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Gravitational radiation-reaction in arbitrary dimension
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We use effective field theory tools to study nonconservative effects in the gravitational two-body
problem in general spacetime dimension. Using the classical version of the Closed Time Path formalism,
we treat both the radiative gravitational field and its dynamical sources within a single action principle.
New results include the radiation-reaction effective action in arbitrary dimensions to leading and +1PN
orders, as well as the generalized quadrupole formula to order +1PN.
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I. INTRODUCTION

In Ref. [1], an effective field theory (EFT) formalism for
the simultaneous, action-level treatment of radiation and
radiation-reaction (RR) effects was developed (see also
Ref. [2] for a pedagogical introduction). The EFT was
explicitly constructed for systems of localized objects coupled
to scalar, electromagnetic (EM) and gravitational fields. The
method was generalized to arbitrary spacetime dimensions in
the scalar and EM cases [3]. In particular, for a single point
particle, it yields the higher-dimensional analogue of the
Abraham-Lorentz-Dirac self-force (SF). In this article, we
complete the generalization for general relativistic (GR) post-
Newtonian (PN) systems in arbitrary dimension by applying
our method and constructing the associated EFT. The GR case
is more involved than the (free) scalar and EM cases in two
main respects: first, the higher spin of the gravitational field,
which complicates the construction of gauge-invariant fields
and corresponding sources, both central features of our
formalism; and second, the intrinsic nonlinearity of GR.

The PN approximation of the gravitational two-body
problem in four spacetime dimensions has been studied,
over the past few decades, to very high accuracy (for a wide
review of the field, see Ref. [4]). The state of the art is the
+4PN (corrected to order v%) effective action, recently
completed in Ref. [5]. Since Goldberger and Rothstein’s
groundbreaking paper [6], much progress has been made
on the EFT approach to the PN binary problem (including
Refs. [7-14]); for a more detailed review section, see
Ref. [1]. Less attention has been given to gravitational
radiation and radiation reaction in spacetime dimensions
other than four'; these will be the focus of this paper.
Although not directly relevant for astrophysical gravitating
binaries, we feel that studying this rather fundamental
problem is well motivated, both because an understanding
of a system’s behavior in general dimension complements
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and enhances its understanding in 4D (see for example
Refs. [19-21]), and because higher-dimensional gravita-
tional scenarios frequently emerge in theoretical physics,
for example in string theory. Gravitational radiation in
higher dimensions was treated in Refs. [22-24], including
in EFT methods. Specifically, the leading-order expression
for gravitational wave emission in higher dimensions, i.e.,
the equivalent of Einstein’s quadrupole formula [25], was
computed. Equation (4.25) of Ref. [24] [also Egs. (38) and
(39) of Ref. [22]] gives the energy output in gravitational
quadrupole radiation in d dimensions as

d_E G 22_d7r_(d_5)/2d<d _ 3)
do ' (d=2)(d+ 1)T[5]]

wdH‘Qij(wﬂz- (1.1)

In this paper we develop an effective action for the
radiation reaction of gravitation in general dimension (3.2).
From this action we derive both the SF and the dissipated
power, up to subleading (+1PN) order. At the leading
order, the energy output we find [(3.6) and (3.7)] matches
exactly the result (1.1). As an additional test of our results at
+1PN, we substitute d = 4 and compare with Refs. [1,26],
finding a match.

It is important to stress a relevant qualitative difference
between d = 4 and d > 4 spacetime dimensions. For PN
astrophysical binaries RR is weak, hence it must influence
the system for a long time for its effect to be significant; this
is the case for bound orbits. In higher dimensions, it is well
known that there are no stable bound gravitational orbits
for a binary system of gravitating compact objects.2
Nevertheless, high-dimensional systems can be stabilized
by nongravitational forces (in particular, short-range repul-
sive forces); RR may also have a substantial effect for
trajectories close to the unstable circular orbit, as well as for
systems with more than two bodies. As we are neither
specifying the sources’ trajectories nor trying to solve for
them, the question of binding (and its mechanisms) do not
affect the results of this paper.

*For point particles, for example, there exist unstable circular
orbits.
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FIG. 1 (color online).
radiation zone with its typical outspiraling waves is on the right.

A. Method

In this work we treat the gravitational two-body problem
in arbitrary spacetime dimension and calculate explicitly its
radiation source multipoles, the RR effective action and
important physical quantities derivable from it: the out-
going radiation, dissipated energy and RR force acting on
the system. Our method [1] divides the problem into two
zones, the system zone and the radiation zone (Fig. 1), each
with different enhanced symmetries. The system zone
enjoys approximate stationarity (time independence), since
by assumption all velocities are nonrelativistic; we thus use
the “nonrelativistic gravitational” (NRG) fields [11] to
describe it. The radiation zone enjoys an approximate
spherical symmetry, as from its point of view the system
has shrunk to a point. Hence, we use gauge-invariant
spherical field variables [27-31] as in Ref. [1] and unlike
the plane-wave decomposition used in most previous EFT
works [7-10,14]. An important ingredient of our method is
the matching of these two (system and radiation) zones at
the level of the action, using “two-way multipoles” [1].
These are degrees of freedom we introduce—integrate
in”—to couple the two zones. From the radiation zone
point of view, we think of them as sources situated at the
origin; while in the system zone view, they reside at infinity.
At the end of the day we integrate out (eliminate) all the
other degrees of freedom in the problem and remain with an
effective action which is a function of these multipoles
precisely. Schwinger-Keldysh field doubling [32], which
was beautifully adapted to the classical context in general in
Ref. [33] and was used in studies of the binary problem in
Refs. [1,14], is an essential ingredient, since it allows the
derivation of dissipative effects from action principles. As
we have shown in Ref. [3] and as is further exemplified
here, a clear advantage of our formalism is its ability to
naturally extend to general spacetime dimensions.

B. Conventions and nomenclature

We follow the conventions of Ref. [3]. Thus, the flat
d-dimensional spacetime metric 7,,’s signature is mostly
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The two relevant zones: The system zone is on the left, with a typical stationary-like field configuration. The

plus, and also D == d — 1, d := d — 3. Regarding the d + 1-
dimensional unit sphere, we define Q; , to be its area; on it
Joo is the metric, Do is the covariant derivative,’
and Ay, = DoD® is the Laplace-Beltrami operator.

The eigenfunctions of this operator on the d + 1 unit
sphere will be given by various multipoles enumerated
by an order #; in treating their eigenvalues we shall make
use of ¢, =£(£+d) and & =c,— (d+1). We shall
designate by e the sector (scalar, vector, tensor) of different
multipoles, with either ¢ € {S,V.T} or e€{0,1,2},
respectively.

Lowercase greek letters stand for spacetime indices
{0..D}, lowercase latin letters for spatial indices {1..D},
uppercase greek letters for indices on the sphere
{1..(d + 1)}, hebrew letters (X, 2) for different vectorial
and tensorial multipoles on the sphere, and uppercase latin
letters for spatial multi-indices, i.e., I =1, = (ip...iz),
where each iy € {1..D} is an ordinary spatial index, and
¢ is the number of indices. We use the multi-index

summation convention with implied %,

1
P;Q; = ZPIKQIK = Zﬁpil...ifQil...iw (1-2)
¢ ¢ 7

as well as the multi-index delta function defined through
01,5, =06 ...0 so that factors of #! are accounted
for automatically.

