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The partner mode with respect to a vacuum state for a given mode (like that corresponding to one of the
thermal particles emitted by a blackhole) is defined and calculated. Thepartnermodes are explicitly calculated
for a number of cases, in particular for the modes corresponding to a particle detector being excited by
turn-on/turn-off transients, or with the thermal particles emitted by the acceleratedmirrormodel for black hole
evaporation.One of the key results is that the partnermode in general is just a vacuum fluctuation, and one can
have the partner mode be located in a region where the state cannot be distinguished from the vacuum state by
any series of local measurements, including the energy density. For example, “information” (the correlations
with the thermal emissions) need not be associated with any energy transport. The idea that black holes emit
huge amounts of energy in their last stages because of all the information which must be emitted under the
assumption of black hole unitarity is found to not necessarily be the case.
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I. INTRODUCTION

Quantum mechanics around a black hole has been one
of the most exciting and puzzling aspects of theoretical
physics in the past half-century [1]. One of the issues has
been that of “information” and how information is
carried. Black hole unitarity [2] is the belief that in the
space-time outside the black hole, the evolution of a
quantum field from a time before the black hole formed
to after the black hole completely evaporated, must be
unitary—initial states of the quantum field map uniquely
to final states of the quantum field. If one believes in
“black hole unitarity” (and in this paper we are agnostic
about that belief), then there must exist correlations
between the early Hawking evaporation emission from
the black hole and late time emission. For any particle
emitted early on, some correlation between this early
mission and the field later on must exist. Given a mode
which carries away thermal particles in the early stages,
there must be “partner modes” which occur later which
are correlated with these early modes in order that
“unitarity” be preserved.
The characterization of these partners thus becomes

important. In Sec. II we define the partner mode uniquely
via suitable conditions. In Sec. III we show that any particle
detection measurement of the field also has a partner, even
in the case where the detector is stationary but is switched

on and off. In Sec. V we look at the partner in the case of the
accelerated mirror model of black hole thermal emission.
One of the surprising results is that the partner need not

be located near the original mode but can be located in
distant regions of the space-time. While recognized in the
correlations between the field inside and outside the black
hole in the Hawking evaporation process [3], this is a
general feature of the partner modes. Our results are
somewhat related to recent observations that the long range
entanglement in the vacuum can be used to entangle other
systems even in spatially separated regions [4] and to
energy teleportation studies [5].
First, let us specify how the partner mode can be defined.

To this end, we demand the two conditions:
A) The reduced density matrix of the Hawking plus

partner modes obtained by integrating out all other degrees
of freedom should be a pure state. Since the total state
(the initial vacuum) is a pure state, this is equivalent to
vanishing entanglement between the Hawking plus partner
mode on the one hand and the rest of the system on the
other hand.
However, this requirement alone does not define the

partner mode uniquely (see below). For example, one could
envisage a single-mode squeezing operation and phase
rotation acting on the partner mode, which does not change
the purity of the combined state (Hawking plus partner).
Specifying the partner mode uniquely requires a second
condition. There are several reasonable options, and here
we list some possibilities.
B1) The quantum state after absorbing (annihilating)

one partner particle should be (up to normalization due to
possibly different probabilities) the same state as after
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creating one Hawking particle. This corresponds to the
intuitive picture that the Hawking and partner particles
always come in pairs.
B2) Alternatively, one could implement the idea that

Hawking and partner particles always come in pairs by
imposing the requirement the other way around: The
quantum state after absorbing one Hawking particle should
be (again up to normalization) the same state as after
creating one partner particle.
As we shall see below, condition B1 can always be

satisfied—unless the Hawking mode contains single-mode
squeezing only and thus there would be no need for a
partner particle at all—whereas the requirement B2 can
only be fulfilled if the single-mode squeezing of the
Hawking mode is small enough. As another option (B3),
we could demand that the probabilities for detecting
Hawking and partner particles should be the same—
treating these two modes on a symmetric footing.
As it turns out, in the scenarios we are interested in below

(pure two-mode squeezing), all these requirements yield
the same answer for the partner particle.

II. DEFINITION OF PARTNER PARTICLE

Now let us show how to satisfy these requirements. As a
most general ansatz, we decompose the Hawking mode

âH ¼
Z

dkðα�kâk þ βkâ
†
kÞ; ð1Þ

into creation and annihilation operators â†k and âk,

½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0; ½âk; â†k0 � ¼ δðk; k0Þ; ð2Þ

defined with respect to the initial vacuum state

∀k âkj0i ¼ 0; ð3Þ

where k denotes some quantum number.
For convenience, let us introduce the usual complex

scalar product of two functions or vectors χ and ζ via

fχ jζg ¼
Z

dkχ�kζk: ð4Þ

Accordingly, we define the projection of the initial anni-
hilation operators âk onto one mode χ via

âχ ¼ fχ jâg ¼
Z

dkχ�kâk; ð5Þ

which gives the commutation relations

½âχ ; âζ � ¼ ½â†χ ; â†ζ � ¼ 0; ½âχ ; â†ζ � ¼ fχ jζg: ð6Þ

In this notation, the Hawking mode is given by

âH ¼ fαjâg þ ðfβjâgÞ† ¼ fαjâg þ fâjβg: ð7Þ

Now let us introduce an orthonormal basis n∥ and n⊥ in the
subspace spanned by the two vectors α and β,

α ¼ αn∥; β ¼ β∥n∥ þ β⊥n⊥; ð8Þ
where jn∥j2 ¼ fn∥jn∥g ¼ 1 ¼ jn⊥j2 and n∥⊥n⊥, i.e.,
fn∥jn⊥g ¼ 0. If β⊥ ¼ 0, we would have pure single-mode
squeezing, and the Hawking mode itself would be in a pure
state; i.e., there would be no need for a partner particle. In
the general case β⊥ ≠ 0, we can restrict ourselves to the two
modes

â∥ ¼ fn∥jâg; â⊥ ¼ fn⊥jâg; ð9Þ
which satisfy the usual commutation relations for inde-
pendent modes due to Eq. (6). These operators annihilate
the initial vacuum

â∥j0i ¼ â⊥j0i ¼ 0; ð10Þ
and thus the reduced density matrix of these two modes is a
pure state. Now the idea is that everything involving the
Hawking mode âH and its partner mode âP will occur in the
two-mode space spanned by â∥ and â⊥ and their adjoints â†∥
and â†⊥. As we show the Appendix, this is actually the only
way to satisfy requirement A. In terms of these operators,
the Hawking mode is given by

âH ¼ α�â∥ þ β∥â
†
∥ þ β⊥â†⊥: ð11Þ

From ½âH; â†H� ¼ 1 follows jαj2 − jβ∥j2 − jβ⊥j2 ¼ 1. Note
that one can make the three Bogoliubov coefficients α, β∥,
and β⊥ real by absorbing their phases into â∥, â⊥, and âH.
Following our strategy, we can make the following

general ansatz for the partner particle:

