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We present the construction of a physical Hamiltonian operator in the deparametrized model of loop
quantum gravity coupled to a free scalar field. This construction is based on the use of the recently
introduced curvature operator, and on the idea of so-called special loops. We discuss in detail the
regularization procedure and the assignment of the loops, along with the properties of the resulting
operator. We compute the action of the squared Hamiltonian operator on spin network states, and close with
some comments and outlooks.
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I. INTRODUCTION

General relativity in Ashtekar-Barbero variables [1,2]
can be cast in an SU(2) Yang-Mills theory and treated as a
Hamiltonian system with constraints consisting of the
Gauss (gauge constraints), spatial diffeomorphism and
Hamiltonian constraints. Canonical loop quantum gravity
[3–6], which is an attempt of quantization a la Dirac [7] of
general relativity, has successfully completed the construc-
tion of a kinematical Hilbert space and the implementation
of the Gauss constraints and the spatial diffeomorphism
constraints [8] in the quantum theory, leading to a gauge
and spatial diffeomorphism invariant Hilbert space HG

Diff .
The treatment of the last constraints is a more complicated
task. The Hamiltonian has been regularized and promoted
to an operator acting on HG

Diff by Thiemann [9] improving
earlier attempts [10]; however, even if the general structure
of the solutions to the Hamiltonian constraints is known, it
is very difficult to define the physical Hilbert space. The
issues are conceptual and technical.
Conceptual, because the Hamiltonian is not preserving

HG
Diff and even if attempts to deal with the absence of a

physical Hilbert space have been explored [11], this
problem has led to new research directions, in particular
the master constraint program [12], the algebraic quantum
gravity program [13], the deparametrized models [14–19]
in the canonical setting, the spinfoam program [20] in the
covariant framework and also some toy models [21–24] in
which an alternative quantization strategy of the Dirac
algebra is applied.
Concerning the technical difficulties, the Hamiltonian

constraint is composed of two terms: the Euclidean part and
the Lorentzian part. Both are nonpolynomial in the canoni-
cal variables, specially the second term that involves a
double Poisson bracket of the Euclidean part with the

volume and has a complicated form in terms of Ashtekar
variables. A clever way to tame the nonpolynomial char-
acter of the constraints is using “Thiemann’s trick,” i.e.
replacing the classical nonpolynomial functions by Poisson
brackets of polynomial functions with the volume and of
the Euclidean part with the volume. Once promoted to an
operator the resulting expression comprises several com-
mutators containing the volume operator [25–27]. While
this procedure helps to bypass the nonpolynomial character
of the constraint, the resulting operator however is not self-
adjoint and the explicit calculation of the Hamiltonian
action is impossible because the volume operator present in
the final expression has no explicit spectral decomposition.
The partially formal result is already an extremely involved
expression [28,29].
In this work we present another proposal for quantizing

the Hamiltonian constraints. The first change is already in
the classical formula for the scalar constraint. It is the sum
of terms proportional to the Euclidean scalar constraint and,
respectively, the Ricci scalar of the three metric tensor [30].
Our aim is to implement the dynamics in the quantum
model of gravity coupled to a free scalar field [17]. The
construction is conceptually based on the recently intro-
duced “intermediate” Hilbert space Hvtx [31] that is
preserved by the obtained Hamiltonian operator, raising
hope for a well-defined evolution operator with satisfactory
properties, e.g. self-adjointness.
The developed regularization is based on a concrete

implementation of a proposal first appeared in [32]
concerning the Euclidean constraint, and the use of the
curvature operator introduced in [33] to deal with the
Lorentzian part. The paper is organized as follows. In
Sec. II we review the classical model of gravity mini-
mally coupled to a scalar field; in Sec. III we review the
loop quantum gravity construction, present the regulari-
zation of the Hamiltonian and discuss the quantum
operator and its properties; then we close in Sec. IV
with some conclusions and outlooks to further develop-
ments of this program.
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II. CLASSICAL THEORY

Considering gravity minimally coupled to a scalar field
in the standard Arnowitt-Deser-Misner formalism [34], the
theory is set as a constrained system for the standard
canonical variables qabðxÞ and ϕðxÞ, respectively the metric
and the scalar field on a 3d manifold Σ with conjugate
momenta pabðxÞ and πðxÞ. The analysis shows that the
vector constraints CaðxÞ and the scalar constraints CðxÞ in
this model are expressed in terms of the vacuum gravity
constraints, Cgr

a ðxÞ and CgrðxÞ, and the scalar field variables
as follows:

CaðxÞ ¼ Cgr
a ðxÞ þ πðxÞϕ;aðxÞ; ð2:1Þ

CðxÞ ¼ CgrðxÞ þ 1

2

π2ðxÞffiffiffiffiffiffiffiffiffi
qðxÞp þ 1

2
qabðxÞϕ;aðxÞϕ;bðxÞ

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
þ VðϕÞ

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
; ð2:2Þ

where q is the determinant of the metric qab.
With the Ashtekar-Barbero variables ðAi

a; Ea
i Þ

(i ¼ 1; 2; 3) used in LQG,

fAi
aðxÞ; Eb

j ðyÞg ¼ 8πβGδbaδijδðx; yÞ ð2:3Þ

fAi
aðxÞ; Aj

bðyÞg ¼ 0 ¼ fEa
i ðxÞ; Eb

j ðyÞg ð2:4Þ

where G is Newton constant and β is the Immirzi
parameter, additional constraints—the Gauss constraints
generating Yang-Mills gauge transformations—are
induced:

GiðxÞ ¼ ∂aEa
i þ ϵij

kAj
aEa

k: ð2:5Þ

The field Ai
a is identified with an su(2)-valued differential

1-form

A ¼ Ai
aτi ⊗ dxa ð2:6Þ

while the field Ea
i with an suð2Þ� vector density

E ¼ Ea
i τ

�i ⊗
∂
∂xa ð2:7Þ

where τ1; τ2; τ3 ∈ suð2Þ is a basis of su(2) such that

−2Trτiτj ¼ δij: ð2:8Þ

A solution by points in the phase space ðAi
a; Ea

i ;ϕ; πÞ must
satisfy all the constraints:

GiðxÞ ¼ 0 CaðxÞ ¼ 0 CðxÞ ¼ 0: ð2:9Þ

In terms of the Ashtekar-Barbero variables, the gravita-
tional part of the scalar constraint reads

CgrðxÞ ¼ −
1

16πβ2G

�
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetEðxÞjp
þ ð1þ β2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetEðxÞj

p
RðxÞ

�
ð2:10Þ

where R is the Ricci scalar of the metric tensor qab on Σ
related to the Ashtekar frame variable by

qab ¼ Ea
i E

b
i

jdetEj : ð2:11Þ

The first term of Cgr is usually related to the Euclidean
scalar constraint

CEucl ≔ −
1

16πGβ2
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetEðxÞjp : ð2:12Þ

To construct a quantum theory mainly two strategies can
be adopted. The first is to promote the whole set of
constraints to operators defined in an appropriate Hilbert
space and look for the states annihilated by the constraints
operators to build a physical Hilbert space. The second, that
we consider in this work, is to deparametrize the theory
classically then quantize. The deparametrization procedure
starts with assuming that the constraints (2.9) are satisfied;
hence, we can solve the vector constraints for the gradient
of the scalar field,

ϕ;a ¼ −
Cgr
a

π
; ð2:13Þ

and then use this condition in (2.2) to solve it for π:

π2 ¼ ffiffiffi
q

p ð−ðCgr þ ffiffiffi
q

p
VðϕÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCgr þ ffiffiffi

q
p

VðϕÞÞ2 − qabCgr
a C

gr
b

q
Þ: ð2:14Þ

In case of vanishing potential

VðϕÞ ¼ 0; ð2:15Þ
which is our assumption in the rest of this article, Eq. (2.14)
represents the deparametrization of the system with respect
to the scalar field, which can be seen as an emergent time.
Note that in this case, on the constraint surface, it is
necessary to have

CgrðxÞ ≤ 0: ð2:16Þ
The sign ambiguity in (2.14) amounts to treating different
regions of the phase space, namely forþ and− respectively

π2 ≥ = ≤ qabðxÞϕ;aðxÞϕ;bðxÞqðxÞ: ð2:17Þ
We choose the phase space region corresponding to þ

and ≥. It contains spacially homogeneous spacetimes
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useful in cosmology. Then, the scalar constraints can be
rewritten in an equivalent form as

C0ðxÞ ¼ πðxÞ ∓ hðxÞ; ð2:18Þ

h ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ffiffiffi
q

p
Cgr þ ffiffiffi

q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCgrÞ2 − qabCgr
a C

gr
b

qr
: ð2:19Þ

We will also restrict ourselves to the case of

πðxÞ ≥ 0; ð2:20Þ

although technically there is no problem in admitting both
signs in the quantum theory.
The constraints C0 commute strongly,

fC0ðxÞ; C0ðyÞg ¼ 0; ð2:21Þ

implying [16]

fhðxÞ; hðyÞg ¼ 0: ð2:22Þ

In this case a Dirac observable O on the phase space
would satisfy

fO; GiðxÞg ¼ fO; CaðxÞg ¼ fO; C0ðxÞg ¼ 0: ð2:23Þ

The vanishing of the first and second Poisson brackets
induce gauge invariance and spatial diffeomorphism invari-
ance respectively. The vanishing of the third Poisson
bracket is equivalent to writing

∂O
∂ϕ ¼ fO; πðxÞg ¼ fO; hðxÞg; ð2:24Þ

III. QUANTUM THEORY

A. The general structure

The quantization of gravity coupled to a massless scalar
field was performed in [17,35]. While the derivation was
partially formal—the existence of the operators Ĉgr

a is
assumed at some stage—the result is expressed in a
derivable way by elements of the framework of loop
quantum gravity (LQG):

(i) The physical Hilbert space H is the space of the
quantum states of the matter free gravity which
satisfy the quantum vector constraint and the quan-
tum Gauss constraint.