While as usual ¢ = 1, we specifically wish to keep the
gravitational constant in d dimensions, marked G,. We
choose it and the normalization for the gravitational action

icje?

so that the Newtonian potential is always —G, M/ r, and

At some points we will be interested in the covariant
derivative with respect to an angular variable Q in the full d-
dimensional space, and we will mark it Dg. Dg will be reserved
for the more common case of variation restricted to the € .
sphere. Likewise, the full d-dimensional metric, when it relates
spherical coordinates, will be marked g?zg'- We note that
g% = r*ga» where r is the radial coordinate.
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the action is given by (2.1). It is related to the commonly
used constant’ G, by G, = (dTGd Both definitions
identify for d = 4 [24,34]. The constant G, also has units
of LY/M.

We use the convention that the Feynman rules are real
[35], as befits a nonquantum field theory. We also denote

YIRS EDS

II. FROM EINSTEIN’S ACTION TO FEYNMAN
RULES

(1.3)

A. Action for metric perturbations

In GR, the action for the metric g,, coupled to matter is
given by the sum of the Einstein-Hilbert (EH) action and a
matter term:

= fonil

R+ Ly,
I)QdHGd

(2.1)
where £, is the matter Lagrangian. We shall calculate the
generation and reaction of gravitational waves (GWs)
propagating out to infinity in asymptotically flat space in
spherical coordinates. The metric splits to g,, = g,, + h,w,
where g, describes the background flat spacetime in
spherical coordinates’ and h,, is a perturbation on it.
|
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The EH term is the kinetic part of the action and describes
the propagation of GWs. The matter term describes the
generation of GWs from (matter) sources. We expand the
kinetic (source) action to quadratic (linear) order in h,,
to find

Sep=r— | /= he yhﬂ +hy Bpa
. 4(d+1)gg,+lcd/ v [2 . fidism
(2.2)
mat/ddx\/ ]’l JIH. (23)

We use the action composed of (2.2) and (2.3) to construct
our far zone action in terms of spherical variables. As we
compute corrections only up to +1PN, and as far zone
nonlinearities enter only at orders higher than +1PN (see
discussion in Sec. III C2), we need not take them into
account here; this justifies expanding the action to quad-
ratic order in h. The near zome (aka “system zone”)
nonlinearities do enter at 41PN, and are treated in
Sec. IIC.

We use spherical harmonics to decompose the fields and
sources to 11 families of fields, comprised of the seven
scalar families &, h,,, h,,, h;s, h,s, hg, hg, the three vector
families Ay, h,n, hy, and the single tensor family /hya,
defined through (see Appendix B)

. dw .
_ Lw —iwtA Lo —iwt
hy = a hii”npe —/27[ § hi”np e,
L

htr — ih%}wnLe_lw[a hrr — zh{:}fynLe—mn’

th = i(kf“’agnL + l’lf‘xwi’lég)e_iwt,

_ Lw Lw Lw,,L —iwt
hoo = i[h QQ/ + hS ngg, + hyg xsm’ + hg&ngagole™ ",

where we use the scalar multipoles nk, the vector multi-
poles nfg, and the tensor multipoles nfyo described in
Appendix B. They are dimensionless and depend only on
the angular coordinates. We shall at times omit L, @ indices
for brevity.

Substituting the new fields (2.4) into the homogenous
action (2.2) and using the definitions (B4), derivative

“In terms of which the overall prefactor of the Einstein-Hilbert
action is 161G in arbitrary dimension and black hole entropy is
given by i

See Appendix A; henceforth, covariant derivatives are asso-
ciated with this metric.

I’lrQ = i(hf‘”f)gnL + hfé"nﬁg)e_i“”,

(2.4)

[
relations (B6)—-(B11) and normalization relations (B12),
we find the homogenous action decomposes into three
independent sectors, namely spherical scalar, vector and
tensor.

At this point we follow the prescription generally out-
lined in Ref. [27] and applied in Ref. [28] for higher-
dimensional black holes to write the action in terms of
gauge-invariant fields. We solve for the algebraic fields
[three scalars (C10) and d vectors (C17)] and reduce further
over the gauge degrees of freedom (again, d free functions
in the vector sector and three in the scalar). For the full
derivation, see Appendix C. Using our d gauge (diffeo)
functions [each one eliminating two degrees of freedom
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([27])], after the dust settles we are left with three types of gauge-invariant master fields, one type in each sector [36—42]; we
call them Hre, f)ﬁ“’, f)rLc(S) These appear in the action in similar forms [see Appendix C, in particular (C5), (C16), and (C26)]:

N, oa [ Hd+1)(£-1)¢ A(£ = 1)(¢ + d) .
Sun = Y g [ [ g e+ I D g e e, - Db
. 8(d+1)Gy d(f+d+1)(f+d)b f (¢ +d+1)¢ b hntd e, (e, = d)biaha
(2.5)
A d¢+d+1)(¢ +d)
20+d+1 RS . = )
g - (a)z . ++a,), (2.6) v G
r A A
RV — (d+1)(¢+d+ 1)
. . t.d g
L _Q+d/2) _ _an : 200 -1)(¢+d)
where N, = FT(r14a)2) . @esa We note that for 8(2{.,. D
d =4 the scalar and vector expressions match correspond- r = (2.9)

ingly Eq. (3.80) of [1]; there is no tensor sector in 4D.

For the inhomogenous (source) part of the action (2.3),
we similarly decompose the sources T#* to T", T"", T"", T",
T7, TS, TS, T™, T, T®, T®? as in (D1). Collecting the
sources into the combinations 7, 7%, 7% matching the
gauge-invariant master fields [see Appendix D, in particular
(D15)—(D18)], we find that the action for the interaction
of the fields with their sources is given by (DI14), and
the complete action in our gauge-invariant variables is
comprised of three parts:

S=28548" 45T, (2.7)

where

i/ |:GdR 2f+d+lf)*g[)e ([):Té +C.C.)
(2.8)

for all sectors € € {S,V, T}, and

= Gret (T T)

with ry := min{7/, r}, ry == max{r/, r}, c, .

. 20+d % 7+
—iw* T Gy CZCZ deA/Q(wrl) h

= Mf,&!R;;; and

Variation of (2.8) yields the master wave equation [compare
Eqgs. (2.14), (3.18), (3.26) of Ref. [3], and Egs. (2.9), (3.8),
(3.49), (3.57) of Ref. [1]°]

oS

0=—r
o0

N, N
= 0d 2evat (g2 4 g2 4
GaR; ,

_Te
79,

20 4+d+1
La> ¢
r
(2.10)

B. Feynman rules: Propagators and vertices

The solutions to the homogenous part of such wave
equations are composed usmg the origin-normalized Bessel
functions j, ;,(@r) and hﬂd/z(wr) (see Appendix E and
Ref. [3]). Hence, in the language of Feynman diagrams, we
can represent the retarded propagator for the various waves
using the diagram

(wra) ; (2.11)

(+d/2

T

Mf,[i =

In particular, M,, ; = [d!!(2¢ + d)!!]”

®Notice that our subscripts Z, d in R .

