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Certain local thermal observables are considered in well-known examples of spatially open FRW
spaces: Milne, open de Sitter and anti–de Sitter as well as Einstein static universes. Another value for
fixing the ambiguity in defining the Wick square and, hence, the local temperature is motivated in the
last example. Physical consequences of that choice are discussed for static and conformal vacua in those
spaces.
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I. INTRODUCTION

In this paper I will explore, in particular, thermal
characteristics of states considered in [1]. A framework
employed below is based on the idea that one can construct
microscopic quantities from the field products and its
derivatives which are sensitive to thermal properties of a
certain quantum state [2,3]. Among of these local thermal
observables are a local temperature and a thermal energy-
momentum tensor. Thus, computing them in a quantum
state under consideration and in a some reference thermal
one, one may decide to which extent it is legitimate to
ascribe macroscopic thermal observables to it as well as
whether it corresponds to a local thermal equilibrium.
Although there exists in general no global thermal states

in curved spacetimes to be taken as reference ones, it is not
the case in the problem under scrutiny. Specifically, I shall
consider observers moving along geodesics corresponding
to the integral curves of the conformal Killing vector field
in spatially open FRW spaces among of which are Milne,
open de Sitter (dS), anti–de Sitter (AdS) spaces as well as
Einstein static universe (ESU).1 Therefore, a conformal
Kubo-Martin-Schwinger (KMS) state [4] is chosen in all of
these cases (except the last one, wherein it is just a KMS
state) as the reference thermal one.
In Sec. II, I consider the contracting and expanding

Milne universes. An alternative quantization being equiv-
alent to the standard one and relation with the conformal
vacuum are studied. Thermal properties of known states are
discussed in the framework briefly outlined above. In
Sec. III, I deal with AdS spacetime, wherein an alternative
quantization of the conformal noninteracting scalar field on
the AdS hyperboloid will be demonstrated that is unitary
equivalent to the standard one [5] and the existence of
which has been motivated in [1]. Along the line of Sec. II, a
discussion of the thermal properties of the static and

conformal vacua is presented. In Sec. IV, I discuss thermal
local observables in the cases of open dS space as well as
open Einstein static universe and compare them with those
for closed dS space and the closed ESU. In Sec. V, I provide
final concluding remarks.
The sign convention for the metric tensor as well as

the definition of the Riemann tensor are the same as in [1].
The fundamental constants are set to unity throughout
this paper.

II. MILNE SPACETIME

The Milne universe is a subspace of Minkowski space-
time lying in the future light cone originating from a given
point O of the manifold. Its line element has the form of the
open FRW universe with the scale factor exponentially
growing with the conformal time, i.e.

ds2 ¼ a2ðη̄Þðdη̄2 − dχ̄2 − sinh2χ̄dΩ̄2Þ; ð1Þ

where aðη̄Þ ¼ eη̄ is the scale factor and dΩ̄2 ¼
dθ̄2 þ sin2θ̄dφ̄2 element of solid angle. By the same metric
with a reversed direction of η̄ one can cover the past light
cone of the origin O, wherein now aðη̄Þ approaches zero
for η̄ → þ∞. The future and past light cones will be called
the upper and lower Milne universes in the following,
respectively.

A. Minkowski modes in Milne spacetime

To simplify calculations of the Wick square (see below)
in the conformal KMS state, one has to expand the quantum
field through modes which when rescaled becomes positive
frequency ones with respect to the conformal Killing vector
∂ η̄ being the dilatation [6]. These modes have been found
in [7] for the upper Milne wedge which specify the

Minkowski vacuum. One can also obtain the Minkowskian
modes in the lower wedge by analytically continuing them
from the Rindler spacetime to that wedge. Thus, one has
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Φplmðx̄�Þ ¼ �ile�
πp
2
e∓ipη̄�

aðη̄�Þ
Γð1þ lþ ipÞ
ð4π sinh χ̄�Þ12

× P
−l−1

2

ip−1
2

ðcosh χ̄�ÞYlmðΩ̄Þ; p ∈ R; ð2Þ

where η� and χ� are defined through x0 ¼ �e�η̄� cosh χ̄�
and jxj ¼ e�η̄� sinh χ̄�, where the plus and minus indices
refer to the upper and lower Milne wedges, respectively.
The functions ΓðzÞ, Pμ

