝabÞs2 þOðs3Þ�: ð8Þ

We have only written explicitly the terms causing diver-
gences in the s → 0 limit, which are associated with the
first Seeley–DeWitt coefficients, fangn¼0;1;2. This diver-
gent behavior is absorbed by means of the renormalization
of the gravitational couplings. The necessary counterterms
to do so can be read from the following expression:

Sg ¼ Sg0 −
1

32π2

Z
M

ωfμ2½a1ðĝabÞ − a1ðĝ0abÞ�

þ lnðμ2=m2Þ½a2ðĝabÞ − a2ðĝ0abÞ�g: ð9Þ

The same structure is valid for other kinds of matter fields,
just by changing the numeric factors in front of the Seeley–
DeWitt coefficients.
From this equation, we can notice that there is no

term corresponding to the a0 ¼ 1 Seeley–DeWitt coeffi-
cient, in contrast to what happens in general relativity.

This is a consequence of the invariance under gravitational
scale transformations, which enforces

ffiffiffiffiffijĝjp ¼
ffiffiffiffiffiffiffi
jĝ0j

p
so

that these contributions are independent of the gravitational
field. The corresponding piece in general relativity leads to
the renormalization of the cosmological constant. In gen-
eral relativity, there are also additional terms that renorm-
alize the cosmological constant, coming from the constant
pieces (i.e., independent of the gravitational field) of the
Seeley–DeWitt coefficients a1 and a2. These automatically
cancel out in Weyl transverse gravity, as one can read
directly from Eq. (9). Thus, we have shown the main result
in this section: in Weyl transverse gravity, there is no
renormalization group equation for the cosmological con-
stant sector.
The first nonzero contribution in Eq. (9) leads to a

renormalization of the gravitational coupling constant κ. If
we call κ0 the bare gravitational coupling constant, then one
can read from the one-loop effective action (9) the equation

1

κ
¼ 1

κ0
þ C1μ

2 þ C2 ln

�
μ2

C3

�
; ð10Þ

where C1, C2, and C3 are constants with convenient
physical dimensions and the values of which depend on
the particle content of the matter sector [31]. The next
contributions involve quadratic expressions in the “Ricci”
tensor Rcd½ĝab� that also appear in general relativity, which
respect gravitational scale invariance and lead to higher-
derivative deviations from the second-order field equations
at high energies. These imply the running of the corre-
sponding coefficients in front of these quadratic terms in
the Lagrangian density, a feature that is irrelevant for the
point we want to make here (the form of these renormal-
ization group equations is the same as in the general
relativity case and can be consulted, e.g., in Ref. [31]).
Again, the important observation is that the invariance
of the theory under gravitational scale transformations
implies, in contrast with general relativity, the absence
of any renormalization group equation describing the
running of the cosmological constant sector and, hence,
of the corresponding radiative instability. Thus we have one
less physically relevant renormalization group equation. To
guarantee the consistency of this picture, gravitational scale
invariance must survive quantum effects, i.e., be free of
anomalies in the presence of quantum matter fields. As we
show in the next section, it is perfectly possible to realize
this symmetry in a nonanomalous way at the semiclass-
ical level.

IV. ABSENCE OF ANOMALIES

Any reader familiar with previous results on scale-
invariance anomalies might be skeptical about our state-
ment of protection of the cosmological constant term by
means of gravitational scale invariance. While this first
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reaction is justified, the crucial observation we want to
make here is that former results must be revised in the case
at hand as one of the previous assumptions has been
dropped off: invariance under the entire group of diffeo-
morphisms. The presence of anomalies can indeed be
traced back to this assumption alone, being a feature of
the interplay between longitudinal diffeomorphisms and
scale transformations. The key resides in the extension of
the symmetry (1) when we include matter in the game. The
absence of anomalies in Weyl transverse gravity was
conjectured in Ref. [33]. The issue was partially studied
in Ref. [34], in which the cases of pure gravity and
couplings to conformal matter were considered. These
results are unsatisfactorily restricted; for example, only
the equation of state w ¼ 1 would be covered in cosmo-
logical solutions. Our results have a broader scope, as they
permit handling the far richer case of a general matter
content: arbitrary combinations of fields with different spin
(0, 1=2, and 1) and mass parameters, as well as arbitrary
interactions between them. In particular, the matter contents
of both standard models of particle physics and cosmology,
which are not conformal, find their place in the present
framework.
In the standard case in which it is assumed that the

