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Hamiltonian operator for loop quantum gravity coupled to a scalar field
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We present the construction of a physical Hamiltonian operator in the deparametrized model of loop
quantum gravity coupled to a free scalar field. This construction is based on the use of the recently
introduced curvature operator, and on the idea of so-called special loops. We discuss in detail the

regularization procedure and the assignment of the loops, along with the properties of the resulting
operator. We compute the action of the squared Hamiltonian operator on spin network states, and close with

some comments and outlooks.
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I. INTRODUCTION

General relativity in Ashtekar-Barbero variables [1,2]
can be cast in an SU(2) Yang-Mills theory and treated as a
Hamiltonian system with constraints consisting of the
Gauss (gauge constraints), spatial diffeomorphism and
Hamiltonian constraints. Canonical loop quantum gravity
[3—-6], which is an attempt of quantization a la Dirac [7] of
general relativity, has successfully completed the construc-
tion of a kinematical Hilbert space and the implementation
of the Gauss constraints and the spatial diffeomorphism
constraints [8] in the quantum theory, leading to a gauge
and spatial diffeomorphism invariant Hilbert space HS..
The treatment of the last constraints is a more complicated
task. The Hamiltonian has been regularized and promoted
to an operator acting on Hgiff by Thiemann [9] improving
earlier attempts [10]; however, even if the general structure
of the solutions to the Hamiltonian constraints is known, it
is very difficult to define the physical Hilbert space. The
issues are conceptual and technical.

Conceptual, because the Hamiltonian is not preserving
HS. and even if attempts to deal with the absence of a
physical Hilbert space have been explored [11], this
problem has led to new research directions, in particular
the master constraint program [12], the algebraic quantum
gravity program [13], the deparametrized models [14-19]
in the canonical setting, the spinfoam program [20] in the
covariant framework and also some toy models [21-24] in
which an alternative quantization strategy of the Dirac
algebra is applied.

Concerning the technical difficulties, the Hamiltonian
constraint is composed of two terms: the Euclidean part and
the Lorentzian part. Both are nonpolynomial in the canoni-
cal variables, specially the second term that involves a
double Poisson bracket of the Euclidean part with the

P

emanuele.alesci@fuw.edu.pl
mehdi.assanioussi@fuw.edu.pl
Yjerzy.lewandowski @ fuw.edu.pl
Silkka.makinen @fuw.edu.pl

—

1550-7998,/2015,/91(12)/124067(20)

124067-1

PACS numbers: 04.60.Pp, 04.60.-m

volume and has a complicated form in terms of Ashtekar
variables. A clever way to tame the nonpolynomial char-
acter of the constraints is using “Thiemann’s trick,” i.e.
replacing the classical nonpolynomial functions by Poisson
brackets of polynomial functions with the volume and of
the Euclidean part with the volume. Once promoted to an
operator the resulting expression comprises several com-
mutators containing the volume operator [25-27]. While
this procedure helps to bypass the nonpolynomial character
of the constraint, the resulting operator however is not self-
adjoint and the explicit calculation of the Hamiltonian
action is impossible because the volume operator present in
the final expression has no explicit spectral decomposition.
The partially formal result is already an extremely involved
expression [28,29].

In this work we present another proposal for quantizing
the Hamiltonian constraints. The first change is already in
the classical formula for the scalar constraint. It is the sum
of terms proportional to the Euclidean scalar constraint and,
respectively, the Ricci scalar of the three metric tensor [30].
Our aim is to implement the dynamics in the quantum
model of gravity coupled to a free scalar field [17]. The
construction is conceptually based on the recently intro-
duced “intermediate” Hilbert space H,, [31] that is
preserved by the obtained Hamiltonian operator, raising
hope for a well-defined evolution operator with satisfactory
properties, e.g. self-adjointness.

The developed regularization is based on a concrete
implementation of a proposal first appeared in [32]
concerning the Euclidean constraint, and the use of the
curvature operator introduced in [33] to deal with the
Lorentzian part. The paper is organized as follows. In
Sec. II we review the classical model of gravity mini-
mally coupled to a scalar field; in Sec. III we review the
loop quantum gravity construction, present the regulari-
zation of the Hamiltonian and discuss the quantum
operator and its properties; then we close in Sec. IV
with some conclusions and outlooks to further develop-
ments of this program.

© 2015 American Physical Society
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II. CLASSICAL THEORY

Considering gravity minimally coupled to a scalar field
in the standard Arnowitt-Deser-Misner formalism [34], the
theory is set as a constrained system for the standard
canonical variables g, (x) and ¢(x), respectively the metric
and the scalar field on a 3d manifold X with conjugate
momenta p“’(x) and z(x). The analysis shows that the
vector constraints C,,(x) and the scalar constraints C(x) in
this model are expressed in terms of the vacuum gravity
constraints, C (x) and C#'(x), and the scalar field variables
as follows:

Ca(x) = Ca'(x) + 2(x) (). (2.1)
1 7 1
€)= €(x) + 3 7L 2 g () () 0)
2Vaq(x) 2
+ V(@) Valx), (2.2)
where ¢ is the determinant of the metric ¢,,.
With  the Ashtekar-Barbero  variables (Al, E¢)
(i=1,2,3) used in LQG,
{AL(x). E}(y)} = 87BG8;8,8(x. y) (2.3)
{AL(0). A0} =0={E{(x). ES(n)}  (24)

where G is Newton constant and f is the Immirzi
parameter, additional constraints—the Gauss constraints
generating  Yang-Mills gauge transformations—are
induced:

G'(x) = 9,E¢ + €;;F ALEL. (2.5)

The field A/, is identified with an su(2)-valued differential
1-form

A=Az @ dx (2.6)
while the field E{ with an su(2)* vector density
RG]
E=FEir @ — (2.7)
X
where 71, 7,,73 € su(2) is a basis of su(2) such that
—2TrT,~1j = 511 (28)

A solution by points in the phase space (A%, E¢, ¢, #) must
satisfy all the constraints:

Gi(x)=0 C,(x)=0  C(x)=0. (2.9)
In terms of the Ashtekar-Barbero variables, the gravita-
tional part of the scalar constraint reads
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1 <€ijkE? (x)ER (x)Fl, (%)
1626>G |det E(x)]

+(1+ %)V |detE(x)|R(x)>

Ce(x) =

(2.10)

where R is the Ricci scalar of the metric tensor ¢,, on X
related to the Ashtekar frame variable by

 EE
|detE|

ab

q (2.11)

The first term of C# is usually related to the Euclidean
scalar constraint

1 epEf (x)EN(x)FL, (x)

CEuC] P
162G [det E(x)|

(2.12)

To construct a quantum theory mainly two strategies can
be adopted. The first is to promote the whole set of
constraints to operators defined in an appropriate Hilbert
space and look for the states annihilated by the constraints
operators to build a physical Hilbert space. The second, that
we consider in this work, is to deparametrize the theory
classically then quantize. The deparametrization procedure
starts with assuming that the constraints (2.9) are satisfied;
hence, we can solve the vector constraints for the gradient
of the scalar field,

ci

¢.a = )

. (2.13)

and then use this condition in (2.2) to solve it for z:

7 = /q(=(C + gV ()

£\ IV @)y - i), (1)
In case of vanishing potential
V(p) =0, (2.15)

which is our assumption in the rest of this article, Eq. (2.14)
represents the deparametrization of the system with respect
to the scalar field, which can be seen as an emergent time.
Note that in this case, on the constraint surface, it is
necessary to have

C=(x) <0. (2.16)

The sign ambiguity in (2.14) amounts to treating different
regions of the phase space, namely for 4+ and — respectively

7 2 [ < g (x)h.a(x)hp(x)q(x).