âP ¼ γ�∥â∥ þ γ�⊥â⊥ þ δ∥â
†
∥ þ δ⊥â†⊥: ð12Þ

In this way, requirement A is automatically satisfied.
Since âP should obey the usual commutation relation
½âP; â†P� ¼ 1, the above Bogoliubov coefficients should
satisfy jγ∥j2 þ jγ⊥j2 − jδ∥j2 − jδ⊥j2 ¼ 1. Furthermore,
since we want the two modes âH and âP to be independent,
i.e., ½âP; â†H� ¼ 0 ¼ ½âH; â†P� as well as ½âP; âH� ¼ 0,
we get the conditions γ�∥α ¼ β�∥δ∥ þ β�⊥δ⊥ and γ�∥β∥þ
γ�⊥β⊥ ¼ α�δ∥.
As mentioned above, these three equations do not

specify the four Bogoliubov coefficients for âP uniquely.
We could still apply a single-mode squeezing/phase trans-
formation âP → eiφ cosh ζâP þ eiϑ sinh ζâ†P within the
âP-mode for arbitrary (real) values of φ, ζ, and φ without
violating any of the conditions above. To fix this remaining
degree of freedom, a second requirement is necessary—
here, we discuss B1 and B2.

M. HOTTA, R. SCHÜTZHOLD, AND W. G. UNRUH PHYSICAL REVIEW D 91, 124060 (2015)

124060-2



Option B1 corresponds to choosing âPj0i ∝ â†Hj0i, i.e.,
δ∥α, which means δ⊥ ¼ 0 and δ∥ ¼ δ. This then gives γ�∥ ¼
β�∥δ=α and γ�⊥ ¼ ðβ−1⊥ þ β�⊥Þδ=α such that the remaining
Bogoliubov coefficient δ can be determined by the unitarity
condition jγj2 − jδj2 ¼ 1 up to a global phase. Writing this
B1 condition âPj0i ∝ â†Hj0i in the form âPj0i ¼ ηâ†Hj0i
with some constant η, we have

ðâP − ηâ†HÞj0i ¼ 0: ð13Þ

Thus, this linear combination âP − ηâ†H is composed of
initial annihilation operators only.
The other option B2 corresponds to âHj0i ∝ â†Pj0i, i.e.,

γ∥β, which allows us to determine the Bogoliubov coef-
ficients in a completely analogous manner. Note, however,
that there is an important difference: As shown above,
condition B1 can always be fulfilled unless β⊥ ¼ 0, in
which case we would have pure single-mode squeezing
within the âH-mode, and there would be no need for a
partner mode. In contrast, it can be shown that requirement
B2 cannot be satisfied if the amount of single-mode
squeezing becomes too large.
In case of vanishing single-mode squeezing β∥ ¼ 0, both

requirements give the same partner mode

âP ¼ α�â⊥ þ βâ†∥; ð14Þ

where α and β can be made real because their phases can be
absorbed into the definition of â∥ and â⊥. In this case, the
initial vacuum state restricted to the two modes âH and âP
is a pure two-mode squeezed state

j0i ¼ exp fξâ†Hâ†P − H:c:gj0iHP; ð15Þ

with respect to the zero-particle state j0iHP which is
annihilated by âH and âP,

âHj0iHP ¼ âPj0iHP ¼ 0; ð16Þ

where the squeezing parameter ξ satisfies α ¼ cosh ξ and
β ¼ sinh ξ. As a result, the initial vacuum j0i can be viewed
as a state containing pairs of particles in the modes âH and
âP. After tracing out (averaging over) the partner mode, this
squeezed state (15) yields a thermal-type density matrix for
the Hawking mode,

ρ̂H ¼ 1

Z
exp

�
−
â†HâH
T H

�
; ð17Þ

with the normalization Z ensuring Trfρ̂Hg ¼ 1 and

T H ¼ 1

2 lnðcosh ξÞ ; ð18Þ

which can be regarded as a dimensionless Hawking
temperature. Due to the symmetric nature of the squeezed
state (15), the same applies to the reduced state of the
partner particles (after tracing out the Hawking mode).
Note that the mapping from the Hawking mode âH to its

partner mode âP is not linear in general—if âH has the
partner mode âP and â0H has the partner mode â0P, then
the partner mode for μâH þ νâ0H, for example, is almost
never μâP þ νâ0P, even if we have no single-mode squeez-
ing in both cases.

III. PARTNERS AND DETECTORS

The idea of a partner particle has a broader applicability
than just Hawking or acceleration (Unruh) radiation.
Consider a model particle detector as suggested by
Unruh [6] and developed by De Witt [7]. The detector is
taken as occupying a single point in space-time with an
internal degree of freedom, often taken to be a spin degree
but could equally and more simply be taken to be a
harmonic oscillator degree of freedom. The energy differ-
ence (in the rest frame of the detector) between the ground
state and the first excited state is E. This is coupled to the
quantum field of interest. This detector responds to specific
degrees of freedom of the field, changing its state from the
ground to excited state, which is regarded as a detection.
(For example, if the detector is discovered at some time to
be in its excited state, it must have absorbed energy and a
particle from the field.)
The interaction Lagrangian is given by (ℏ ¼ c ¼ 1)

Lint ¼ ϵðτÞqðτÞ∂τΦ½tðτÞ; xðτÞ�; ð19Þ

where ϵðτÞ is the possibly time dependent coupling and
tðτÞ; xðτÞ is the trajectory of the detector in terms of the
proper time along the path τ. After quantization, the internal
degree of freedom of the detector corresponds to the operator

q̂ðτÞ ¼ ĉe−iEτ þ ĉ†eiEτ; ð20Þ

where ĉ is the annihilation operator taking the detector
from the first excited state of energy E to the ground state
of zero energy. Note that if the detector is a harmonic
oscillator, then ĉ could just be

ffiffiffiffiffiffi
2E

p
times the usual oscillator

annihilation operator. The normalization of ĉ is not important
because it will cancel out in the following anyway.
One can define a field operator associated with the

detector by

âD ¼ N
Z

dτϵðτÞeiEτ∂τΦ̂½tðτÞ; xðτÞ�; ð21Þ

where N is chosen so as to make

½âD; â†D� ¼ 1: ð22Þ
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Furthermore, one can define a mode function associated
with this operator by

ϕDðt; xÞ ¼ ½Φ̂ðt; xÞ; â†D�: ð23Þ
Assuming that the field is (initially) in a vacuum state, the
excitation probability of the detector will be given by