(ii) The dynamics is defined by a Schrödinger-like
equation

d
dt

Ψ ¼ −
i
ℏ
ĤΨ ð3:1Þ

where t is a parameter of the transformations

φ ↦ φþ t:

(iii) The quantum Hamiltonian

Ĥ ¼
Z

d3x
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2
ffiffiffiffiffiffiffiffiffi
qðxÞ

p
CgrðxÞ

q
ð3:2Þ

is a quantum operator corresponding to the classical
observable

H ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
CgrðxÞ

q
: ð3:3Þ

This operator could be defined by using already known

operators dffiffiffiffiffiffiffiffiffiqðxÞp
and dCgrðxÞ, as outlined in [35]. However,

the observable
ffiffiffi
q

p
Cgr written in terms of the Ashtekar-

Barbero variables reads

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetEðxÞj

p
CgrðxÞ ¼ 1

16πβ2G

�
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞ

þ ð1þ β2ÞjdetEðxÞjRðxÞ
�
:

ð3:4Þ

The denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetEðxÞjp

present in (2.10) disap-
pears in (3.4). Moreover, the formula (3.85) below forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetEðxÞp jRðxÞ expressed in terms of the quantizable
observables (holonomies and fluxes) also contains the
same denominator, which again disappears after using
the formula (3.4). That coincidence of reductions moti-
vates us to quantize the expression (3.4) for hðxÞ
directly.

B. Kinematical Hilbert space

The kinematical quantum states in LQG are cylindrical
functions of the variable A, i.e., they depend on A only
through finitely many parallel transports

he½A� ¼ P exp

�
−
Z
e
A

�
ð3:5Þ

where e ranges over finite curves—we will also refer to
them as edges—in Σ. That is a kinematical quantum stateΨ
has the form

Ψ½A� ¼ ψðhe1 ½A�;…; hen ½A�Þ ð3:6Þ

with a function ψ∶SUð2Þn → C. Here, for every edge
we choose an orientation to define the parallel trans-
port heI ½A�.
To calculate the scalar product between two cylindrical

functions Ψ and Ψ0 we find in Σ an embedded graph
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γ00 ¼ fe001;…; e00n00g, such that both functions can be written
as1

Ψ½A� ¼ ψðhe00
1
½A�;…; he00

n00
½A�Þ;

Ψ0½A� ¼ ψ 0ðhe00
1
½A�;…; he00

n00
½A�Þ: ð3:7Þ

The scalar product is

ðΨjΨ0Þ ¼
Z

dg1…dgn00ψðg1;…; gn00 Þψ 0ðg1;…; gn00 Þ:
ð3:8Þ

We denote the space of all the cylindrical functions defined
as above with a graph γ by Cylγ and, respectively, the space
of all cylindrical functions by Cyl. The kinematical Hilbert
space Hkin is the completion

Hkin ¼ Cyl ð3:9Þ
with respect to the Hilbert norm defined by (3.8).
Every cylindrical function f is also a quantum operator

ð dfðAÞΨ0Þ½A� ¼ f½A�Ψ0½A�: ð3:10Þ
A typical example is

fðAÞ ¼ DðjÞa
bðhpðAÞÞ ð3:11Þ

defined by a path p in Σ, a half-integer j ¼ 0; 1
2
; 1; 3

2
;…, the

corresponding representation

DðjÞ∶ SUð2Þ → UnitaryðHðjÞÞ ð3:12Þ

and some orthonormal basis v1;…; v2jþ1 ∈ HðjÞ,

DðjÞa
bðgÞ ≔ ðvajDðjÞðgÞvbÞHðjÞ : ð3:13Þ

Note that a connection operator “Â” itself is not defined.
An operator Ĵx½e�ξ, which is naturally defined in this

framework, is assigned to a triple ðx; ξ; ½e�Þ, where x ∈ Σ,
ξ ∈ suð2Þ and ½e� is a maximal family of curves beginning
at x such that each two curves overlap on a connected initial
segment containing x. To define the action of Ĵx½e�ξ on a
function Ψ ∈ Cyl, we represent this function on a graph
such that eI ∈ ½e�. The action is

Ĵx½e�ξΨ ¼ iℏ
d
dϵ

����
ϵ¼0

ψðhe1eϵξ; he2 ;…; henÞ: ð3:14Þ

For ξ ¼ τi, it is convenient to introduce a simpler
notation

Ĵx;e;i ≔ Ĵx½e�τi : ð3:15Þ

The field Ea
i ðxÞ is naturally quantized as

Êa
i ðxÞΨ½A� ¼ ℏ

i
fΨ½A�; Ea

i ðxÞg ¼ 8πβl2P
i

δ

δAi
aðxÞ

Ψ½A�:

ð3:16Þ

Given an edge e∶½t0; t1� → Σ, and a function
f ∈ CðSUð2ÞÞ, the variation is given by the following
formula:

δ

δAi
aðxÞ

fðheðAÞÞ

¼ −
Z

t1

t0

dt_eaðtÞδðx; eðtÞÞðhe;t1;tðAÞτihe;t;t0ðAÞÞAB

×
∂
∂gAB fðgÞjg¼heðAÞ

; ð3:17Þ

where by he;t1;tðAÞ [respectively, he;t;t0ðAÞ] we mean the
parallel transport with respect to A along e from the point
eðtÞ to eðt1Þ [eðt0Þ to eðtÞ], and by the partial derivatives
with respect to group elements we mean

d
dϵ

����
ϵ¼0

fðgeϵξÞ ≔ ðgξÞAB
∂
∂gAB fðgÞ: ð3:18Þ

Smearing along 2-surfaces leads to well-defined operators
in Hkin. Let S ⊂ Σ be an oriented, 2-dimensional surface,
and

ξ∶ S → suð2Þ ð3:19Þ

be a smearing function. The flux corresponding to E is

PS;ξ ≔
Z
S

1

2
dxb ∧ dxcϵabcξiðxÞEa

i ðxÞ: ð3:20Þ

The quantum flux is a well-defined operator

P̂S;ξ ¼ 4πG
X
x∈S

ξiðxÞ
X
e

κSðeÞĴx;e;i ð3:21Þ

where e runs through the classes of curves beginning at x,
and

κSðeÞ ¼ −1; 0; 1; ð3:22Þ

depending on whether e goes down, along, or, respectively,
up the surface S. A generalized function ξmay also involve
parallel transports depending on A. A typical example is

ξðxÞ ¼ AdðhpðxÞðAÞÞζ; ζ ∈ suð2Þ ð3:23Þ
1The existence of γ00 is ensured by assuming the analyticity of

Σ and of the edges of the graphs [3].
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where

x ↦ pðxÞ ð3:24Þ

assigns to each point x a path pðxÞ, hpðxÞðAÞ is the parallel
transport, and Ad is the adjoint action of SU(2) in the Lie
algebra su(2)

AdðgÞζ ¼ gζg−1: ð3:25Þ

In conclusion, the operators compatible with the LQG
structure of Hkin are (functions of the) parallel transports
and fluxes.
The quantum Gauss constraint operator reads

ĜiðxÞ ¼
X
y∈Σ

δðx; yÞ
X
e at y

Ĵy;e;i: ð3:26Þ

Solutions in Cyl to the Gauss constraint

ĜiðxÞΨ ¼ 0 ð3:27Þ

are functions such that

fðAÞ ¼ fðg−1Agþ g−1dgÞ; for every g ∈ C1ðΣ; SUð2ÞÞ:
ð3:28Þ

We denote their algebra, subalgebra of Cyl by CylG, and the
corresponding subspace ofHkin byHG

kin. A dense subspace
of HG

kin is spanned by the spin network functions. A spin
network function is defined by a graph γ ¼ ðe1;…; enÞ,
half integers (nonzero) ðj1;…; jnÞ assigned to the edges
and intertwiners ðι1;…; ιmÞ assigned to the vertices
ðv1;…; vmÞ:

ΨðAÞ ¼ Dðj1Þa1
b1ðhe1ðAÞÞ…DðjnÞan

bnðhenðAÞÞ
× ðι1 ⊗ … ⊗ ιmÞb1…bn

a1…an : ð3:29Þ

Each ια is an invariant of the tensor product of the
representations assigned to the edges eI whose source is
vα and the representations dual to those assigned to the
edges whose target is vα.
Given a graph γ, we denote by CylGγ the space spanned

by all the spin network functions defined on this graph, and

HG
γ ≔ CylGγ : ð3:30Þ

To define the orthogonal decomposition of the space of
the Gauss constraint solutions we need to admit closed
edges, that is edges for which the end point equals the
beginning point, and closed edges without vertices (embed-
dings of a circle in Σ). In the case of an edge without
vertices, we choose a beginning-end point arbitrarily in the
definition of the spin network function. On the other hand

we do not count those graphs that can be obtained from
another graph by the splitting of an edge. Then the space of
all the solutions to the Gauss constraint can be written as
the orthogonal sum

HG
kin ¼ ⨁

γ
HG

γ ð3:31Þ

where γ ranges over all the unoriented graphs defined in
this paragraph.