We choose the phase space region corresponding to +
and >. It contains spacially homogeneous spacetimes

(2.17)
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useful in cosmology. Then, the scalar constraints can be
rewritten in an equivalent form as

C'(x) = zn(x) F h(x), (2.18)

ho= \/_ﬁcgf V@ (CE)2 =g CECE. (2.19)
We will also restrict ourselves to the case of

(x) > 0, (2.20)

although technically there is no problem in admitting both
signs in the quantum theory.
The constraints C' commute strongly,

{C'(x).C'(»)} =0, (2.21)
implying [16]
{h(x).h(y)} = 0.

In this case a Dirac observable O on the phase space
would satisfy

(2.22)

{0.G'(x)} ={0.C,(x)} ={0.C'(x)} =0.  (2.23)
The vanishing of the first and second Poisson brackets
induce gauge invariance and spatial diffeomorphism invari-
ance respectively. The vanishing of the third Poisson
bracket is equivalent to writing

90 _ 10, 2(x)} = {0, h(x)},

5% (2.24)

III. QUANTUM THEORY

A. The general structure

The quantization of gravity coupled to a massless scalar
field was performed in [17,35]. While the derivation was
partially formal—the existence of the operators C% is
assumed at some stage—the result is expressed in a
derivable way by elements of the framework of loop
quantum gravity (LQG):

(1) The physical Hilbert space H is the space of the
quantum states of the matter free gravity which
satisfy the quantum vector constraint and the quan-
tum Gauss constraint.

(i) The dynamics is defined by a Schrodinger-like
equation

d .
Lfo-_Lhy

7 7 (3.1)

where ¢ is a parameter of the transformations
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Q= @+t

(iii) The quantum Hamiltonian

H= / d%\/—%/%Cg‘(x) (3.2)

is a quantum operator corresponding to the classical
observable

H= /d3x\/—2\/@0gr(x).

This operator could be defined by using already known

operators y/q(x) and Cgra), as outlined in [35]. However,
the observable /qC® written in terms of the Ashtekar-
Barbero variables reads

(3.3)

—/|detE(x)|CE (x) = m (e,-,-kE? (X)ED(x)F (x)

+(1 +[J’2)|detE(x)R(x)>.
(3.4)

The denominator +/|det E(x)| present in (2.10) disap-
pears in (3.4). Moreover, the formula (3.85) below for

\/|detE(x)|R(x) expressed in terms of the quantizable
observables (holonomies and fluxes) also contains the
same denominator, which again disappears after using
the formula (3.4). That coincidence of reductions moti-
vates us to quantize the expression (3.4) for h(x)
directly.

B. Kinematical Hilbert space

The kinematical quantum states in LQG are cylindrical
functions of the variable A, i.e., they depend on A only
through finitely many parallel transports

h,[A] = Pexp <_1A>

where e ranges over finite curves—we will also refer to
them as edges—in X. That is a kinematical quantum state ¥
has the form

(3.5)

VIA] = y(he, [A], ... e, [A]) (3.6)
with a function y:SU(2)" — C. Here, for every edge
we choose an orientation to define the parallel trans-
port A, [A].

To calculate the scalar product between two cylindrical
functions ¥ and ¥’ we find in £ an embedded graph
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y" = {ef.....ell,}, such that both functions can be written
as'

W] = p(hg A ., 1),

V'A] = y/(ha[A], ..., he [A]). (3.7)

The scalar product is

(V|) = /dgl-ndgn//w(m, s G W (g1 - G-
(3.8)

We denote the space of all the cylindrical functions defined
as above with a graph y by Cyl, and, respectively, the space
of all cylindrical functions by Cyl. The kinematical Hilbert
space Hy;, is the completion

Hiin = C_yl (39)

with respect to the Hilbert norm defined by (3.8).
Every cylindrical function f is also a quantum operator

—

(f(A)W)[A] = fIA]W[A]. (3.10)
A typical example is
f(A) = DV%(h,(A)) (3.11)
defined by a path p in Z, a half-integer j = 0, % 1,5,...,the
corresponding representation
DU): SU(2) — Unitary(HW) (3.12)
and some orthonormal basis v, ..., v, € HY),
DU(g) = (v,|DY)(9)vp) 30 - (3.13)

Note that a connection operator “A” itself is not defined.

An operator jx[e]&f’ which is naturally defined in this
framework, is assigned to a triple (x, &, [e]), where x € X,
£ esu(2) and [e] is a maximal family of curves beginning
at x such that each two curves overlap on a connected initial
segment containing x. To define the action of .7x[e]§ on a
function ¥ € Cyl, we represent this function on a graph
such that ¢; € [e]. The action is

N d

TV = ih— hy,). 3.14
sl ¥ = ih— ) (3.14)

w(he e“, h,,, ...
e=0

For & =r7;, it is convenient to introduce a simpler
notation

'The existence of 7 is ensured by assuming the analyticity of
% and of the edges of the graphs [3].
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jx.e,i = jx[e]r,v- (315)
The field E¢(x) is naturally quantized as
A h Sﬂﬂl]% o
E¢(x)W[A] = = {V[A], E¢ = ———UA].
WIA) = UL B () = 2 s v
(3.16)
Given an edge e:[fy,#;]— 2, and a function

f € C(SU(2)), the variation is given by the following
formula:

0

mf(he(A))

- /t1 d1é®(1)5(x, e(1))(hey, (A)The ., (A))g

)

9
) a_ggf 9Dy (3.17)

where by h,, ,(A) [respectively, h,,, (A)] we mean the
parallel transport with respect to A along e from the point
e(t) to e(t,) [e(ty) to e(2)], and by the partial derivatives
with respect to group elements we mean

d

A1 pge o= (gf)éa%gf(g)-

3.18
de|._o ( )

Smearing along 2-surfaces leads to well-defined operators
in Hy;,. Let S C Z be an oriented, 2-dimensional surface,
and

£ 8 - su(2) (3.19)

be a smearing function. The flux corresponding to E is

1 .
P = Kidxb A dxeqp.E(x)E4(x).  (3.20)

The quantum flux is a well-defined operator

ps..»: = 4”Gz~fi(x)zks(e)jx.e.i

xes e

(3.21)

where e runs through the classes of curves beginning at x,
and

ks(e) = —1,0,1, (3.22)

depending on whether e goes down, along, or, respectively,

up the surface S. A generalized function £ may also involve

parallel transports depending on A. A typical example is

§(x> = Ad<hp(x) (A))Z:,

{ esu(2) (3.23)

124067-4



HAMILTONIAN OPERATOR FOR LOOP QUANTUM GRAVITY ...

where

x = p(x) (3.24)
assigns to each point x a path p(x), h,,)(A) is the parallel
transport, and Ad is the adjoint action of SU(2) in the Lie
algebra su(2)

Ad(g)¢ = glg". (3.25)

In conclusion, the operators compatible with the LQG
structure of H;, are (functions of the) parallel transports
and fluxes.

The quantum Gauss constraint operator reads

Gi(x) = Zé(x’ y)zjy,e.i' (326)
YEX eaty
Solutions in Cyl to the Gauss constraint
G;(x)¥ =0 (3.27)

are functions such that

for every g € C'(Z,SU(2)).
(3.28)

f(A) = f(g7'Ag+ g7 'dg).