P ¼ h0jâ†DâDj0i
N 2

: ð24Þ

Hence, âD corresponds to the Hawking mode âH. This
mode, ϕD, is the mode that the detector absorbs when it is
excited. This mode, by the above argument, has a partner
mode, ϕP, which is orthogonal to ϕD but is perfectly
entangled with ϕD in the vacuum state j0i. If one has a
detector to measure various attributes of that partner mode,
one will get vacuum values if one ignores the outcome of
the measurements of the detector mode ϕD. Since âP is a
mixture of positive and negative (pseudo)norm vacuum
modes, one will find a nonzero probability of finding it in
the vacuum. But that probability would be the same as the
probability if one looked into the vacuum without meas-
urement of the Hawking/detector mode ϕD. There would of
course be correlations between the âP and âD modes. For
example, if the Hawking mode were detected (the detector
was found in its excited state), the detector measuring the
partner would also be excited.
Inserting the usual representation of a massless scalar

field in 1þ 1-dimensional flat space-time,

Φ̂ðt; xÞ ¼
Z

dkffiffiffiffiffiffiffiffiffiffi
4πjkjp ½âke−iðjkjt−kxÞ þ â†ke

iðjkjt−kxÞ�; ð25Þ

we have

âD ¼ N
i

Z
dτϵðτÞ

Z
dk

ffiffiffiffiffiffi
jkj
4π

r �
dt
dτ

−
k
jkj

dx
dτ

�

× ðâke−iðjkj½tðτÞ−xðτÞ�þEτÞ − â†ke
iðjkj½tðτÞ−xðτÞ�−EτÞÞ: ð26Þ

This allows us to read off the Bogoliubov coefficients of
Sec. II expressing âD, the equivalent of the Hawking mode
annihilation operator, in terms of the operators âk and â†k,

α�k ¼
N
i

Z
dτϵðτÞ

ffiffiffiffiffiffi
jkj
4π

r �
dt
dτ

−
k
jkj

dx
dτ

�

× e−iðjkj½tðτÞ−xðτÞ�þEτÞ; ð27Þ

βk ¼ iN
Z

dτϵðτÞ
ffiffiffiffiffiffi
jkj
4π

r �
dt
dτ

−
k
jkj

dx
dτ

�

× eiðjkj½tðτÞ−xðτÞ�−EτÞ: ð28Þ
In general, both the α coefficients and β coefficients will be
nonzero, and αk will not be proportional to βk. Thus, there
is a partner mode.

Let us now restrict attention to the case where the
detector is at rest at x ¼ 0 but ϵðtÞ is nontrivial. We choose
ϵðtÞ such that

fαjβg ¼
Z

dkα�kβk ¼ 0; ð29Þ

so that the detector mode corresponds to pure two-mode
squeezing. Defining

cosh2r ¼ fαjαg ¼
Z

dkjαkj2;

sinh2r ¼ fβjβg ¼
Z

dkjβkj2; ð30Þ

the partner mode is

ϕP ¼
Z

dkffiffiffiffiffiffiffiffiffiffi
4πjkjp ðβke−iðjkjt−kxÞ coth rþα�ke

iðjkjt−kxÞ tanh rÞ:

ð31Þ
Now, the term in the first line is just the positive frequency
part of −ϕ�

D, which we can write as

Z
dkffiffiffiffiffiffiffiffiffiffi
4πjkjp βke−ijkjt ¼ −

Z
dt0

ϕ�
Dðt0; x ¼ 0Þ

2πiðt − t0 − i0þÞ : ð32Þ

Hence, we can also write the partner mode as

ϕPðt; x ¼ 0Þ ¼ − coth r
Z

dt0
ϕ�
Dðt0; x ¼ 0Þ

2πiðt − t0 − i0þÞ

þ tanh r
Z

dt0
ϕ�
Dðt0; x ¼ 0Þ

2πiðt − t0 þ i0þÞ : ð33Þ

Thus, in general ϕPðt; 0Þ will have a long tail falling off as
1=t for large jtj. Only if the moments

R
dttnϕDðtÞ are zero

for all n will the partner fall off faster than any power. (If
those are zero for all n < N but nonzero thereafter, then ϕD

will fall off as 1=jtjNþ1.)
Let us now give an example. Let us assume that

ϵðtÞ ¼ ϵ0ðtÞ þ ϵ0ðt − TÞλ cos½3Eðt − TÞ�; ð34Þ

where λ is very small. Again E is the energy difference
between the two states of the detector. The remaining
function ϵ0ðtÞ is supposed to be a smooth switching
function. Furthermore let us assume that the Fourier
transform of ϵ0ðtÞ, namely ~ϵ0ðωÞ is real and nonzero only
in a compact region −E=4 < ω < E=4. The Fourier trans-
form of ϵðtÞeiEt, which occurs in the expression for âD, will
have three peaks, one small one centered at −2E, one large
one at E, and another small one at 4E. Thus, βk will have
two small peaks with amplitude proportional to λ at
k ≈�2E, while αk will have two large peaks of amplitude
Oð1Þ at k ≈�E and two of amplitude λ at k ≈�3E.
Because of the limited width of each of these peaks,
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none overlap, and β will be orthogonal to α. Thus, the
“detector mode” will be a pure two-mode squeezed state.
The β-coefficient and thus tanh r will be of order λ, while
coth r will be of order 1=λ. The partner mode will have a
temporal Fourier transform with a single peak centered at
2E of amplitude Oð1Þ, two smaller peaks of amplitude λ at
−E, and one of amplitude Oðλ2Þ at −3E. Thus, the partner
mode will be approximately given by

ϕPðt; x ¼ 0Þ ¼ ϵ0ðt − TÞe2iEðt−TÞ ×Oð1Þ
þ ϵ0ðtÞe−iEt ×OðλÞ
þ ϵ0ðt − TÞe−3iEðt−TÞ ×Oðλ2Þ: ð35Þ

The envelope of the partner mode will thus be dominated
by ϵ0ðt − TÞ, i.e., displaced from the detector mode by a
time T. As a result, the partner mode will be centered
around a time arbitrarily displaced from the maximum of
the detector mode. Of course, this is somewhat misleading
since the part ∝ ϵ0ðt − TÞ of detector mode which leads to
detection (the β� part of the detector mode) and the α� part
of the partner do overlap.
However, if one chooses some other mode, ϕX, which

has an overlap with the partner but, let us assume, none
with the detector mode, there will be correlations between
measurements made on this mode and the outcomes of the
detector measurements.
We note that this example shows that partner modes are

not a unique feature of black holes, or accelerated detectors.
All detectors, which have a finite probability of detecting
something in the state of interest, even if due to “switch on/
off” transients, will have both a detector mode and a partner
mode associated with them. If the partner is well separated
from the Hawking mode (which it is if we are interested in
the detection of radiation from say a black hole, where the
partner is behind the horizon and the other is far from the
black hole), then any measurements made on the partner
mode will give results indistinguishable from the results in
that vacuum state. There will, however, be correlations
between the results for measurements on the partner and
on the “Hawking mode” and not with any other modes
orthogonal to these two. If one were able to communicate
between the detectors, one could for example measure
the partner whenever the detector detected a particle.
This would absorb a particle from the vacuum, leaving
the vacuum in a lower energy state, thus extracting energy
from the vacuum—a form of energy teleportation. In our
case, the ability to communicate the result to somewhere
where the partner could be detected would be difficult (due
to causality), but in some cases [5] one can actually carry
out such a procedure and extract energy from the vacuum
state, leaving the system with locally less energy than the
vacuum (but leaving the system as a whole of course with
higher energy).

