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Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study the
nonlinear effects of gravitational waves, such as Faraday rotation and the time-shift phenomenon. In a
previous work, we analyzed the single-soliton solution constructed using Pomeransky’s improved inverse
scattering method. In this work, we construct a new two-soliton solution with complex-conjugate poles, by
which we can avoid the light-cone singularities that are unavoidable in a single-soliton case. In particular,
we compute the amplitudes of nonlinear gravitational waves and the time dependence of the polarizations.
Furthermore, we consider the time-shift phenomenon for soliton waves, which means that a wave packet
can propagate at a velocity slower than light.
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I. INTRODUCTION

Many gravitational solitons in general relativity—which
describe gravitational solitonic waves propagating through-
out spacetime—have been found within the framework of
the so-called inverse scattering method [1,2]. In particular,
it has attracted a lot of relativists since it can generate black
hole solutions in an axisymmetric and stationary case, in
addition to exact solutions describing nonlinear gravita-
tional waves on various physical backgrounds. The method
was immediately generalized to the higher-dimensional
Einstein equations (see the references in Ref. [2]), but such
a simple generalization to higher dimensions tends to lead
to singular solutions. However, ten years ago Pomeransky
[3] succeeded in modifying the original inverse scattering
method [4] so that it can generate regular solutions even in
higher dimensions. Thanks to this, several black holes
solutions were found in five dimensions [5,6].
A diagonal metric form of a cylindrically symmetric

spacetime gives the vacuum Einstein equation the
extremely simple structure of a linear wave equation in a
flat background. An Einstein-Rosen wave—which can be
interpreted as a superposition of cylindrical gravitational
waves with a þ mode only—was obtained as the solution
of such an equation [1,7]. However, the existence of
nontrivial nondiagonal components of a metric drastically
changes the structure of the Einstein equation since it
generally yields a × mode together with nonlinearity. Piran
et al. [8] numerically studied the nonlinear interaction of
cylindrical gravitational waves of both polarization modes
and showed that a þ mode converts to a × mode. This
phenomenon is called the gravitational Faraday effect after

the Faraday effect in electrodynamics. Tomimatsu [9]
studied the gravitational Faraday rotation for cylindrical
gravitational solitons generated by the inverse scattering
technique. Moreover, the interaction of gravitational
soliton waves with a cosmic string was also studied in
Refs. [10–12]. As one of many new attempts to understand
strong gravitational effects, we have recently constructed a
new cylindrically symmetric single-soliton solution from a
Minkowski seed using Pomeransky’s inverse scattering
method and clarified the behavior of the new solution
including the effect similar to the gravitational Faraday
rotation.
To further this investigation, in this paper we first

construct more complicated gravitational two-soliton solu-
tions with complex-conjugate poles using Pomeransky’s
method, which are considered as cylindrically symmetric
gravitational waves with a rich structure and can be used to
study gravitational nonlinear effects. One of the important
and remarkable features of the solutions is that there are no
null singularities, which generally appear in the case of
single-soliton solutions. We may therefore adopt a picture
similar to the scattering theory that from the past null
infinity one gravitational wave packet comes into “the
interaction region” near the symmetric axis and after
reflection leaves the region for the future null infinity.
The behavior of the wave packet can be analyzed by
following the time-sequential images and also by compar-
ing the physical quantities measured in the past and future
infinities. As an interesting example, a change of polari-
zation of two independent modes will be treated with both
methods.
In the next section, we present the Kompaneets-Jordan-

Ehlers form [13] in the most general cylindrical sym-
metric spacetime and the useful quantities (amplitudes and
polarization angles) for the analysis of nonlinear cylindrical

*tomizawasny@stf.teu.ac.jp
†tmishima@phys.ge.cst.nihon‑u.ac.jp

PHYSICAL REVIEW D 91, 124058 (2015)

1550-7998=2015=91(12)=124058(12) 124058-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.124058
http://dx.doi.org/10.1103/PhysRevD.91.124058
http://dx.doi.org/10.1103/PhysRevD.91.124058
http://dx.doi.org/10.1103/PhysRevD.91.124058


gravitational waves, which were first introduced by Piran
et al. [8] and Tomimatsu [9]. In Sec. III, using the inverse
scattering method improved by Pomeransky [3], we gen-
erate a two-soliton solution with complex-conjugate poles
from Minkowski spacetime. In Sec. IV, we analyze the
obtained two-soliton solution by computing the amplitudes
and polarization angles for ingoing and outgoing waves. In
this section, in particular, by seeing the time dependence of
polarizations, we study the gravitational Faraday effect.
Furthermore, we mention the difference with the single-
soliton solution in our previous paper, and moreover
clarify the difference with Tomimatsu’s two-soliton
solution [9] generated with the Belinsky-Zakharov pro-
cedure. In Sec. V, we devote ourselves to a summary and
discussion of our results.

