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Considering theLagrangian of the logarithmic nonlinear electrodynamics in the presence of a scalar dilaton
field, we obtain a new class of topological black hole solutions of Einstein-dilaton gravity with two Liouville-
type dilaton potentials. Black hole horizons and cosmological horizons, in these spacetimes, can be a two-
dimensional positive, zero, or negative constant curvature surface.We find that the behavior of the electric field
crucially depends on the dilaton coupling constant α. For small α, the electric field diverges near the origin,
although its divergency is weaker than the linear Maxwell field. However, with increasing α, the behavior of
the electric field, near the origin, approaches to that of the Maxwell field. We also study casual structure,
asymptotic behavior, and physical properties of the solutions. We find that, depending on the model
parameters, the topological dilaton black holes may have one or two horizons, and even in some cases we
encounter a naked singularity without horizon. We compute the conserved and thermodynamic quantities of
the spacetime and investigate that these quantities satisfy the first law of thermodynamics. We also probe
thermal stability in the canonical and grand canonical ensembles and disclose the effects of the dilaton field as
well as nonlinear parameter on the thermal stability of the solutions. Finally, we investigate thermodynamical
geometry of the obtained solutions by introducing a newmetric and studying the phase transition points due to
the divergency of theRicci scalar.We find that the dilaton field affects the phase transition points of the system.
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I. INTRODUCTION

Nowadays, it is a general belief that the Einstein theory
of gravity can be understood as the low energy limit of
superstring theory. Indeed, it has been shown that string
theory in the low energy limit leads to the Einstein gravity,
coupled nonminimally to a scalar dilaton field [1].
Although one can consistently truncate such models to
consider, the presence of the dilaton field cannot be ignored
if one considers coupling of the gravity to other gauge
fields, and thus the dilaton field is an essential feather of the
string theory. The coupling of the dilaton field with another
gauge field has profound consequences on the behavior of
the solutions. For example, in the presence of one or two
Liouville-type potentials, it has been shown that there exist
dilaton black holes/branes solutions in which their asymp-
totic behavior is neither flat nor anti-de Sitter (AdS) [2–14].
There are two motivations for studying nonasymptotically
flat or AdS black hole spacetimes. First, these solutions can
shed some light on the possible extensions of AdS/
Conformal Field theory (CFT) correspondence. Second,
such solutions may be used to extend the range of validity
of methods and tools originally developed for, and tested
in the case of, asymptotically flat or asymptotically AdS
black holes.

In this paper, we will study topological dilaton black
holes in the presence of nonlinear electrodynamics. The
theory of the nonlinear electrodynamics has a long history
since the pioneering work of Born and Infeld (BI) in 1934
[15]. By extension the linear Maxwell Lagrangian
L ¼ −FμνFμν to the nonlinear Lagrangian,

LBI ¼ 4β2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

2β2

s �
; ð1Þ

the first trying was made to resolve various problems
appearing in the classical linear electrodynamics [15]. For
example, in Maxwell theory, the self-energy of a pointlike
charged particle becomes infinite and the electric field of
such a particle diverges at exactly its location. In the above
expression β is called the nonlinear parameter with dimen-
sion of mass and Fμν is the electromagnetic field tensor. In
the limiting case where β → ∞, the nonlinear Lagrangian
(1) reduces to the linear Maxwell Lagrangian.
In recent years, there has been renewed interest in

nonlinear electrodynamics. This is due to the possible
quantum gravity corrections to the linear electrodynamics
which originate from superstring theory [16,17]. It has been
shown that the BI Lagrangian is not the only nonlinear
Lagrangian which can resolve the divergency in the
Maxwell’s theory. Indeed, other types of nonlinear electro-
dynamics in the context of gravitational field have been
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introduced, which can also remove the divergence of the
electric field at the origin, similar to BI nonlinear electro-
dynamics. Among them the so-called logarithmic nonlinear
(LN) electrodynamics and exponential nonlinear (EN)
electrodynamics were considered in [18] and [19], respec-
tively. The former has Lagrangian