Let us also look at a more complex example. In this case
let us assume that the function ϵðtÞ has the form of a
trapezoid—it rises linearly from 0 at time −τ to ϵ0 at time
−T, remains constant to time T, and then falls linearly to
zero at time τ. The Fourier transform of this ϵðtÞ is

~ϵðωÞ ¼ 2ϵ0
cosðωTÞ − cosðωτÞ

ω2ðτ − TÞ ; ð36Þ

which gives

αk ¼
ffiffiffiffiffiffi
jkj
4π

r
ϵ0
cos½ðjkj − EÞT� − cos½ðjkj − EÞτ�

ðjkj − EÞ2 ;

βk ¼
ffiffiffiffiffiffi
jkj
4π

r
ϵ0
cos½ðjkj þ EÞT� − cos½ðjkj þ E�τÞ

ðjkj þ EÞ2 : ð37Þ

The requirement that α and β be orthogonal can always be
satisfied for suitable values of E. Their overlap,

fαjβgðEÞ ¼
Z

dkα�kβk ¼ 2

Z
∞

0

dkα�kβk; ð38Þ

is plotted in Fig. 1 for τ ¼ 1.2T as a function of ET, and we
see that there are values of ET which make this overlap
zero. This is certainly not required, as partners exist even if
one does not have a pure two-mode squeezed state, but it
makes, as we saw above, the finding of the partner much
easier. We will use the zero of fαjβgðEÞ for E nearest 40,
namely E ¼ 38.48966.

–4

–2

0

2

4

10 20 30 40

WT

FIG. 1. The evaluation of fαjβgðEÞ for the trapezoidal coupling
as a function of ET with τ ¼ 1.2T. The zeros correspond to
orthogonality and pure two-mode squeezing.
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For those values of E where fαjβgðEÞ is zero, and thus α
is orthogonal to β, the partner mode will be

ϕPðtÞ ¼
Z

∞

0

dω

�
C1

cos½ðωþEÞτ�− cos½ðωþEÞT�
ðωþEÞ2 eiωt

þC2

cos½ðω−EÞτ�− cos½ðω−EÞT�
ðω−EÞ2 e−iωt

�
; ð39Þ

where C1 and C2 are appropriate normalization factors. For
example, if we take

ca ¼
Z

dω

�
cos½ðω − EÞτ� − cos½ðω − EÞT�

ðω − EÞ2
�

2

ω

¼ 5.15932;

cb ¼
Z

dω

�
cos½ðωþ EÞτ� − cos½ðωþ EÞT�

ðωþ EÞ2
�

2

ω

¼ 0.0001195; ð40Þ

then, defining tanh2 r ¼ cb=ca, we get

C1 ¼
cosh rffiffiffiffiffi

cb
p ¼ 91.47;

C2 ¼
sinh rffiffiffiffiffi

ca
p ¼ 1.020 × 10−5: ð41Þ

In this case, the Fourier transform of the partner mode does
not vanish at ω ¼ 0 [because ~ϵðEÞ is not zero] but has a step
at ω ¼ 0. This implies that the partner mode ϕP will have a
slow falloff of order 1=jtj for large values of t. In Fig. 2 we

have a plot of the magnitude of the partner mode as a
function of t for T ¼ 1; τ ¼ 1.2, and E ≈ 40. In this case,
the partner mode is concentrated in the same area as is the
original detector mode but with a far longer tail. However,
as we saw above, there is no requirement that the partner
mode be near the peak in the detector mode.

IV. PARTNERS AND AMPLIFIERS

An example of a system where the detector or Hawking
mode is completely separate from the partner more is the
case of a phase insensitive amplifier. Let us take the model
of such an amplifier as given in Ref. [8], in which the
amplifier is represented as the coupling, by a free single
degree of freedom q, of two massless one-dimensional
fields ϕ and ψ , one (ψ) having a negative action

L ¼ Lϕ þ Lψ þ Lq þ Lint

¼ 1

2
½ð∂tϕÞ2 − ð∂xϕÞ2� −

1

2
½ð∂tψÞ2 − ð∂xψÞ2�

þ 1

2
½ð∂tqÞ2 þ 2qðμ _ϕþ ν _ψÞ�δðxÞ: ð42Þ

These fields are supposed to live on the positive x axis
with Neumann boundary conditions at the end point.
To avoid that the support of the δðxÞ-coupling coincides
with this end point, we assume that x ∈ ½−ε;∞Þ and
consider the limit ε↓0. The boundary conditions then read
∂xϕðt;−εÞ ¼ ∂xψðt;−εÞ ¼ 0.
This model has solutions

ϕðt; xÞ ¼ ϕ0ðt; xÞ − μqðt − xÞ; ð43Þ

ψðt; xÞ ¼ ψ0ðt; xÞ þ νqðt − xÞ; ð44Þ

∂2
t qþ ðμ2 − ν2Þ∂tq ¼ ∂t½μϕ0ðt; 0Þ þ νψ0ðt; 0Þ�; ð45Þ

where ϕ0 and ψ0 are solutions to the free (homogeneous)
equation (μ ¼ ν ¼ 0) with the above boundary conditions.
Note that q is damped as long as ν2 < μ2.
The quantum operators Φ̂, Ψ̂, and Q̂ obey the same

equations. Taking the Fourier transform and expressing the
solutions in terms of annihilation and creation operators,
we have

Φ̂0ðt; xÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
πω

p ðâωe−iωt þ â†ωeiωtÞ cosðωxÞ; ð46Þ

Ψ̂0ðt; xÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
πω

p ðb̂†ωe−iωt þ b̂ωeiωtÞ cosðωxÞ; ð47Þ

Q̂ðtÞ ¼ q̂ωe−iωt þ q̂†ωeiωt; ð48Þ

q̂ω ¼ 2iffiffiffiffiffiffi
2π

p μâω þ νb̂†ω
ωþ iðμ2 − ν2Þ : ð49Þ

0

2

4

6

8

10

12

211–2–

u

FIG. 2. The amplitude ϕP as a function of t.
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Note that the positions of the creation and annihilation
operators of the Ψ̂ field is reversed since its conjugate
momentum is πψ ¼ −∂tψ . As a result, the inner products of
the two fields [see also Eq. (87)],