We denote their algebra, subalgebra of Cyl by Cyl®, and the
corresponding subspace of Hy, by HE, . A dense subspace
of HE, is spanned by the spin network functions. A spin
network function is defined by a graph y = (ey, ..., ¢,),
half integers (nonzero) (j;,...,j,) assigned to the edges
and intertwiners (iy,...,1,,) assigned to the vertices

(Vs ey Up):
U(A) = DU (h,, (A))...DUnw, (R, (A))

X (1 ® .. ® 1)l (3.29)
Each 1, is an invariant of the tensor product of the
representations assigned to the edges e; whose source is
v, and the representations dual to those assigned to the
edges whose target is v,,.
Given a graph y, we denote by Cyl? the space spanned
by all the spin network functions defined on this graph, and
Hf = Cyl}(,}. (3.30)
To define the orthogonal decomposition of the space of
the Gauss constraint solutions we need to admit closed
edges, that is edges for which the end point equals the
beginning point, and closed edges without vertices (embed-
dings of a circle in X). In the case of an edge without
vertices, we choose a beginning-end point arbitrarily in the
definition of the spin network function. On the other hand
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we do not count those graphs that can be obtained from
another graph by the splitting of an edge. Then the space of
all the solutions to the Gauss constraint can be written as
the orthogonal sum

HE, = DHY (3.31)
Y

where y ranges over all the unoriented graphs defined in
this paragraph.

C. The vertex Hilbert space

Every analytic diffeomorphism f € Diff*(X) defines a
unitary operator U : Hyin — Hiin,

U UlA] = T[f Al (3.32)
Given a graph y consisting of edges and vertices
Edge(y) := {ey, ..., e,}, Vert(y) = {v(, ..., v, },

the action of U, on a cylindrical function (3.6) reads

hse, A,

where for the parallel transport along each edge f(e;) we
choose the orientation induced by the map f and the
orientation of e; chosen in (3.6). Smooth diffeomorphisms
map analytic graphs into smooth graphs, therefore their
action is not defined in our Hilbert space Hy;,. Suppose,
however, that given a graph y, a smooth diffeomorphism
f € Diff*(X) maps y into an analytic graph. Then (3.32)
and (3.33) define a unitary map

Uf\I/[A] == l//(hf(el)[A]v (333)

The idea of the vertex Hilbert space of [31] is to construct
from elements of the Hilbert space HE partial solutions to
the vector constraints, by averaging the elements of each of
the subspaces HY with respect to all the smooth diffeo-
morphisms Diff* (X)yey,) Which act trivially in the set of
the vertices Vert(y). Denote by TDiff* (%), the subset of
Diff*(X) which consists of all the diffeomorphisms f such
that f(y) =y and U, acts trivially in HZ.

Denote by Diffy°(Z)yy,) the set of those elements of
Diff® (X)yen(,) Which preserve the analyticity of y. The
maps HY — H{ obtained by the diffeomorphisms in
Diff}° (£)yen(,) are in one to one correspondence with the
elements of the quotient

D, := Diff}° (X)yen(,) / TDIff (), (3.35)
Since D, is a noncompact set and we do not know any
probability measure on it, we define the averaging in Cyl*,

124067-5
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the algebraic dual to Cyl. Given ¥ € HY, we turn it into
(| € Cyl*,

(U]: ¥ € Cyl° = G/}Cylf, — (U)W,
v

and average in Cyl*,

() =+ > (UsYl. (3:36)
7 [fleD,
where
N, = [Sym,|
Sym, = {f € Diff*(%), _..,: f(r) =7}/ TDiff(5),
(3.37)

The resulting 7(¥) is a well-defined linear functional
n(¥): Cyl¢ - C
because given ¥’ € Cyl°, only a finite set of terms in the

sum contribute to the number 7(¥)(¥’). Hence we have
defined a map

HE 5 U — 5(T) € Cyl*

for every embedded graph y. We extend it by linearity to the
algebraic orthogonal sum (3.31)

n: HZ — Cyl*. (3.38)

The vertex Hilbert space HG, is defined as the com-
pletion

HG =n(Cyl N'HE,) (3.39)

under the norm induced by the natural scalar product

(W) [n(¥')) := n(¥) (V). (3.40)
It has an orthogonal decomposition that is reminiscent
of (3.31): Let FS(X) be the set of finite subsets of X.
Then

HG = @ HE (3.41)
VEFS(Y)

Hy= @ Hf (3.42)
[rIElr(V)]

56, +=n(S9) (3.43)
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where y(V) is the set of graphs y with vertex set
V = Vert(y), [y(V)] is the set of the Diff(X),-equivalence
classes [y] of the graphs y € y(V) and S¢ is the subspace
SyG C Hf of the elements invariant with respect to the
symmetry group Sym,. Importantly,

n: 8¢ - S[(;] (3.44)
is an isometry. The orthogonal complement of Sf in HY,
on the other hand, is annihilated by #.

The Hilbert space H$, carries a natural action of
Diff*(X), which we will also denote by U. It is defined by

Um(¥) = n(U¥), f € Diff*(%). (3.45)
A short calculation shows that U is unitary and maps H
to H?(V) in the decomposition (3.41).

Each subspace S[C;] consists of Diff”(Z)yy, invariant
elements. In this sense, they are partial solutions to the
quantum vector constraint. They can be turned into
full solutions of the quantum vector constraint by a
similar averaging with respect to the remaining
Diff (2) /Diff (X)yer(,) [31]. We denote the space of those

solutions .

D. The Hamiltonian operator

In the Hilbert space HS, we will introduce (derive) an
operator

—

H= /)S d®xy\/=21/q(x)C= (x), (3.46)
where we have
—2/|detE(x)[C¥ (x)
- 577G B B P2
+ (1 + p?)|detE(x)|PR(x)). (3.47)

In order to define the corresponding operator, we need to
consider how to regularize and quantize an expression of
the form

Ld%f(x) a*(x) + b*(x) (3.48)

where f is a smearing function defined on X while a(x) and
b(x) are functionals of the fields A} and EY.

Introducing a decomposition of the manifold X into cells
A, the integral can be approximated as

124067-6
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L Prf ()] () + b ()

- XA: \/</A d3Xf(x)a(x))2 + </A d3xf(x)b(X)>2

+ 0(ey). (3.49)

where for every cell A, €3 denotes the coordinate volume of
A. If the integrals [, d®xf(x)a(x) and [, d*xf(x)b(x) can
be quantized as well-defined operators, Eq. (3.49) then
shows how to define the operator corresponding to
Js dxf(x)\/a*(x) + b*(x). Equation (3.49) is the basis
of our construction of the operator (3.46).

In our case, the operators corresponding to a(x) and b(x)
themselves will be available, and will have the general form

= Zé(x, U)fly, = Zé(x, 1})@1/.,

vEX vEX

(3.50)

where the operators @, and IA),/., when applied to a spin
network state defined on a graph, have a nonzero action
only if v is one of the vertices of the graph. In this case, the
operator

—

/2 Prf ()@ (x) + b () (3.51)

can be defined simply by inserting a(x) and b(x) into the
right-hand side of Eq. (3.49). In this way one obtains an
operator, whose restriction to the space of spin network
states defined on a given graph y takes the form

Ld3xf(x)\//\(x) +B ()| =D fo)Jai+b;

r vEYy
(3.52)
In other words, our regularization gives
V@) + b (x) =D s(xo)Jad+by.  (3.53)

VEX

1. Euclidean part

We start with the quantization of the Euclidean part of
our Hamiltonian [see (2.12)]. In Eq. (3.49), the role of a(x)
is now played by the function

HEP (x) = —— ES(x)Fy,(x).  (3.54)

\/87[Gﬂ2 \/ €inkf (x

Consequently, we consider the quantization of the
integral

PHYSICAL REVIEW D 91, 124067 (2015)

/ B (x) HE (x) (3.55)

(where an arbitrary smearing function f has been
introduced).