LLN ¼ −8β2 ln
�
1þ F2

8β2

�
; ð2Þ

while the latter has Lagrangian of the form [19],

LEN ¼ 4β2
�
exp

�
−

F2

4β2

�
− 1

�
; ð3Þ

where F2 ¼ FμνFμν. In our previous works [20,21] we
constructed exact black hole solutions of EN electrody-
namics in the context of dilaton gravity. In this paper, we
would like to consider LN electrodynamics in the frame-
work of dilaton gravity. Because of the presence of both
dilaton and nonlinear electrodynamics, the field equations
are very complicated, however, we will successfully con-
struct exact analytical black holes solutions of this theory.
We shall investigate the effects of the nonlinear electro-
dynamics as well as dilaton field on the casual structure,
physical properties, and thermodynamics of the solutions.
Our work differs from [20] in that, we considered in [20]
EN electrodynamics in dilaton gravity (ENd), while here
we study LN electrodynamics in dilaton theory (LNd).
Clearly, the form of their Lagrangian is completely differ-
ent. Besides, in [20] we only studied spherically symmetric
black holes, while here we shall take the topological black
holes whose horizon can be a two dimensional surface with
positive, zero, or negative curvature. It is worth mentioning
that although both solutions ENd and LNd are nonlinear
electrodynamics in dilaton gravity, however, they are
completely different in the metric function, the electric
field expression, and other thermodynamic quantities such
as temperature, electric potential, and Smarr formula, as we
shall see in this paper. Furthermore, without specifying the
explicit form of the matter field Lagrangian (electrody-
namics Lagrangian), it is not possible to solve the field
equations and find black hole solutions. So one cannot take
an arbitrary nonlinear electrodynamics Lagrangian without
specifying it. In addition, the number of Lagrangian which
have been proposed for the nonlinear electrodynamics in
the literature are very limited. The well-known cases are
(i) Born-Infeld Lagrangian, (ii) exponential form,
(iii) power-law, and (iv) Logarithmic form of the
Lagrangian. The first three cases were studied in presence
of dilaton field with Liouville-type potentials (see e.g.,
[20,22,23]). However, the dilatonic version of the case
(iv) has not been studied yet and shall be investigated for
the first time in the present paper. This study can be useful
for future communications in the literature. Clearly in the

regime of linear Maxwell field, all nonlinear theories
should recover the same results, as expected.
This paper is outlined as follows. In the next section, we

introduce the basic field equations and construct a new class
of topological black hole solutions of LNd theory with two
Liouville-type potentials and general dilaton coupling con-
stant, and investigate their properties. In Sec. III, we study
thermodynamics of the obtained solutions and find the
conserved and thermodynamics quantities of the topological
dilaton black holes.We also check the validity of the first law
of thermodynamics on the black hole horizon. In Sec. IV, we
calculate heat capacity andHessianmatrix and study thermal
stability of the solutions in the canonical and grand canonical
ensembles. In Sec. V, we study thermodynamical geometry
by introducing the newmetric and finding the points inwhich
phase transition happens. We finish our paper with con-
clusion and discussion in the last section.

II. FIELD EQUATIONS AND SOLUTIONS

Our starting point is the following action in which
gravity is coupled to dilaton and LN electrodynamic fields,

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR−2gμν∂μΦ∂νΦ−VðΦÞþLðF;ΦÞÞ;

ð4Þ

whereR is the Ricci scalar curvature,Φ is the scalar dilaton
filed, and VðΦÞ is the potential for Φ. In order to construct
the topological dilaton black holes, we choose the dilaton
potential in the form of Liouville-type with two terms,
namely, [14]

VðΦÞ ¼ 2Λ0e2ζ0Φ þ 2Λe2ζΦ; ð5Þ
where Λ0, Λ, ζ0, and ζ are constants. This kind of potential
was previously investigated in the context of Einstein-
Maxwell-dilaton (EMd) gravity [4,14] as well as BI-dilaton
(BId) black holes [23,24]. We consider the Lagrangian
density of LNd theory in the form

LðF;ΦÞ ¼ −8β2e2αΦ ln
�
1þ F2e−4αΦ

8β2

�
: ð6Þ

This is the first time in which Lagrangian (6) is introduced
in the literature. In the above expression, α is the dilaton
and electromagnetic coupling constant. Expanding
Lagrangian (6) for large β, gives

LðF;ΦÞ ¼ −e−2αΦF2 þ 1

16

e−6αΦF4

β2
−

1

192

e−10αΦF6

β4

þO

�
1

β6

�
: ð7Þ

The motivation for taking the nonlinear Lagrangian in the
form of (6), instead of the BId Lagrangian, comes from