ðϕj ~ϕÞ ¼ i
Z∞

0

dxðϕ� ~πϕ − π�ϕ ~ϕÞ;

ðψ j ~ψÞ ¼ i
Z∞

0

dxðψ� ~πψ − π�ψ ~ψÞ; ð50Þ

are of opposite sign for modes ϕω and ψω with the same ω.
The vacuum state for the Ψ̂0 field is a maximum of the
energy, rather than a minimum, and is annihilated by the b̂ω
operators.
The initial (input) fields are those that behave as

ϕinðtþ xÞ or ψ inðtþ xÞ while the final (output) fields go
as ϕoutðt − xÞ or ψoutðt − xÞ, respectively (remember that
x > 0). Assuming that the input fields are the free fields in
Eqs. (46) and (47),

Φ̂in ¼ Φ̂in
0 ¼

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p ðâωe−iωðtþxÞ þ â†eiωðtþxÞÞ; ð51Þ

and similarly for Ψ̂in ¼ Ψ̂in
0 , the output part is, according to

Eqs. (43) and (44), given by

Φ̂outðt − xÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p e−iωðt−xÞ
�
âω

ω − iðμ2 þ ν2Þ
ωþ iðμ2 − ν2Þ

−b̂†ω
2iμν

ωþ iðμ2 − ν2Þ
�
þ H:c:; ð52Þ

Ψ̂outðt − xÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p e−iωðt−xÞ
�
b̂†ω

ω − iðμ2 þ ν2Þ
ω − iðμ2 − ν2Þ

þâω
2iμν

ω − iðμ2 − ν2Þ
�
þ H:c:; ð53Þ

where h.c. is the Hermitian conjugate. Thus, one can write
the output annihilation and creation operators in terms of
the input by

Âω ¼ âω
ω − iðμ2 þ ν2Þ
ωþ iðμ2 − ν2Þ − b̂†ω

2iμν
ωþ iðμ2 − ν2Þ ; ð54Þ

B̂†
ω ¼ b̂†ω

ω − iðμ2 þ ν2Þ
ω − iðμ2 − ν2Þ þ âω

2iμν
ω − iðμ2 − ν2Þ : ð55Þ

Writing the first equation as Âω ¼ αωâω þ βωb̂
†
ω, we

see that the factor jαωj is larger than unity (unless
ν ¼ 0) which means that signals in the âω channel are
amplified. However, as required by unitarity, this goes
along with additional noise stemming from the b̂†ω term.

Now let us consider a mode in the ϕ output channel, say,
defined by (at late times)

fHðt − xÞ ¼
Z

dωffiffiffiffiffiffiffiffiffi
4πω

p ~fHðωÞe−iωðt−xÞ; ð56Þ

where we will assume that ~fHðωÞ is nonzero only for ω > 0

and is normalized so that
R
dωj ~fHðωÞj2 ¼ 1. The operator

associated with this mode at late times is

âH ¼ ðfHjΦ̂Þ ¼
Z

dω ~f�HðωÞÂω ¼
Z

∞

0

dω ~f�HðωÞ

×

�
âω

ω − iðμ2 þ ν2Þ
ωþ iðμ2 − ν2Þ − b̂†ω

2iμν
ωþ iðμ2 − ν2Þ

�
: ð57Þ

As a result, the partner mode will be

â†P ¼
Z∞

0

dω ~f�HðωÞ
�
âω

ω − iðμ2 þ ν2Þ
ωþ iðμ2 − ν2Þ tanh ϑ

−b̂†ω
2iμν

ωþ iðμ2 − ν2Þ coth ϑ
�
; ð58Þ

where the mixing angle is given by

sinh2ϑ ¼
Z∞

0

dωj ~f�HðωÞj2
4μ2ν2

ω2 þ ðμ2 − ν2Þ2 : ð59Þ

If we define the frequency dependent mixing angles and
phases

cosh θω ¼
����−iω − ðμ2 þ ν2Þ
−iωþ ðμ2 − ν2Þ

����; ð60Þ

sinh θω ¼
���� 2μν

iωþ ðμ2 − ν2Þ
����; ð61Þ

eiσω ¼ −iωþ ðμ2 − ν2Þ
j − iωþ ðμ2 − ν2Þj ; ð62Þ

eiλ ¼ ðμ2 þ ν2Þ þ iω
jiωþ ðμ2 þ ν2Þj ; ð63Þ

then sinh2ϑ is the weighted average

sinh2ϑ ¼
Z

∞

0

dωj ~f�HðωÞj2sinh2θω; ð64Þ

and we find that we can express the annihilation operator
of the partner mode in terms of the outgoing creation and
annihilation operators in terms of either the input annihi-
lation operators or of the output,
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a†P ¼
Z∞

0

dω ~f�HðωÞe−iσωð− tanhϑ cosh θωeiλω âω

− cothϑ sinh θωb̂
†
ωÞ ð65Þ

¼
Z∞

0

dω ~f�HðωÞe−iσω
�
2
sinh2ϑ − sinh2θω

sinhð2ϑÞ Âω

−
sinhð2θωÞ
sinhð2ϑÞ B̂†

ω

�
: ð66Þ

If j ~f�HðωÞj is a highly peaked function about the
frequency ω such that θω ¼ ϑ, then the first term will be
zero, and the partner mode, made up entirely of B̂ω, will be
confined completely to the second output channel—the ψ

channel. However, if ~fHðωÞ is a broad function (nonzero
over a range of order or larger than μ2 − ν2), then the
partner mode will have support in both the ψ and the ϕ
output channels—mostly in the former, but partially in the
latter as well.
This will also be true in the black hole case as well,

which behaves exactly like this amplifier, with the output ϕ
and ψ channels being the modes travelling to infinity and
those falling into the singularity, respectively. For highly
peaked functions of frequency, the partner is behind the
horizon, while for broadly peaked functions of frequency,
the partner has components both inside and outside the
horizon. This is another indication of the nonlinear nature
of the partner mode. Since any mode is the sum of highly
peaked functions, one might expect that the a broadly
peaked Hawking mode might still have a partner entirely
behind the horizon, but it does not.