2OHHAN(1 4+ d/2)T(€ + 1+ d/2)

"inodd d; M, ; = Z[d!/(2¢ + d)!1]”"

(2.12)

in even d.

,carry a different meaning than the subscript s in Ref. [1]’s RS. The s in Ref. [1] denotes the field

type, which for gravity is always 2; we choose to emphasize the Z, d dependence.
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The vertices (source multipole terms) in the radiation zone are found by matching with the system zone according to the

diagrammatic definition

_in = =

, (2.13)

where the blob on the right-hand side means one should sum over all possible near-zone diagrams with an outgoing
radiation leg. From the radiation zone’s point of view the sources Q' are located at the origin r = 0; hence the radiation

zone field can be written as

r

0277 (1) =

On the other hand, in the full theory we may also use spherical waves to obtain the field outside the source as

hmm:—/wvmmeﬂﬂ

From the comparison between (2.14) and (2.15) we read off
the source multipoles as

=-Q (—z’w%*d GaCy d) hy (wr) (2.14)
=— [/ dr’Tiw(r’)jH;i/z(wr’) (—iwzf‘*aGdC;’a)izLa/z(a)r). (2.15)
|
_ _QLw — _OHlw
(2.17)

o= [ @ gplonTi0. @16

Following Refs. [1,26], we call this matching process a
“zoom-out ballayalge”7 of the original source distribution
T¢(7) out to the multipole QL”, carried out through
propagation with j, +a2(@r). Thus, we find both the source
vertex and vertex for the doubled (hatted) source,

"French for “sweeping away”; Poincaré coined the term
[43,44], describing the process where a charge distribution in
some spatial region is “swept away” to the boundary of that
region, leaving the potential outside unchanged.

At this point we first introduce field doubling and employ
the classically adapted Closed Time Path formalism; we
work in the Keldysh basis. For a detailed description, see
Refs. [1,33].

It is worthy of note that the series expansions of both
jf+21/2 (E3) and of the sources 79, (D15), (D17), (D18)

include only integer powers of w. This implies analyticity
of the multipoles Q(w) as functions of (complex) fre-
quency, for any £ and d, which in turn results in local-in-
time expressions for the time-domain multipoles Q(#)—
that is, the multipoles at a certain time ¢ themselves depend
on the energy-momentum tensor at the same ¢ alone and do
not contain tails. The effective action S can still contain
tails—this will happen in the case of noneven dimension
[45-47]. Using the inverse transformations (D2)—(D5),
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source terms (D15)—-(D18), integration by parts and the modified Bessel equation (E2), we find the radiation source

multipoles in the frequency domain:

Lo (d+1)¢ / » [ n( w2r? )
== xxk dTw ~— + r(’),
s dey(¢+d+1) STF d+1 d
+ 2i@rT (¢ +d + 1+ r8,) — @ 1T + T4 (d 1t £4d+rd )]j‘ﬂm(wr), (2.18)
egtDZk ;
Lo = Ciaal Zi—il/de[r_(f+d)XbL_lTZ?8r( 7+d ij /2(wr)) + iwT% xbel- lJ,/,er/z(a)r)] (2.19)
Lw (f — 1) (D) (D) D ....bb'L-27ad
M T, Rabk, €24tk d”xx TG ]f+d/2(wr) (2.20)

Fourier-transforming gives the multipoles in the time
domain, recorded explicitly in (4.1), (4.2), (4.3). These
may also be written using the d-dimensional generating
time-weighted function &, ;(z) defined in Ref. [3] (follow-

ing the 4D definition [48,49]) as

1
oL — / Pl / 6, ()T (Fou+zr).  (2.21)
-1

The multipoles represent the gravitational source scalar,
vector and tensor multipole moments. A simple test of
substituting d = 4 shows these multipoles coincide (for
any ¢) with the scalar and vector multipoles given by
Refs. [1,26] [see Egs. (3.88) and (3.89) of Ref. [1]]; there is
no tensor sector in 4D. In general d, for a system of N
masses at leading PN order (low velocities, weak potential),
the leading multipoles (of order £ = 2, or quadrupole) of
each sector are the mass (scalar, or electric) quadrupole, the
gravitational source current (vector, or magnetic, +1PN)
quadrupole,® and the mass-tensor quadrupole (+2PN),
respectively:

J - ZmA (x x/ —lé’fx ) , (2.22)

A

” - 2ZmA x exabx o) Ir, (2.23)

- ZmA el X vl v (2.24)

We note again at this point that in order to go beyond the
+1PN approximation, more Feynman rules that correspond

¥The factor of 2 between the gravitational source current and
the mass current follows Appendix A.3 of Ref. [1].

to radiation zone interactions need to be included; see the
discussion in Secs. IT A and III C.

C. Source nonlinearities

In order to describe the radiative multipoles of a system
of masses beyond the leading orders, we prescribe
how the system’s 7 is given by the masses and their
coordinates. From the inhomogenous coupling (2.3), T# is
the source for h,,, represented as a one-point diagram
(compare Refs. [1,50]),

v 656 h;u/
uv L

(2.25)

In the system zone we describe the metric using the three
NRG fields /,, <> (¢, A, &), defined by

ds? = &2 (dr — 24 - d%)” — e‘z"’/‘}(@j + 0y;)dx'dx’.
(2.26)

This definition almost matches that of Refs. [11,35], but it
includes a factor of 2 in the definition of the coupling of the

gravitomagentic vector potential ;\ as introduced in the 4D
case in Eq. (A10) of Ref. [1]. The corresponding sources

are given by T <> (p,/,j, ¥), defined by

- - 1_..

This implies

124065-6
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We refer to p, as the gravitational mass density, to J as the

gravitational source current, and to XV the gravitational
stress; together they comprise the NRG source fields. We
further mark X = X% and note that T = p, +52. In

terms of these source fields, we rewrite the expression

T wii —o Q for the radiation source multipoles (2.18), (2.19),
and (2.20)—after Fourier-transforming to the time
(2.28)  domain—as follows:
|
L (d+1) / b1 {A<(K+El)(f+21+1) >~, .
- P ~ d”xxgrp |d = +ro, ~ (ird
Cs df+d)(¢+d+1) STF d+1 Jf+d/2( )Py
d d+17 S 3 . 1. .
=2 DG (0T - T+ o i70) <r2 (pqs + §Z> B xaxbﬁab” ’ (2.29)
I(QDa;?k o , b=l - .
NS hat / @ [(rﬂdefw/z("rat)) —adt jf+a/z(ir8t)2“”xb“"] : (2.30)
£¢=1) o) o o e .
o= ) €§<a37kf€ga/)b/kﬂ/dexbbL PE(F )y 02 (i10,). (2.31)

We remark that upon substitution of d = 4, equations (2.29), (2.30), and (2.31) reproduce Eq. (3.105) of Ref. [1] [using
(E2)]. To use the NRG source fields defined in (2.28), we expand the diagrams perturbatively in PN orders. We now focus
on the N-body problem of masses {m4})_, whose trajectories are described by {X,(7)}Y_, and influenced by their
gravitational interactions. For such systems, the gravitational mass density at leading and next-to-leading (41PN) orders is
found by Taylor-expanding (2.26) and varying with respect to ¢ [using (2.27)] to be

.
o) =~ ((CO— ) =~ ; .

| | o

" .
o d—+ 2 Ggmp
=S mad@-zat) (1+ SR - Y R
o 2d sz IZA() =T ()]
|

When other (not only gravitational) interactions are involved Sij — i mavi v 5(x —x,). (2.34)
in maintaining the bound system (see Sec. I), they also et ATaTA A

contribute at +1PN. Their potential energy is to be included
in the nonlinear correction (2.32), similarly to its last term (or
in its stead, if the gravitational potential is much weaker than
the PN parameter, Pgrayity < 0> ~ Poher)-

Nonlinear contributions to the additional NRG source
fields J and XV are to be derived in similar fashion. As we

These, of course, match Egs. (3.107) and (3.108) of Ref. [1]
for d = 1.