According to the general framework of LQG, we need to
express the integral in terms of parallel transports /2, and
fluxes Pg ;. The easiest example is to consider the Riemann
sum for this integral obtained by considering a cubic
partition P, of X into cells (I of coordinate volume ¢*

&3 Flra)yfeE (o) EL () Fly (v0),  (3.56)
O
and to distribute the € suitably
S Flan)y e (€ (x0)) (2 EL (x0)) (€ Fhy (x0)).
O
(3.57)

For each cube [ denote by xr the center, by S%, a = 1, 2,
3, three sides x* = const (for each a there are two, choose
any one and orient such that the following is true).
Moreover, for every x € [J, denote by p(x) the line from
xg to x € [. Then, we have

¢E{ = Pgu ; +0(€”)

e*Fk, = eabc(hg%)(” + o(€?), (3.58)
where by PS% i we mean P of (3.20) with
S=84, and &(x):= h,,mx)r,»h;é(x), (3.59)

h (v standing for the parallel transport (with respect to a
given field A) along pg, and for an SU(2) element h we
define’

()0 = S THDOI) ) (3.60)
1

with W, = i\/I(I+ 1)(2/ 4 1). In this way we write the

original expression in terms of fluxes and parallel transports
(as a limit),

2Equation (3.60) is obtained using the relations

(l)(h) = K010 hk(fk)(/)
Tr(z;,)V =0,
W2

Te((2) () ) = 53t

124067-7
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/ d3 X f HEuclPF
1
= Wgﬂxu)\/eijkpsg.ipsg,jeabc(hgsvm)(1),
(3.61)
in the sense that
/d3x EuclPe /d3foEucl’ (3.62)

in the limit € — 0 when we refine the partition ((1 — ).
More generally, we regularize the integral by using a
partition P¢ which consists of
(1) an e-dependent cellular decomposition C¢ of X;
(2) assigned to each cell A € C*:
(i) a point x, inside A;
(i) a family of 2-surfaces S§ C OA, I =1, ...,n,;
(iii) a family of paths p,(x) labeled by points
X € OA, each going from x, to x;
(iv) a family of loops ak, K =1,...,my;
(v) a family of coefficients x;x;
such that the following functional:

/d3foEucl’PE (A, E)

€iijKA1JKPs’A.iPSJA,j(h];,g)(1)

1
- V S”Gﬂ2 ZA:f(XA)\/ IJK

(3.63)
approaches the Euclidean Hamiltonian,
/d3foE“°1PF(A, E) = / d*xfHE!, (3.64)

As in the cubic example, by PszA i we mean Pg . of (3.20)
with

S=Sh and &(x)=h, Tkl (3.65)

n\z &6 o
€,--Fk x)| — . . h, (A),...,h,
w5 (5) a0 g e 40
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Each term eiijA[JKPS’AiPS/Aj(h];K)(Z) gives rise to a well-
defined operator in H,;, .

€ijk’<A1/1<Si)_s*g,iﬁ’s-g,j(ilif,g)(l)S (3.66)

which depends on the ordering of the operators, symbol-
ized by ::.

In this way we obtain an operator

—

/ Bxf(x)HEPe (x) o= \/%Tﬂz Zf (xa)
T A

X \/eiijAI‘]KEPSIA’iﬁsi,j(i/}'(lif)(l)E
(3.67)

which depends on the partition P, and is well defined in
Hyin- However, as we refine the partition P,, the operator
family does not converge to any operator in H;,. This is
a well-known problem in LQG and it does not have a
solution in the kinematical Hilbert space Hyg,.

A way out is to consider the dual action of the regulated
operators [ dxf(x)H™ " (x) in the Hilbert space HS,.
That was done for the (formally regularized) operator C or I
[31]. As it is explained therein, and those arguments apply
also in the case at hand, a limit as € — 0 exists upon several
conditions about the partitions P.. To begin with, we adjust
the partitions individually to each subspace H, in the
decomposition (3.31). Secondly, a successful partition has
to have a suitable diffeomorphism covariance in the
dependence of the partitions on y and on e.

The outstanding problem though, is the dependence of the
result on choices made. There are many partitions which
satisfy the conditions. The resulting operator carries a
memory of the choice of P,, for example on the adjustment
of the fluxes to graphs. To restrict that ambiguity, we study
first the straightforward quantization of €;;; F' abE?E? .

Let ¥ € Cyl be as in (3.6). Assuming E¢(x) = ?M‘i(x),
we obtain ‘

(4))

— Z /zl %t’, drdt' 5(x, e;(1))5(x, e;f(z’))F’;b(x)é‘;(t)éi;/(t/)

B

. . , 0
X (helﬁtl.t(A)Tlhe,.l.lo (A))A (he,r.t’] g (A)Tjhelr.t/.tE) (A) 2/ %—A/W(Ql seees gn)

0 (3.68)

ag[’B/ gl:he[ (A)vgﬂ:helz (A)

Certainly the product of the two Dirac delta distributions is ill defined at some points x, ¢;(¢) and e, (¢'). However, we can
precisely indicate those points at which the expression is identically zero. To begin with, the product 5(x, e;(#))5(x, ey (1))

vanishes except for the triples (x, ¢;(7), ey (') such that
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x=¢;(t) =ep(r). (3.69)

Secondly, the factor F¥, (x)ef(1)éb (1) is not zero only if

er(0) 4 én (). (3.70)
Those two conditions are satisfied simultaneously only if
x coincides with one of the vertices v of y and the edges ¢,
and e, intersect transversally at ». Suppose that x =
v € Vert(y), the edges e;:[to,t;] > Z and ey :[f. 1] —
2 intersect transversally at v, both oriented to be outgoing.
Then the corresponding contribution comes only from

x=v, 4=l Iy =1l (3.71)
and it is
Fhy (0)éf (12 (1) (e, (A7) (he, (A)2),
J iA/w(gl, e Gn) (3.72)

X 5o

918 091, 91=he; (A).gy=he,, (4)
modulo the ill defined factor (§(v, v))*> which has to be
regularized. Our regularization is also expected to replace
F* ejep by a parallel transport h,,, along a loop ey
assigned to the two (segments of) edges. Finally, diffeo-
morphism invariance implies that each vertex » and a pair
of transversally intersecting edges e; and e at v contribute
the same operator as any other diffeomorphism equivalent
triple v/, ¢} and e/,.

We are now in a position to formulate assumptions about
the construction of the partitions P, adapted to a graph y, as
shown in [31], and the assumptions about the assignment of
the loop af used to regularize the connection curvature
F ’;b, in order to guarantee the diffeomorphism covariance
of the final operator.

Givenagraphy = (ey, ..., e,) of Vert(y) = (vy, ..., v,),
in order to spell out the conditions it is convenient to split
each edge into two segments and orient the new edges to be
outgoing from the vertices of the original graph y. Denote
the resulting graph by ' = (e}, ..., €5,) and its vertex set
Vert(y') = (01, .en, Uy, ¥ . Uhyn). The assumptions
are as follows:

Requirement 1.

(1) each cell A contains at most one vertex of the

/
ma10 e

graph y';
(2) if v € Vert(y) and v € A, then
1) xp =

(ii) to each edge €] there is assigned a surface S§ C
OA intersecting the edge transversally (there may
be surfaces in JA not intersecting any edge);

(iii) to each ordered pair of edges ¢} and ¢, meeting
transversally at v there is assigned a loop af
oriented according to the order of the pair
(e}, €)). Hence we denote kazyx as Kazyrss
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(iv) for edges ¢, and ¢/, of y’ meeting transversally
at v Kazy77 1S DOt Zero;

(v) foredges ¢; and ¢/, of y’ meeting tangentially at
v Kap = 03

(vi) for edges e} and €, of y’ meeting transversally
at v the corresponding loop «;,, in the limit
€ — 0, is shrank to v in a diffeomorphism
invariant way;

(vii) if A does not contain an edge of y but it contains
a segment of an edge then, by splitting the edge
and reorienting its segments suitably, we turn
that case into the case of A containing a 2-
valent vertex;

(3) the value of nonvanishing x,;;;; is an overall
constant x;(v) depending on the valence of the
vertex but independent of A, 7, J.