V. MOVING MIRROR RADIATION

Before applying the concept of partner particles to
what has been taken to be a simple toy model for black
hole evaporation—the radiation given off by an exponen-
tially accelerated mirror [9–12]—let us briefly review the
basic concepts of this accelerated mirror model. We
consider a massless scalar field in 1þ 1-dimensional flat
space-time:

□ϕ ¼ 0: ð67Þ
At a pointlike mirror with the trajectory xmðtÞ, we impose
Dirichlet boundary condition

ϕðt; xm½t�Þ ¼ 0: ð68Þ

In terms of the light-cone coordinates

u ¼ t − x; v ¼ tþ x; ð69Þ
the general solution of □ϕ ¼ 0 without the boundary
condition (68) can be written as a sum of independent

left-moving ϕleftðvÞ and right-moving ϕrightðuÞ contribu-
tions ϕðu; vÞ ¼ ϕleftðvÞ þ ϕrightðuÞ. The boundary condi-
tion (68) imposes constraints on these two parts, and thus
the quantum field can be decomposed as

ϕ̂ðu; vÞ ¼
Z

∞

0

dω
e−iωv − e−iωð2τ½u�−uÞffiffiffiffiffiffiffiffiffi

4πω
p âinω þ H:c: ð70Þ

Here ðâinωÞ† and âinω denote the initial creation and annihi-
lation operators, and the function τ½u� is implicitly deter-
mined by the mirror trajectory

τ½u� ¼ uþ xmðτ½u�Þ: ð71Þ
Hence, the mode functions in Eq. (70) automatically
satisfy the boundary condition (68). For a mirror at rest
xm ¼ const, we find τ½u� ¼ uþ xm, and thus these mode
functions simplify to e−iωv − e−iωðuþ2xmÞ which just gives
2ie−iωt sinðω½xm − x�Þe−iωxm as one would expect. Thus,
assuming that the mirror is a rest initially, the initial vacuum
state is determined by

∀ω>0âinω j0i ¼ 0: ð72Þ

Similarly, for a mirror xm ¼ Vt moving with a constant
velocity V, we get τ½u� ¼ u=ð1 − VÞ. In these cases, no
particles are created—but with an accelerated motion of the
mirror (resulting in a nontrivial form of τ½u�), one can create
particles out of the initial vacuum.
In terms of the light-cone coordinates, the proper

acceleration of the mirror ẍm=ð1 − _x2mÞ3=2 can be written
as v̈m=ð _um _vmÞ3=2. Similarly, the redshift factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ _xmÞ=ð1 − _xmÞ
p

simply reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_vm= _um

p
. Now, if we

choose the mirror trajectory in such a way that the proper
acceleration of the mirror is proportional to the redshift
factor, an observer at rest sees a stationary thermal
spectrum given off by the moving mirror. This situation
corresponds to the mirror trajectory

tþ xm ¼ vm ¼ −
e−κum

κ
¼ −

e−κðt−xmÞ

κ
; ð73Þ

where κ is a proportionality constant which sets the
temperature. As a result, the mode functions satisfying
the boundary condition (68) are given by

ϕωðu; vÞ ¼ e−iωv − exp
n
i
ω

κ
e−κu

o
: ð74Þ

In principle, since the proper acceleration of the trajectory
(73) vanishes for very early times t↓ −∞, we could
consider a mirror moving along the worldline (73) for
all times. However, to make the initial behavior as simple as
possible, we assume that the mirror is initially at rest and
starts accelerating along the trajectory (73) at u0 ¼ 0 which
means v0m ¼ −1=κ, i.e.,
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vmðuÞ ¼ −
1

κ

�
1 − κu for u < 0

e−κu for u > 0
: ð75Þ

Consequently, incoming light rays with v < −1=κ are
reflected by the mirror at rest; i.e., initial waves of the
form e−iωv are simply transformed to final waves of the
form e−iωu. Incoming light rays in the window −1=κ <
v < 0 are reflected by the accelerating mirror. In this
region, initial waves of the form e−iωv are stretched by
the increasing redshift factor and finally behave as
expfiωe−κu=κg. More generally, an initial wave packet
of the form ϕleftðvÞ in the region −1=κ < v < 0 is trans-
formed to ϕrightð−e−κu=κÞ, i.e., a final right-moving wave-
packet in the region u > 0. The remaining light rays with
v > 0 do not see the mirror at all, and thus their functional
form is unchanged. Hence, the null line v ¼ 0 is analogous
to the black hole horizon.
Starting in the initial vacuum state (72), we can derive

the two-point functions in the final state. To avoid artifacts
stemming from the infrared divergence of the massless
scalar field in two dimensions, we consider the first
derivatives of the fields. (This is somewhat similar to
considering the electric and magnetic fields instead of
the scalar and vector potentials.) As mentioned above, the
field can be split up into a left-moving ϕ̂leftðvÞ and a right-
moving part ϕ̂rightðuÞ. The correlation between the two final
left-moving contributions (with v1;2 > 0) gives

h0j∂vϕ̂leftðv1Þ∂vϕ̂leftðv2Þj0i ¼ −
1

4π

1

ðv1 − v2Þ2
; ð76Þ

which just reflects the fact the associated quantum state is
locally indistinguishable from vacuum (since it has not
“seen” the mirror at all).
Considering the correlation between two right-moving

contributions which have been reflected by the accelerated
mirror (with u1;2 > 0), however, gives

h0j∂uϕ̂rightðu1Þ∂uϕ̂rightðu2Þj0i ¼ −
κ2

16π

1

sinh2ðκ½u1 − u2�=2Þ
:

ð77Þ

As already suggested by the periodicity in imaginary time
[Kubo-Martin-Schwinger (KMS) condition], this is locally
indistinguishable from a thermal state with the temperature

TH ¼ κ

2π
: ð78Þ

The fact that this thermal contribution and the above
vacuum part are actually just two regions of the same pure
state results in nontrivial cross-correlations between these
two contributions,

h0j∂vϕ̂leftðv1Þ∂uϕ̂rightðu2Þj0i ¼ −
κ2

4π

e−κu2

ðe−κu2 þ κv1Þ2
:

ð79Þ

These results can be generalized to different mirror tra-
jectories vmðuÞ in a straightforward manner. In this case,
the mode functions read e−iωv − e−iωvmðuÞ, and thus the
two-point function is given by

h0jϕ̂ðu1; v1Þϕ̂ðu2; v2Þj0i

¼ −
1

4π
ln

�½v1 − v2�½vmðu1Þ − vmðu2Þ�
½v1 − vmðu2Þ�½vmðu1Þ − v2�

�
: ð80Þ

VI. PARTNER PARTICLES FOR MIRROR
THERMAL RADIATION

Now let us try to determine the partner particles for the
thermal radiation created by the mirror as an analog for
Hawking radiation. Thus, we define the outgoing Hawking
wave function fHðuÞ as a linear combination of final
positive-frequency right-moving plane waves,

fHðuÞ ¼
Z∞

0

dΩ ~fHðΩÞe−iΩu; ð81Þ

where ~fHðΩÞ is then the Fourier transform of fHðuÞ. Due to
the restriction to positive final frequencies, the support of
fHðuÞ is unbounded, i.e., extends to negative u as well.
However, for simplicity, we assume that fHðuÞ lies mostly
in the thermal region u > 0, i.e., that fHðuÞ is exponentially
suppressed for u < 0. Alternatively, we could consider the
case of eternal acceleration of the mirror, where the thermal
region extends to negative u.
The Bogoliubov coefficients can then be defined by the