III. APPLICATION AND RESULTS

Having set up the apparatus of Feynman rules (by sector ¢

here calculate only up to +1PN, the leading orders of 7 and
>l suffice:

jZZZmAEAé(-x—xA)’ (233)
A=1

and by multipole order #, in Sec. I B), we now diagramati-
cally construct the RR effective action [1-3]. We expand

order by order in the PN expansion, i.e., in the small

GyM 1/2

parameter v* ~ 4%, and recalling that wr ~ v'/2 counts

I

as half an order. A general contribution to this effective
action is given by a vertex-propagator-vertex diagram,

124065-7
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—iw* Gy Cl i QL Qr* 4 cc (3.1)

Below, we calculate the RR effective action to the leading and next-to-leading orders; we then discuss higher-order

contributions.

A. Leading order

The only contribution at leading order (LO) is that of the scalar quadrupole (“mass quadrupole,” s = 0,7 = 2, also

called E2):

LO
Seftw = =

—iwdT Gy CS QLQWQLQW + c.c.

(3.2)
_ _Zw(i+4 G _ Wd(d_':3)(d+2> _ QLQUJQLQOJ +ecec.
20+4 (3 4+ d/2)T'(1 4+ d/2)
|

Following the procedure of Ref. [1] in Egs. (2.57)—(2.61)  The LO dissipated energy is given by
and Sec. III.C. 1, we can immediately find from this o .
expression the RR force on the system’s constituent dEXOeer . od(d+3)(2+d) TR
masses, the effective potential, and the energy dissipated do w 400 ( a+ 4N G4lQg(w)[",  (3.6)

as radiation. In the remainder of this section we will focus,
for clarity, on time-domain results for even spacetime

dimensions d (odd 21), where (3.2) reduces to

mGdééza?HQéz- (3.3)

The LO RR force is given by9

Fi.LO,even _ 5SIgf(f) e
C8R(1)
1 dd+3)2+d) 60Y 4 i
:(_)%Gd (A—'— A)( + ) AlQS d+4Ql.]
4011(d + 41 8% (1)
(3.4)

and it can be represented by a potential which generalizes
the Burke-Thorne potential [51] to any even dimension,

d(d+3)(2+d) o i
PET v ooy, (35)

Vi = ()4 G muix

’Notice that a factor of 5 L1 5 from switching from multi-index
notation L, to usual 1nd1ces i ], see Sec. [ B.

which in the time domain gives the dissipated power as

<PLO even> _ d(d + 3)( )

2
rad 4d”(d 4) Gd<a Q ()> P

(3.7)

using ij(t) to LO as given in (2.22). We note that for
d =4, (3.4) and (3.5) reproduce precisely the well-known
results for the Burke-Thorne potential and RR force, and
that for any d, (3.6) reproduces precisely the generalized
quadrupole formula of Cardoso et al., (1.1) [24]'; (3.7)
matches Einstein’s quadrupole formula in d = 4 [25] and
generalizes it to any even dimension.

Equation (3.2) gives the leading-order RR effective
action (and allows the other quantities to be equally derived
from it) in any dimension. Below, we will discuss the
higher-order contributions; we compute the +1PN correc-
tion and give an outline of higher-order contributions.
Although in this section we focus on even d, our frequency
domain results hold for odd d'' as well. The main differ-
ence in odd dimensions appears when Fourier-transforming
back to the time domain, where due to nonanalytic features

In order to revert from G, to G, see Sec. I B.
One may also formally discuss the RR effective action in
noninteger d; see Ref. [3].
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(branch cuts) of the effective action as a function of
(complex) frequency, the transformation introduces non-
local (in time) tail terms in the effective action (see Secs. II.
C and IV of Ref. [3] for a thorough discussion, and see
Sec. IV here).

B. Next-to-leading order (4+1PN)

At the next-to-leading post-Newtonian order (NLO,
which is +1PN), four effects must be considered; we shall
label them E3, E25!, E25' and M2, as we now detail. The
scalar quadrupole is supplemented by the scalar octupole
(s = 0,7 = 3, aka E3), found exactly as in (3.2), but with
¢ = 3. In addition, the scalar quadrupole itself becomes
more complicated, as it must include +1PN corrections
(specialized to the N-body problem),

50k

PHYSICAL REVIEW D 91, 124065 (2015)

o 0F+8'0¢ =) mux+6'0¢. (3.8)
A=1

where 51Q§2 includes five possible corrections: the +1PN
nonlinear corrections to the gravitational —mass
(6! QézNLl), the contribution of the gravitational source
current (51Q§2J), the contribution of a retardation effect
from expanding the Bessel function j, La/2(@r) to sub-
leading order (5' Qézb), a term with double time derivatives
of py (6'Q7 0%), and a term with double time derivatives
from the derivative of the Bessel function (51Q§28b).
Altogether, for any 7, d we find the first correction to be

=6'QYNL1 +6'Q%J + 6'05b + 6' Q50% + 8' Q50D

d+2 G
=3 [ (G- o) +
2d B#A llx — xgl|

and specifically for # = 2 (the correction relevant to +1PN order),

5 QLaw

(g

A=1

G, m
S ) +
B#A llx — xgll

2(d+1) o3 7) - (& + (£ +4)d + 4)w2r2>] (39)

d(¢ + d) 2d(¢+d)2¢+d+2) )] '
2(d+ 1) (3 5) - (&2+621+4)w2r2)] (3.10)
d(d +2) 2d(d +2)(d + 6) '

This exactly coincides with Egs. (3.109) and (3.110) of Ref. [1] for d = 4, as obtained in Ref. [52] and reproduced in
Ref. [8] within the EFT approach. At +1PN, The correction §' Qf itself can appear in either the source vertex Q¥ (E26') or

the hatted vertex O° (E25").

Finally, the +1PN action includes also the leading-order vector quadrupole (s = 1,7 = 2, aka M2), which includes
different QLZ“’ L2 terms. We sum over the R indices to define the bivector multipoles

Lo __
v =

1
o [
£+d+1

We accordingly define QM and replace C

w1th

M _ AV
Cf,;! - Cf,a *

. 1 S .
rA (W( g, o (@r)) J+Jf+d/z(wr)r‘ E)](k”xL D,

Dy(d+1,1)
Dy(d+1,0)

(3.11)

(3.12)

which accounts for the summation over the different X combinations using (B5), following Ref. [3]. At +1PN order, for the

~ <>
vector contributions we can set j, ;,(wr) =1 and X = 0; the other terms only enter at +2PN and onwards.
With these definitions, the four contributions combine to produce the radiation-reaction effective action to NLO, given by

SN LO __

. Lrw AL Lyw ML L AL
eff.w = _la)d+4GdCS ( 2 2w* + 5 Q 2 zw* + Q 2w6 Qszw*)

- d+6
— i0"°G,C} QLWQW

s d+4 M HLow ALywx
i Gdcz,a v Oai  +cc.