Concerning the prescription for the assignment of the
loops a;;—we call them special loops—which are
created by the Euclidean part of our Hamiltonian oper-
ator, we wish the construction to satisfy the following
requirements:

(i) The loop added by the Hamiltonian should be
attached to the graph according to a diffeomor-
phism invariant prescription [3,31]. This property
allows the operator to be well defined on the
space ‘HY,.

(ii) It should be possible to distinguish between loops
attached to the same vertex but associated to differ-
ent pair of edges, and between loops attached to the
same pair of edges by successive actions of the
Hamiltonian. This property makes it possible to
define the adjoint operator on a dense domain in
HG,, and consequently to construct a symmetric
Hamiltonian operator.

Consider a vertex v of the graph y defined above and a

set of links {e;} incident at v. In order to satisfy the first
requirement, we use a construction that was introduced in
[36] and was presented in a work of T. Thiemann [9]. The
construction consists of two parts. Firstly, to each pair of
links e; and e; incident at v, we define an adapted frame in
a small enough neighborhood of v. Then we require that the
loop a;;, associated to the pair (e;,e;), lies in the
coordinate plane spanned by the edges e; and e;. The
choice of the adapted frame is based on the follow-
ing lemma:
Let e and ¢’ be two distinct analytic curves intersecting only
at their starting point v. Then there exist parametrizations of
these curves, a number 6 > 0, and an analytic diffeo-
morphism such that, in the corresponding frame, the curves
are given by

(@) e(t) = (1,0,0), €'(tr)=(0,2,0), re€][0,6] if

their tangents are linearly independent at v,
(b) e(t) = (1,0,0), €'(t) = (1,1*,0), 1t €10,68] for
some n > 2 if their tangents are co-linear at v.
We will call the associated frame a frame adapted to e, ¢'.
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To carry out the second part of the construction, we need
a diffeomorphism invariant prescription of the topology of
the routing of the loop a;;. In other words, the plane in

which the loop lies should be chosen in a way which is
diffeomorphism invariant, and which does not cause the
loop to intersect the graph y at any point different from the
vertex v. The choice that a;; lies in a small enough
neighborhood of v guarantees that the loop cannot intersect
any edge of y except the edges incident at the vertex v. Then
the routing of the loop in that neighborhood is achieved
through the prescription given in [9] (and which we do not
repeat here).

Now let us turn to the second requirement, which is
crucial in order to have the possibility of defining a dense
adjoint operator that allows one to construct symmetric
Hamiltonian operators, and eventually to provide self-
adjoint extensions. To state the prescription that satisfies
the second requirement, we need to define the order of
tangentiality of an edge at the node. This is defined as
follows. Considering the vertex v and the edge e;, we
denote by k;; > 0 the order of tangentiality of e; with
another edge e; incident at . If the edges e; and e, are not
tangent at v, we understand that k;; = 0. The order of
tangentiality k; of the edge e; at the vertex v

k] = manU (373)

ejatv
J#I

i.e. as the highest order of tangentiality of the edge e¢; with
the remaining edges incident at v.

The element which completes the prescription of the
special loop according to the two requirements is now
stated as follows:

Requirement 2.

The special loop a;;, is tangent to the two edges e; and e; at
the vertex v up to orders k; + 1 and k; + 1 respectively,
where k;(> 0) and k;(> 0) are respectively the orders of
tangentiality of e; and e; at the node.

This property indeed makes a loop attached by the
Hamiltonian to a given pair of edges perfectly distinguish-
able from any other loop at the same node.

To summarize, the prescription for assigning a special
loop to a pair of links incident at a vertex is to choose
the loop to lie in the coordinate plane defined by the
frame adapted to the pair of edges, then to follow a
specific and well-defined routing of the loop described
in [9], and finally to impose the tangentiality condi-
tions introduced above. With this prescription, the
loop assigned to a pair of edges is unique up to
diffeomorphisms.

In consequence, given a graph y and the auxiliary graph
7' obtained by the splitting, the contribution from a cell A
containing a vertex v reads

PHYSICAL REVIEW D 91, 124067 (2015)

(3.74)

where e(¢é}, €/) is 0 if €} and &/, are linearly dependent or 1
otherwise. This operator maps

HE: ¢yl, - Cyl,,

" __
Y —7’”{0‘11}- (3.75)

Considering all the graphs we combine the operators into a
single e-dependent operator

HEY . cyl = oyl 3.76
EY: Cyl - cy

In order for the operator (3.76) to be cylindrically
consistent, we should have k,(v) = k;, an overall constant
independent of the valence of the vertex ».” However, since
our goal at the end is to implement this operator in the
gauge invariant Hilbert space, we can equally well define
the operator by proceeding with the regularization directly
on the spaces CylyG orthogonal to each other. In that case the
question of cylindrical consistency does not arise, and we
may allow the possibility that k; (v) depends on the valence
of the vertex.

In this way we have determined the action of an operator
(3.55) up to a value of k; (v) (constant or not), assuming the
conditions (1) and (2). This operator passes naturally to
Cyl¢

HEY) . cyl6 - cylf. 3.77
29 ey y

As we refine the partition by ¢ — 0, the loops «;; are

shrank to ». However, the e-dependent operator (I-}\f(e))*
defined by the duality * in HS, [on a domain that includes

n(Cyl)],

n(©) > (HE) p(w)

(HE) n(9): W > n(W)(HEW)  (378)
is insensitive to the shrinking, as long as each loop a;; is
shrank within the diffeomorphism class of y U a;;. Hence

we drop the € label in the dual operator. It follows that the
Euclidean part of the Hamiltonian is defined as

0On the other hand, every value of the constant k; can
be achieved by a suitable choice of the shape and size of the
loops a;;.
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ﬂEPZﬂ\@? (3.79)

In order to define the square root in this equation, one could

/ d%xf(x)HEucl(

choose a symmetric ordering of HEZ. However, a sym-
metric ordering of the Euclidean term is not necessary for
constructing the complete Hamiltonian, for which instead
the square root of the sum of Euclidean and Lorentzian
terms needs to be defined.

2. Lorentzian part

Following the strategy of quantization indicated by
Eq. (3.49), we now introduce a second operator corre-
sponding to the integral of the term /gR again smeared
with an arbitrary function f

[ @3 /aR ().

The construction of the operator is in two parts: first we
write an approximate expression of the classical integral
by implementing a cellular decomposition C¢ of the 3d
manifold, characterized by a regulator e. Secondly, the
regularized expression is promoted to an operator, which
after taking the regulator limit, leads to a background
independent operator acting in the Hilbert space of gauge
invariant states.

The aim is to construct an operator corresponding to the
following function on the classical phase space:

Lﬁﬁ@|wmm
:Lfﬁ@¢wmemwm

Consider a cellular decomposition C¢ of the manifold X.
The size of the cells is assumed to be controlled by the
regulator €, in such a way that the coordinate size €, of
each cell A’ € C¢ satisfies €, < €. We can then write the
integral (3.80) as a limit of a Riemannian sum over the
cells A/,

[ @t/ Videt Bl faelEllR
_ll—{nzfo/

A'eCe

(o) ([

where on the right-hand side x,, denotes any point
inside A'.