C. The vertex Hilbert space

Every analytic diffeomorphism f ∈ DiffωðΣÞ defines a
unitary operator Uf∶Hkin → Hkin,

UfΨ½A� ¼ Ψ½f�A�: ð3:32Þ

Given a graph γ consisting of edges and vertices

EdgeðγÞ ≔ fe1;…; eng; VertðγÞ ¼ fv1;…; vmg;

the action of Uf on a cylindrical function (3.6) reads

UfΨ½A� ¼ ψðhfðe1Þ½A�;…; hfðenÞ½A�Þ; ð3:33Þ

where for the parallel transport along each edge fðeIÞ we
choose the orientation induced by the map f and the
orientation of eI chosen in (3.6). Smooth diffeomorphisms
map analytic graphs into smooth graphs, therefore their
action is not defined in our Hilbert space Hkin. Suppose,
however, that given a graph γ, a smooth diffeomorphism
f ∈ Diff∞ðΣÞ maps γ into an analytic graph. Then (3.32)
and (3.33) define a unitary map

Uf∶ Hγ → HfðγÞ: ð3:34Þ

The idea of the vertex Hilbert space of [31] is to construct
from elements of the Hilbert spaceHG

kin partial solutions to
the vector constraints, by averaging the elements of each of
the subspaces HG

γ with respect to all the smooth diffeo-
morphisms Diff∞ðΣÞVertðγÞ which act trivially in the set of
the vertices VertðγÞ. Denote by TDiff∞ðΣÞγ the subset of
Diff∞ðΣÞ which consists of all the diffeomorphisms f such
that fðγÞ ¼ γ and Uf acts trivially in HG

γ .
Denote by Diff∞γ ðΣÞVertðγÞ the set of those elements of

Diff∞ðΣÞVertðγÞ which preserve the analyticity of γ. The
maps HG

γ ⟶ HG
kin obtained by the diffeomorphisms in

Diff∞γ ðΣÞVertðγÞ are in one to one correspondence with the
elements of the quotient

Dγ ≔ Diff∞γ ðΣÞVertðγÞ=TDiffðΣÞγ: ð3:35Þ

Since Dγ is a noncompact set and we do not know any
probability measure on it, we define the averaging in Cyl�,
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the algebraic dual to Cyl. Given Ψ ∈ HG
γ , we turn it into

hΨj ∈ Cyl�,

hΨj∶ Ψ0 ∈ CylG ≔ ⨁
γ0

CylGγ0 ↦ ðΨjΨ0Þ;

and average in Cyl�,

ηðΨÞ ¼ 1

Nγ

X
½f�∈Dγ

hUfΨj; ð3:36Þ

where

Nγ ¼ jSymγj
Symγ ≔ ff ∈ Diff∞ðΣÞfx1;…;xmg∶ fðγÞ ¼ γg=TDiffðΣÞγ:

ð3:37Þ

The resulting ηðΨÞ is a well-defined linear functional

ηðΨÞ∶ CylG → C

because given Ψ0 ∈ CylG, only a finite set of terms in the
sum contribute to the number ηðΨÞðΨ0Þ. Hence we have
defined a map

HG
γ ∋ Ψ ↦ ηðΨÞ ∈ Cyl�

for every embedded graph γ. We extend it by linearity to the
algebraic orthogonal sum (3.31)

η∶ HG
kin ⟶ Cyl�: ð3:38Þ

The vertex Hilbert space HG
vtx is defined as the com-

pletion

HG
vtx ≔ ηðCyl ∩ HG

kinÞ ð3:39Þ

under the norm induced by the natural scalar product

ðηðΨÞjηðΨ0ÞÞ ≔ ηðΨÞðΨ0Þ: ð3:40Þ

It has an orthogonal decomposition that is reminiscent
of (3.31): Let FSðΣÞ be the set of finite subsets of Σ.
Then

HG
vtx ¼ ⨁

V∈FSðΣÞ
HG

V ð3:41Þ

HG
V ≔ ⨁

½γ�∈½γðVÞ�
HG

½γ� ð3:42Þ

SG
½γ� ≔ ηðSG

γ Þ ð3:43Þ

where γðVÞ is the set of graphs γ with vertex set
V ¼ VertðγÞ, ½γðVÞ� is the set of the DiffðΣÞV-equivalence
classes ½γ� of the graphs γ ∈ γðVÞ and SG

γ is the subspace
SG
γ ⊂ HG

γ of the elements invariant with respect to the
symmetry group Symγ . Importantly,

η∶ SG
γ → SG

½γ� ð3:44Þ

is an isometry. The orthogonal complement of SG
γ in HG

γ ,
on the other hand, is annihilated by η.
The Hilbert space HG

vtx carries a natural action of
DiffωðΣÞ, which we will also denote by U. It is defined by

UfηðΨÞ ≔ ηðUfΨÞ; f ∈ DiffωðΣÞ: ð3:45Þ

A short calculation shows that Uf is unitary and maps HG
V

to HG
fðVÞ in the decomposition (3.41).

Each subspace SG
½γ� consists of DiffωðΣÞVertðγÞ invariant

elements. In this sense, they are partial solutions to the
quantum vector constraint. They can be turned into
full solutions of the quantum vector constraint by a
similar averaging with respect to the remaining
DiffðΣÞ=DiffðΣÞVertðγÞ [31]. We denote the space of those
solutions HG

Diff .

D. The Hamiltonian operator

In the Hilbert space HG
vtx we will introduce (derive) an

operator

Ĥ ¼
dZ

Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
CgrðxÞ

q
; ð3:46Þ

where we have

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetEðxÞj

p
CgrðxÞ

¼ 1

8πβ2G
ðϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞ

þ ð1þ β2ÞjdetEðxÞjð3ÞRðxÞÞ: ð3:47Þ

In order to define the corresponding operator, we need to
consider how to regularize and quantize an expression of
the form Z

Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

q
ð3:48Þ

where f is a smearing function defined on Σwhile aðxÞ and
bðxÞ are functionals of the fields Ai

a and Ea
i .

Introducing a decomposition of the manifold Σ into cells
Δ, the integral can be approximated as
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Z
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

q
¼

X
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Z
Δ
d3xfðxÞaðxÞ

�
2

þ
�Z

Δ
d3xfðxÞbðxÞ

�
2

s
þOðϵΔÞ; ð3:49Þ

where for every cellΔ, ϵ3Δ denotes the coordinate volume of
Δ. If the integrals

R
Δ d3xfðxÞaðxÞ and R

Δ d3xfðxÞbðxÞ can
be quantized as well-defined operators, Eq. (3.49) then
shows how to define the operator corresponding toR
Σ d

3xfðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

p
. Equation (3.49) is the basis

of our construction of the operator (3.46).
In our case, the operators corresponding to aðxÞ and bðxÞ

themselves will be available, and will have the general form

âðxÞ ¼
X
v∈Σ

δðx; vÞâv; b̂ðxÞ ¼
X
v∈Σ

δðx; vÞb̂v; ð3:50Þ

where the operators âv and b̂v, when applied to a spin
network state defined on a graph, have a nonzero action
only if v is one of the vertices of the graph. In this case, the
operator

dZ
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

q
ð3:51Þ

can be defined simply by inserting âðxÞ and b̂ðxÞ into the
right-hand side of Eq. (3.49). In this way one obtains an
operator, whose restriction to the space of spin network
states defined on a given graph γ takes the form

dZ
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

q ����
HG

γ

¼
X
v∈γ

fðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2v þ b̂2v

q
:

ð3:52Þ

In other words, our regularization gives

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ b2ðxÞ

q
¼

X
v∈Σ

δðx; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2v þ b̂2v

q
: ð3:53Þ

1. Euclidean part

We start with the quantization of the Euclidean part of
our Hamiltonian [see (2.12)]. In Eq. (3.49), the role of aðxÞ
is now played by the function

HEuclðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGβ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞ
q

: ð3:54Þ

Consequently, we consider the quantization of the
integral

Z
d3xfðxÞHEuclðxÞ ð3:55Þ

(where an arbitrary smearing function f has been
introduced).
According to the general framework of LQG, we need to

express the integral in terms of parallel transports he and
fluxes PS;i. The easiest example is to consider the Riemann
sum for this integral obtained by considering a cubic
partition Pϵ of Σ into cells □ of coordinate volume ϵ3