II. FORMULAS

We assume that a four-dimensional spacetime admits
cylindrical symmetry, namely, that there are two commut-
ing Killing vector fields, an axisymmetric Killing vector
∂=∂ϕ, and a spatially translational Killing vector ∂=∂z,
where the polar angle coordinate ϕ and the coordinate z
have the ranges 0 ≤ ϕ < 2π and −∞ < z < ∞, respec-
tively. Under these symmetry assumptions, the most
general metric can be described by the Kompaneets-
Jordan-Ehlers form:

ds2 ¼ e2ψðdzþ ωdϕÞ2 þ ρ2e−2ψdϕ2 þ e2ðγ−ψÞðdρ2 − dt2Þ;
ð1Þ

where the functions ψ , ω, and γ depend on the time
coordinate t and radial coordinate ρ only. Following
Refs. [8,9], we introduce the amplitudes

Aþ ¼ 2ψ ;v; ð2Þ

Bþ ¼ 2ψ ;u; ð3Þ

A× ¼ e2ψω;v

ρ
; ð4Þ

B× ¼ e2ψω;u

ρ
; ð5Þ

where the advanced ingoing and outgoing null coordinates
u and v are defined by u ¼ ðt − ρÞ=2 and v ¼ ðtþ ρÞ=2,
respectively. The indices þ and × denote the quantities
associated with the respective polarizations. Then, the
vacuum Einstein equation can be written in terms of these
quantities; actually, the nonlinear differential equations for
the functions ψ and ω are replaced by

Aþ;u ¼
Aþ − Bþ

2ρ
þ A×B×; ð6Þ

Bþ;v ¼
Aþ − Bþ

2ρ
þ A×B×; ð7Þ

A×;u ¼
A× þ B×

2ρ
− AþB×; ð8Þ

B×;v ¼ −
A× þ B×

2ρ
þ A×Bþ; ð9Þ

and the function γ is determined by

γ;ρ ¼
ρ

8
ðA2þ þ B2þ þ A2

× þ B2
×Þ; ð10Þ

γ;t ¼
ρ

8
ðA2þ − B2þ þ A2

× − B2
×Þ: ð11Þ

The ingoing and outgoing amplitudes are, respectively,
defined by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ þ A2

×

q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ þ B2

×

q
; ð12Þ

and the polarization angles θA and θB for the respective
wave amplitudes are given by

tan 2θA ¼ A×

Aþ
; tan 2θB ¼ B×

Bþ
: ð13Þ

III. TWO-SOLITON SOLUTION

In this work, as a seed, we consider Minkowski
spacetime written in cylindrical coordinates whose 2 × 2
part of the metric g0 ≔ ðg0abÞða; b ¼ z;ϕÞ and metric
function f0 ≔ e2ðγ0−ψ0Þ are given by, respectively,

g0 ¼ diagð1; ρ2Þ; f0 ¼ 1: ð14Þ

Following the inverse scattering method which
Pomeransky improved [3], we construct a two-soliton
solution with complex-conjugate poles. First, we remove
the trivial solitons with (1,0) at t ¼ a1 and t ¼ a2 (ā2 ¼ a1)
from the seed metric, and then we obtain the metric

g00 ¼ diag

�jμ1j4
ρ4

; ρ2
�

¼ ðjwj4; ρ2Þ; ð15Þ

where w≔ μ1=ρ½μ1 ¼ μ̄2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − a1Þ2 − ρ2

p
− ðt − a1Þ�.