A. SHEYKHI, F. NAEIMIPOUR, AND S. M. ZEBARJAD PHYSICAL REVIEW D 91, 124057 (2015)

124057-2



the fact that both of them have similar expansion for large β.
To see this, let us invoke the BId Lagrangian,

LBIdðF;ΦÞ ¼ 4β2e2αΦ
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4αΦF2

2β2

s !
: ð8Þ

This form for the BId term has been previously investigated
by a number of authors [23–30]. For large β, we can expand
(8) and arrive at

LBIdðF;ΦÞ ¼ −e−2αΦF2 þ e−6αΦF4

8β2
−
e−10αΦF6

32β4
þO

�
1

β6

�
:

ð9Þ
We see that both LNd and BId Lagrangian have the same
expansion up to a coefficient number in the expanding terms.
In the limiting case where β → ∞, LðF;ΦÞ recovers the
standard linear Maxwell Lagrangian coupled to the dilaton
field [4]

LðF;ΦÞ ¼ −e−2αΦF2: ð10Þ

For later convenience we set

LðF;ΦÞ ¼ −8β2e2αΦLðYÞ; ð11Þ

with definition

LðYÞ ¼ lnð1þ YÞ; ð12Þ

Y ¼ F2e−4αΦ

8β2
: ð13Þ

The equations ofmotion can be derived by varying action (4)
with respect to the gravitational field gμν, the dilaton fieldΦ,
and the electromagnetic field Aμ,

Rμν ¼ 2∂μΦ∂νΦþ 1

2
gμνVðΦÞ þ 2e−2αΦ∂YLðYÞFμηFν

η

− 4β2e2αΦ½2Y∂YLðYÞ − LðYÞ�gμν; ð14Þ

∇2Φ ¼ 1

4

∂V
∂Φ − 4αβ2e2αΦ½2Y∂YLðYÞ − LðYÞ�; ð15Þ

∇μðe−2αΦ∂YLðYÞFμνÞ ¼ 0: ð16Þ

For β2 → ∞ we have LðYÞ ¼ Y, and the system of equa-
tions (14)–(16) reduce to the well-known equations of EMd
gravity [4–6,14].
Our aim in this paper is to construct topological solutions

of the above field equations. The most general of such
metric can be written in the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2R2ðrÞdΩ2
k; ð17Þ

where fðrÞ and RðrÞ are functions of r which should be
determined, and dΩ2

k is the line element of a two-
dimensional hypersurface Σ with constant curvature,

dΩ2
k ¼

8>><
>>:

dθ2 þ sin2θdϕ2; for k ¼ 1;

dθ2 þ θ2dϕ2; for k ¼ 0;

dθ2 þ sinh2θdϕ2; for k ¼ −1:
ð18Þ

For k ¼ 1, the topology of the event horizon is the two-
sphere S2, and the spacetime has the topology R2 × S2. For
k ¼ 0, the topology of the event horizon is that of a torus
and the spacetime has the topology R2 × T2. For k ¼ −1,
the surface Σ is a 2-dimensional hypersurface H2 with
constant negative curvature. In this case the topology of
spacetime is R2 ×H2. The additional function RðrÞ is
introduced in the metric due to the presence of the new
degree of freedom associated with the dilation field in the
equations of motion.
First of all, we integrate the electromagnetic field

equation (16). For this purpose we assume all the compo-
nents of Fμν are zero except Ftr:

Ftr ¼
2qe2αΦ

r2R2ðrÞ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2r4R4ðrÞ

s !−1

; ð19Þ

where q is an integration constant which is related to the
electric charge of the topological black holes. From the
Gauss law we can obtain the charge of the solution as,

Q ¼ 1

4π

Z
e−2αΦ�FdΩk ¼

qω
4π

; ð20Þ

where ω represents the area of the constant hypersurface Σ.
For large β, the electric field reduces to

Ftr ¼
qe2αΦ

r2R2ðrÞ −
1

4β2
q3e2αΦ

r6R6ðrÞ þO

�
1

β4

�
: ð21Þ

The first term in (21) is the electric field of EMd black holes
[14]. The second term is the leading order nonlinear
correction term and in the case of β → ∞ it vanishes.
On the other hand, in the absence of the dilaton field the
electric field reduces to [31]