gravitational theory is invariant under diffeomorphisms, the
couplings between gravitational and matter fields dictated
by symmetry considerations generally imply that matter
fields should transform nontrivially under scale transfor-
mations, as well as being massless. This results in standard
conformal invariance (the situation with scale invariance in
quantum chromodynamics is completely parallel). On the
contrary, in Weyl transverse gravity, the interacting matter
field Lagrangian density is constructed from a general flat-
space Lagrangian density by replacing the flat metric ηab by
ĝab ¼ jωj1=Djgj−1=Dgab instead of gab, to guarantee invari-
ance under gravitational scale transformations. Matter
fields are inert under these transformations so that no
restrictions whatsoever apply. Obviously, this kind of
coupling would explicitly break the invariance under
longitudinal diffeomorphisms, if present.
To describe anomalies, we shall use Fujikawa’s approach

[35], which is especially suited for making our point in a
clean and concise way. A specific anomaly will be given by
a (regulated) Jacobian associated with the change of the
path integral measure under a given symmetry. Even if
gravitational scale transformations do not affect matter
fields by construction, this symmetry could be anomalous.
The best example of this is a scalar field in two dimensions:
the fields by itself are unchanged by conformal trans-
formations, but still the symmetry is anomalous as the
result of the definition of the path integral measure.
For clarity let us briefly recall this well-known two-

dimensional conformal invariance example (see, e.g.,
Refs. [5,32] and references therein) to compare it with
that of gravitational scale invariance (in an arbitrary

dimension D). We will see that the conformal anomaly
arises because of the interplay of conformal transforma-
tions and longitudinal diffeomorphisms. That is, the
classical conformal symmetry is broken by the quantum
anomaly if one uses the path integral measure which
preserves invariance under arbitrary diffeomorphisms.
For the purposes of this example only, the object gab will
momentarily regain its standard metric interpretation.
To define the path integral measure and, so, the path

integral itself, we first define a scalar product,

ðϕ;ϕ0Þ ≔
Z

d2x
ffiffiffiffiffi
jgj

p
ϕðxÞϕ0ðxÞ ¼

Z
M

ϵϕϕ0; ð11Þ

in which the differential operator occurring in the classical
field equations for the scalar field is symmetric (ϵ is the
Levi-Civitá tensor [20]). Then, we can perform a decom-
position in terms of the eigenfunctions fϕng∞n¼1 of this
operator. The coefficients of the expansion are given by

bn ≔ ðϕn;ϕÞ ¼
Z
M

ϵϕn ϕ: ð12Þ

The classical action can be written entirely in terms of these
coefficients. The path integral measure is defined as the
natural measure in the infinite-dimensional space spanned
by the fbng∞n¼1, with the path integral formally defined then
as a functional determinant.
By construction, the transformation properties of the

measure are directly inherited from the transformation
properties of the inner product (11) and the fields and
can be directly evaluated from Eq. (12). The general result
that we will use is the following [5]: symmetries such that
δbn ¼ 0 are directly free of anomalies, being thus preserved
in the quantum realm, while if δbn ≠ 0, additional manip-
ulations are needed in order to extract a meaningful finite
result.
The path integral measure constructed from the fbng∞n¼1

is invariant under diffeomorphisms by construction.
Applying the corresponding transformation laws of the
fields to the coefficients bn as defined in Eq. (12), one can
check that these are invariant under these transformations.
However, the

ffiffiffiffiffijgjp
factor in the inner product (11) enforced

by diffeomorphism invariance implies that the coefficients
(12) are not invariant under conformal transformations.
Under an infinitesimal conformal transformation δgab ¼
αðxÞgab, one has

δbn ¼
Z
M

ϵϕn ϕα: ð13Þ

It is an algebraic matter to evaluate the Jacobian J
associated with the path integral measure for infinitesimal
αðxÞ as
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ln J ¼ lim
N→∞