ϵ3
X
□

fðx□Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijkEa

i ðx□ÞEb
j ðx□ÞFk

abðx□Þ
q

; ð3:56Þ

and to distribute the ϵ suitably

X
□

fðx□Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijkðϵ2Ea

i ðx□ÞÞðϵ2Eb
j ðx□ÞÞðϵ2Fk

abðx□ÞÞ
q

:

ð3:57Þ

For each cube □ denote by x□ the center, by Sa
□
, a ¼ 1, 2,

3, three sides xa ¼ const (for each a there are two, choose
any one and orient such that the following is true).
Moreover, for every x ∈ □, denote by p□ðxÞ the line from
x□ to x ∈ □. Then, we have

ϵ2Ea
i ¼ PSa

□
;i þ oðϵ2Þ

ϵ2Fk
ab ¼ ϵabcðhk∂Sc

□

ÞðlÞ þ oðϵ2Þ; ð3:58Þ

where by PSa
□
;i we mean PS;ξ of (3.20) with

S ¼ Sa
□
; and ξðxÞ ≔ hp□ðxÞτih

−1
p□ðxÞ; ð3:59Þ

hp□ðxÞ standing for the parallel transport (with respect to a
given field A) along p□, and for an SUð2Þ element h we
define2

ðhkÞðlÞ ¼ 3

W2
l

TrðDðlÞðhÞðτkÞðlÞÞ ð3:60Þ

with Wl ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þp

. In this way we write the
original expression in terms of fluxes and parallel transports
(as a limit),

2Equation (3.60) is obtained using the relations

DðlÞðhÞ ¼ h01ðlÞ þ hkðτkÞðlÞ;
TrðτiÞðlÞ ¼ 0;

TrððτiÞðlÞðτkÞðlÞÞ ¼
W2

l

3
δki :
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Z
d3xfHEuclPϵ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGβ2

p X
□

fðx□Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijkPSa

□
;iPSb

□
;jϵabcðhk∂Sc

□

ÞðlÞ
q

;

ð3:61Þ

in the sense thatZ
d3xfHEuclPϵ →

Z
d3xfHEucl; ð3:62Þ

in the limit ϵ → 0 when we refine the partition (□ → ·).
More generally, we regularize the integral by using a

partition Pϵ which consists of
(1) an ϵ-dependent cellular decomposition Cϵ of Σ;
(2) assigned to each cell Δ ∈ Cϵ:

(i) a point xΔ inside Δ;
(ii) a family of 2-surfaces SIΔ ⊂ ∂Δ, I ¼ 1;…; nΔ;
(iii) a family of paths pΔðxÞ labeled by points

x ∈ ∂Δ, each going from xΔ to x;
(iv) a family of loops αKΔ, K ¼ 1;…; mΔ;
(v) a family of coefficients κΔIJK;

such that the following functional:Z
d3xfHEuclPϵðA;EÞ

≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGβ2
p X

Δ
fðxΔÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijk

X
IJK

κΔIJKPSIΔ;i
PSJΔ;j

ðhk
αKΔ
ÞðlÞ

r
ð3:63Þ

approaches the Euclidean Hamiltonian,Z
d3xfHEuclPϵðA;EÞ⟶

ϵ→0

Z
d3xfHEucl: ð3:64Þ

As in the cubic example, by PSIΔ;i
we mean PS;ξ of (3.20)

with

S ¼ SIΔ; and ξðxÞ ≔ hpΔðxÞτih
−1
pΔðxÞ: ð3:65Þ

Each term ϵijkκΔIJKPSIΔi
PSJΔj

ðhk
αKΔ
ÞðlÞ gives rise to a well-

defined operator in Hkin

ϵijkκΔIJK
..
.
P̂SIΔ;i

P̂SJΔ;j
ðĥkαKΔÞ

ðlÞ..
. ð3:66Þ

which depends on the ordering of the operators, symbol-

ized by ..
. ..
.
.

In this way we obtain an operatordZ
d3xfðxÞHEuclPϵðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGβ2
p X

Δ
fðxΔÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵijkκΔIJK

..

.
P̂SIΔ;i

P̂SJΔ;j
ðĥkαKΔÞ

ðlÞ..
.

r
ð3:67Þ

which depends on the partition Pϵ and is well defined in
Hkin. However, as we refine the partition Pϵ, the operator
family does not converge to any operator in Hkin. This is
a well-known problem in LQG and it does not have a
solution in the kinematical Hilbert space Hkin.
A way out is to consider the dual action of the regulated

operators
R
d3xfðxÞĤEuclPϵðxÞ in the Hilbert space HG

vtx.
That was done for the (formally regularized) operator Ĉgr in
[31]. As it is explained therein, and those arguments apply
also in the case at hand, a limit as ϵ → 0 exists upon several
conditions about the partitions Pϵ. To begin with, we adjust
the partitions individually to each subspace Hγ in the
decomposition (3.31). Secondly, a successful partition has
to have a suitable diffeomorphism covariance in the
dependence of the partitions on γ and on ϵ.
The outstanding problem though, is the dependence of the

result on choices made. There are many partitions which
satisfy the conditions. The resulting operator carries a
memory of the choice of Pϵ, for example on the adjustment
of the fluxes to graphs. To restrict that ambiguity, we study
first the straightforward quantization of ϵijkFabEa

i E
b
j .

Let Ψ ∈ Cyl be as in (3.6). Assuming Êa
i ðxÞ ¼ ℏ

i
δ

δAi
aðxÞ,

we obtain

ϵijkFk
abðxÞ

�
ℏ
i

�
2 δ

δAi
aðxÞ

δ

δAj
bðxÞ

ψðhe1ðAÞ;…; henðAÞÞ

¼
X
eI ;eI0

Z
t1

t0

Z
t0
1

t0
0

dtdt0δðx; eIðtÞÞδðx; eI0 ðt0ÞÞFk
abðxÞ_eaI ðtÞ_ebI0 ðt0Þ

× ðheI;t1;tðAÞτiheI ;t;t0ðAÞÞABðheI0 ;t01;t0 ðAÞτjheI0 ;t0;t00ðAÞÞA
0

B0
∂

∂gIAB
∂

∂gI0A0
B0
ψðg1;…; gnÞ

���
gI¼heI ðAÞ;gI0¼heI0 ðAÞ

: ð3:68Þ

Certainly the product of the two Dirac delta distributions is ill defined at some points x, eIðtÞ and eI0 ðt0Þ. However, we can
precisely indicate those points at which the expression is identically zero. To begin with, the product δðx; eIðtÞÞδðx; eI0 ðt0ÞÞ
vanishes except for the triples ðx; eIðtÞ; eI0 ðt0ÞÞ such that
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x ¼ eIðtÞ ¼ eI0 ðt0Þ: ð3:69Þ

Secondly, the factor Fk
abðxÞ_eaI ðtÞ_ebI0 ðt0Þ is not zero only if

_eIðtÞ ∦ _eI0 ðt0Þ: ð3:70Þ

Those two conditions are satisfied simultaneously only if
x coincides with one of the vertices v of γ and the edges eI
and eI0 intersect transversally at v. Suppose that x ¼
v ∈ VertðγÞ, the edges eI∶½t0; t1� → Σ and eI0∶½t00; t01� →
Σ intersect transversally at v, both oriented to be outgoing.
Then the corresponding contribution comes only from

x ¼ v; tI ¼ t0; tI0 ¼ t00; ð3:71Þ

and it is

Fk
abðvÞ_eaI ðtÞ _ebI0 ðt00ÞðheIðAÞτiÞABðheI0 ðAÞτjÞA

0
B0

×
∂

∂gIAB
∂

∂gI0A0
B0
ψðg1;…; gnÞ

����
gI¼heI ðAÞ;gI0¼heI0 ðAÞ

ð3:72Þ

modulo the ill defined factor ðδðv; vÞÞ2 which has to be
regularized. Our regularization is also expected to replace
Fk
ab _eI _eI0 by a parallel transport heII0 along a loop eII0

assigned to the two (segments of) edges. Finally, diffeo-
morphism invariance implies that each vertex v and a pair
of transversally intersecting edges eI and eI0 at v contribute
the same operator as any other diffeomorphism equivalent
triple v0, e0I and e0I0 .
We are now in a position to formulate assumptions about

the construction of the partitions Pϵ adapted to a graph γ, as
shown in [31], and the assumptions about the assignment of
the loop αKΔ used to regularize the connection curvature
Fk
ab, in order to guarantee the diffeomorphism covariance

of the final operator.
Given a graph γ ¼ ðe1;…; enÞ of VertðγÞ ¼ ðv1;…; vmÞ,

in order to spell out the conditions it is convenient to split
each edge into two segments and orient the new edges to be
outgoing from the vertices of the original graph γ. Denote
the resulting graph by γ0 ¼ ðe01;…; e02nÞ and its vertex set
Vertðγ0Þ ¼ ðv1;…; vm; v0mþ1;…; v0mþnÞ. The assumptions
are as follows:
Requirement 1.
(1) each cell Δ contains at most one vertex of the

graph γ0;
(2) if v ∈ VertðγÞ and v ∈ Δ, then

(i) xΔ ¼ v;
(ii) to each edge e0I there is assigned a surface SIΔ ⊂

∂Δ intersecting the edge transversally (theremay
be surfaces in ∂Δ not intersecting any edge);