overlap between these modes (81) and the initial positive/
negative frequency modes e�iωv. For the trajectory (73),
these overlap integrals can be calculated analytically in
terms of Γ-functions, etc. However, instead of using these
Γ-functions, we do the following trick: Initially, the mode
(81) behaved as

finHðv < 0Þ ¼
Z∞

0

dΩ ~fHðΩÞð−κvÞiΩ=κ; ð82Þ

and finHðv > 0Þ ¼ 0. Now, let us consider the following
linear combinations:

f�ΩðvÞ ¼
�
e�πΩ=ð2κÞjκvjiΩ=κ for v < 0

e∓πΩ=ð2κÞjκvjiΩ=κ for v > 0
: ð83Þ

These linear combinations are chosen such that the function
fþΩðvÞ is holomorphic in the entire lower half of the
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complex v plane, i.e., for ℑðvÞ < 0, and has a singularity at
v ¼ 0 as well as a branch cut from v ¼ 0 to v ¼ ∞ in the
upper half. On the other hand, recalling the structure of the
initial mode functions e−iωv, we find that any solution is
exactly decomposed of positive (initial) frequency modes if
and only if it is holomorphic in entire lower half of the
complex v plane. Thus, the linear combination fþΩðvÞ in
Eq. (83) contains only positive (initial) frequency modes
for all Ω; i.e., it corresponds to an initial annihilation
operator âinΩ with âinΩj0i ¼ 0. Conversely, the other combi-
nation f−ΩðvÞ is holomorphic in the upper half of the
complex v plane and thus contains negative (initial)
frequencies only; i.e., it corresponds to an initial creation
operator. Using the symmetry ½f�ΩðvÞ�� ¼ f∓−ΩðvÞ, we find
that f−ΩðvÞ corresponds to ðâin−ΩÞ†.
Now, we can decompose the function jκvjiΩ=κ as a linear

combination of f�ΩðvÞ which gives

eþπΩ=ð2κÞfþΩðvÞ − e−πΩ=ð2κÞf−ΩðvÞ
2 sinhðΩ=κÞ ¼ jκvjiΩ=κ ð84Þ

for v < 0 and vanishes for v > 0. This enables us to directly
read off the decomposition of the final Hawking mode (81)
into initial creation and annihilation operators

âH ¼
Z∞

0

dΩ ~fHðΩÞ½αΩâinΩ þ βΩðâin−ΩÞ†�; ð85Þ

with the Bogoliubov coefficients

αΩ ¼ eþπΩ=ð2κÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðΩ=κÞp ; βΩ ¼ e−πΩ=ð2κÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðΩ=κÞp ; ð86Þ

where the denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðΩ=κÞp

ensures the correct
normalization jαΩj2 − jβΩj2 ¼ 1.
This is the starting point for the derivation of the partner

mode âP. Note that the modes f�ΩðvÞ are orthogonal with
respect to the usual inner product for the scalar field,

ðϕ1jϕ2Þ ¼ i
Z

dΣμϕ�
1∂
↔

μϕ2; ð87Þ

where ϕ�
1∂
↔

μϕ2 ¼ ϕ�
1∂μϕ2 − ϕ2∂μϕ

�
1. For purely right-

moving modes, we may align the hypersurface Σ with a
null line of constant u (or even J −) such that the
dΣμ-integral becomes an integration over v and the deriva-

tive ∂↔μ simplifies to ∂↔v. As explained above, the mode
functions fþΩðvÞ are decomposed of purely positive fre-
quency initial waves e−iωv with ω > 0. Conversely, the
mode functions f−ΩðvÞ are decomposed of purely negative
frequency initial waves eþiωv with ω > 0. As a result, the
contributions fþΩðvÞ and f−ΩðvÞ are orthogonal, and thus the
vectors α and β are orthogonal; i.e., we have pure two-mode
squeezing for all ~fHðΩÞ.

Using the arguments presented in Sec. II, we find that the
partner mode reads

âP ¼
Z

∞

0

dΩ ~f�HðΩÞ½χβΩâin−Ω þ χ−1αΩðâinΩÞ†�; ð88Þ

with the factor χ ¼ α=β

χ2 ¼
R∞
0 dΩj ~fHðΩÞj2α2ΩR
∞
0 dΩj ~fHðΩÞj2β2Ω

: ð89Þ

If the Hawking mode ~fHðΩÞ is well localized and peaked at
a given frequency Ω ¼ Ω0, then we may approximate this
factor by χ ≈ eπΩ0=κ. As a result, the wave function of the
partner particle fPðvÞ contains the following linear combi-
nation of the modes f�ΩðvÞ, which yields

eþπΩ=ð2κÞfþ−ΩðvÞ − e−πΩ=ð2κÞf−−ΩðvÞ
2 sinhðΩ=κÞ ¼ jκvj−iΩ=κ ð90Þ

for v > 0 and vanishes for v < 0. Thus, the wave function
of the partner particle is approximately the mirror image of
the initial form of the Hawking mode (82) on the other side
of the horizon at v ¼ 0, i.e.,

fPðvÞ ≈
Z

∞

0

dΩ ~f�HðΩÞðκvÞ−iΩ=κ ¼ f�H

	
−
lnðκvÞ

κ

�
; ð91Þ

for v > 0 and zero for v < 0. As a result, detecting a
Hawking particle with, say,Ω ¼ OðκÞ in the thermal region
at late times κu ≫ 1 yields (up to normalization) approx-
imately the same state as creating a partner particle with
exponentially short wavelengths in the left-moving vacuum
region at very small but positive values of v. Figure 3 is a
plot of a specific outgoing Hawking mode (say the mode
detected by some detector) and that mode in the input state,
and its partner mode.
If we could signal the measurement result of the

Hawking detector at large u > 0 on the right-hand side
to this vacuum region on the left-hand side, we would (at
least in principle) be able to extract energy out of this
quantum state, which is locally indistinguishable from
vacuum—this is directly related to the concept of “energy
teleportation.” However, causality prevents us from signal-
ing since these two events are spacelike separated.
Another point is that the cancellation of the contributions

in Eq. (90) occurs at one frequency Ω ¼ Ω0 only. If we
consider a small but finite width ΔΩ ≪ Ω0, the partner
mode will also have support in the same thermal region as
the Hawking particle. For simplicity, let us consider a
Gaussian wave packet of the form

~fHðΩÞ ¼ N exp

�
−
ðΩ −Ω0Þ2
2ðΔΩÞ2 þ iΩu0

�
; ð92Þ
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which is centered aroundΩ0 in frequency space and around
u0 in position space. Even though this ~fHðΩÞ is not exactly
zero for Ω < 0, this contribution is exponentially small for
ΔΩ ≪ Ω0 and is thus negligible. Similarly, the tail of this
wave packet for u < 0 can be made very small by
assuming u0ΔΩ ≫ 1.
After inserting this form (92), the formula for the partner

mode fPðv < 0Þ contains an Ω-integral of which the
integrand vanishes (to lowest order) at Ω ¼ Ω0. Taylor
expanding this integrand around this zero then yields a first-
order contribution of the form ðΩ −Ω0Þ ~fHðΩÞ which can
also be represented by ðΔΩÞ2½iu0 − ∂Ω� ~fHðΩÞ. After the
Fourier transformation (81), the ∂Ω translates into iu, and
thus the partner wave function acquires a small contribution
with the same support as the Hawking mode

fPðuÞ ∼
ðΔΩÞ2

κ
½u − u0�fHðuÞ; ð93Þ

in addition to the dominant contribution (91). Due to the
term ½u − u0�, the two modes are orthogonal as they
should be.