XN
n¼1

Z
M

ϵϕn ϕn α: ð14Þ

This expression must be regularized in the N → ∞ limit,
but after a proper treatment, it leads to the usual results of
the conformal anomaly: the trace of the stress-energy tensor
of matter fields is no longer zero in general gravitational
backgrounds so that conformal invariance is lost [5–7].
We can apply the same procedure to show that all the

gauge transformations ofWeyl transverse gravity are free of
anomalies in the presence of quantum matter. To the best of
our knowledge, the definition and properties of the path
integral for a general matter content coupled to (classical)
Weyl transverse gravity have not been discussed before.
Again the first we need to do is define the path integral
measure for the matter fields.
Let us detail the scalar field case, to extend it later to a

general matter content. In view of our reasoning in previous
sections, the inner product for a scalar field in Weyl
transverse gravity will be given by

hϕ;ϕ0i ≔
Z

dDx
ffiffiffiffiffi
jĝj

p
ϕðxÞϕ0ðxÞ ¼

Z
M

ωϕϕ0: ð15Þ

Notice the essential difference with respect to Eq. (11),
in that this definition displays an auxiliary volume form
unrelated to the gravitational field. The inner product is
defined for every ω in a coordinate-free way as the integral
of the D—form ωϕϕ0 [20].
The evolution operator Ogab is symmetric in this inner

product (see Appendix). In the following, we consider the
expansion in terms of its eigenfunctions, which permits
constructing the path integral from the coefficients

cn ≔ hϕn;ϕi ¼
Z
M

ωϕn ϕ ð16Þ

as

Z
∞

−∞

Y∞
n¼0

dcnffiffiffiffiffiffi
2π

p exp

�
−
X∞
m¼1

λmc2m=2

�
¼ det−1=2ðOgabÞ:

ð17Þ

The combination
P∞

m¼1 λmc
2
m=2 corresponds to the classical

action, which is invariant by construction under the sym-
metries of the theory.
On the other hand, the transformation properties of the

path integral measure can be read off from Eq. (16). We can
explicitly check that these coefficients and, hence, the
corresponding path integral measure are invariant under
both transverse diffeomorphisms and gravitational scale
transformations. It is enough to notice that under these
transformations δ

ffiffiffiffiffijĝjp ¼ 0 (or, equivalently, that ω is
invariant), thus implying

δcn ¼
Z

dDxϕnðxÞϕðxÞδ
ffiffiffiffiffi
jĝj

p
¼ 0: ð18Þ

In contraposition with the former case, we see that, as
we are not demanding invariance under longitudinal diffeo-
morphisms, the factor

ffiffiffiffiffijgjp
can be freely tuned to accom-

modate the remaining gauge symmetries, generated by
gravitational scale transformations. This is what we are
effectively realizing when inserting ĝab ¼ jωj1=Djgj−1=Dgab
instead of gab in the expressions for the inner products.
These considerations can be extended to any matter
content, with fields of arbitrary spins and masses, as
we can always construct an inner product with these
invariance properties as long as we leave aside longitudinal
diffeomorphisms and make use of the usual recipes but
with the gravitational field represented through the
combination jωj1=Djgj−1=Dgab.
A complementary way to realize this is the following. It

is a general result that anomalies may occur in the one-loop
effective action when the differential operator appearing in
the equations of motions for the fields is not invariant
under a symmetry but only covariant [30]. This description
is of course parallel to the previous discussion in terms of
the measure (a noninvariant operator would imply a non-
invariant measure in the path integral). Diffeomorphism
invariance enforces a coupling to the gravitational field gab
that implies that it is not possible to make the differential
operator invariant under conformal transformations at the
same time. On the contrary, when coupling the matter fields
to ĝab ¼ jωj1=Djgj−1=Dgab, we are giving up invariance of
the field equations under longitudinal diffeomorphisms
while making the corresponding differential operators
invariant under gravitational scale transformations. An
example is the scalar field differential operator defined
in Eq. (6), which is clearly invariant under gravitational
scale transformations. Let us illustrate how this works with
a different kind of matter field, e.g., a fermion field. It is
straightforward to consider more complicated matter con-
tents, such as the one in the standard model of particle
physics, following the recipes for the coupling to the
gravitational field given above. Fermions couple to the
composite vierbein field, defined by means of the relation
ĝab ¼ êIaêJbηIJ or, in terms of the usual vierbein field,

êIa ¼
jωj1=2D
jej1=D eIa; ð19Þ

with jej the determinant of eIa. The Dirac operator in Weyl
transverse gravity will be given then by