(iii) to each ordered pair of edges e0I and e
0
J meeting

transversally at v there is assigned a loop αIJΔ
oriented according to the order of the pair
ðe0I; e0JÞ. Hence we denote κΔIJK as κΔIJIJ;

(iv) for edges e0I and e0J of γ0 meeting transversally
at v κΔIJIJ is not zero;

(v) for edges e0I and e
0
J of γ

0 meeting tangentially at
v κΔIJIJ ¼ 0;

(vi) for edges e0I and e0J of γ0 meeting transversally
at v the corresponding loop αIJ, in the limit
ϵ → 0, is shrank to v in a diffeomorphism
invariant way;

(vii) ifΔ does not contain an edge of γ but it contains
a segment of an edge then, by splitting the edge
and reorienting its segments suitably, we turn
that case into the case of Δ containing a 2-
valent vertex;

(3) the value of nonvanishing κΔIJIJ is an overall
constant κ1ðvÞ depending on the valence of the
vertex but independent of Δ; I; J.

Concerning the prescription for the assignment of the
loops αIJ—we call them special loops—which are
created by the Euclidean part of our Hamiltonian oper-
ator, we wish the construction to satisfy the following
requirements:

(i) The loop added by the Hamiltonian should be
attached to the graph according to a diffeomor-
phism invariant prescription [3,31]. This property
allows the operator to be well defined on the
space HG

vtx.
(ii) It should be possible to distinguish between loops

attached to the same vertex but associated to differ-
ent pair of edges, and between loops attached to the
same pair of edges by successive actions of the
Hamiltonian. This property makes it possible to
define the adjoint operator on a dense domain in
HG

vtx, and consequently to construct a symmetric
Hamiltonian operator.

Consider a vertex v of the graph γ defined above and a
set of links feIg incident at v. In order to satisfy the first
requirement, we use a construction that was introduced in
[36] and was presented in a work of T. Thiemann [9]. The
construction consists of two parts. Firstly, to each pair of
links eI and eJ incident at v, we define an adapted frame in
a small enough neighborhood of v. Then we require that the
loop αIJ, associated to the pair ðeI; eJÞ, lies in the
coordinate plane spanned by the edges eI and eJ. The
choice of the adapted frame is based on the follow-
ing lemma:
Let e and e0 be two distinct analytic curves intersecting only
at their starting point v. Then there exist parametrizations of
these curves, a number δ > 0, and an analytic diffeo-
morphism such that, in the corresponding frame, the curves
are given by

(a) eðtÞ ¼ ðt; 0; 0Þ, e0ðtÞ ¼ ð0; t; 0Þ, t ∈ ½0; δ� if
their tangents are linearly independent at v,

(b) eðtÞ ¼ ðt; 0; 0Þ, e0ðtÞ ¼ ðt; tn; 0Þ, t ∈ ½0; δ� for
some n ≥ 2 if their tangents are co-linear at v.

We will call the associated frame a frame adapted to e, e0.
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To carry out the second part of the construction, we need

a diffeomorphism invariant prescription of the topology of

the routing of the loop αIJ. In other words, the plane in

which the loop lies should be chosen in a way which is
diffeomorphism invariant, and which does not cause the
loop to intersect the graph γ at any point different from the
vertex v. The choice that αIJ lies in a small enough
neighborhood of v guarantees that the loop cannot intersect
any edge of γ except the edges incident at the vertex v. Then
the routing of the loop in that neighborhood is achieved
through the prescription given in [9] (and which we do not
repeat here).
Now let us turn to the second requirement, which is

crucial in order to have the possibility of defining a dense
adjoint operator that allows one to construct symmetric
Hamiltonian operators, and eventually to provide self-
adjoint extensions. To state the prescription that satisfies
the second requirement, we need to define the order of
tangentiality of an edge at the node. This is defined as
follows. Considering the vertex v and the edge eI , we
denote by kIJ ≥ 0 the order of tangentiality of eI with
another edge eJ incident at v. If the edges eI and eJ are not
tangent at v, we understand that kIJ ¼ 0. The order of
tangentiality kI of the edge eI at the vertex v

kI ¼ max
eJ at v
J≠I

kIJ ð3:73Þ

i.e. as the highest order of tangentiality of the edge eI with
the remaining edges incident at v.
The element which completes the prescription of the

special loop according to the two requirements is now
stated as follows:
Requirement 2.

The special loop αIJ is tangent to the two edges eI and eJ at
the vertex v up to orders kI þ 1 and kJ þ 1 respectively,
where kIð≥ 0Þ and kJð≥ 0Þ are respectively the orders of
tangentiality of eI and eJ at the node.

This property indeed makes a loop attached by the
Hamiltonian to a given pair of edges perfectly distinguish-
able from any other loop at the same node.
To summarize, the prescription for assigning a special

loop to a pair of links incident at a vertex is to choose
the loop to lie in the coordinate plane defined by the
frame adapted to the pair of edges, then to follow a
specific and well-defined routing of the loop described
in [9], and finally to impose the tangentiality condi-
tions introduced above. With this prescription, the
loop assigned to a pair of edges is unique up to
diffeomorphisms.
In consequence, given a graph γ and the auxiliary graph

γ0 obtained by the splitting, the contribution from a cell Δ
containing a vertex v reads

κ1ðvÞ
X
I;J

ϵijkϵð_e0I; _e0JÞ..
.
Ĵv;e0I ;iĴv;e0J;jðĥkαðϵÞIJ

ÞðlÞ... ¼ ∶cHE
v
ðϵÞ

ð3:74Þ

where ϵð_e0I; _e0JÞ is 0 if _e0I and _e0J are linearly dependent or 1
otherwise. This operator maps

cHE
v
ðϵÞ
∶ Cylγ → Cylγ00

γ00 ¼ γ ⋃
IJ
fαIJg: ð3:75Þ

Considering all the graphs we combine the operators into a
single ϵ-dependent operator

cHE
v
ðϵÞ
∶ Cyl → Cyl: ð3:76Þ

In order for the operator (3.76) to be cylindrically
consistent, we should have κ1ðvÞ ¼ κ1, an overall constant
independent of the valence of the vertex v.3 However, since
our goal at the end is to implement this operator in the
gauge invariant Hilbert space, we can equally well define
the operator by proceeding with the regularization directly
on the spaces CylGγ orthogonal to each other. In that case the
question of cylindrical consistency does not arise, and we
may allow the possibility that κ1ðvÞ depends on the valence
of the vertex.
In this way we have determined the action of an operator

(3.55) up to a value of κ1ðvÞ (constant or not), assuming the
conditions (1) and (2). This operator passes naturally to
CylG

cHE
v
ðϵÞ
∶ CylG → CylG: ð3:77Þ

As we refine the partition by ϵ → 0, the loops αIJ are

shrank to v. However, the ϵ-dependent operator ðcHE
v
ðϵÞÞ�

defined by the duality � in HG
vtx [on a domain that includes

ηðCylGÞ],

ηðΨÞ ↦ ðcHE
v
ðϵÞÞ�ηðΨÞ

ðcHE
v
ðϵÞÞ�ηðΨÞ∶ Ψ0 ↦ ηðΨÞðcHE

vΨ0Þ ð3:78Þ

is insensitive to the shrinking, as long as each loop αIJ is
shrank within the diffeomorphism class of γ ∪ αIJ. Hence
we drop the ϵ label in the dual operator. It follows that the
Euclidean part of the Hamiltonian is defined as

3On the other hand, every value of the constant κ1 can
be achieved by a suitable choice of the shape and size of the
loops αIJ .
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Z
Σ

dd3xfðxÞHEuclðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGβ2

p X
v∈Σ

fðvÞ
ffiffiffiffiffiffiffiffifficHE

v
�

q
: ð3:79Þ

In order to define the square root in this equation, one could

choose a symmetric ordering of cHE�
v. However, a sym-

metric ordering of the Euclidean term is not necessary for
constructing the complete Hamiltonian, for which instead
the square root of the sum of Euclidean and Lorentzian
terms needs to be defined.