Note that a1 is a complex parameter and the bar denotes
complex conjugation. Next, we reintroduce the nontrivial
solitons with ð1; aÞ and ð1; āÞ. Then we obtain the two-
soliton solution as
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gab ¼ ðg00Þab −
X2
k;l¼1

ðg00ÞacmðkÞ
c ðΓ−1ÞklmðlÞ

d ðg00Þdb
μkμl

; ð16Þ

f ¼ f0
detðΓklÞ

detðΓklðc ¼ 0ÞÞ ; ð17Þ

where

Γkl ¼
mðkÞ

a ðg00ÞabmðlÞ
b

−ρ2 þ μkμl
; ð18Þ

mðkÞ
a ¼ mðkÞ

0b ðΨ−1
0 ðρ; t; μkÞÞba: ð19Þ

Ψ0ðρ; t; λÞ is a generating matrix for the seed g00, which is
given by

Ψ0ðρ; t; λÞ ¼ diag

� ðρ2 þ 2tλþ λ2Þ2
ð~μ1 − λÞ2ð~μ2 − λÞ2 ; ρ

2 þ 2tλþ λ2
�
;

ð20Þ

where ~μk ¼ ρ2=μkðk ¼ 1; 2Þ.

We present the metric in the Kompaneets-Jordan-Ehlers
form [13], which describes the most general cylindrically
symmetric spacetime,

ds2 ¼ e2ψðdzþ ωdϕÞ2 þ ρ2e−2ψdϕ2 þ e2ðγ−ψÞðdρ2 − dt2Þ;
ð21Þ

where the functions ψ , ω, and γ depend on the time
coordinate t and radial coordinate ρ only, and they are
explicitly given by

e2ψ ¼ jwj4
�
1 −

A
B

�
; ð22Þ

ω ¼ −
ðjwj2 − 1Þ2

ρ

C
B −A

; ð23Þ

e2γ ¼ jwj4ðB −AÞ
ðw − w̄Þ2jw2 − 1j6ðjwj2 − 1Þ6 ; ð24Þ

with

A ¼ 2ℜ

�ðjwj2 − 1Þ4ðw̄2 − 1Þ4
w̄2ðw2 − 1Þ ðX2 þ c2Y2Þ

�
− 2

ðjwj2 − 1Þ3jw2 − 1j4
jwj2 ðjXj2 þ jcj2jYj2Þ; ð25Þ

B ¼ 1

jw2 − 1j2 jX
2 þ c2Y2j2 − 1

ðjwj2 − 1Þ2 ðjXj
2 þ jcj2jYj2Þ2; ð26Þ

C ¼ 2ℜ

�
c̄ðw̄2 − 1Þ2
w̄ðw2 − 1Þ ðX

2 þ c2Y2Þ
�
− 2ℜ

�
c̄ðw2 − 1Þ2
wðjwj2 − 1Þ

�
ðjXj2 þ jcj2jYj2Þ; ð27Þ

X ¼ ðw2 − 1Þ2ðjwj2 − 1Þ2; ð28Þ

Y ¼ jwj2w
ρ2

; ð29Þ

c ¼ 2aa1: ð30Þ

Here, ℜ½� denotes a real part of ½�.
After using the time-translational invariance of the

system to rewrite the parameter a1 as iq (i is
ffiffiffiffiffiffi
−1

p
and

q is a positive number), we can simplify the metric by
introducing the following new coordinates ðx; yÞ:

t ¼ qxy; ρ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þðy2 − 1Þ

q
: ð31Þ

Note that

μ1 ¼ μ̄2 ¼ qðxþ iÞð1 − yÞ: ð32Þ
Let us put a ¼ ar þ aiiðar; ai∈RÞ. In the coordinate
system ðx; yÞ, the metric can be written as

ds2 ¼ Y
X

�
dzþ Z

Y
dϕ

�
2

þ ρ2
X
Y
dϕ2 þ X

4096q4ðx2 þ y2Þ5
�
−

dx2

x2 þ 1
þ dy2

y2 − 1

�
; ð33Þ
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where the metric functions X ;Y, and Z are

X ¼ a4i ðy − 1Þ2ðyþ 1Þ6 þ 2a2i ðyþ 1Þ2ða2rðy − 1Þ2ðyþ 1Þ4 þ 64q2ðx4ðyð9y − 8Þ þ 1Þ þ 2x2ðyðyþ 4Þ − 3Þy2 þ y6 þ y4ÞÞ
− 512aiarq2xðyþ 1Þ2ðx2 − ðy − 2ÞyÞðx2ð2y − 1Þ þ y2Þ þ a4rðy − 1Þ2ðyþ 1Þ6
þ 128a2rq2ðyþ 1Þ2ð2x6 þ x4ðð8 − 3yÞy − 1Þ þ 2x2y2ð2ðy − 2Þyþ 3Þ þ y6 − y4Þ þ 4096q4ðx2 þ y2Þ4;