Ftr ¼
2q
r2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2r4

s !−1

: ð22Þ

We have three unknown functions fðrÞ, RðrÞ, and ΦðrÞ in
equations (14) and (15). The suitable ansatz for solving the
system of equations is [8]

RðrÞ ¼ eαΦ: ð23Þ
This is a reasonable ansatz, since in the absence of
nontrivial dilaton (α ¼ 0), it leads to RðrÞ ¼ 1, as expected.
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After substituting (17), (19), and (23) into the field
equation (14), we find that subtracting (tt) and (rr)-
components of this equation leads to the following differ-
ential equation for the dilaton field,

rαΦ00 þ 2αΦ0 þ rðα2 þ 1ÞΦ02 ¼ 0: ð24Þ

The above equation has the following solution

ΦðrÞ ¼ α

α2 þ 1
ln

�
cþ b

r

�
; ð25Þ

where c and b are integration constants. The other
components of the field equation (14), gives

fðrÞ¼−k
ðα2þ1Þ
ðα2−1Þb

−γrγ −
m
r1−γ

þðΛ−4β2Þðα2þ1Þ2
α2−3

bγr2−γ

−4β2bγðα2þ1Þrγ−1

×
Z

r2−2γ
� ffiffiffiffiffiffiffiffiffiffi

1þη
p

− ln

�
η

2

�
þ lnð−1þ

ffiffiffiffiffiffiffiffiffiffi
1þη

p
Þ
�
dr;

ð26Þ

where m is the mass parameter, γ ¼ 2α2=ð1þ α2Þ, and

η ¼ q2b−2γ

β2r4−2γ
: ð27Þ

We find that solutions (25) and (26) will fully satisfy all
components of the field equations (14)–(15) provided we
choose, c ¼ 0, ζ0 ¼ 1=α, ζ ¼ α, and

Λ0 ¼ k
b−2α2

α2 − 1
: ð28Þ

We see that either for k ¼ 0 or α ¼ 0, the term proportional
to Λ0 in the Liouville potentials (5) vanishes. This implies
that in the case of flat horizon we can take Liouville
potentials with only one term [30]. Note that Λ still remains
as a free parameter which plays the role of the cosmological
constant in the absence of the dilaton field where the
potential reduces VðΦÞ → 2Λ. Thus, one may redefine it as
usual, Λ ¼ −3=l2, where l is a constant with dimension of
length.
We use the Mathematica software to perform the integral

of Eq. (26). After time-consuming calculations, we find

fðrÞ ¼ −k
ðα2 þ 1Þ
ðα2 − 1Þ b

−γrγ −
m
r1−γ

þ ðΛ − 4β2Þðα2 þ 1Þ2
α2 − 3

bγr2−γ

þ 8β2ðα2 þ 1Þ2
ðα2 − 3Þ2 bγr2−γ

�
1 − 2F1

��
−
1

2
;
α2 − 3

4

�
;

�
α2 þ 1

4

�
;−η

��

þ 4β2ðα2 þ 1Þ2
ðα2 − 3Þ bγr2−γ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
− ln

�
η

2

�
þ ln ð−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
Þ
�
: ð29Þ

When α ¼ 0 ¼ γ, our solution can reproduce the asymptotically AdS topological black holes coupled to logarithmic
nonlinear electrodynamics [31]. On the other hand, we can expand fðrÞ for large β. The result is

fðrÞ ¼ −k
ðα2 þ 1Þ
ðα2 − 1Þ b

−γrγ −
m
r1−γ

þ Λðα2 þ 1Þ2
α2 − 3

bγr2−γ þ q2ðα2 þ 1Þb−γ
r2−γ

−
q4ðα2 þ 1Þ2
8β2ðα2 þ 5Þ

b−3γ

r6−3γ
þO

�
1

β4

�
: ð30Þ

This is exactly the result obtained for EMd black holes in
the limit β → ∞ [14]. The last term in (30) is the leading
order correction term to the topological black holes of EMd
gravity and incorporate the effect of the nonlinear electro-
dynamics into the metric function. It is also interesting to
see (30) in the special case where α ¼ γ ¼ 0. In this case
our solution reduces to

fðrÞ ¼ k −
m
r
þ r2

l2
þ q2

r2
−

1

40β2
q4

r6
þO

�
1

β4

�
; ð31Þ

which describes an asymptotically AdS topological black
hole with a positive, zero, or negative constant curvature
hypersurface in the β → ∞ limit [32,33]. Again, the last
term in the right-hand side of (31) is the leading nonlinear

correction term to the topological black holes in the large β
limit.