νðzÞ and YlmðΩ̄Þ are the gamma
function (Euler’s integral of the second kind), the asso-
ciated Legendre function and the real spherical harmonics,
respectively.
By using Eq. (2), one can define conformal modes

specifying the conformal Milne vacua in the wedges as
follows:

Φþ
ωlmðxÞ ¼ αωlmΦþωlmðxÞ þ βωlmΦ�

−ωlmðxÞ; ð3aÞ

Φ−
ωlmðxÞ ¼ αωlmΦ�

−ωlmðxÞ þ βωlmΦþωlmðxÞ; ð3bÞ

where ω ∈ Rþ and the Bogolyubov coefficients are

αωlm ¼ exp ðþ πω
2
Þ

ð2 sinhðπωÞÞ12 ; βωlm ¼ −ð−1Þl exp ð− πω
2
Þ

ð2 sinhðπωÞÞ12 :

ð4Þ

Note that the modes Φþ
ωlmðxÞ vanish in the lower wedge,

while Φ−
ωlmðxÞ are strictly zero in the upper Milne wedge

and both of them can be analytically continued into
Rindler space.
One can express the Minkowski modes ΦplmðxÞ through

the upper and lower conformal Milne ones, i.e. Φ�
ωlmðxÞ, by

exploiting Eq. (3). In other words, the Minkowski vacuum
can be formally represented as an excited state under
j0þi ⊗ j0−i, where j0�i is the conformal Milne vacua in
the upper and lower wedges, respectively. The crucial
ingredient of the model that allows such representation
is a presence of the conformal symmetry, because then the
commutator ½Φ̂ðx1Þ; Φ̂ðx2Þ� vanishes whenever x1 and x2 lie
in the different Milne wedges as it has been noted in
[8]. Thus, the field degrees of freedom in one wedge
are mutually independent from those lying in the
other wedge.

B. Local thermal observables

It is argued in [2,3] that a real thermometer is modeled in
the theoretical language with the help of the Wick square of
the field. This construction and a concept of the local
equilibrium have been further studied in curved spacetimes
[9,10] (see also [11]). Further investigations of local
equilibrium states as well as quantum energy inequalities
in curved spacetimes can be found in [12].

Specifically, the squared value of the local temperature
TðxÞ measured by the thermometer in a given state ω2 is
probed by the Wick square as follows:

T2ðxÞ ¼ 12ωð∶Φ̂2ðxÞ∶Þ; ð5Þ

wherein the Wick square is defined as ∶Φ̂ðx1ÞΦ̂ðx2Þ∶≡
Φ̂ðx1ÞΦ̂ðx2Þ −Hðx1; x2Þ1̂, where Hðx1; x2Þ is the
Hadamard parametrix canceling the divergent terms in
the two-point function in the coincidence limit
x2 → x1 [14].
The conformal KMS state ωβ specified by the KMS

parameter β (the inverse temperature) can be chosen as a
thermal reference one. The two-point function in ωβ equals

ωβðΦ̂ðx̄1ÞΦ̂ðx̄2ÞÞ ¼
i

2πaðη̄1Þaðη̄2Þ
Z þ∞

−∞
dk

1

1 − e−βk

×
Z þ∞

−∞
dη̄Δrðη̄þ η̄1; η̄2Þeikη̄; ð6Þ

where Δrðx̄1; x̄2Þ is the rescaled casual propagator, i.e.
½Φ̂rðx̄1Þ; Φ̂rðx̄2Þ� ¼ iΔrðx̄1; x̄2Þ1̂ and Φ̂rðx̄Þ≡ aðη̄ÞΦ̂ðx̄Þ.
Exploiting the previous subsection, one finds