Y ¼ a4i ðy2 − 1Þ4 þ 2a2i ðy2 − 1Þða2rðy2 − 1Þ3 þ 64q2ðx4ð9y2 − 1Þ þ 2x2ðy2 þ 3Þy2 þ y6 − y4ÞÞ
− 1024aiarq2xðx2 þ 1Þyðy2 − 1Þðx − yÞðxþ yÞ þ a4rðy2 − 1Þ4
þ 128a2rq2ðy2 − 1Þð2x6 þ x4 þ ð4x2 þ 1Þy4 − 3ðx2 þ 2Þx2y2 þ y6Þ þ 4096q4ðx2 þ y2Þ4;

Z ¼ −32q2ðyþ 1Þða3i xðy − 1Þðyþ 1Þ3ðx2ð1 − 3yÞ þ ðy − 3Þy2Þ þ a2i arðy − 1Þðyþ 1Þ3ðx4 − 3x2ðy − 1Þy − y3Þ
þ aixðy − 1Þða2rðyþ 1Þ3ðx2ð1 − 3yÞ þ ðy − 3Þy2Þ þ 64q2ðx2 þ y2Þ3Þ
þ arða2rðy − 1Þðyþ 1Þ3ðx4 − 3x2ðy − 1Þy − y3Þ − 64q2ðx2 þ yÞðx2 þ y2Þ3Þ:

IV. ANALYSIS

Let us investigate how the new gravitational solitonic
waves propagate throughout spacetime from several view-
points. For the convenience of explanation, we introduce
the modulus k and the angle θ of the complex parameter a,

k ¼ jaj; θ ¼ ArgðaÞ:

In the following analysis, we only consider the case q ¼ 1,
because the parameter q can be normalized by a scaling of
the coordinates.
First we briefly show the qualitative behavior of the

waves near the axis. The panels n ¼ 0;…; 7 in Fig. 1
show the various behaviors of the total amplitude
(Atot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
) from the spacetime viewpoint. The

figures are plotted in the ranges −5 ≤ t ≤ 5 and 0 ≤ ρ ≤
5 under the parameter setting q ¼ 1, k ¼ 2, and
θ ¼ nπ=4ðn ¼ 0 ∼ 7Þ. Some of the behaviors are also
displayed in Fig. 2 by superimposing the instantaneous
graphs that correspond to t ¼ 0 and t ¼ �n; ðn ¼ 1 ∼ 3Þ,
respectively. From the behaviors of the amplitudes we may
consider the gravitational solitonic waves to be regular
wave packets, which first come into the region near the
symmetric axis from past null infinity, and leave the axis
after reflection for future null infinity. On first inspection,
the various complex behaviors seem to be generated by a
certain kind of nonlinear effect near the axis. For example,
in Figs. 1 and 2, at the angle θ ¼ π=4 the initial two wave
packets coalesce into one packet, while at the angle θ ¼
3π=4 the initial single wave packet splits in two. These
remarkable phenomena seem to occur very close to the
axis, so that we may say that the neighborhood around the
axis is the region where nonlinear effects become strong.

In the subsequent subsections, we will see the detailed
behavior of the waves propagating near the boundaries of
spacetime, particularly focusing on nonlinear effects.

A. Initial amplitudes

We now look at the initial amplitudes for the ingoing and
outgoing waves. At the initial time t ¼ 0, we have the
ingoing and outgoing wave amplitudes

A ¼ 4qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 128aiarq3ðρ2 þ q2Þρ

D

r
; ð34Þ

B ¼ 4qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − 128aiarq3ðρ2 þ q2Þρ

D

r
; ð35Þ

where

N ≔ ðjaj4 þ 64a2i q
2Þρ6 þ 64q4ðjaj2 þ a2i Þρ4

þ 64q6ðjaj2 þ a2rÞρ2 þ 64q8a2r ;

D≔ ðjaj2 þ 64q2Þ2ρ8 þ 256q4ðjaj2 þ a2r þ 64q2Þρ6
þ 128q6ðjaj2 þ 4a2rAtot þ 192q2Þρ4
þ 256q8ða2r þ 64q2Þρ2 þ 4096q12:

As is shown in Fig. 2, the disturbances for the total
amplitude Atot, which is related to the C-energy density,
is localized in the neighborhood of the axis.