A. Physical properties of solutions

Now we back to the electric field obtained in (19). In
order to study the behavior of the electric field, we combine
Eqs. (23) and (25) with (19). We find

Ftr ¼ EðrÞ ¼ 2q
r2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2b2γr4−2γ

s !−1

: ð32Þ

Let us remember that the electric field in the case of BId
black holes is given by [24]
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FBId
tr ¼ q

r2

�
1þ q2

β2b2γr4−2γ

�−1=2
: ð33Þ

Expanding for large β, we arrive at

EðrÞ ¼ q
r2

−
q3b−2γ

4β2r6−2γ
þO

�
1

β4

�
: ð34Þ

In order to analyze the behavior of EðrÞ, we choose b ¼ 1,
and α ¼ ffiffiffi

2
p

(γ ¼ 4=3). For these values of the parameters,
we have

EðrÞ ¼ q
r2

−
q3

4β2r10=3
þO

�
1

β4

�
: ð35Þ

From Eq. (35) we see that in the presence of the dilaton
field, the electric field diverges as r → 0. The values of the
electric field, near the origin, for different values of the
dilaton coupling parameter, α, is summarized in Table I.
To have better understanding on the behavior of EðrÞ, we

have also plotted Figs. 1–6. Table I shows that with
increasing α, the value of the electric field increases near
the origin where r → 0. On the other hand, Figs. 1–3 show
that far from the black holes, where r → ∞, the electric

field goes to zero, independent of the model parameters.
This is an expected result, since in this case the effects of
nonlinearity disappear. Figure 1 shows that for topological
LNd black holes, and in the absence of the dilaton field
(α ¼ 0), the electric field has a finite value at r ¼ 0, while
as soon as the dilaton field is taken into account (α > 0), the
electric field diverges as r → 0. Besides, the divergency of
the electric field near the origin increases with increasing
the dilaton coupling parameter α. In Fig. 2, we have
compared the behavior of EðrÞ near the origin for EMd,
LNd, and BId, and for α ¼ 0.4. From this figure we see that
the divergency of the electric field near the origin for LNd is
weaker than EMd and stronger than BId. Finally, in Fig. 3
we have shown the effects of the nonlinear parameter β on
the behavior of the electric field. From this figure we see

r

E
(r

)

0 0.4 0.8 1.2
0

5

10

15

20

25

30

α = 0
α = 0.4
α = 0.8

FIG. 1 (color online). The behavior of the electric field EðrÞ of
LNd topological black holes versus r for β ¼ 3, b ¼ 1,
and q ¼ 1.

TABLE I. EðrÞ for LNd versus r for β ¼ 2, q ¼ 2, and b ¼ 1
and different values of α.

r ¼ 103 102 101 10−1 10−10 10−1000

α ¼ 0.0 2 × 10−6 2 × 10−4 2 × 10−2 3.960 4.0 4.0
α ¼ 0.4 2 × 10−6 2 × 10−4 2 × 10−2 4.7 23 1077

α ¼ 0.8 2 × 10−6 2 × 10−4 2 × 10−2 7.4 2 × 103 10277

r

E
(r

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

EMd
ENd
BId

FIG. 2 (color online). The behavior of the electric field EðrÞ
versus r for b ¼ 1, β ¼ 3, α ¼ 0.4, and q ¼ 1.

r

E
(r

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15
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25
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35