2. Lorentzian part

Following the strategy of quantization indicated by
Eq. (3.49), we now introduce a second operator corre-
sponding to the integral of the term

ffiffiffiffiffiffi
qR

p
again smeared

with an arbitrary function fZ
d3xfðxÞ

ffiffiffiffiffiffi
qR

p
ðxÞ:

The construction of the operator is in two parts: first we
write an approximate expression of the classical integral
by implementing a cellular decomposition Cϵ of the 3d
manifold, characterized by a regulator ϵ. Secondly, the
regularized expression is promoted to an operator, which
after taking the regulator limit, leads to a background
independent operator acting in the Hilbert space of gauge
invariant states.
The aim is to construct an operator corresponding to the

following function on the classical phase space:Z
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�jR

p
¼

Z
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R

q
: ð3:80Þ

Consider a cellular decomposition Cϵ of the manifold Σ.
The size of the cells is assumed to be controlled by the
regulator ϵ, in such a way that the coordinate size ϵΔ0 of
each cell Δ0 ∈ Cϵ satisfies ϵΔ0 < ϵ. We can then write the
integral (3.80) as a limit of a Riemannian sum over the
cells Δ0,Z

Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R

q
¼ lim

ϵ→0

X
Δ0∈Cϵ

fðxΔ0 Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Z
Δ0
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ��Z
Δ0
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R
�s
;

ð3:81Þ

where on the right-hand side xΔ0 denotes any point
inside Δ0.

Next we decompose each cell Δ0 into cΔ0 closed cells Δ,
where a cell Δ has a boundary formed by a number nΔ of
2-surfaces (faces). In Eq. (3.81), we then approximate the
integral of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdet½E�jp
by a Riemannian sum over the cellsΔ,

and the integral of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdet½E�jp

R by a regularized Regge
action for an appropriate Δ-decomposition of Δ0, obtainingZ

Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R

q
¼ lim

ϵ→0

X
Δ0∈Cϵ

fðxΔ0 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X

Δ⊂Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p ��X
Δ⊂Δ0

RΔðEÞ
�s
:

ð3:82Þ

The functionals qΔðEÞ [25] and RΔðEÞ are defined on the
classical phase space as4

qΔðEÞ ≔
κ0ðΔÞ
3!

X
I≠J≠K

jϵijkPSIΔ;i
PSJΔ;j

PSKΔ ;k
j; ð3:84Þ

RΔðEÞ ≔
X
u⊂∂Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0

1
2
ϵijkPSIΔ;u;j

PSJΔ;u;kffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p 1
2
ϵi

0j0k0PSIΔ;u;j
0PSJΔ;u;k

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
vuut

×

�
2π

αu
− π þ arccos

�δklPSIΔ;u;k
PSJΔ;u;l

2jPSIΔ;u
jjPSJΔ;u

j
��

; ð3:85Þ

where we use the following notation:
(i) given Δ, the index I ¼ 1;…; nΔ labels the surfaces

(faces) SIΔ forming the boundary ∂Δ of the cell Δ
and u labels the hinges on that boundary (the 1-
skeleton of the cell);

(ii) the symbols SIΔ;u and S
J
Δ;u stand for the two surfaces

in ∂Δ that intersect at u;
(iii) the symbol PSIΔ;i

represents the flux of the field Ea
i

across SIΔ, defined in (3.20) with

S ¼ SIΔ; and ξðxÞ ≔ hpΔðxÞτih
−1
pΔðxÞ ð3:86Þ

and ���PSIΔ;u

��� ≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δk;k0PSIΔ;u;k

PSIΔ;u;k
0

q
; ð3:87Þ

(iv) κ0ðΔÞ is a regularization constant depending on the
shape of the cell Δ;

4The functional qΔðEÞ can be defined in a different way:

qΔðEÞ ≔
X
IJK

����κ0ðΔÞ3!
ϵIJKϵ

ijkPSIΔ;i
PSJΔ ;j

PSKΔ ;k

����: ð3:83Þ

This definition would lead to a volume operator that is sensitive to
the differential structure at the nodes, see [26,27,37].
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(v) finally αu is a fixed integer parameter corresponding
to the number of cells sharing the hinge u in the
cellular decomposition Cϵ.

Considering the coordinate size ϵΔ < ϵ of the cell Δ,
defined such that the limit ϵ → 0 is equivalent to ϵΔ → 0,
the functional qΔðEÞ is such that 1

V2
Δ
qΔðEÞ approximate the

function jdet½E�j at any point within the cell Δ, VΔ ∝ ϵ3Δ
being the coordinate volume of Δ. Also, each term in the
sum defining RΔðEÞ (3.85), rescaled by Lu ∝ ϵΔ that is the
coordinate length of the edge u on the boundary of Δ,

1

Lu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0

1
2
ϵijkPSIΔ;u;j

PSJΔ;u;kffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p 1
2
ϵi

0j0k0PSIΔ;u;j
0PSJΔ;u;k

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
vuut
×

�
2π

αu
− π þ arccos

�δklPSIΔ;u;k
PSJΔ;u;l

2jPSIΔ;u
jjPSJΔ;u

j
��

; ð3:88Þ

approximate the function LuðEÞΘuðEÞ in the limit ϵΔ → 0,
where LuðEÞ and ΘuðEÞ are respectively the length of the
hinge u and the dihedral angle at u in Δ expressed in terms
of densitized triads.
The sum over the cells Δ of the functional RΔðEÞ

corresponds to the regularized Regge action [38] in 3d
on Δ0, which is by itself an approximation of the functionR
Δ0 d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdet½E�jp
R. We direct the reader to [33] for more

details about the concepts of this construction.
To continue the calculation from Eq. (3.82), we assume

that the cells Δ are chosen such that we obtain the same
contributions qΔðEÞ and RΔðEÞ from each cell Δ, up to
higher order corrections in ϵΔ0 (equivalently, up to higher
order corrections in ϵ). Hence each sum over the cells Δ
becomes the number of cells cΔ0 times the contribution of
the cell ~Δ, chosen as the cell containing the point xΔ0 at
which the smearing function f is evaluated. In this way we
obtainZ

Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R

q
¼ lim

ϵ→0

X
Δ0∈Cϵ

fðx ~Δ⊂Δ0 ÞcΔ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q ~ΔðEÞ

q
R ~ΔðEÞ

r
: ð3:89Þ

Let us now introduce the approximation

fðx ~Δ⊂Δ0 Þ ¼ 1

cΔ0

X
Δ⊂Δ0

fðxΔÞ; ð3:90Þ

which is an averaging of the values of the function f inside
the cellΔ0, and which can be seen as a better approximation
of the value of the function f inside the cell Δ0, in the sense
that we are probing the function f in several points inside
the cell instead of one point xΔ0 . Inserting Eq. (3.90) in
Eq. (3.89), we come to the result we are looking for:

Z
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�j

p
R

q
¼ lim

ϵ→0

X
Δ0∈Cϵ

X
Δ⊂Δ0

fðxΔÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
RΔðEÞ

q
¼ lim

ϵ→0

X
Δ0∈Cϵ

fðxΔÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
RΔðEÞ

q
; ð3:91Þ

where last step is achieved by combining the two sums over
Δ0 and Δ.
Notice that the expression of RΔðEÞ in (3.85) contains an

overall factor of ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p Þ−1. This leads to a crucial
simplification in the expression of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
RΔðEÞ, namely,

the factors of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
are canceled:ffiffiffiffiffiffiffiffiffiffiffiffiffi

qΔðEÞ
p

RΔðEÞ

¼
X
u⊂∂Δ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0ϵ

ijkPSIΔ;u;j
PSJΔ;u;k

ϵi
0j0k0PSIΔ;u;j

0PSJΔ;u;k
0

q
×

�
2π

αu
− π þ arccos

�δklPSIΔ;u;k
PSJΔ;u;l

2jPSIΔ;u
jjPSJΔ;u

j
��

: ð3:92Þ

In the quantum theory, this simplification implies that the
volume operator will be absent from the Lorentzian
part, and consequently from the whole Hamiltonian
operator. The absence of the volume is an important
technical advantage in the calculation of the action of the
Hamiltonian.
Before promoting this expression to an operator, we

study the term ϵijkPSIΔ;u;j
PSJΔ;u;k

appearing in Eq. (3.92). This
term approximates the classical function

ϵijkϵabcEa
jE

b
k _u

cðsÞ ¼ lim
ϵΔ→0

1

ϵ4Δ
ϵijkPSIΔ;u;j

PSJΔ;u;k
; ð3:93Þ

where s is parametrizing the curve u.
Considering Ψ in Cyl with a graph γ ¼ ðe1;…; enÞ, the

straightforward quantization of ϵijkϵabcEa
jE

b
k _u

cðsÞ by
replacing Ea

j with ℏ
i

δ
δAj

aðxÞ
induces the factor

ϵabc _eaI ðtÞ_ebJðt0Þ ð3:94Þ

in the formal action of the operator on Ψ. Similarly to the
case of the Euclidean part (see Sec. III D 1), this factor
vanishes unless

_eIðtÞ ∦ _eJðt0Þ; ð3:95Þ

which means that the edges eIðtÞ and eJðt0Þ are different
(I ≠ J) and transversal at their intersection point. In order
to pass this property to the quantum operator, we introduce
the coefficient κ0ΔIJ, defined in the following, in the
expression of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
RΔðEÞ and we write
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
qΔðEÞ

p
RΔðEÞ

≔
X
u⊂∂Δ

κ0ΔIJ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0ϵ

ijkPSIΔ;u;j
PSJΔ;u;k

ϵi
0j0k0PSIΔ;u;j

0PSJΔ;u;k
0

q
×

�
2π

αu
− π þ arccos

�δklPSIΔ;u;k
PSJΔ;u;l

2jPSIΔ;u
jjPSJΔ;u

j
��

: ð3:96Þ

In order to promote the expression in (3.96) to a quantum
operator, we first need to set some requirements on the
decomposition CϵΣ so that we adapt it to the functions in
Cyl: given a Ψ in Cyl with a graph γ ¼ ðe1;…; enÞ of
VertðγÞ ¼ ðv1;…; vmÞ, the requirements are as follows:
(1) each cell Δ contains at most one vertex of the

graph γ;
(2) each 2-cell (face) on the boundary of a cell Δ,

containing a vertex of γ, is punctured exactly by one
edge of the graph γ. The intersection is transversal
and belongs to the interior of the edge;

(3) if v ∈ VertðγÞ and v ∈ Δ, then
(i) xΔ ¼ v,
(ii) κ0ΔIJ is not zero only for edges eI and eJ of γ

meeting transversally at v;
(4) if Δ does not contain an edge of γ but it contains

a segment of an edge then, by splitting the edge
and reorienting its segments suitably, we turn that
case into the case of Δ containing a 2-valent
vertex.