B. Asymptotic behaviors

1. Timelike infinity

Next we consider the asymptotic behaviors of the waves
at late time t → ∞. At t → ∞, the metric behaves as

SHINYA TOMIZAWA AND TAKASHI MISHIMA PHYSICAL REVIEW D 91, 124058 (2015)

124058-4



FIG. 1 (color online). The total amplitude Atot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
in the ðρ; tÞ plane for ðk; θÞ ¼ ð2; nπ=4Þðn ¼ 0; 1;…; 7Þ.
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ds2 ≃
�
1 −

a2r
4t2

��
dzþ ar

�
1þ ρ2

4t2

�
dϕ

�
2

þ ρ2
�
1þ a2r

4t2

�
dϕ2 þ

�
1þ a2r

4t2

�
ð−dt2 þ dρ2Þ: ð36Þ

Here let us introduce the new coordinate ~z≔ zþ arϕ, so
that ∂=∂ ~z is also a translationally symmetric Killing vector;
then, we can show that this asymptotic metric is that of
Minkowski spacetime. Therefore, both ingoing and out-
going waves vanish at late time. We have the asymptotic
amplitudes

A≃ B≃ ar
2t2

þOðt−3Þ: ð37Þ

In particular, for ar ¼ 0, the amplitudes behave in a
different way,

A≃ B≃ aiq
t3

þOðt−4Þ: ð38Þ

In this region, the polarization angles θA and θB for
outgoing and ingoing waves behave as

tan θA ≃ tan θB ≃ 1: ð39Þ

This shows that, regardless of the values of the parameters,
the × mode becomes dominant at late time.

2. Spacelike infinity

Let us consider gravitational waves near spacelike
infinity ρ → ∞. In the limit of ρ → ∞, we have the
following asymptotic metric form:

ds2≃
�
1−

4jaj2q
ðjaj2þ64q2Þρ

��
dzþ 32arq2

jqj2þ64q2
dϕ

�
2

þρ2
�
1þ 4jaj2q

ðjaj2þ64q2Þρ
�
dϕ2þðjaj2þ64q2Þ2

4096q4
ð−dt2þdρ2Þ: ð40Þ

FIG. 2 (color online). Time dependence of the total amplitude Atot for ðk; θ; qÞ ¼ ð2; nπ=4; 1Þðn ¼ 0; 1; 2; 3Þ. The blue and red curves
denote incident waves and reflected waves, respectively, for t ¼;�1;�2;�3. The violet curves in the case n ¼ 0; 2 show that the
incident and reflected waves entirely overlap.
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If we use the new coordinate

~z ¼ zþ 32arq2

ðjaj2 þ 64q2Þϕ; ð41Þ

we immediately find that this spacetime is Minkowski
spacetime with the deficit angle

D ¼ 2π
jaj2

jaj2 þ 64q2
: ð42Þ

The wave amplitudes behave as

A≃ B≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj4 þ 64a2i q

2
p
ðjaj2 þ 64q2Þρ2 þOðρ−3Þ: ð43Þ

For ai ≠ 0, the polarization angles approach the values

tan θA ≃ − tan θB ≃ jaj2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj4 þ 16a2i q

2
p
16aiq

; ð44Þ

and for ai ¼ 0, they behave as

tan θA ≃ tan θB ≃ 0: ð45Þ

3. Axis

Now we look at the behavior of the waves on the axis of
symmetry ρ ¼ 0. Near the axis, the metric behaves as

ds2 ≃ 4ðq2 þ t2Þ2
4ðt2 þ q2Þ2 þ ðtar − qaiÞ2

ðdzþ ardϕÞ2

þ 4ðt2 þ q2Þ2 þ ðtar − qaiÞ2
4ðq2 þ t2Þ2 ρ2dϕ2

þ 4ðt2 þ q2Þ2 þ ðtar − qaiÞ2
4ðq2 þ t2Þ2 ð−dt2 þ dρ2Þ: ð46Þ

Using the coordinate ~z ¼ zþ arϕ, we have the metric

ds2 ≃ 4ðq2 þ t2Þ2
4ðt2 þ q2Þ2 þ ðtar − qaiÞ2

d~z2

þ 4ðt2 þ q2Þ2 þ ðtar − qaiÞ2
4ðq2 þ t2Þ2 ρ2dϕ2

þ 4ðt2 þ q2Þ2 þ ðtar − qaiÞ2
4ðq2 þ t2Þ2 ð−dt2 þ dρ2Þ: ð47Þ

It is straightforward to show that the ratio of the length of
the circumference to the radial distance on the axis is

lim
ρ→0

R
2π
0

ffiffiffiffiffiffiffigϕϕ
p dϕR ρ

0

ffiffiffiffiffiffigρρ
p dρ

¼ 2π: ð48Þ

This equation means that no deficit angle is present on the
axis, which is in contrast to spacelike infinity. In the limit of
ρ → 0, the wave amplitudes behave as