40

45

α=0.4,β=1
α=0.4,β=4
α=0.4,β=9

FIG. 3 (color online). The behavior of the electric field EðrÞ of
LNd topological black holes versus r for b ¼ 1 and q ¼ 1.
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that with increasing β, the electric field diverges near the
origin. This is an expected result, since for large β, our
solution reduces to topological black holes of EMd theory
[14]. Figure 4 shows that for r < b and large value of α, the
electric field of BId and LNd have a behavior similar to
linear EMd. To see this better, we have plotted in Fig. 5 the
behavior of the electric field versus α for fixed r in case
r < b. This figure shows that in this case, with increasing α,
the electric field of BId and LNd black holes approaches to
the electric field of EMd black holes. Note that this
behavior can be seen only for r < b and in the case of
r > b, the behavior completely differs, as shown in Fig. 6.
Next, we study the casual structure of the solutions and

check whether there is or is not the curvature singularities

and horizons. Our calculations show that RμνλκRμνλκ → ∞
as r → 0. This implies that our spacetime has an essential
singularity located at r ¼ 0. Now, we explore the asymp-
totic behavior of the solutions. Expanding the metric
function fðrÞ for r → ∞ limit, and γ > 1 or (α > 1), gives

lim
r⟶∞

fðrÞ ¼ −k
ðα2 þ 1Þ
ðα2 − 1Þ b

−γrγ −
m
r1−γ

þΛðα2 þ 1Þ2
ðα2 − 3Þ bγr2−γ:

ð36Þ

Note that from its definition we have always γ < 2. On the
other hand, for γ < 1 or (α < 1), it gives

lim
r⟶∞

fðrÞ¼−k
ðα2þ1Þ
ðα2−1Þb

−γrγ þΛðα2þ1Þ2
ðα2−3Þ bγr2−γ: ð37Þ

Let us note that in the absence of the dilaton field
(α ¼ 0 ¼ γ), the metric function becomes

lim
r⟶∞

fðrÞ ¼ kþ r2

l2
; ð38Þ

which describes an asymptotically AdS spacetimes.
However, as one can see from Eqs. (36) and (37), in the
presence of the dilaton field the asymptotic behavior of the
metric is neither flat nor (A)dS. For example, taking
α ¼ ffiffiffi

2
p

, and b ¼ 1, we have

lim
r⟶∞

fðrÞ ¼ −3kr4=3 −mr1=3 − 9Λr2=3: ð39Þ

Clearly, the asymptotic behavior of (39) is not (A)dS.
Indeed, it has been shown that no dilaton dS or AdS black
hole solutions exists with the presence of only one or two

r

E
(r

)

0 0.1 0.2 0.3 0.4
0

50

100

150

200

EMd
LNd
BId

FIG. 4 (color online). The behavior of the electric field EðrÞ
versus r for b ¼ 1 ¼ q, β ¼ 2 ¼ α.

α

E
(r

)

0 2 4 6
0

5

10

15

20

25

FIG. 5 (color online). The behavior of the electric field EðrÞ
versus α for the case r < b. The parameters are fixed as b ¼ 2,
β ¼ :8, r ¼ 0.2, and q ¼ 1.

α

E

0 0.4 0.8 1.2 1.6 2
0

0.5

1

1.5

2 EMd
BId
LNd

FIG. 6 (color online). The behavior of the electric field EðrÞ
versus α for the case r > b. The parameters are fixed as b ¼ 0.1,
β ¼ :8, r ¼ 0.3, and q ¼ 0.2.
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Liouville-type dilaton potentials [2]. In the presence of one
or two Liouville-type potentials, black hole spacetimes
which are neither asymptotically flat nor (A)dS have been
explored by many authors (see, e.g., [2–14]). Here we see
that a similar situation also holds in the case of dilaton
black holes coupled to logarithmic nonlinear electrody-
namics. It is important to note that this asymptotic behavior
is not due to the nonlinear nature of the electrodynamic
field, since as r → ∞ the effects of the nonlinearity
disappear. This is due to the fact that, r → ∞ limit
corresponds to β2 → ∞, and in this case Ftr as well as
the metric functions fðrÞ restore the results of topological
EMd with unusual asymptotic [14]. Furthermore, from the
dilaton field (25) we see that as r → ∞, the dilaton field
does not vanish, while in the case of asymptotic flat or (A)
dS we expect to have limr⟶∞ΦðrÞ ¼ 0. From the above
arguments we conclude that the asymptotic behavior of the
obtained solutions is neither flat nor (A)dS.