T2ðx̄Þ ¼ 1

a2ðη̄Þ
�
1

β2
−

1

4π2

�
: ð7Þ

The Hadamard parametrix in this model coincides with the
Minkowski two-point function, therefore, the local temper-
ature in the Minkowski vacuum state is strictly zero.
However, the Wick square in the conformal Milne vacuum
is negative and coincides with the right-hand side of Eq. (7)
in the limit β → þ∞, s.t. T2ðx̄Þ ¼ −1=4π2a2ðη̄Þ.
The renormalized vacuum expectation value of the

energy-momentum tensor T̂μ
νðxÞ vanishes in the

Minkowski vacuum. Hence, one obtains

ωβðT̂μ
νðx̄ÞÞ ¼ 1

480π2a4ðη̄Þ
��

2π

β

�
4

− 1

��
δμν −

4

3
δμi δiν

�
;

ð8Þ

wherein i runs from 1 to 3. The thermal energy-momentum
tensor Eμ

νðx̄Þ in this framework is, however, only a part of
the total energy-momentum tensor Tμ

νðx̄Þ (denoted by ϵμν in
[10]), such that it equals

ωβðÊμ
νðx̄ÞÞ ¼ 1

120π2a4ðη̄Þ
�
1þ 4π4

β4
−
5π2

β2

��
δμν −

4

3
δμi δiν

�
:

ð9Þ

2It is a standard designation of a state in the algebraic approach
to quantum field theory, see [13,14]. I use it below for the
convenience.
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Both ωβðT̂μ
νðx̄ÞÞ and ωβðÊμ

νðx̄ÞÞ are traceless and vanish in
the Minkowski vacuum, but ωβðT̂0

0ðx̄ÞÞ is less than zero in
the conformal Milne vacuum, while ωβðÊ0

0ðx̄ÞÞ is positive
in it. Note that neither ωβðT̂μ

νðx̄ÞÞ nor ωβðÊμ
νðx̄ÞÞ are

proportional to T4ðx̄Þ as this is the case for the pure
thermal radiation.

III. OPEN ANTI–DE SITTER SPACETIME

Anti–de Sitter spacetime can be imagined as a four
dimensional hyperboloid embedded in a five-dimensional
space R5 with the line element ds2 ¼ ηabdxadxb, where a
and b run from 0 to 4 and ηab ¼ diagðþ;−;−;−;þÞ, i.e.
ηabxaxb ¼ 1. This spacetime is pathological from the point
of view that it is not globally hyperbolic. The first reason
lies in that its topology is S ×R3, so that it possesses closed
timelike curves. This feature is cured by unwrapping the
circle S and considering instead its universal covering R.
The second reason consists in that its spatial infinity is
timelike. Therefore, one has to set a boundary condition
there to fix the energy flux through it. These allow to have a
well-defined quantum theory in the AdS hyperboloid [5].
Among of possible parametrizations of the AdS hyper-

boloid, I shall consider so-called open coordinates. The line
element in these coordinates becomes

ds2 ¼ a2ðη̄Þðdη̄2 − dχ̄2 − sinh2χ̄dΩ̄2Þ; ð10Þ
where aðη̄Þ ¼ 1= cosh η̄. By the same metric one can
describe geometry inside the wedges for which
η ∈ ð2πk; π þ 2πkÞ, where η is the time coordinate in
the static frame [1] and k ∈ Z. The geodesics of AdS
space correspond to comoving geodesics in open AdS
space, i.e. integral curves of the conformal Killing vector
ξ ¼ ∂ η̄, i.e. the dilatation [6].
For the analysis below it is needed to introduce coor-

dinates that cover the rest of the AdS hyperboloid. They can
be obtained by setting η̄ ¼ ~χ − iπ

2
and χ̄ ¼ ~ηþ iπ

2
. These

coordinates correspond to a parametrization of the wedges
with η ∈ ð− π

2
þ 2πk;þ π

2
þ 2πkÞ, such that the line element

equals

ds2 ¼ a2ð~χÞðd~η2 − d~χ2 − cosh2 ~ηd ~Ω2Þ; ð11Þ
where að~χÞ ¼ 1= sinh ~χ. Up to the scale factor it is similar
to the Rindler universe in the spherical coordinates [7].
Therefore, the line element (11) is conformally related with
the Minkwoski one, specifically

ds2 ¼ 4ημνdxμdxν

ð1þ ηλρxλxρÞ2
; ð12Þ

where xμ ¼ ðr tanh ~η; r sin θ cosφ; r sin θ sinφ; r cos θÞ and
r ¼ e~χ cosh ~η, such that t2 − r2 < 0. If one takes
r2 − t2 > 0, then this metric can be transformed to the

form it has in Eq. (10). Thus, one can cover the AdS
hyperboloid by domains being conformally related to
Minkowski space. Note that changing the sign inside the
scale factor in (12), one obtains the de Sitter line element.
The Killing vector