A≃ B≃ jart2 − 2aiqt − arq2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðt2 þ q2Þ2ðaiq − artÞ2 þ fðart − aiqÞ2 − 4ðt2 þ q2Þ2g2

p
2ðt2 þ q2Þ2½ðart − aiqÞ2 þ 4ðq2 þ t2Þ2� : ð49Þ

The polarizations are

tan 2θA ≃ tan 2θB ≃ −
ð2t2 þ 2q2 − artþ aiqÞð2t2 þ 2q2 þ art − aiqÞ

4ðt2 þ q2Þðaiq − artÞ
: ð50Þ

4. Null infinity

At null infinity v → ∞, the wave amplitudes behave as

A≃ 2p1

ffiffiffiffiffiffiffiffiffiffiffi
N1

D1v3

s
; ð51Þ

B≃ 8p3
1

p4
1 þ q2

ffiffiffiffiffiffiffiffiffi
N2

D2v

s
; ð52Þ

where

N1 ¼ ðjaj4q4 þ 64a2i q
6Þ − 128araiqp2

1ðq2 þ p4
1Þ2 þ 64ðjaj2 þ a2i Þq4p4

1 þ 64ðjaj2 þ a2rÞq2p8
1 þ 64a2rp12

1 ; ð53Þ
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D1 ¼ q4ðjaj2 þ 64q2Þ2 þ 256q4ðjaj2 þ a2r þ 64q2Þp4
1 þ 1024araiqp6

1ðq2 − p4
1Þ þ 384q2ð3jaj2 − 4a2r þ 64q2Þp8

1

þ 256ða2r þ 64q2Þp12
1 þ 4096p16

1 ; ð54Þ

N2 ¼jaj4q4 þ 64a2i q
6 − 384araip2

1qðq4 þ p8
1Þ þ 192q2p4

1ðjaj2 − 5a2i Þðq2 − p4
1Þ þ 1280araiq3p6

1 þ 64a2rp12
1 ; ð55Þ

D2 ¼ q4ðjaj2 þ 64q2Þ2 þ 256q4ðjaj2 þ a2r þ 64q2Þp4
1 þ 1024araiqp6

1ðq2 − p4
1Þ þ 384q2ð3jaj2 − 4a2r þ 64q2Þp8

1

þ 256ða2r þ 64q2Þp12
1 þ 4096p16

1 ; ð56Þ

and p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2 þ q2

pq
.

C. Faraday effect

In this subsection, using the two-soliton solution, we
study the gravitational Faraday effect, which is a phenome-
non in which an outgoing (ingoing) wave amplitude
corresponding to the þ mode converts to an outgoing
(ingoing) wave amplitude corresponding to the × mode
due to the interaction with an ingoing (outgoing) wave
with the × mode. Let us see how the þ modes convert
to the × modes while the corresponding gravitational
waves are propagating along null rays from the axis
ρ ¼ 0 to null infinity v → ∞. It is most interesting to
analyze it in the cases when a2r − 16q2 − 8aiq > 0 and
a2r − 16q2 þ 8aiq > 0, since both polarization angles θA
and θB completely vanish on the axis four times, i.e., at
t ¼ t��, where t�� are defined by, respectively,

tþ� ¼ ar �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r − 16q2 − 8aiq

p
4

; ð57Þ

t−� ¼ −ar �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r − 16q2 þ 8aiq

p
4

: ð58Þ

As shown in Fig. 3, θA and θB have time dependence on
ρ ¼ 0 and the × mode vanishes there at t ¼ ��.
The upper-left graph in Fig. 4 shows that the pure