(3.13)
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C. Beyond +1PN

Our method allows identification and enumeration of
higher-PN-order corrections as well. While we do not
calculate them explicitly here, it is convenient to see
how they too fall under the general prescription. Effects
such as higher-order multipoles (£), higher-spin (s) sectors,
retardation effects or nonlinearities in the source terms all
introduce integer PN order corrections, and will thus only
enter at +2PN. Radiation-zone nonlinear corrections and
the effects of spin (intrinsic angular momentum) enter at
different PN orders depending on the dimension, as we
describe below.

1. +2PN

At +2PN, our formalism captures easily all the relevant
near-zone contributions. The tensor field first enters at this
order via the tensor quadrupole (s = 2, = 2, aka T2). The
vector sector now also includes the vector octupole
(s = 1,7 =3, aka M3), as well as +1PN corrections to
the vector quadrupole (M25') and (M25"), which arise from
the contributions of the gravitational stress (&' Q‘L’ZZ), the
contribution of two time derivatives of the gravitational
current (&' Q{zaZ), a retardation effect (&' Q‘L/zb), and a
derivative of the Bessel function (5'Q) db). The scalar
sector now goes up to the scalar hexadecapole
(s =0,7 =4, aka E4), while corrections to the lower
scalar multipoles include five analog corrections to the
octupole (6'Q{382NL1, 5'QE3J, 5'Qi382, o! Q{}b,
8'Q7 0b) and several new corrections to the quadrupole.
For éxample, the contribution of 72 is given by

A

ST2,, = —i0™G,CT L 0&" 0Z"". (3.14)

2. Radiation zone corrections

We have thus far taken the propagator to be linear in the
radiation zone (2.11). However, there are nonlinear cor-
rections to the propagator, which may be included through
systematic inclusion of nonlinear terms in the action (2.2);
see also the discussion in Sec. Il A. The first of these
contributions is represented by Fig. 2 and is interpreted as
scattering of the outgoing waves off the background

Q" Q"

FIG. 2. Correction to the radiation reaction due to nonlinear
interaction in the radiation zone.

PHYSICAL REVIEW D 91, 124065 (2015)

curvature generated by the entire system’s total mass M
(labeling the vertex in Fig. 2). Its value includes a factor of
the gravitational potential G,M/ 1‘7, where 1 is the typical
wavelength for radiation. As A~ ™!, the value of such
contributions is suppressed by at least (a)r)‘}GdM / rd ~
v GM/ r relative to the leading order. In PN terms, this is
equivalent to +(1 +%)PN order. In d =4, it implies a
+1.5PN contribution; it is suppressed even further in higher
dimensions. For further discussion and calculations for the

4D case, see Refs. [1,8,10,53,54]. In the high-d limit,
linearized gravity suffices.

3. Spin effects

Depending on the system’s parameters and nature of its
constituents, spin effects may also need to be considered.
This adds complexity and introduces new interesting
effects which are worth exploring also in higher dimen-
sions. The important scales determining the PN order—in
addition to the typical orbital separation R and typical
orbital velocity v—are the typical size of the spinning body
ro, its moment of inertia / ~ mr3, and its typical angular
frequency wy; together these give the spin
(3.15)

S~Ilwg ~ mr(z)a)s.
Spins can couple to the orbital angular momentum

L ~muR (3.16)

or to each other. Couplings of the first type (spin-orbit, S-O)
appear in the action (at leading order and up to dimension-
less factors composed of the masses) as

G G 2 2
SSOZ#So'/thS’LN/dI n:l Urows,
rd+2 Rd R

while couplings of the second type (spin-spin, S-S) appear
(again at LO and up to the masses) as

(3.17)

2

G G 2.4
SSS:#SS‘/th—S‘SN\/dZ n:l roaz)s,
rd+2 Rd R

(3.18)

where in the above equations we omit the indices of spin
and angular momentum tensors since we are interested only
in orders of magnitude. In terms of the post-Newtonian

2 we recall that (;”52 is the leading order,

parameter v
and that

0> 24, (3.19)

=

where similarity occurs in the case of highly compact
objects such as black holes (see Ref. [55]). We focus on two
interesting cases: corotation (w, ~ @ ~ %) and maximal spin

124065-10
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(g ~ i(; 1) In the case of corotation, we find that S-O

effects enter with a suppression of v?(%)? corresponding to
PN order 1 4 2/d, while S-S effects enter with a suppres-
sion of v*(*)%, which means PN order 1+ 4/ d. For
maximal spin, S-O coupling incurs a suppression of v
(0.5+1/d PN) and S-S a suppression of (%2)? (2/d PN).
Thus, for corotation, spin effects only enter beyond +1PN
in any dimension. For maximal rotation, while in 4D S-O
enters at +1.5PN and S-S at +2PN (compare
Refs. [4,12,13,56-64]), as the dimension grows, both

effects become more and more important, with both effects
|

PHYSICAL REVIEW D 91, 124065 (2015)

at +1PN for d =5, and both entering before +1PN at
d > 5. Also, for d > 5, spin-spin interactions become more
dominant than spin-orbit.

IV. SUMMARY OF RESULTS

In general spacetime dimension d, the radiative field
decouples, at the linear level, into three sectors—scalar,
vector, and tensor—with respect to the Qg , sphere. The
radiation is generated by the corresponding multipole
moments of the source. The linearized-GR multipoles
are given in the time domain by

. (d+1) /dD STF{A<(K+EI)(L”+ZJ+ 1) r2 2>~, , .,
== = = x| d = +rd, +—=0 ~ i (ir0,)T
O = tae+atn L d11 70 )ievaplird)
~ ~ . £4+d) (¢ +d+1 ~ . ~ )
“2x e+ a0, gpliroo e (UL o )i o)1 x0T
(4.1)
L 655’3”‘/ £+d+17 th_l ta _ ; . ac .beL—1
N f7+21+1 x|(r Jey d/z(’ra ) WT —Jf+21/2(”’ar)atT X ) (4.2)
f(l’ﬂ_l) D D 'L=27ad .

s = =5 Exant, o, / dPxx?12Te o (ird,), (4.3)

where T# (7, t) is the energy-momentum tensor. It is useful to sum over the X coordinates to replace the vector multipoles

with

1 - 1 =~ . o < _
oL :%/dl)x[r/\ <m( “d“]f d/2(1r8))J—i—]ma/z(zr@,)r- Z)](kfo ),
r

£+d+1

These multipoles share the same form in any spacetime
dimension. The Feynman propagator (2.11) introduces
2¢ + d factors of w into the RR effective action (3.1). In
even dimensions, these are transformed to the time domain
to become 27 + d time derivatives.