VII. CONCLUSIONS

Perhaps themost surprising conclusion of this paper is that
the partner particles of the thermal radiation (emitted by a
mirror or a black hole) are concentrated in a region which is
locally indistinguishable from vacuum. In the black hole
evaporation process, the Hawking particles emitted at early
or intermediate times can be entangled not with some other
energetic emission at late times but with final vacuum
fluctuations. This weakens the usual argument in black hole
evaporation studies which assume unitarity in the above
sense, which states that the large amount of information left
in the black hole (entanglement with the emitted thermal
emission) must be accompanied by the eventual emission of
large amounts of energy.
Thus, if onewere to imagine a black hole constantly fed by

a pure state designed to just compensate for the energy
emitted by the black hole in Hawking thermal emission, for
1099 times the natural decay lifetime of the black hole, there
must be a huge amount of information inside the black hole,
encoded in the entanglement with the outgoing Hawking
radiation. When the black hole eventually evaporates that
information, which must be emitted at late times, one could
expect that it must be accompanied by a large amount of
energy as well. However, this paper offers the possibility that
eventual emission of information could be in the form of the
vacuum, and carrying no energy.
For example, the Bardeen model [13], a response to the

Almheiri-Marolf-Polchinski-Sully (AMPS) argument [14]
that either unitarity (as defined above) or the regularity of
the space-time at horizon must be wrong, has the partner
radiation to the Hawking emission trapped within the
apparent horizon of the black hole, until eventually that
horizon disappears. This would seem to require a massive
emission of energy just at the time when that apparent
horizon disappears to accompany that massive emission of
information (i.e., the entangled partner radiation to the
earlier Hawking emission). Our results offer the possibility
that those partner modes are, in that final stage, simply a
part of the vacuum state with no energy accompany-
ing them.
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FIG. 3 (color online). Schematic of the outgoing detected
Hawking mode (blue wave packet in upper right corner), its
shape when traced back to the initial state (lower right corner),
and its partner mode (red curve). The insert gives an expanded
view of the incoming modes which correspond to the detector
mode D (solid blue curve) and its partner mode P (dashed red
curve) as a function of v ¼ tþ x. The solid black curve
represents the mirror trajectory, and light rays (including the
horizon) are depicted by dotted lines. Note that this schematic is
not to scale; e.g., the detector mode is not very narrow in
momentum space, and thus the approximation (91) would not be
very accurate (i.e., the partner mode would not be the exact mirror
image of the detector mode on the other side of the horizon).
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APPENDIX: UNIQUENESS PROOF

In the following, we show that the ansatz (12) for the
partner particle is the most general ansatz one can make, i.e.,
that the partner particle is uniquely determined by our two
conditions (unless we have pure single-mode squeezing
α∥β). Note that the existence of the partner mode is already
demonstrated by the construction in Sec. II which works
in all cases (at least using condition B1) apart from
those where we have pure single-mode squeezing α∥β.
For free fields, the initial vacuum state is a Gaussian

state, and thus the state restricted to the two modes âH
and âP must also be a Gaussian state. In the position
representation, i.e., as a function of the position vector
x ¼ ðxH; xPÞ where x̂H ¼ ðâH þ â†HÞ=

ffiffiffi
2

p
and x̂P ¼

ðâP þ â†PÞ=
ffiffiffi
2

p
, the most general wave function of a pure

Gaussian state reads

ψðxÞ ¼ N exp
n
−
1

2
x ·M · x

o
; ðA1Þ

where M is a symmetric but possibly complex matrix
and N is the corresponding normalization factor. To have
a normalizable state, the real part of M must have two
positive eigenvalues λ1;2.
Now, the derivative of ψ yields

∂
∂xψðxÞ ¼ −M · xψðxÞ: ðA2Þ

In terms of the momentum operator p̂, we get

ðip̂þM · x̂Þjψi ¼ 0: ðA3Þ
This motivates the introduction of preannihilation operators
Â ¼ ip̂þM · x̂ which obey the following commutation
relations:

½ÂI; ÂJ� ¼ ½Â†
I ; Â

†
J� ¼ 0;

½ÂI; Â
†
J� ¼ MIJ þM�

IJ ¼ 2ℜðMIJÞ: ðA4Þ
Since ℜðMÞ is a real symmetric and positive matrix, we
may diagonalize it with an orthogonal (rotation) matrix
D such that D ·ℜðMÞ · D† ¼ diagfλIg. As a result, the
operators â ¼ D · ½2ℜðMÞ�−1=2 · Â, i.e.,

âI ¼
DIJÂJffiffiffiffiffiffiffi

2λI
p ⇝ âIjψi ¼ 0; ðA5Þ

satisfy the standard commutation relations and do also
annihilate the state jψi. Since this state jψi is just the initial
vacuum state reduced to the two modes âH and âP, the two
operators â1;2 above must be a linear combination of the
initial annihilation operators. From the construction above,
we see that the Hawking and partner mode operators âH
and âP must be linear combinations of these operators â1
and â2 as well as their adjoints â

†
1 and â†2. Thus, the linear

subspace spanned by â1 and â2 can be identified with that
of â∥ and â⊥, and we arrive at the ansatz (12).
Alternatively, one could insert the general ansatz for the

modes âH ¼ fαjâg þ fâjβg and âP ¼ fγjâg þ fâjδg into
Eq. (A3) which gives the two linear equations

β − αþM11ðβþ αÞ þM12ðδþ γÞ ¼ 0;

δ − γ þM21ðδþ γÞ þM22ðβþ αÞ ¼ 0; ðA6Þ
whereMIJ are the components of the symmetric matrixM
(which also depend on α, β, γ, and δ). Since these two
equations are linearly independent for all MIJ, we find
that γ and δ must lie in the same subspace as α and β
(which are assumed to be linearly independent).
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