(3.80)

m@m)

(3.81)
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Next we decompose each cell A’ into ¢/ closed cells A,
where a cell A has a boundary formed by a number n, of
2-surfaces (faces). In Eq. (3.81), we then approximate the

integral of +/|det[E]| by a Riemannian sum over the cells A,

and the integral of /|det[E]|R by a regularized Regge
action for an appropriate A-decomposition of A’, obtaining

Lﬁﬁ@Jﬂmem@m
= ll_{n Z flxa \/<Z \/m> <ZRA(E))'

A ece ACA’ ACA'

(3.82)

The functionals g, (E) [25] and R, (E) are defined on the
classical phase space as’

s E) =)

Z |€ijkPS’A,iPS£,jPS§,k|’ (3.84)

I#J#K

.o A N
leljkpsl 'Psl kleljkPSI -/st k'
2 At Onuk2 At T Pau
RA(E) = Oii

uCOA V qA E vV 4q (E)

2r [5 PS’A KPsy z])
X | — — &+ arccos | ———=| |, (3.85)
(“u 2|PS'A.“||PS-&M|

where we use the following notation:

(i) given A, the index I =1, ..., n, labels the surfaces
(faces) S’ forming the boundary JA of the cell A
and u labels the hinges on that boundary (the 1-
skeleton of the cell);

(i) the symbols S} , and S , stand for the two surfaces
in OA that intersect at u;

(i) the symbol Py ; represents the flux of the field £
across Sk, defined in (3.20) with

§=Sy and &(x)=hymrihy ., (3.86)
and
Py | = \fosPs Py et (87

(iv) ko(A) is a regularization constant depending on the
shape of the cell A;

“The functional g, (E) can be defined in a different way:

gaE) = Y|

!
1JK 3!

(3.83)

ijk . .
€k€ PS'A‘,Psz,szg.k :

This definition would lead to a volume operator that is sensitive to
the differential structure at the nodes, see [26,27,37].
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(v) finally «, is a fixed integer parameter corresponding
to the number of cells sharing the hinge u in the
cellular decomposition C¢.

Considering the coordinate size €, < € of the cell A,

defined such that the limit ¢ — 0 is equivalent to €5, — 0,
the functional g, (E) is such that VLi g (E) approximate the

function |det[E]| at any point within the cell A, V o €3

being the coordinate volume of A. Also, each term in the
sum defining R (E) (3.85), rescaled by L, « €, that is the
coordinate length of the edge u on the boundary of A,

1 gijk . 1K )
1 2 € PSIA.u +J PSi.u’k 2 € PSIAﬂ’]/PSLu'kI

L, o vV qa(E) vV 4a(E)

ki
27 0" Pgt Psi 1
X | = — 7 + arccos | ——2__~ | )
ay 2|PS’AVM||PS£J‘|

(3.88)

approximate the function L,(E)®,(E) in the limit e, — 0,
where L,(E) and ©,(FE) are respectively the length of the
hinge u and the dihedral angle at u in A expressed in terms
of densitized triads.

The sum over the cells A of the functional R,(E)
corresponds to the regularized Regge action [38] in 3d
on A/, which is by itself an approximation of the function
[ d@x+/|det[E]|R. We direct the reader to [33] for more
details about the concepts of this construction.

To continue the calculation from Eq. (3.82), we assume
that the cells A are chosen such that we obtain the same
contributions g, (E) and RA(E) from each cell A, up to
higher order corrections in €,/ (equivalently, up to higher
order corrections in €). Hence each sum over the cells A
becomes the number of cells ¢,/ times the contribution of
the cell A, chosen as the cell containing the point x, at
which the smearing function f is evaluated. In this way we
obtain

/2 () V/IdeUE] /[detE]IR

= lim > fxacadean/\/az(E)RZ(E).  (3.89)
T aece
Let us now introduce the approximation
1
Flgen) =—> f(xa). (3.90)
NI

which is an averaging of the values of the function f inside
the cell A’, and which can be seen as a better approximation
of the value of the function f inside the cell A/, in the sense
that we are probing the function f in several points inside
the cell instead of one point x,/. Inserting Eq. (3.90) in
Eq. (3.89), we come to the result we are looking for:
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[ @t/ VidetEfaelElIR
= 11_1}(} Z Z f(xa) \/MRA(E)

A'eCe AcA!
=lim > f(xa)\/ Vg2 (E)Rs(E), (3.91)
A'ece

where last step is achieved by combining the two sums over
A’ and A.
Notice that the expression of R (E) in (3.85) contains an

overall factor of (y/qa(E))~!. This leads to a crucial
simplification in the expression of \/¢a (E)Rx(E), namely,

the factors of /g, (E) are canceled:
V4a(E)RA(E)

1 ” T
_ ijk i'j K
= > 3 foue Py Py a Py Py

Au
uCoOA

5k1P5l ,kPSJ N
D (3.92)

2r
X (——n+arccos Py [Py | - 7 A|
au SIAJ( Si“

In the quantum theory, this simplification implies that the
volume operator will be absent from the Lorentzian
part, and consequently from the whole Hamiltonian
operator. The absence of the volume is an important
technical advantage in the calculation of the action of the
Hamiltonian.

Before promoting this expression to an operator, we
study the term /%P _jPs;_xappearing in Eq. (3.92). This
term approximates the classical function

y g 1

€€ EYEQU (5) = SETO%GJkPSZ.M’fPSi,wk’ (3.93)
where s is parametrizing the curve u.

Considering ¥ in Cyl with a graph y = (e, ..., ¢,,), the

straightforward ~quantization of e*e,, ESE}i“(s) by

replacing E¢ with 2—2— induces the factor

1 5L (x)

€anc (1)e] () (3.94)
in the formal action of the operator on W. Similarly to the
case of the Euclidean part (see Sec. III D 1), this factor
vanishes unless

er(1) 4 e;(1').

which means that the edges ¢;(7) and e, () are different
(I #J) and transversal at their intersection point. In order
to pass this property to the quantum operator, we introduce
the coefficient «,,, defined in the following, in the

expression of /g (E)R,(E) and we write

(3.95)

124067-12



HAMILTONIAN OPERATOR FOR LOOP QUANTUM GRAVITY ...

Vaa(E)R,(E)

E KAIJZ\/fSuej Py iPsi, xe' Tk PS’ 7Psi w
uCOA

<2n r lPs’Mszflz])
X | ——m 4 arccos | —————| ).

ay

(3.96)

In order to promote the expression in (3.96) to a quantum
operator, we first need to set some requirements on the
decomposition C§ so that we adapt it to the functions in
Cyl: given a ¥ in Cyl with a graph y = (e, ..., e,) of
Vert(y) = (vy, ..., v,,), the requirements are as follows:

(1) each cell A contains at most one vertex of the
graph y;

(2) each 2-cell (face) on the boundary of a cell A,
containing a vertex of y, is punctured exactly by one
edge of the graph y. The intersection is transversal
and belongs to the interior of the edge;

|

—

s (E)RA(E) = H = > Ky \/5,,/61 Py Pg (eT¥Pg

uCoA

<271'
X | — — m + arccos

ay

Considering a cylindrical function W, in the Hilbert space Cyl,,
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(3) if v € Vert(y) and v € A, then
® xp=v,

(i) «y;; is not zero only for edges e; and e, of y
meeting transversally at v;

(4) if A does not contain an edge of y but it contains
a segment of an edge then, by splitting the edge
and reorienting its segments suitably, we turn that
case into the case of A containing a 2-valent
vertex.

A result that follows from the derivation of the
curvature operator in [33] is that the value of non-
vanishing «),, is an overall constant k,(v) depending
on the valence of the vertex but independent of A, 1, J.
This property is obtained from an averaging procedure
used in order to remove the dependence on C°.