For the N-body problem at leading post-Newtonian
order, the radiation-reaction effective action includes only

. 12 i)
the leadmg order of the scalar quadrupole J =

S ma(x)TF (2.22), and the action reproduces the
generalized Burke Thorne potential, as well as Eq. (1.1),
as described in Sec. IIT A.

At +1PN order, contributions arise from the scalar

(mass) octupole,
|

ZmA[(d+2v2 —Z _'deB )xL2

B#A llxs — ;CB”d

2(d+1) R (d* +6d +
A dd+2) " +2)(d

(4.4)

[
Ly _ Aijk
s — =S

e
= D+?2

(8xk + 5% x4 5k x x|
A

(4.5)

from the vector (current) quadrupole,

A J Nas (4.6)

Z

and from corrections to the scalar quadrupole,

0,(X4 - vAxA D+

2The LO quadrupoles, as well as the LO radiation reaction in each sector, are gauge invariant; for further discussion, see Sec. 3.3.1 of

Ref. [1].
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Taken together, we find the radiation-reaction effective action to +1PN, which in the case of even dimension d is

A dd+2)(d+3) . A
240 = ()26, [ Tt ) )(Q§2<9§’+1Q§2+Q§23?“51

2411(d + 4)!!
d(d+4)(d+3) ALy ad+3 AL
6a11(d + 6)!!

This is the main result of this paper. It matches Eq. (3.111) of
Ref. [1] in d =4 (upon reintroduction of 1/£! from the
summation convention) and extends it to different dimensions.
The energy dissipated from the system, as well as the
gravitational SF acting on it, can be read off from this equation.
While all the results of this paper, presented in the
frequency domain, are valid for any spacetime dimension,
|

S = Gy / dtZ s (&P

Se(t):Qz(t)[<;H(2£+&’)— ( ))a”*dQL - / dt( 62”"QL( )>

where ¢ € {S,V, T}, H(n) is the nth harmonic number,
and regularization (hence the effective coefficient of the
local part) depends on short-distance details of the system,
and hence should be determined by matching with the
system zone. For even d (and specifically 4D), this
nonuniversality of the effective coupling is well known
to first appear in the +1.5 PN tail correction
(cf. Refs. [3,4,8,19,65]); in the odd d case, however, it
comes up already at leading order. Moreover, no non-
linearities are required for this nonuniversality to arise (it
will occur, for example, for a free scalar field as in Ref. [3]).
The odd-dimensional setting may therefore be considered
as a simpler setting to tackle such matching.
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APPENDIX A: PROPERTIES OF SPHERICAL
DERIVATIVES

The generalized spherical metric for coordinates
{t, 7",91, Qz, ...,Q;jJrl} is

glw = dlag{—l, 1, r2H1, r2H2, ceey r2na+1}’

where 6(a — b) = 1 for a > b, otherwise 0. The Riemann tensor on the sphere is

Ro,0,0.0, =

90,9.90,9,

i1
I; = [ [ sin’Q@ (A1)
=1
from which we find all the Christoffel symbols
1o _lo «
+I0, = ;59,,’ F(txﬁ = Fz/; =0,
(A2)
—90,0,90,9. (A3)
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We shall also make use of the relation

7 gooy = d+1 (A4)
and note that
Joo o = 0. (A5)
The volume element is
=gdix = rit! H (sin Q)1 dedrdQ, - - - Qy, | £ dir*drdQ,, . (A6)

i=1

Using the Riemann tensor we find the commutation relations for a tensor on the sphere:

[Dg,. D, Vo, = Rgfghgu Vo, = 90,0,V (A7)

The commutators for tensors give
[DQ,Z7 DQb]TQCQd = 90,9, TQde — 99,0, TQan + gQanTQbQE — 90,9, TQGQF’ (AS)
[Day, Dol(DarVp) = (d+ 1)DVp = gopDar Ve (A9)

APPENDIX B: SPHERICAL FIELDS

For a rank-2 tensor A, in d dimensions, we use the following spherical decomposition (A’s L, w indices are suppressed):

All Atr AZQ
Ay =| Ay A, Axg
A A Agy
Ayng  A,ng AOgny, + Anngg
_ i o Anng A,0qny + Aznkg emiot, (B1)

L A L L L
Agnge + Ashge + Axliggg T Axallgaoq

where we use the scalar multipoles n”, the dlvergenceless vector multipoles ”xg 3 and the tensor multipoles ”mz/gg’ (which
are symmetric, traceless and d1vergenceless) * These multipoles are all dimensionless and depend only on the angular
coordinates. They are related to the scalar, vector and tensor spherical harmonics:

"The vector multipoles are enumerated by an antisymmetric multi-index ¥ taken from the hebrew alphabet, representing D — 3
spherical indices:

d+1) 1o
nko = el DY nt = (x(F A V))gant, (B2)
where €gz H()za 1 is the completely antisymmetric symbol on the Q, -sphere, A is the exterior product and * is the Hodge duality
operator [66—-69]. The spatial Levi-Civita tensor will be marked eE,?.?.aD.
The tensor multipoles (of rank 2, generalizing Ref. [70]) are enumerated by two antisymmetric multi-indices N, X':

a+1) (d+1
”xx/gg' = gsz) ;Q’q)ﬂD\qu} kL (B3)
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L
X c
L_ X L _ L L ~r s L
n- = - = YS, DQI’Z = YEZ’ ooy = o™, ooy = DQDQI + = Jdoo |N-,
r d+1
L X5 N L 1 L L L xxmg/ X2
Nyo = P Yy, Nyoo = E(Dﬂnm/ + Dangg), Ny = T =Yoo (B4)

Using Refs. [3,71,72], the numbers D;(Zl + 1, €) of such independent multipoles of order £ and sector € on the Q; , ;-sphere
are

(20 +d) (£ +d—1)! (6 +d) (26 +d) (¢ +d-2)!

Dy(d+1,0) = Dy(d+1,1)=

d\?)! ’ B (d—1)(¢+1)! ’
. d+2)(d-1)¢+d+1)(¢-1)(2¢0 +d) (£ +d-2)!
2d'(f+ )!
The spherical multipoles satisfy the derivative properties (using Appendix A)
: / L )
atth = —iwh, atha) - th’ arnx - 07 ar-xX = —Xx (B6)
r

DQI’le = 0, Dgl’lﬁg = 0, DQ”&DQQ’ == Dg/néjgg/ = 0, (B7)

Yyl 0, Doty — L pont. pant — - B8

¥ nkyq =0, gy = A ank, QMo = =5 e (B8)

where a prime denotes r derivatives (' := 0,.). They are eigenfunctions of the Laplace-Beltrami operator on the (ZZ +1)-
sphere, A, | = Do D, with eigenvalues

Ay nt = —cont, Ay nko = —cnky, Ay, Doxt = —(¢c; — d)Dgn*, (B9)
AZI+1”§Q = —(cs = Dngg. AZIHnéQsz’ =—(cs— d)”égg/’ (B10)
Ay b =—(cy—2(d+ 1))k, Ay nfaoq = —(¢s = 2)ngag0- (B11)