It is worth mentioning that in k ¼ �1 cases this solution
does not exist for the string case where α ¼ 1. As one can
see from Eq. (29), the solution is also ill-defined for α ¼ffiffiffi
3

p
independent of the curvature parameter k. Now, we

search for the horizons of spacetime. Although, in princi-
ple, the casual structure of the spacetime can be obtained by
finding the roots of fðrÞ ¼ 0, but because of the nature of
the dilaton and nonlinear electrodynamic fields in (29), it is
not possible to find analytically the location of the horizons.
However, we can plot the function fðrÞ versus r for
different model parameters (see Figs. 7–13). For simplicity,
in these figures, we set l ¼ b ¼ 1. Figure 7 and 8 show that,
in the case of k ¼ 0; 1, for fixed value of the other
parameters, the number of horizons decreases with increas-
ing α, while for the same value of the parameters and
k ¼ −1, our black holes have always two inner and outer
horizons (Fig. 9). One can see from Fig. 10 that, for fixed
value of the parameters, the number of horizons also
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FIG. 8 (color online). fðrÞ versus r for k ¼ 0, q ¼ 1, β ¼ 1,
and m ¼ 3.
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FIG. 9 (color online). fðrÞ versus r for k ¼ −1, q ¼ 1, β ¼ 1,
and m ¼ 3.
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FIG. 10 (color online). fðrÞ versus r for α ¼ 0.5, q ¼ 1, β ¼ 1,
and m ¼ 3.
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FIG. 7 (color online). fðrÞ versus r for k ¼ 1, q ¼ 1, β ¼ 1,
and m ¼ 3.
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depends on the horizon curvature k. The behavior of fðrÞ
versus r for different value of the nonlinear parameter is
shown in Figs. 11–13. Figure 11 shows that in the case of
k ¼ 1 and fixed value of m, α, and q, there is a minimum
(extreme) value for the nonlinear parameter βminðβextÞ, for
which we have black hole with a nonextreme horizon
provided β ≤ βmin (red curve), black hole with two horizons
for βmin < β < βext (blue curve), black hole with an
extreme horizon for β ¼ βext (green curve), and naked
singularity for β > βext (purple curve). Clearly, βmin and
βext depend on the other parameters of the model. On the
other hand, in the case of k ¼ 0; 1 and for the same values
of the parameters, we have a nonextreme black holes with

one horizon for β ≤ βmin and black holes with two horizon
for β > βmin (Figs. 12 and 13).
In summary, Figs. 7–13 show that the obtained solutions

in (29) describe a nonlinear topological dilaton black hole
with one or two horizons, or a naked singularity depending
on the values of the parameters.
In order to get better understanding of the nature of the

horizons, we plot in Figs. 14–17, the mass parameterm as a
function of the horizon radius rh for different model
parameters. Using the fact that fðrhÞ ¼ 0, we can obtain
the mass parameter in terms of the horizon radius,

mðrhÞ¼−
ðα2þ1Þ
ðα2−1Þb

−γrhþ
ðΛ−4β2Þðα2þ1Þ2

α2−3
bγr3−2γh þ8β2ðα2þ1Þ2

ðα2−3Þ2 bγr3−2γh

�
1− 2F1

��
−1
2
;
α2−3

4

�
;

�
α2þ1

4

�
;−ηh

��

þ4β2ðα2þ1Þ2
ðα2−3Þ bγr3−2γh

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þηh

p
− ln

�
ηh
2

�
þ lnð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þηh

p
Þ
�
; ð40Þ
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FIG. 11 (color online). fðrÞ versus r for α ¼ 0.5, k ¼ 1, q ¼ 1,
and m ¼ 3.5.
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FIG. 12 (color online). fðrÞ versus r for α ¼ 0.5, k ¼ 0, q ¼ 1,
and m ¼ 3.5.

rh

m
(

r h
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

q = 0.2
q = 0.4
q = 0.8

FIG. 14 (color online). mðrhÞ versus rh for α ¼ 0.5, k ¼ −1,
and β ¼ 1.
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FIG. 13 (color online). fðrÞ versus r for α ¼ 0.5, k ¼ −1,
q ¼ 1, and m ¼ 3.5.
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where ηh ¼ ηðr ¼ rhÞ. For simplicity, we set l ¼ b ¼ 1.
These figures show that for a given value of α, the number
of horizons depend on the choice of the value of the mass
parameter m. We see that, up to a certain value of the mass
parameter m, there are two horizons, and as we decrease m
further, the two horizons meet. In this case we get an
extremal black hole (see the next section). Besides, in the
case k ¼ −1 and small q, our solution has strange proper-
ties. Figure 14 shows that in this case the mass parameter
may become negative for a small value of the charge
parameter, however one still has a topological black hole
solution with negative curvature horizons. It was argued
that this kind of black hole with negative mass can also be
formed as a result of gravitational collapse [34]. From
Fig. 15 and 16 we see that in the limit rh → 0 we have a
nonzero value for the mass parameter m. This is in contrast
to the Schwarzschild black holes in which mass parameter

goes to zero as rh → 0. This is due to the effect of the
nonlinearity of the electrodynamic field and in the case of
q ¼ 0, the mass parameter m goes to zero as rh → 0.