ζ ¼ x3∂x0 þ x0∂x3 ¼ cos ~θ∂ ~η − tanh ~η sin ~θ∂ ~θ ð13Þ

in those wedges is timelike for ~θ ∈ f0; πg3 and sets
dynamics for an observer moving with a constant four-
acceleration through AdS space, while σ ¼ ∂x0 is the
conformal Killing vector.4 Due to the conformal symmetry,
one can expand the rescaled field through the plane modes
or through the boost ones, i.e. modes being eigenfunctions
of σ or the boost operator ζ in Minkowski space, respec-
tively. On the other hand, an observer moving along
integral curves of ζ in AdS space defines Unruh modes
up to the conformal factor. Hence, these vacua are ther-
mally related as it has been first found in [15] by employing
the Unruh-DeWitt detector [16].

A. Static AdS modes in open AdS space

As in the case of the Milne universe it is convenient to
expand the field through the modes which when rescaled
are eigenfunctions of ξ and still define the static vacuum
[5]. I argued in [1] that these modes must exist. I show the
modes below in this subsection.
For the wedge η ∈ ð− π

2
;þ π

2
Þ these modes are

Φplmð~xÞ ¼ −ilþ1
e−ip~χ

að~χÞ
Γð1þ lþ ipÞ
ð4πi cosh ~ηÞ12 P

−l−1
2

ip−1
2

ði sinh ~ηÞYlmð ~ΩÞ;

p ∈R ð14Þ

which are normalized on the effective Cauchy surface
Σ ¼ Σ1∪Σ2, i.e. these modes correspond to the “trans-
parent” boundary conditions [5].
Performing an analytic continuation into the wedges

η ∈ ð0;þπÞ and η ∈ ð−π; 0Þ according to η̄þ ¼ ~χ − iπ
2
,

χ̄þ ¼ ~ηþ iπ
2
and η̄− ¼ −~χ − iπ

2
, χ̄− ¼ ~ηþ iπ

2
, respectively,

one obtains

Φplmðx̄�Þ ¼ �ile�
πp
2
e∓pη̄�

aðη̄�Þ
Γð1þ lþ ipÞ
ð4π sinh χ̄�Þ12

× P
−l−1

2

ip−1
2

ðcosh χ̄�ÞYlmðΩ̄�Þ: ð15Þ

Having these modes, it is straightforward to obtain the
relation between the conformal and static vacua in AdS
space [1]. Indeed, the conformal modes are

3It is not a restriction, because the rotation group SO(3) is a
subgroup of the AdS symmetry group SO(2,3), so that one can
always set those values of ~θ without loss of generality.

4See [6] for more details.
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Φþ
ωlmðxÞ ¼ αωlmΦþωlmðxÞ þ βωlmΦ�

−ωlmðxÞ; ð16aÞ

Φ−
ωlmðxÞ ¼ αωlmΦ�

−ωlmðxÞ þ βωlmΦþωlmðxÞ; ð16bÞ

where ω ∈ Rþ and

αωlm ¼ exp ðþ πω
2
Þ

ð2 sinhðπωÞÞ12 ; βωlm ¼ −ð−1Þl exp ð− πω
2
Þ

ð2 sinhðπωÞÞ12 :

ð17Þ
One can show that the modes Φþ

ωlmðxÞ vanish in the wedges
where η ∈ ð−π þ 2πk; 2πkÞ, while the modes Φ−

ωlmðxÞ
vanish in the wedges where η ∈ ð2πk;þπ þ 2πkÞ, k ∈ Z.
The modes given in Eq. (14) or Eq. (15) define the static

vacuum. Indeed, the two-point function is

ωSðΦ̂ðx1ÞΦ̂ðx2ÞÞ ¼
X
lm

Z þ∞

−∞
dpΦS

plmðx1ÞΦS�
plmðx2Þ

¼ 1

8π2
cos χ1 cos χ2

cosðΔη − iεÞ − cosðζÞ ;

where it has been already rewritten in the static AdS
coordinates, cosζ¼cosðχ1−χ2Þþsinχ1sinχ2ðcosΘ−1Þ
and cos Θ ¼ cos θ1 cos θ2 þ sin θ1 sin θ2 cosðϕ1 − ϕ2Þ.
Comparing it with the two-point function for the closed
Einstein static universe derived in [16] conformally mapped
to AdS space, one concludes the modes given in Eq. (15)
are unitary equivalent to the static ones for the transparent
boundary conditions [5].5