Having the quantum operators corresponding to PszA i
we are now able to define the quantum operator corre-
sponding to g, (E)RA(E) as

/PSJ kl

Au’

260 Py kPs wOuPsy Psy v

& Ps’ szgul }) (3.97)

thanks to regularization detailed above we have

- IfI\L\I/ if Acontains a vertex v of y;
HW, = { Tt vory (3.98)
0 if A does not contain a vertex v of y,
where
H]; = K2(”)Z€(él7 éJ)ng,,e,
€ 61, e] A

Z \/511 ljk‘]b er, jJU ey, k)(et’j’k"]@ e Jv,ej,k’)
IJ
27 Sud vk

X — 7 + arccos M venk veyd , (3.99)

av,e,,e,

with a@,,, ., an integer parameter, ,(v) is the averaging
coefficient that depends only on the valence of the vertex v,
and e(é;, e;) is 0 if é; and é; are linearly dependent or 1
otherwise.

Now we can define an operator acting in Cyl®

(1+p%)

s oV GEETR

+ 2 —
Sﬂﬁf S fon/HE

VEX

(3.100)

\/5kk"]v.el,k‘]v,e,.k’ \/511"]11,6/.1‘]1;,6_,,1/

|
that corresponds to the Lorentzian part of the (smeared)

Hamiltonian. Consequently we introduce the operator H ,L*
defined by duality * on HE,

A+5) [ 4
\ 8nﬁ2 / @

+ 2 [ T *
Sﬂﬂf Zf Hi

vEX

Idet[ IR

(3.101)

124067-13



ALESCI et al.
Notice that there is no ordering ambiguity in the operator

o~

HL and therefore no ordering ambiguity in H%".

3. The Hamiltonian operator and its properties
At this level two operators HE™ and HL™ have been

implemented on H,,,. Now we introduce the operator H’
defined as

+(1+ p)HE
=Y e@HE ) + (1) (HE)T (3102)

—
HT = HE

where ¢, ¢’ run through the set of germs of bounded one-
dimensional submanifolds of X incident to a point x, and

we define HE, , as

~

er ¢ = Kl( )eljk(hk )<l>‘7x,e.ijx.e’,jv (3103)

Ay ee!

by choosing the simplest ordering for the Euclidean part.

A symmetric Hamiltonian operator.—The Hamiltonian
operator represents the quantization of the classical
Hamiltonian of the deparametrized theory of general
relativity coupled to a free scalar field. This final operator
is required to be self-adjoint on some nontrivial domain
in order for it to generate unitary evolution of the
quantum system and for its spectra to admit a physical
interpretation. Therefore, a first step toward achieving
self—adjointness5 of the Hamiltonian is to construct a
symmetric operator.

A symmetric operator A could be introduced as a

combination of the operator H. and its adjoint operator

F/I:T " The later is defined on a domain D(I-/I\I T) D 8%, such
that for every two states |¥) and |¥’) in the space S¢ we
have

(W'|HT W) = (U|HT W), (3.104)

where the bar stands for complex conjugate.
For instance we choose the following definition for H:

f: DHTY N DHT) 5 86 — H,,

i 167[Gﬁ2z \/ T + I{TTL

XEX

(3.105)

>The self-adjointness of the Hamiltonian operator presented in
Eq. (3.105) is still an open question. However, we are able to
construct self-adjoint extensions using other symmetrizations.
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Gauge and diffeomorphism invariance.—The operators
ha, are Jxe, are both gauge invariant. Hence the

Hamiltonian operator H is gauge invariant.

Considering the group of smooth diffeomorphisms, the
operator H is also diffeomorphism invariant, thanks to the
regularization adopted and the averaging procedures
involved in defining the curvature operator [33]. As a
consequence of its gauge and diffeomorphism invariance,

H preserves the space HS,.

Action of the symmetric Hamiltonian operator.—Looking
into the action of A on a spin network state 1}),
one would like to express the matrix elements of this
operator in terms of the quantum numbers labeling the
states, namely the spins j and the intertwiners 1.
However in order to obtain such an expression, it is

necessary to diagonalize the operator HT under the

square root in the definition of H. So far this aim of
diagonalizing this operator has not been realized.
Nevertheless, what can be achieved is the explicit

computation of the action of HI on a spin network
basis state 1}). We need first to calculate the

action of Hf+( —|—ﬂ2)H§, then from (3.78), (3.101)
and (3.104) we can deduce the action of the dual

operators, hence the action of H' and its adjoint.
Moreover, having the state |y, {j}, {t}), we know from
(3.102) that the action of A reduces to a sum of contri-
butions, each coming from a pair of edges incident to the
same vertex v of the graph y; we call such a pair a wedge.

The operators HT »e.e'» €ach associated to such a wedge in 7,
can be introduced as

HT, oy, {j}, {1})

= e(e.¢)[(HE, )" + (1 + p2)(HE, )]

v A7 A
(3.106)

Consequently we just need to compute the actlon of

er o and Hwe/ leading to the total action of Hme
1}). The result is presented in the following.
The calculations were done using the so-called
graphical calculus, a framework that is briefly outlined
in the Appendix along with the chosen notations and
conventions.

Consider again the spin network state |y, {j},{:})
containing the n-valent vertex wv(n > 1), from which
originate the two edges e and ¢’. The actions of the

Euclidean and Lorentzian parts of H!,, on the state
|Vs Josjers -3 kery ...}, defined in the Appendix, are
respectively
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HEe,e’ ’U;jevje’,---;k‘e/,...> = HE

v v ee’
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(3.107)
3 o 1 W, W,
— 2VG(= e ket 0 el ()
2\f( ) W, 1(v)
je je' .
jor Jor 1 111 I r Jj .
S, ; *%*%* ke
¢ . . . + + +
Te Je Te ke’ Je Te Je
and
=7 .. () [ A A PO
H%e,e’ |U;]e’ Je's -5 ke/7 . > = L \/6 (€ijk‘,v,e.j‘]1;,e’,k)(ei’j’k’Jv,e,j/‘lv,e’,k’)
St vexd v
x | = — arccos Mvekvel [V s Jors i kors )
\/5kk"]1),e,k‘]v,e,k’ \/511"]1)‘2’,1‘]1)‘2’,1/
K () — 27 . .
= 2; C(Je’]e’vke’)<a _9(J69]e’vke')>|v;]e7.]e”"';ke""'>7 (3108)
where
.. .o . . ke’ ke’+1 _je ]e+1 _je’ je/+1 2
C(]e’]e’vke') = ]e(]e+ 1)]9’(]e’+ 1) - ( ( ) ( D) ) ( )
ky(ky,+1)—7.(j 1)—j.(j,+1
_kg(key +1) = jo(je + 1) = jo (e + )’ (3.109)
2
ky(ky,+1)—7.(j 1)—j (jo+1
0(je,je/,ke/)==ﬂ—arccos[ o (ke + ) .Je(]ef ) Jele + )] (3.110)
2\/]6(]e+1)]e’(]e’+1)

—

Notice that while the operator H%, , in the Euclidean
part is a graph changing operator, hence not preserving

the original intertwiner space, the operator H%, , in the
Lorentzian part is diagonal on the basis adapted to the
pair of edges {e,e'}. Also, from Egs. (3.108) and
(3.108), we can deduce that the domain of the
Hamiltonian operator A admits an orthogonal sum
decomposition in terms of stable subspaces under
repeated action of H. This result generalizes to other
symmetrizations than the one proposed in (3.105), and it
may be of considerable importance in the elaboration of

[

self-adjointness proofs and the calculation of the evo-
lution of physical states in this model.