þmode wave passing ðt; ρÞ ¼ ðtþþ; 0Þ partially converts to
the × mode wave and that its conversion comes to a stop
asymptotically at v → ∞. The ratio of the × mode to the
þmode monotonously approaches a certain constant value.
In this process, a complete conversion of þ to ×, or of × to
þ does not occur. The upper-right graph in Fig. 4 illustrates
that the pure þ gravitational wave passing ðt; ρÞ ¼ ðtþ−; 0Þ
converts a little to the × mode and soon converts to the pure
þ mode. After that, a small conversion occurs and again
becomes the pure þ mode twice and θB approaches a
nonzero value. Finally, its conversion comes to a stop
asymptotically at v → ∞. The ratio of the × mode to the
þ mode becomes a certain constant value. The lower-left
graph in Fig. 4 shows that the pure þ gravitational
wave passing ðt; ρÞ ¼ ðt−þ; 0Þ completely converts to the
× mode, and afterwards partially converts to the þ mode.
At v → ∞, the × mode becomes dominant. The lower-right
graph in Fig. 4 illustrates that the pureþ gravitational wave
passing ðt; ρÞ ¼ ðt−−; 0Þ partially converts to the × mode.
At v → ∞, θB asymptotically approaches a certain
constant.
Finally, let us consider the gravitational wave passing

ðt; ρÞ ¼ ðt×; 0Þ, where t× ¼ aiq=ar, when no þ mode is
present at the axis. As shown in Fig. 5, the pure × mode
partially converts to the þ mode, but the × mode again
increases, and at v → ∞ the value of θB becomes a
constant.

D. Time shift

No we investigate the time-shift phenomenon as a
nonlinear effect, which means that a wave packet prop-
agates at a velocity slower than light. Following the
analysis in Ref. [14], where a procedure for measuring a
time shift for gravitational solitons was proposed, we
numerically analyze the asymptotic behavior of the wave
packets at future null infinity v → ∞ and past null infinity
u → −∞. In principle, we can find a time shift of the wave

FIG. 3 (color online). The behaviors of j sin 2θAj and j sin 2θBj
for ðar; ai; qÞ ¼ ð10; 0; 1Þ on the axis.
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amplitudes by comparing its arrival time at future null
infinity with that of a massless test particle starting at past
null infinity at the same time. As illustrated in Fig. 6, an
incoming massless particle propagating along v ¼ 0 from
past null infinity u ¼ −∞ arrives at the axis ρ ¼ 0, and
after reflection it propagates along u ¼ 0 toward future null
infinity v ¼ ∞. Let us see how slow a wave packet with a
peak near u ¼ 0 and v ¼ 0 is, compared with the massless
particle.

FIG. 5 (color online). j sin 2θAj and j sin 2θBj along the out-
going null ray u× for ðar; ai; qÞ ¼ ð10; 2; 1Þ.

FIG. 6 (color online). The orbit of a massless particle propa-
gating in an incoming radial direction along v ¼ 0, reflecting at
the axis ρ ¼ 0, and propagating in an outgoing direction along
u ¼ 0.

FIG. 4 (color online). j sin 2θAj and j sin 2θBj along the outgoing null rays uþþ, uþ−, u−þ,u−− for ðar; ai; qÞ ¼ ð10; 0; 1Þ.
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In Fig. 7, the blue curves denote the amplitudes for
ingoing waves near past null infinity, limu→−∞A

ffiffiffiffiffiffi
−u

p
, and

the red curves denote the amplitudes for outgoing waves
near future null infinity, limv→∞B

ffiffiffi
v

p
, for ðk; θÞ ¼

ð2; nπ=4Þ (n ¼ 0; 1; 2; 3), where the amplitudes are multi-
plied by ð−uÞ12 and v

1
2 due to the apparent decay at null

infinity. We can interpret these results as follows. Let us
consider an incoming massless test particle starting from
past null infinity and propagating along a null geodesic
v ¼ 0. The particle is reflected at the axis ρ ¼ 0, and then
propagates to future null infinity along a null geodesic
u ¼ 0. An observer at past null infinity sees an ingoing
wave packet earlier than an incoming radial photon, while
at future null infinity they see the outgoing wave packet
after the outgoing photon. This shows the time-shift
phenomenon. Moreover, we would like to comment that
for very large values (regardless of the difference between
the values of θ), the wave packet always propagates slower
than a massless test particle, as seen in Fig. 7. It can neither
collide nor split in the process.