Dgab ≔ iγI êIaDa −M: ð20Þ
Here, M is the fermion mass, and Da is the covariant
derivative associated with êIa by means of the correspond-
ing spin connection (see, e.g., Ref. [36]), which in our case
is given in terms of the Weyl connection (4) as
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ω̂IJ
a ≔ êIb∂aêJb − êIbêJcΓ̂c

ab: ð21Þ
While its counterpart in general relativity is just covariant
under conformal transformations, the Dirac operator (20) is
invariant under gravitational scale transformations, as we
have claimed.
Up to now, we have covered in the discussion particles

with spin 0, 1=2, and 1, with general properties and
interactions between them. Let us make a remark concern-
ing the spin-2 case, which, although not essential for our
semiclassical discussion, may be interesting for future
developments. When it comes to the quantum properties
of gravity itself, the definition of the path integral is subtler,
but a tentative exploration of the path integral measure
following previous works (see, e.g., Ref. [37] and refer-
ences therein) shows that it should be possible to define it in
terms of the composite field ĝab ¼ jωj1=Djgj−1=Dgab instead
of gab. This procedure would lead to a nonanomalous path
integral with respect to the internal symmetries (see also the
related discussion for the pure gravity case in Ref. [34]).
Beyond the scope of the present work, it would be very
interesting to carry out this program in detail as well as a
study of the possible properties of a quantum theory of
gravity with these symmetries.

V. SCOPE AND PROSPECTS

In the present work, we have shown that Weyl transverse
gravity is the first known example in the literature of what
we can call a “minimal” solution to the cosmological
constant problem: the classical field equations are essen-
tially equivalent to those of general relativity, while the
cosmological constant can take arbitrary but radiatively
stable values as it is protected by symmetries.
Modifications with respect to the classical predictions of
general relativity are only triggered by quantum effects so
that tree-level physics is preserved while one-loop and
further corrections are changed. It is instructive to observe
that the criteria demanded in Ref. [3] for a satisfactory
solution to the cosmological constant problem are verified.
From the perspective of the low-energy physics, the
cosmological constant is in this framework as mysterious
as (but not more than) any other parameter in physics, such
as the gravitational constant or the electron charge.
Additionally, this nonlinear gravitational theory has a

strong first-principles justification rooted in local particle-
like quantum properties of the gravitational interaction, as
well as a clean geometric interpretation. This makes it
especially suited to describe the infrared limit of a would-be
theory of quantum gravity. The construction is, in this
sense, inherently different to proposals such as Ref. [38]
that modify the purely global properties of the gravitational
interaction instead of its local properties. From a more
philosophical perspective, our proposal is inextricably tied
up to nontrivial conceptual implications, as one needs to
accept, at least at high energies, that some properties of

spacetime deviate from the ones associated with a
(pseudo-)Riemannian manifold. This suggests that solving
the cosmological constant problemmay entail changing our
conceptual and mathematical picture of spacetime.
As for future work, from this point, different roads can be

taken. It would be interesting to explore additional quantum
properties of Weyl transverse gravity as an effective theory,
apart from the one that is the main subject of this paper and
that is in accordance with current observations, in order to
further distinguish it from general relativity. Promising
candidates to display differences may be scattering ampli-
tudes involving the off-shell structure of gravitons, i.e.,
containing graviton loops. Regarding the cosmological
constant, only a more fundamental theory or principle
could unveil its nature and set its actual value, which by
matching should be the one used in the classical solutions
of the effective low-energy theory. The exploration of the
nature of such a principle, which may well be related to
the true vacuum of the underlying high-energy theory (see,
e.g., Volovik’s proposal [39]), is an interesting issue in
itself. Also, the possible construction of theories of quan-
tum gravity with nonanomalous gravitational scale invari-
ance and their relation with the more familiar conformal
field theories appears as an attractive problem that could
lead to profound implications for our understanding of the
gravitational interaction and scale invariance.
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APPENDIX: PATH INTEGRAL
FOR A SCALAR FIELD