A result that follows from the derivation of the
curvature operator in [33] is that the value of non-
vanishing κ0ΔIJ is an overall constant κ2ðvÞ depending
on the valence of the vertex but independent of Δ; I; J.
This property is obtained from an averaging procedure
used in order to remove the dependence on Cϵ.
Having the quantum operators corresponding to PSIΔ;u;j

,
we are now able to define the quantum operator corre-
sponding to qΔðEÞRΔðEÞ as

dqΔðEÞRΔðEÞ ≔ cHL
Δ ≔

X
u⊂∂Δ

κ0ΔIJ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0ϵ

ijkP̂SIΔ;u;j
P̂SJΔ;u;k

ϵi
0j0k0P̂SIΔ;u;j

0P̂SJΔ;u;k
0

q
×

�
2π

αu
− π þ arccos

� δklP̂SIΔ;u;k
P̂SJΔ;u;l

2δkk0P̂SIΔ;u;k
P̂SIΔ;u;k

0δll0P̂SJΔ;u;l
P̂SJΔ;u;l

0

��
: ð3:97Þ

Considering a cylindrical function Ψγ in the Hilbert space Cylγ , thanks to regularization detailed above we have

cHL
ΔΨγ ¼

� cHL
vΨγ if Δcontains a vertex v of γ;

0 if Δ does not contain a vertex v of γ;
ð3:98Þ

where

cHL
v∶ ¼ κ2ðvÞ

X
I;J

ϵð_eI; _eJÞcHL
v eI;eJ

¼ κ2ðvÞ
X
I;J

ϵð_eI; _eJÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0 ðϵijkĴv;eI ;jĴv;eJ;kÞðϵi0j0k0 Ĵv;eI ;j0 Ĵv;eJ;k0 Þ

q

×

0B@ 2π

αv;eI ;eJ
− π þ arccos

264 δklĴv;eI ;kĴv;eJ;lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δkk0 Ĵv;eI ;kĴv;eI ;k0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δll0 Ĵv;eJ;lĴv;eJ;l0

q
375
1CA; ð3:99Þ

with αv;eI ;eJ an integer parameter, κ2ðvÞ is the averaging
coefficient that depends only on the valence of the vertex v,
and ϵð_eI; _eJÞ is 0 if _eI and _eJ are linearly dependent or 1
otherwise.
Now we can define an operator acting in CylGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ β2Þ
8πβ2G

s dZ
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�jR

p
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2Þ
8πβ2G

s X
v∈Σ

fðvÞ
ffiffiffiffiffiffifficHL

v

q
; ð3:100Þ

that corresponds to the Lorentzian part of the (smeared)

Hamiltonian. Consequently we introduce the operator cHL
v
�

defined by duality � on HG
vtx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2Þ
8πβ2G

s dZ
Σ
d3xfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet½E�jR

p
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2Þ
8πβ2G

s X
v∈Σ

fðvÞ
ffiffiffiffiffiffiffiffifficHL

v
�

q
: ð3:101Þ
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Notice that there is no ordering ambiguity in the operatorcHL
v and therefore no ordering ambiguity in cHL

v
�
.

3. The Hamiltonian operator and its properties

At this level two operators cHE
x
�
and cHL

x
�
have been

implemented on Hvtx. Now we introduce the operator cHT
x

defined as

cHT
x ≔ cHE

x
� þ ð1þ β2ÞcHL

x
�

¼
X
_e;_e0

ϵð_e; _e0Þ½ðcHE
x e;e0 Þ� þ ð1þ β2ÞðcHL

x e;e0 Þ�� ð3:102Þ

where _e, _e0 run through the set of germs of bounded one-
dimensional submanifolds of Σ incident to a point x, and

we define cHE
x e;e0 as

cHE
x e;e0 ≔ κ1ðxÞϵijkðĥkαx;ee0 ÞðlÞĴx;e;iĴx;e0;j; ð3:103Þ

by choosing the simplest ordering for the Euclidean part.

A symmetric Hamiltonian operator.—The Hamiltonian
operator represents the quantization of the classical
Hamiltonian of the deparametrized theory of general
relativity coupled to a free scalar field. This final operator
is required to be self-adjoint on some nontrivial domain
in order for it to generate unitary evolution of the
quantum system and for its spectra to admit a physical
interpretation. Therefore, a first step toward achieving
self-adjointness5 of the Hamiltonian is to construct a
symmetric operator.
A symmetric operator Ĥ could be introduced as a

combination of the operator cHT
x and its adjoint operatorcHT

x
†
. The later is defined on a domain DðcHT

x
†Þ ⊃ SG, such

that for every two states jΨi and jΨ0i in the space SG we
have

hΨ0jcHT
x
†jΨi ¼ hΨjcHT

x jΨ0i; ð3:104Þ

where the bar stands for complex conjugate.
For instance we choose the following definition for Ĥ:

Ĥ∶ DðcHT
x
†Þ ∩ DðcHT

x Þ ⊃ SG ⟶ Hvtx

Ĥ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πGβ2
p X

x∈Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficHT
x þ cHT

x
†

q
: ð3:105Þ

Gauge and diffeomorphism invariance.—The operators
ĥαee0 are Ĵx;e;i are both gauge invariant. Hence the

Hamiltonian operator Ĥ is gauge invariant.
Considering the group of smooth diffeomorphisms, the

operator Ĥ is also diffeomorphism invariant, thanks to the
regularization adopted and the averaging procedures
involved in defining the curvature operator [33]. As a
consequence of its gauge and diffeomorphism invariance,
Ĥ preserves the space HG

vtx.

Action of the symmetric Hamiltonian operator.—Looking
into the action of Ĥ on a spin network state jγ; fjg; fιgi,
one would like to express the matrix elements of this
operator in terms of the quantum numbers labeling the
states, namely the spins j and the intertwiners ι.
However in order to obtain such an expression, it is

necessary to diagonalize the operator cHT
x under the

square root in the definition of Ĥ. So far this aim of
diagonalizing this operator has not been realized.
Nevertheless, what can be achieved is the explicit

computation of the action of cHT
x on a spin network

basis state jγ; fjg; fιgi. We need first to calculate the

action of cHE
x þ ð1þ β2ÞcHL

x ; then from (3.78), (3.101)
and (3.104) we can deduce the action of the dual

operators, hence the action of cHT
x and its adjoint.

Moreover, having the state jγ; fjg; fιgi, we know from
(3.102) that the action of Ĥ reduces to a sum of contri-
butions, each coming from a pair of edges incident to the
same vertex v of the graph γ; we call such a pair a wedge.