E. Collision, coalescence, and the splitting of solitons

Besides the time-shift phenomena, when k ≈ jqj the
ingoing and outgoing waves take various shapes depending
on the phase, as seen in Fig. 8. As seen in these graphs, both
the ingoing and outgoing waves can have two peaks.
For n ¼ 0ðθ ¼ 0Þ, there are two ingoing wave packets

(one with a small peak and one with a large peak near past
null infinity) and two outgoing wave packets (one with a
small peak and one with a large peak near future null
infinity). This obviously shows that two gravitational
solitons collide, which occurs near the axis ρ≃ 0, and
then the larger one of the two solitons overtakes the smaller
one. For n ¼ 6ðθ ¼ π=2Þ, conversely, the smaller one
collides with the larger one and then overtakes it.
For n ¼ 3 (θ ¼ π=4), there are two ingoing solitons at

past null infinity, but a single outgoing soliton at near
future null infinity. This shows that two solitons
coalesce (in a reflection at the axis). In contrast, as seen
for n ¼ 9 (θ ¼ 3π=4), a single wave packet splits into two
wave packets. Such phenomena do not happen for other

FIG. 7 (color online). Time shift for ðk; θ; qÞ ¼ ð1000; nπ=4; 1Þðn ¼ 0; 1; 2; 3Þ. The blue and red curves show the incident waves at
past null infinity and the reflected waves at future null infinity, respectively.
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solitons, such as solitons of the Korteweg–de Vries (KdV)
equation.

V. SUMMARY AND DISCUSSION

In this paper, using Pomeransky’s inverse scattering
method for a cylindrically symmetric spacetime and start-
ing from the Minkowski seed, we have obtained the two-
soliton solution (which has two complex-conjugate poles)
to the vacuum Einstein equation with cylindrical symmetry.
As with the one-soliton solution with a real pole (in our
previous work [15]), it has been numerically shown that the

two-soliton solution (presented in this work) describes a
gravitational wave packet with two polarizations that
comes from past null infinity, is reflected at the axis,
and returns to future null infinity. The one-soliton solution
in Ref. [15] describes a shock wave pulse with infinite
amplitude propagating at the velocity of light, which yields
null singularities, but the two-soliton solution is entirely
free from such singular behavior. This fact itself should not
be surprising because in the previous work [9] a two-soliton
solution with complex-conjugate poles and without any
singularities was constructed.

FIG. 8 (color online). Amplitudes of the ingoing and outgoing waves for ðk; θ; qÞ ¼ ð2; nπ=12; 1Þðn ¼ 0; 1;…; 11Þ. The blue and red
curvess show the incident waves at past null infinity and reflectional waves at future null infinity, respectively.
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In this work, using the two-soliton solution, we have
studied the nonlinear effect of cylindrically symmetric
gravitational waves, focusing particularly on (i) the gravi-
tational Faraday effect, (ii) the time-shift phenomenon, and
(iii) the collision process of two solitons.

(i) The polarization angles θA and θB of gravitational
waves on the axis have a time dependence. In par-
ticular, if a2r−16q2−8aiq>0 or a2r−16q2þ8aiq>0,
at the times t ¼ t�� the × mode completely vanishes
on the axis ρ ¼ 0 and only the þ mode is present
there. In this case, we have studied how the pure
þ mode on the axis converts to the × mode while it
is propagating along the null rays u ¼ u��. It was
shown that in any case the polarization angles
asymptotically approach a certain nonzero constant,
which means that both modes are present at future
null infinity.

(ii) Here we said that the time shift is a phenomenon
wherein a wave packet of a gravitational wave
propagates at a velocity slower than light. This is
slightly different from the context used in the field of
usual soliton theories, where this term (which is also
called a phase shift) is used to imply that when two
solitonic waves collide, each position shifts com-
pared to when it propagates alone. In the case of

cylindrical gravitational solitonic waves, it is evident
that this phenomenon is due to the self-interaction of
a gravitational wave when an ingoing cylindrical
wave reflects, rather than the interaction due to the
collision of two solitonic waves, since in a region far
from the axis this gravitational soliton seems to
propagate at the velocity of light.

(iii) For the two-soliton solution in this paper, we have
clarified that two gravitational solitons can coalesce
into a single soliton, and also that a single soliton can
split into two via the nonlinear effect of gravitational
waves. Such phenomena cannot be seen for solitons
of other integrable equations such as solitons of the
KdV equation. For the KdV equation, when two
solitons traveling in the same direction collide (the
amplitude is not simply the sum of the two indi-
vidual solitons), each soon separates from the other
and then asymptotically approaches the same wave-
pulse shape as before the collision.
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