For the sake of completeness, let us describe some
properties of the path integral for a scalar field in the
framework of Weyl transverse gravity. Following the usual
practice, when performing manipulations with path inte-
grals, some expressions should be understood in the
Euclidean sense, in order to guarantee that all is well
defined (the reader can read the details on this as well as the
standard conventions we follow in, e.g., Ref. [40]).
The action leading to the equations of motion (6) is

given by

S½ϕ; gab� ¼
1

2
hϕ;Ogabϕi ¼

1

2

Z
M

ωϕOgabϕ: ðA1Þ
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Integrating by parts twice, we can show that the operator
Ogab is symmetric in the inner product (15):

hϕ;Ogabϕ
0i

¼
Z

dDxϕ½∂að
ffiffiffiffiffiffi
jωj

p
ĝab∂bϕ

0Þ þm2ϕ0 þ ξR½ĝab�ϕ0�

¼
Z

dDxϕ0½∂að
ffiffiffiffiffiffi
jωj

p
ĝab∂bϕÞ þm2ϕþ ξR½ĝab�ϕ�

¼ hOgabϕ;ϕ
0i: ðA2Þ

The corresponding expansion in eigenfunctions permits
writing the action as

S½ϕ; gab� ¼
1

2
hϕ;Ogabϕi ¼

1

2

X∞
m¼1

λmc2m; ðA3Þ

where fcmg∞m¼1 are the coefficients of the expansion and
fλmg∞m¼1 are the eigenvalues of the corresponding eigen-
functions. Following the usual normalization conventions,
the measure is defined in terms of the fcmg∞m¼1 as

½Dϕ� ≔
Y∞
n¼0

dcnffiffiffiffiffiffi
2π

p ðA4Þ

so that the path integral is formally given by

Z
½Dϕ� expð−S½ϕ; gab�Þ

¼
Z

∞

−∞

Y∞
n¼0

dcnffiffiffiffiffiffi
2π

p exp

�
−
X∞
m¼1

λmc2m=2

�

¼
Y∞
n¼0

Z
∞

−∞

dcnffiffiffiffiffiffi
2π

p exp ð−λnc2n=2Þ

¼
Y∞
n¼0

λ−1=2n ¼ det−1=2ðOgabÞ: ðA5Þ

The one-loop effective action is defined through
expð−SgabÞ ≔

R ½Dϕ� expð−S½ϕ; gab�Þ, i.e.,

Sgab ¼
1

2
ln detðOgabÞ: ðA6Þ

The definition of the real logarithm

lnðxÞ ≔ −lim
ϵ→0

Z
∞

ϵ

ds
s
½expð−xsÞ − expð−sÞ� ðA7Þ

is useful in order to express the effective action in a
different way. For two positive real numbers α; β ∈ R, we
have

lnðα=βÞ ¼ lim
ϵ→0

Z
∞

ϵ

ds
s
½expð−sβÞ − expð−sαÞ�: ðA8Þ

If we understand these α, β as eigenvalues of the operators
Ogab , Og0ab

corresponding to two different gravitational
fields, and use ln detðOgabÞ ¼ Tr lnðOgabÞ with Tr under-
stood as integration over the coordinates, we can then
write

Sgab − Sg0ab
¼ 1

2

Z
d4x ln ðOgab=Og0ab

Þ

¼ 1

2
lim
ϵ→0

Z
d4x

×
Z

∞

ϵ

ds
s
½expð−sOg0ab

Þ − expð−sOgabÞ�:
ðA9Þ

From the way this relation is obtained, it is clear that it will
be also satisfied for other kinds of matter fields, but in terms
of the corresponding differential operators.
Lastly, let us address the robustness of semiclassical

physics with respect to the choice of volume form. From,
e.g., the expression of the coefficients (16), one may think
that, given two different volume forms, the corresponding
semiclassical theories will differ. This intuition comes
from thinking about these coefficients as evaluated in a
fixed spacetime structure, but the equivalence arises when
the dynamical properties of this structure are taken into
account so that the gravitational field configuration is
determined by means of the field equations. A change of
coordinates suffices to make the field equations for two
volume forms ω and ω0 formally equivalent, modulo the
renaming of the coordinates. As the coordinates are
dummy variables, the coefficients (16) are then invariant.
To be quite specific, when picking a specific solution to
these equations, one hasZ

M
ωϕn ϕ ¼

Z
dDxjωj1=2ðxÞϕnðxÞϕðxÞ

¼
Z

dDx0jωj1=2ðx0Þϕnðx0Þϕðx0Þ

¼
Z

dDxjω0j1=2ðxÞϕnðxÞϕðxÞ

¼
Z
M

ω0 ϕn ϕ: ðA10Þ

This demonstrates that the coefficients (16) are indepen-
dent of the choice of volume form. As the same is true for
the eigenvalues of the scalar field differential operator (6),
being coordinate invariants, the entire path integral (17) is
insensitive to the specific choice of volume form.
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