The operators cHT
v e;e0 , each associated to such a wedge in γ,

can be introduced as

cHT
v e;e0 jγ; fjg; fιgi
≔ ϵð_e; _e0Þ½ðcHE

v e;e0 Þ� þ ð1þ β2ÞðcHL
v e;e0 Þ��jγ; fjg; fιgi:

ð3:106Þ

Consequently we just need to compute the action ofcHE
v e;e0 and cHL

v e;e0 leading to the total action of cHT
v e;e0

on jγ; fjg; fιgi. The result is presented in the following.
The calculations were done using the so-called
graphical calculus, a framework that is briefly outlined
in the Appendix along with the chosen notations and
conventions.
Consider again the spin network state jγ; fjg; fιgi

containing the n-valent vertex vðn > 1Þ, from which
originate the two edges e and e0. The actions of the

Euclidean and Lorentzian parts of cHT
v e;e0 on the state

jv; je; je0 ;…; ke0 ;…i, defined in the Appendix, are
respectively

5The self-adjointness of the Hamiltonian operator presented in
Eq. (3.105) is still an open question. However, we are able to
construct self-adjoint extensions using other symmetrizations.
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(3.107)

and

cHL
v e;e0 jv; je; je0 ;…; ke0 ;…i ¼ κ2ðvÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii

0 ðϵijkĴv;e;jĴv;e0;kÞðϵi0j0k0 Ĵv;e;j0 Ĵv;e0;k0 Þ
q

×

0B@π − arccos

264 δklĴv;e;kĴv;e0;lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δkk0 Ĵv;e;kĴv;e;k0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δll0 Ĵv;e0;lĴv;e0;l0

q
375
1CAjv; je; je0 ;…; ke0 ;…i

¼ κ2ðvÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðje; je0 ; ke0 Þ

p �
2π

αv;e;e0
− θðje; je0 ; ke0 Þ

�
jv; je; je0 ;…; ke0 ;…i; ð3:108Þ

where

cðje; je0 ; ke0 Þ ≔ jeðje þ 1Þje0 ðje0 þ 1Þ −
�
ke0 ðke0 þ 1Þ − jeðje þ 1Þ − je0 ðje0 þ 1Þ

2

�
2

−
ke0 ðke0 þ 1Þ − jeðje þ 1Þ − je0 ðje0 þ 1Þ

2
; ð3:109Þ

θðje; je0 ; ke0 Þ ≔ π − arccos

�
ke0 ðke0 þ 1Þ − jeðje þ 1Þ − je0 ðje0 þ 1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeðje þ 1Þje0 ðje0 þ 1Þp �

: ð3:110Þ

Notice that while the operator cHE
v e;e0 in the Euclidean

part is a graph changing operator, hence not preserving

the original intertwiner space, the operator cHL
v e;e0 in the

Lorentzian part is diagonal on the basis adapted to the
pair of edges fe; e0g. Also, from Eqs. (3.108) and
(3.108), we can deduce that the domain of the
Hamiltonian operator Ĥ admits an orthogonal sum
decomposition in terms of stable subspaces under
repeated action of Ĥ. This result generalizes to other
symmetrizations than the one proposed in (3.105), and it
may be of considerable importance in the elaboration of

self-adjointness proofs and the calculation of the evo-
lution of physical states in this model.

IV. SUMMARY AND OUTLOOKS

We considered a model of Einstein gravity coupled to
a free scalar field, in which the dynamics of the
gravitational field is described by deparametrization with
respect to the scalar field. In the corresponding quantum
theory, constructed using the techniques of loop quantum
gravity, the quantum dynamics is given by the evolution
of the physical (i.e. gauge and diffeomorphism invariant)
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states of the gravitational field with respect to the scalar
field. This evolution is governed by a physical
Hamiltonian operator, which we constructed in this paper.
The implementation of the Lorentzian part of our
Hamiltonian is based on regularization used to define
the curvature operator introduced in [33]. As to the
Euclidean part, we refined and made precise the idea,
first considered in [15], of regularizing the curvature by
means of loops attached to pairs of edges at a vertex of a
spin network graph.
By carefully specifying the properties of the special

loops created by the Euclidean Hamiltonian operator,
we were able to define an operator which is diffeo-
morphism invariant, and whose adjoint operator is
densely defined. The second property is crucial in that
it allows to symmetrize the operator and eventually to
construct self-adjoint extensions. Our regularization of
the Euclidean term can also be applied in vacuum loop
quantum gravity to define a Hamiltonian constraint
operator for which the adjoint operator is densely
defined. This question will be treated in a future work.
On a practical level, an important feature of our
Hamiltonian is that the volume operator does not appear
in it. This implies a considerable simplification of the
calculation of the action of the Hamiltonian on spin
network states.
The construction presented in this paper gives us a

concrete and tractable Hamiltonian operator for loop
quantum gravity coupled to a free scalar field. This
makes it possible to test the dynamics of the theory,
as the time evolution of spin networks under this
Hamiltonian can be computed. In particular, a ques-
tion of interest will be to study the evolution of
semiclassical states describing e.g. cosmological
spacetimes.
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APPENDIX: GRAPHICAL CALCULUS
FOR SUð2Þ

In this appendix we give the technical tools of
SUð2Þ representation theory that are needed to evaluate
the action of the Hamiltonian on a spin network state.
For a more detailed presentation, we refer the reader
to [39].

1. The epsilon tensor

The epsilon tensor is the fundamental invariant tensor of
SUð2Þ. For the spin-j representation, it is given in the
standard basis6 fjj; mig by

ϵðjÞmn ¼ ð−1Þj−mδm;−n ðA1Þ
and is represented graphically as

(A2)

It satisfies the symmetry relation ϵðjÞnm ¼ ð−1Þ2jϵðjÞmn, i.e.

(A3)

The tensor ϵðjÞmn is defined to be numerically equal to ϵðjÞmn.
The contraction of two epsilons gives

ϵðjÞmμϵðjÞnμ ¼ δnm: ðA4Þ
Graphically, δnm is represented by a line with no arrow, and
the above relation reads

(A5)

Indices of SUð2Þ tensors can be raised and lowered using
the epsilon tensor. Our convention is the following:

vm ¼ ϵmnvn; vm ¼ vnϵnm: ðA6Þ

6All the relations and conventions given in this appendix refer
to the basis fjj; mig, which is the usual eigenbasis of the
operators J2 and J3. For j ¼ 1

2
, the basis fj1

2
;þ 1

2
i; j1

2
;− 1

2
ig≡

fjþiþ; j−i−g of the space H1=2 is defined by specifying that
τ3 ∈ suð2Þ and ϵ ∈ H�

1=2 ⊗ H�
1=2 are represented by the follow-

ing matrices:

ðτ3ÞAB ¼ −
i
2

�
1 0

0 −1
�
; ϵAB ¼

�
0 1

−1 0

�
;

the indices A and B taking the values þ and −. For a general
representation j, the normalized states jj; mi, which span the
space Hj, are obtained as symmetric tensor products of the states
jþi and j−i:

jj; mi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞ!ðj −mÞ!

ð2jÞ!

s

×

�
jþi ⊗ � � � ⊗ jþi|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

jþmstates

⊗ j−i ⊗ � � � ⊗ j−i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
j−mstates

þ all permutations

�
:
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2. Intertwiners

The intertwiner between three representations j1, j2 and
j3 is given by the Wigner 3j-symbol:

(A7)

The order of the spins in the symbol is indicated by aþ or a
− at the node. Thus,

(A8)

which is a graphical representation of the relation
that switching two columns in the symbol (A7)

multiplies the symbol by ð−1Þj1þj2þj3. Another symmetry
relation is

(A9)

When one of the spins is zero, the 3j-symbol reduces to the
epsilon tensor:

(A10)

where dj ¼ 2jþ 1 is the dimension of the representation j.
Intertwiners of higher valence are constructed by con-
tracting several three-valent intertwiners. For example, the
objects

(A11)

form a basis in the space of intertwiners between the representations j1, j2, j3 and j4. (Note that ι
ðkÞ
m1m2;m3m4

is not normalized;
its norm is 1=

ffiffiffiffiffi
dk

p
.)

In calculating the action of the Hamiltonian, a specific basis of intertwiner states at the vertex v is chosen. These states are
denoted by jv; je; je0 ; je00 ;…; ke0 ; ke00 ;…i and defined as

(A12)

3. 6j- and 9j-symbols

A contraction of four 3j-symbols defines the 6j-symbol,

(A13)
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This object appears in the following relation, which is a special case of Eq. (A19) below, and which gives the change of
basis between two different bases of the form (A11):

(A14)

Similarly, the 9j-symbol is defined as

(A15)

It can be expressed in terms of 6j-symbols by the relation

(A16)

4. Expanding invariant tensors

Any invariant tensor tm1���mN
, having indices in representations j1;…; jN , is an element of the space of intertwiners

between the representations j1;…; jN , and as such, it can be expanded using a basis of the intertwiner space. Expressing a
tensor with N indices as a block to which N lines are attached, one has the relations

(A17)

(A18)
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(A19)

as well as the straightforward generalization of the last
relation for tensors of higher order.

5. Group elements

The representation matrix for a group element is
expressed graphically as

(A20)

The inverse matrix is given by the relation

DðjÞm
n ðg−1Þ ¼ ϵðjÞmμϵðjÞnνDðjÞν

μðgÞ; ðA21Þ

or

(A22)

In computing the action of the Hamiltonian, we need to
know the action of a flux operator P̂S;i on a holonomy he. In
the cases where the intersection v between the surface S and
the edge e is the beginning or ending point of the edge, this
action is given by

P̂S;iDðjÞm
nðheÞ

¼ 1

2
κðS; eÞĴv;e;iDðjÞm

nðheÞ

¼ i
2
κðS; eÞ ×

(
DðjÞm

μðheÞðτðjÞi Þμn if e begins from v

ðτðjÞi ÞmμD
ðjÞm

nðheÞ if e ends on v

ðA23Þ

where κðS; eÞ ¼ þ1 if the orientation of e agrees with the

direction of the normal vector of S, and κðS; eÞ ¼ −1 if the

orientations of e and S are opposite.
The matrix τðjÞi is proportional to an intertwiner between

the representations j, j and 1; the precise relation is

(A24)

where Wj ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þð2jþ 1Þp

. Therefore we can write

(A23) graphically as

(A25)

(A26)
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