IV. SUMMARY AND OUTLOOKS

We considered a model of Einstein gravity coupled to
a free scalar field, in which the dynamics of the
gravitational field is described by deparametrization with
respect to the scalar field. In the corresponding quantum
theory, constructed using the techniques of loop quantum
gravity, the quantum dynamics is given by the evolution
of the physical (i.e. gauge and diffeomorphism invariant)
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states of the gravitational field with respect to the scalar
field. This evolution is governed by a physical
Hamiltonian operator, which we constructed in this paper.
The implementation of the Lorentzian part of our
Hamiltonian is based on regularization used to define
the curvature operator introduced in [33]. As to the
Euclidean part, we refined and made precise the idea,
first considered in [15], of regularizing the curvature by
means of loops attached to pairs of edges at a vertex of a
spin network graph.

By carefully specifying the properties of the special
loops created by the Euclidean Hamiltonian operator,
we were able to define an operator which is diffeo-
morphism invariant, and whose adjoint operator is
densely defined. The second property is crucial in that
it allows to symmetrize the operator and eventually to
construct self-adjoint extensions. Our regularization of
the Euclidean term can also be applied in vacuum loop
quantum gravity to define a Hamiltonian constraint
operator for which the adjoint operator is densely
defined. This question will be treated in a future work.
On a practical level, an important feature of our
Hamiltonian is that the volume operator does not appear
in it. This implies a considerable simplification of the
calculation of the action of the Hamiltonian on spin
network states.

The construction presented in this paper gives us a
concrete and tractable Hamiltonian operator for loop
quantum gravity coupled to a free scalar field. This
makes it possible to test the dynamics of the theory,
as the time evolution of spin networks under this
Hamiltonian can be computed. In particular, a ques-
tion of interest will be to study the evolution of
semiclassical states describing e.g. cosmological
spacetimes.
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APPENDIX: GRAPHICAL CALCULUS
FOR SU(2)

In this appendix we give the technical tools of
SU(2) representation theory that are needed to evaluate
the action of the Hamiltonian on a spin network state.
For a more detailed presentation, we refer the reader
to [39].

PHYSICAL REVIEW D 91, 124067 (2015)

1. The epsilon tensor
The epsilon tensor is the fundamental invariant tensor of
SU(2). For the spin-j representation, it is given in the
standard basis® {|j, m)} by

ehn = (=116, (A1)
and is represented graphically as
; J
6%21 ~m > n (A2)

It satisfies the symmetry relation e,(f,z, = (—1)2fe£,{2,, i.e.

g = (-1)¥ 2

(A3)

The tensor e/ is defined to be numerically equal to ef,{},.

The contraction of two epsilons gives
65;{,)46(/)”” =& (A4)

Graphically, 07}, is represented by a line with no arrow, and
the above relation reads

3 <
> < —

(A5)

Indices of SU(2) tensors can be raised and lowered using
the epsilon tensor. Our convention is the following:

m

" =",

vy = V€. (A06)

®All the relations and conventions given in this appendix refer
to the basis {|j,m)}, which is the usual eigenbasis of the
operators J* and J;. For j =31, the basis {|J.+1).[5.-3)} =
{|+)+.]=)—} of the space H,, is defined by specifying that
73 €su(2) and € € H; /2 ® Hj ), are represented by the follow-
ing matrices:

i1 0 0 1
(73)AB:_5(0 _1)7 €AB:<_1 0),

the indices A and B taking the values + and —. For a general
representation j, the normalized states |j, m), which span the
space H;, are obtained as symmetric tensor products of the states
|+) and |-):

| m)
_ G Am) —m)!
(2!
X (|+> ® T ®|-)® - Q®|—) +all perrnutations).
J+mstates Jj—mstates
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2. Intertwiners multiplies the symbol by (—1)/1*/27/s, Another symmetry

The intertwiner between three representations j,, j, and  relation is

J3 is given by the Wigner 3j-symbol:

L = (A9)
JioJ2 I3
lmimams = =
my m2 M3
(A7) When one of the spins is zero, the 3 j-symbol reduces to the
epsilon tensor:
The order of the spins in the symbol is indicated by a + or a m m

— at the node. Thus,

= —1JY (A10)

_ (_1)j1+j2+j3

(A8)  where d; = 2j + 1 is the dimension of the representation ;.

Intertwiners of higher valence are constructed by con-

which is a graphical representation of the relation  tracting several three-valent intertwiners. For example, the
that switching two columns in the symbol (A7)  objects

Ji Ja
. g2k wen | K T3 a k
Ur ) msimame = Z (=) = e - (A1)
po \m1 mz p —p m3 my & N
J2 VE]

form a basis in the space of intertwiners between the representations ji, j,, j3 and j;. (Note that zg,f Rmz;,n3m4 is not normalized;

its norm is 1/+/d;.)

In calculating the action of the Hamiltonian, a specific basis of intertwiner states at the vertex v is chosen. These states are

denoted by |v; jo, jors jers -3 kers kory ...) and defined as
Je Jor
ke ko (A12)
|U;jeaje’aje”a---§ke’7ke”a---> = - — - —+ —— 3 — = e,
3. 6j- and 9j-symbols
A contraction of four 3j-symbols defines the 6j-symbol,
+ Ji +
Ji J2 J3 !
I ks (A13)
ki1 ko ks
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This object appears in the following relation, which is a special case of Eq. (A19) below, and which gives the change of
basis between two different bases of the form (All):

Ja Ji Ji Ja
k . J1J2 @ X
- = dy(—1) e (A14)
& DN jugs k) 7 N
J2 J3 J2 J3

Similarly, the 9j-symbol is defined as

J1 J2 J3
ki ko ks = (A15)
hhlg s
It can be expressed in terms of 6j-symbols by the relation
J1 J2 J3 o P L
Ji J2 J3 1 R2 R3 1 62 63
by kg ks p = do(—1)*" : (A16)
w ks ls x| |Jj2 = U2 T 1k
lh 1o I3

4. Expanding invariant tensors

Any invariant tensor t,,,...,,., having indices in representations jj, ..., jiy, is an element of the space of intertwiners
between the representations j, ..., jy, and as such, it can be expanded using a basis of the intertwiner space. Expressing a
tensor with N indices as a block to which N lines are attached, one has the relations
Ji

1 . .
i = 6j1’j2d_' Ji 1 (A17)
J1

jl j]
Ji .
] J
2 h + 2 (A18)
J3 ’ I
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J1 J1 i
L 2 <j2
J3 - Zd‘” R A |

I<j3
Ja

(A19)

xT 1
Ja f4> T

as well as the straightforward generalization of the last
relation for tensors of higher order.

5. Group elements

The representation matrix for a group element is
expressed graphically as

J
-\
D™ (g) =, |l> (A20)
The inverse matrix is given by the relation
PU(g™) = emelDV(g).  (A2D)

or

X/

(A22)
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In computing the action of the Hamiltonian, we need to
know the action of a flux operator P s.; on a holonomy #,. In
the cases where the intersection v between the surface S and
the edge e is the beginning or ending point of the edge, this
action is given by

Ps;DV" ,(h,)
1 A jym
= EK(S, e)]v,eyiD(J) n(he)
; D(/’)'"ﬂ(he)(rl(j))”n
(TE]))mMD(J)mn(he) if eends onv
(A23)

if e begins from v

where (S, e) = +1 if the orientation of e agrees with the
direction of the normal vector of S, and (S, ¢) = —1 if the
orientations of e and § are opposite.

The matrix rgj Vis proportional to an intertwiner between
the representations j, j and 1; the precise relation is
J

J

(rym = wn

)

(A24)

~ -0+

where W; = i/j(j 4+ 1)(2j + 1). Therefore we can write
(A23) graphically as

j J
~W;k(S,e) K—?—»—[>—
| (A25)
11
i
g j
+ v
SWik(S,e) >_T_’_‘
(A26)
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