The scalar, vector and tensor basis elements are orthogonal to each other, and we use the following normalization conditions
in d dimensions [71,72]:

r -
/dQEIH”LL/(QZlH)” 7 (Qy14) = Nf,[iQZiH‘Sff’&LfL;ﬂ
QQY L, _
/ d g7 Dany, Don™ = c;- Ny 5, 16¢001,1,»
104 v O.
/ de+199 nNQnR/Q/ = Cy Nf,d9d+15ff/5L/L;,5RR/v

4 L ~
;9% " nQ\I/nQ’\I/’ =(d+ 1)Nf,&93+15ff’5LfL;n

o ww L 2Ly des 0-
/ ;.97 9" gy iy = 21 “Nea&%.10e00L,1,5
L ¢, Gy
QW
/ ;.99 ”mxp”x/g’xy’ 3 Qd+15ff’5LfL’
L, N R
QU _ 2 O~
/deJrng nRDQ\an/: Qv — CS(CS - d) . Nf,dgd+l5ff/5L/L;/5RR/533/' (B12)
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1. More spherical expressions

The d-dimensional trace of A,, is given by

d+1 )
A= g(mAaa — i <_Att + A, + AS) L ~iwt & A zAnLe—zwt’ (B13)

and its divergence is given by

(diVA)a = Aaﬁ:/} = _arAta + (Ara,r - Fl:(lAur) + 97 (AaQ,Q’ Fg/aA FQQ/A ) (B14)

Explicitly, its components are given by

. d+1
(leA)[ _ ze—mll |:l'a)An + <8, + %)Atr - %At:| ng, (B]S)
: ool d+1 R |
(divA), = ie ’[m}A,r + < >A,, — 34, —PAS] ng, (B16)
: w1 d+1 Ag de, -
divA), = Y e ¢ liwA, + | O, +— A, +—5 ——<——Ag|Dgn
R e N e e e L
i d+1 Cy
+ |:lCUAtx + <6 + )ArN _2]‘2AR:| nég}, (B17)
where we have used
Q —iwt Zias A L Cs L
D AQQ/: e AS_ZZ+1AS DQ” —E}’lngR . (B18)

APPENDIX C: ACTION IN SPHERICAL FIELDS: KINETIC TERMS

In this appendix we express the linearized GR kinetic term with gauge-invariant spherical fields. We start with the action
(2.2). Note that the terms containing traces of the perturbation ~DAh$ can be expressed only with d scalars, and thus do not
contribute to any vectorial or tensorial terms; and that in fact tensorial terms arise only from the term ~D7’h"/’Dyhaﬁ. After
expansions, partial integrations and use of the normalization conditions, we find the homogenous part of the action (L, w
indices will be suppressed throughout much of this appendix),

Sen = Z / drL(r z (dsz)Gd / r L drL(r), (C1)

where the action decomposes into scalar, vector and tensor sectors:

L(r) = Ls(r) + Ly(r) + Lz (r). (€2)

The tensor sector includes a single contribution,

Z‘T = h§3Exjv
d*c (e, —d d-3 e, +2(d-2
ey — % <a)2 +2+20, - rg )>hm. (C3)

This matches Eq. (5.6) of Ref. [28], if we set ®gq ~ r 2hys. Defining

124065-15



OFEK BIRNHOLTZ AND SHAHAR HADAR

PHYSICAL REVIEW D 91, 124065 (2015)

bya = P hys, (C4)
it can also be presented in the master form
N,y  d*cy(c,—d) .
L, = _ s s\*“s r2f+d+l * 2 , C5
T 8(d+ 1)G, hea®hya (Cs)
where & is the master operator defined in (2.6).
The vector sector is comprised of three terms:
Ly = ii\Exx + hiyEn + hiEy, (Co)
d-1 d-1 d+1 ¢
EtR = _C_; 8% + ar - & i 2 htR+iw ar + L hrR - c_qzhx P (C7)
r r r r 2r
Cs ¢y . 2 Cs 2
Ex= 2 [(0)2 - ﬁ) hy—io <8r - ;) hi + 52 <ar - ;) hx] , (C8)
e, [[4 d+1 d-3 2-d
Ey =55 H— - 2(6, + L)} I —2iwhgy + {wz +R+20, 4272 }hx] . (C9)
4r r r r r
The field &,y appears in the equation E,4 = 0 (C8) without derivatives. Thus, we can solve for it algebraically:
1 Cy 2
B — iwr? (0, —Z Vho —= (0, == ) hy|, C10
™ My (r) {za}r ( r r) N7 ( r r) x} ( )

where My, (r) = ?r? — ¢, [compare Egs. (5.9) and (5.10) of Ref. [28]]. We thus see £,y is an auxiliary field. We plug this

expression into the equations for E,s, Eyx, Ly:

Ly = hiyEx + hiEy

Csés %
= 4r2MV (r2<1>&) QV(FZCI’x) =

where 8y =0} +(d-3-12)10,+ 2 —d+3=+41) 2,
and the vector part of the action is seen to depend only

on the single gauge-invariant field [compare Egs. (5.12)
and (5.13) of Ref. [28], and Ref. [41]]

®R = r_2(2hm + la)hx) (ClZ)

C

1 r[i+3
DL | D —_— —0,P Cl1
R|: N+rd+lar<MV ar R>:|v ( )

|
Since Ly only appears in the integral (C1), we can integrate
by parts to obtain

r2

T My(r)

C

ZV-—-L—-k@Ry QL@RV]. (C13)

2,
4

Defining the field §y using the canonical transformations

(¢ = 1)(¢ + a)r'+#+1py) =

_ CsCy r;i+3((I) )/
2My,
S @y = (28 (c14)
X)) — f(f—k a_’_ 1) r2 N
= _csesra+lq)&
= Py — 4 ( f+21+1h )/ (C15)
YA+ a1 v
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and again using integration by parts, we can present the
vector contribution as well in the master form [compare
with (C5), differing only in the prefactor constants]:

A~

PHYSICAL REVIEW D 91, 124065 (2015)

In the remaining scalar sector, we also expect a reduction
to a single gauge-invariant field. We first notice that three of
the fields (h,,, h,,, h,) appear without r derivatives in the
action; thus, variations with respect to their complex

_ Neo 8(£-1)(¢+d) 2441 o conjugates (hj,, h}., hi) give us algebraic equations.15
Ly=— . PR, (CL6) . .
8(d+1)Gy (£+d+1)¢ Hence, these fields can be found béy solving the system
given by the (Hermitian) matrix A,'
|
h, Cs —(d+ Dior  ior B,
Al h, | =B,  A=|(@+Dior 4 -d |. B=|B|. (C17)
<, ior o enad Bs
with
N . 1
B, = c,0,h, — (d + 1)1a)(8, - —) hg,
r
¢y —(d+1)rd , dic,+d+1) dd+1),. d+1 deéhg
= Ty h, — s -~ 9, — 2 hy - ————,
2 2 o e ( 272 2 T2 )T A )R
d(2 de, -
Bs == (r0, — 1)h, + io(rd, = 2)h, +— (== 0, |hg — r0,| =————hg |. C18
= 0, = Dy (s, =2+ (20, s =0, (s c18)
We solve these simultaneously to find
hyy
1
h, | =A"'B= !B,
c 2Ms(r>
Phy
d2de; — (d + 1)?r?) 2iwor(d(c, —2d —2) — (d + 1)a*r?) —iwreyd(d + 1)
Al = * —4e¢,d 2¢,((d + Da*r? —dc,) .
* cs(d+ 1)(2(d + 1)*r? = c,d)
Mg(r) = c,e,d® —2¢,d(d + 1)@ r* + (d 4 1)20*r*, (C19)

where the matrix terms under the main diagonal (in
asterisks) are completed by Hermiticity. Plugging (C19)
back into the action (Cl) and (C2), we find that hg
drops out entirely, and the three remaining fields #%,,, h,

and g appear only combined in the single gauge invariant

is M(r)

field [compare Eq. (4.30) of Ref. [28] in the flat space
limit]

® = hy, + 2iwh, — ©*hs. (C20)
The scalar action is thus given by
|
1
=——[a0,9°0,P + p(0,2*P + ¢0,P) + yd* P, (C21)

>The complete derivation of the scalar sector of the action, along with the collection of terms to the gauge invariant combination, can
be found in Mathematica code in our additional notes online [73].