B. Local thermal observables

In analogous manner to Sec. II B, one finds the squared
value of the local temperature ascribed to the conformal
KMS state with the inverse temperature β:

T2ðx̄Þ ¼ 1

a2ðη̄Þ
�
1

β2
−

1

4π2

�
þ R
24π2

− 12α0R; ð18Þ

where α0 is due to ambiguity in defining the Wick square
[17] and R ¼ −6ða00=a − 1Þ=a2 Ricci scalar equaling to
þ12 in AdS space. If one sets α0 ¼ 1=288π2, then the Wick
square is a conformally invariant field [18] (see also [11]).
Another motivation for this choice of α0 is given in [10,11].
This value of α0 is taken for granted in this subsection.
The AdS vacuum restricted to open AdS space is a

conformal KMS state with β ¼ 2π. The squared local
temperature of the conformal vacuum is negative and
equals −1=4π2a2ðη̄Þ.
Taking into account the renormalized vacuum expect-

ation value of T̂μ
νðx̄Þ in the AdS vacuum in open AdS space,

one derives

ωβðT̂μ
νðx̄ÞÞ ¼ 1

960π2
δμν þ 1

480π2a4ðη̄Þ

×

��
2π

β

�
4

− 1

��
δμν −

4

3
δμi δiν

�
; ð19Þ

whereas for the thermal energy-momentum tensor Êμ
νðx̄Þ

one finds an expression to be structurally rather different
from the right-hand side of Eq. (19).

IV. DISCUSSION

An analogous result to (18) one obtains for the local
temperature squared in open de Sitter spacetime, where
R ¼ −12 and aðη̄Þ ¼ 1= sinh η̄ in that equation. The total
renormalized energy-momentum tensor T̂μ

νðx̄Þ in the con-
formal KMS state ωβ is functionally given by the same
Eq. (19). The conformal KMS state with β ¼ 2π corre-
sponds to the conformal or Chernikov-Tagirov vacuum [16]
defined on the whole dS hyperboloid.
As has been mentioned above, the Wick square is

ambiguous [17]. This means one has to impose an extra
condition to get rid of that. The value of α0 ¼ 1=288π2 has
been motivated in [10,11]. However, one has to set a zero
value of α0 to have a zero local temperature for an observer
freely moving along the time translation Killing vector in
the open Einstein static universe. Indeed, the local temper-
ature squared can be immediately obtained from Eq. (18)
by setting aðη̄Þ ¼ 1, so that if the quantum field is in the
static ESU vacuum, then β → þ∞. Hence, T2ðx̄Þ ¼ 0 if
and only if α0 ¼ 0, where R ¼ þ6 in the open Einstein
static universe has been taken into account. The renormal-
ized expectation values of the total and thermal energy-
momentum tensors in the KMS state defined with respect to
the Killing vector ∂ η̄ coincide and are equal to

ωβðT̂μ
νðx̄ÞÞ ¼ ωβðÊμ

νðx̄ÞÞ ¼ π2

60β4

�
δμν −

4

3
δμi δiν

�
: ð20Þ

Note that they are both proportional to T4ðx̄Þ for vanishing
α0. This result then is similar to that in Minkowski space for
an inertial observer, wherein, however, the value of α0 is
irrelevant, because the scalar curvature vanishes.
As has been noted above, the Chernikov-Tagirov state in

closed de Sitter space is also the conformal vacuum defined
with respect to the conformal Killing vector ∂η. The local
temperature squared is

T2ðxÞ ¼ 6

π2a2ðηÞ
Xþ∞

n¼0

n
eβn − 1

þ R
24π2

− 12α0R; ð21Þ

where aðηÞ ¼ 1= sin η and R ¼ −6ða00=aþ 1Þ=a2 Ricci
scalar equaling to −12 in dS space. This result is a slight
generalization of that obtained in [19]. The expectation
value of T̂μ