'®We mark that this matrix is identical to Eq. (4.35) of Ref. [28], adapted to a flat background—up to ordering of the fields, scalings in
the field definitions, and sign mismatches stemming from the choice of Lorentzian over Euclidean signature. Using our definitions, the

matrices A, A1, A~! are dimensionless.
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A

a=—dd+ 1), — f=2 G A= @+ 1)a??),  y=222d+ e - c,d). (C22)
r

Following Ref. [28], we canonically transform to & with the generating function
F[®, &, &, 8] = —¢,77 (3@ + o), (C23)

and after partial integrations find

Ny a@+ e, - P-1\1]-
8(d+1)G, ¢ a )

which we recognize as the Zerilli action [38]. Defining the field

di¢ +d+1)

h=—" e, (C25)
we find the homogenous scalar action in the familiar master form [compare (C5) and (C16)]
N, ; 4d+1)(-1)¢ .
LS — 7,d ( + )( ) r2f+d+lh*2h- (C26)

8(d+ 1)Gyd(¢ +d+1)(¢+d)

APPENDIX D: ACTION IN SPHERICAL FIELDS: SOURCE TERMS

We wish to construct the inhomogeneous part of the action S,,,,, (2.3), which describes the interaction of the gravitational
field with matter sources, in terms of the gauge invariant spherical fields and corresponding source functions. We
decompose the stress-energy tensor as

1 __ 1t —iwt tr 1 —iwt — —iwt
T" = g T npe ", T = 2 T npe ", T = 2 Ty npe ",

79 = S (1,0, + TR, 1% = ST T e

T Z[Tiw QQ —I—TS ~QQ/ +TLm RQQ +T§3,nfmg/]e_iw'- (D1)

We shall also use the inverse transformations,

TV (r) = (N, 224, / / dQy, dte'n, TW/r/m) (7, 1), (D2)

Tpo(r) = (N, 1@, (@ + 1)1 / / 49, dte™n, [T9(F, 1) — T (7. 1)), (D3)
TY™Nr) = (e,N, 49,) / / iy, dievel), fnbL‘lT(’/’)“, (D4)

Tia(r) = NfdeJrldlC (cy —El)//dQZi+1d’eiwtegzDagakf(:Da?b’kﬂ f(frz_ 1>”bb/L_2Taal’ (D5)

where TH' = T™ = X Tre and T'" = 2! ped
r r
Using the divergence expressions (B14)-(B17), current conservation D, T*" = 0 is recast as the d equations (we
henceforth suppress the L, @ indices):
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d+1
0=—ioT" + (a + ar’ >T" -c, ', (D6)
r

d+3 &
0= —iwT™ + ( ; i )Tﬂ‘ —%T*‘. (DY)
r

. d—+ -
0= —iwT" + <8 + —) T — —(d + 1)rT", From these we can eliminate the fields 77, 77, T°, and T¥,
retaining only the scalars 7%, T'", T'", TS; the vectors T™,
(D7) 77, and the tensor TX?:

d+3 de, -
0=—ioT" + <8r + +> T +T5—— a 75, (DS8) T = i —ioT" 4+ (0, + ﬂ 7", (D10)
r (d+1) Cs r
|
1 d+1 N
i —— {—ia)T" (a +L> T — @+ mrf}, (D11)
CS
-s  (d+1 . - d+2
75 = (2{ +A ) {(cs —(d+1)(rd, +d +4))T5 — &*T" — 21a)<8 +—+ )T”
CSCS
d+2 d+1)(d+2
0*+2 i a,+( i )g + ))T”} (D12)
r r
2 d+3
™ = [—ia)Tf*‘ - <8 + —+ )T’*‘] (D13)
CS
Plugging the expansions (2.4), (D1) into (2.3) and using (D6)—(D9) and (C10), (C19), we find
1
S = =5 30 [ 107" + BT + BT+ ccldr (D14)
where the source functions (scalar, vector, tensor) are given by
Ny Qq,(d+ 1)/ 83 g d(c,—2(d+ 1
p— d*i( Er [—a, par oo =2dt D) ))}J, (D15)
d¢+d)(¢+d+1) [r (d+1)r?
. ~ NA . d ! o d 7
ST 4 2Aza) (d+1)(=dé, + (d + 1)r?w?)rit3 ) + 2i(d+ 1)*re? Tir _ (EZ L1y L w?rdts -
a1 Mg Mg a+1 \ Mg
s 1)2<r ey (d—1)d* —2d(d + 1); rPw? + (d+3)(d + 1)*r'e*) T”)
M
1 N PN n ay oA
- ? [22d — ce,d*(d +1)(2¢, + (d+ 1)(d° + d — 4))re?
+ e,d(d+ 1)%(cy +2d(d + 1)(d + 3))*o* — (d + 1)*(d + 2)(d + 3)rPS] T
(,Ai 1)3 2,.d+7 / 21 De.r2 d +1
+( _J— ) w°r TS +( + )CSr ( ( ) )TS, (D16)
ri+? Mg Mg
TR = — ZNf’aQZPFI (f: h a)rf+d+1 |: 2 » + L <iwr()+5 Trx>l:|l (D17)
£+d+1 Frt My ’
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N f,ZlQZi+1 ~

TRD =
2

cy(e, —d)yf 3T (D13)

APPENDIX E: ORIGIN-NORMALIZED BESSEL
FUNCTIONS

For B a Bessel function of the first or second kind or a
Hankel function, i.e., B € {J,Y,H*}, and with a repre-
senting its order, we define the origin-normalized Bessel

functions I;a as
- B
By = T + 120 2. (El)
X

These functions satisfy the equation [compare (2.10)]

200+ 1

P2+ Dy + 1| by(x) = 0. (E2)

PHYSICAL REVIEW D 91, 124065 (2015)

The purpose of the definition is to have j, normalized to 1
at the origin x = 0. Around the origin, it is given by the
Taylor expansion (which contains only even powers)

o0 ?(2a)!! 5
= P
Ja(x pz: 2p 20! X

x2

T22at2)

(E3)

The asymptotic form for x — oo is best stated in terms of

the Hankel functions i~ = jEiy:

2a+1/2r(a+ 1) eﬂ:ix

\/E xa+1/2'

For more details, see Appendix B.2 of Ref. [3].

g (%) ~ ()12 (E4)
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