νðxÞ in the conformal KMS state defined with
respect to ∂η is given by

5Note that the “reflective” boundary conditions [5] are realized
by taking the modes P�ΦplmðxÞ, where P� ¼ 1

2
ð1�ICÞ andIC

is the so-called conformal inversion [6].
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ωβðT̂μ
νðxÞÞ ¼ 1

960π2
δμν þ 1

2π2a4ðηÞ
Xþ∞

n¼0

n3

eβn − 1

×

�
δμν −

4

3
δμi δiν

�
; ð22Þ

where the renormalized vacuum expectation value of T̂μ
νðxÞ

in the Chernikov-Tagirov state has been taken into account
[16], while ωβðÊμ

νðxÞÞ has structurally a different form in
comparison with ωβðT̂μ

νðxÞÞ given in Eq. (22).
A comoving observer in closed dS space moving along

curves with the tangent vector ∂η has to register in the
standard interpretation a thermal bath with the Gibbons-
Hawking temperature TGH ¼ 1=2π [20] (see also [16]).
This implies α0 ¼ 1=192π2. However, the local temper-
ature is zero if α0 ¼ 1=288π2 [10,11].
These energy-momentum tensors, i.e. T̂μ

νðxÞ and Êμ
νðxÞ,

in the thermal state coincide in the closed Einstein static
universe. The local temperature squared can be obtained
from Eq. (21) by setting aðηÞ ¼ 1, such that R ¼ −6 and
α0 ¼ 1=288π2 [11]. Employing the renormalized vacuum
expectation value of T̂μ

νðxÞ for the closed ESU [16,21], one
obtains

ωβðT̂μ
νðxÞÞ ¼ ωβðÊμ

νðxÞÞ

¼ 1

2π2

�Xþ∞

n¼0

n3

eβn − 1
þ 1

240

��
δμν −

4

3
δμi δiν

�
;

ð23Þ

which are clearly not proportional to the quartic value of the
local temperature as in the case of the pure thermal
radiation.

V. CONCLUDING REMARKS

In the present paper, I have considered certain local
thermal observables in the well-known examples of spa-
tially open FRW spaces for the conformal linear field
theory. These observables have been put forward in a series
of articles [2,3,9–11] with a goal to define a local thermal
equilibrium under the influence of external fields, in
particular, in curved spacetimes.

I have found that the ambiguity in defining the Wick
square parametrized by α0 [17] has no universal value, i.e.
depends on a particular situation. It has to be zero in the
open Einstein static universe, otherwise the physical mean-
ing of the local temperature TðxÞ as defined in [2,3] is lost.
Assuming that α0 has to be zero for all open FRW

universes considered above, one is forced to conclude that
the local temperature of the Minkowski vacuum vanishes,
but is real for the AdS vacuum restricted to open AdS space
and imaginary for the Chernikov-Tagirov state restricted to
open dS space. Thus, the physical meaning of the local
temperature as a model for a real thermometer becomes lost
in the last case.
The local temperature for the conformal vacua in Milne

and open dS spaces are imaginary, but is real only for a
short interval of η̄ close to η̄ ¼ 0 in open anti–de Sitter
space. However, the backreaction of the field being in the
conformal vacuum is infinite on horizons, so that these
vacua cannot be physically realized anyway.
I have considered in [1] spacetime that approaches the

open Einstein static universe at future- and past-time
infinities and has a phase when space looks like open
anti–de Sitter spacetime. During the AdS phase one might
await that a comoving observer detects a thermal radiation
with temperature T ¼ ð2πaðη̄ÞÞ−1 which vanishes at η̄ →
�∞ [1]. Qualitatively it behaves itself as the local temper-
ature TðxÞ around η̄ ¼ 0 and in the limits η̄ → �∞.
However, T2ðxÞ still has no physical sense, because it
possesses negative values.
To sum it up, the concept of the local temperature as

originally defined is at least questionable. Perhaps, its
appropriately modified version could be identified with the
readings of a real thermometer. This demands, however,
further investigations.
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