III. THERMODYNAMICS OF SOLUTIONS

In this section we would like to investigate thermody-
namical properties of the topological LNd black holes.
There are several ways for calculating the mass of the black
holes. For example, for an asymptotically AdS solution one
can use the counterterm method inspired by AdS/CFT
correspondence [35,36]. Another way for calculating the
mass is through the use of the substraction method of
Brown and York [37]. Such a procedure causes the
resulting physical quantities to depend on the choice of
reference background. In our case, due to the presence of
the nontrivial dilaton field, the asymptotic behavior of the
solutions are neither flat nor (A)dS, therefore we use the
reference background metric and calculate the mass. Using
the modified BY method [38], the mass of the topological
dilaton black holes is obtained as [24]

M ¼ bγmω

8πðα2 þ 1Þ : ð41Þ

The Hawking temperature of the black hole on the outer
horizon rþ, may be obtained through the use of the
definition of surface gravity [19]

Tþ ¼ κ

2π
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μχνÞð∇μχνÞ

r
; ð42Þ

where κ is the surface gravity and χ ¼ ∂=∂t is the null
killing vector of the horizon. Taking χν ¼ ð−1; 0; 0; 0Þ, we
have χν ¼ ðfðrþÞ; 0; 0; 0Þ and hence ð∇μχνÞð∇μχνÞ ¼
− 1

2
½f0ðrþÞ�2 which leads to
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FIG. 15 (color online). mðrhÞ versus rh for α ¼ 0.5, q ¼ 0.5,
and β ¼ 1.
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FIG. 16 (color online). mðrhÞ versus rh for α ¼ 0.5, k ¼ 1, and
q ¼ 1.
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FIG. 17 (color online). The mass parameter m versus rh for
k ¼ 1, α ¼ 0.52, β ¼ 4, and q ¼ 0.8. m < mext (blue line), m ¼
mext (green line), m > mext (purple line).
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κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μχνÞð∇μχνÞ

r
¼ 1

2

�
dfðrÞ
dr

�
r¼rþ

: ð43Þ

Thus, the temperature is obtained as

Tþ ¼ f0ðrþÞ
4π

¼ −2k
b−γrγ−1þ
4π

−
mðα2 − 3Þ
4πðα2 þ 1Þ r

γ−2
þ þ 8β2ðα2 þ 1Þ

4πðα2 − 3Þ bγr1−γþ

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηþ

p �

þ 8q2

4πðα2 − 3Þ b
−γrγ−3þ

�
22F1

��
1

2
;
α2 þ 1

4

�
;

�
α2 þ 5

4

�
;−ηþ

�
−

α2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηþ

p �
; ð44Þ

where ηþ ¼ ηðr ¼ rþÞ and we have used fðrþÞ ¼ 0 for deleting Λ. We have plotted T versus rþ in Figs. 18–21. It can be
easily seen that for large value of rþ, the temperature tends to a constant independent of the model parameters, while for
small values of rþ, the temperature may be negative (T < 0). In this case we encounter a naked singularity. The temperature
of the black hole is zero in the case of the extremal black hole. In this case the mass parameter of the extremal black holes
can be obtained through Eq. Tþðr ¼ rextÞ ¼ 0,

mext ¼ −2k
ðα2 þ 1Þ
α2 − 3

b−γrext þ
8q2extðα2 þ 1Þb−γ
rextðα2 − 3Þ2

�
2 × 2F1

��
1

2
;
α2 þ 1

4

�
;

�
α2 þ 5

4

�
;−ηext

�
−

α2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηext

p
�

þ 8β2ðα2 þ 1Þ2
ðα2 − 3Þ2 bγr3−2γext

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηext

p
�
; ð45Þ

where ηext ¼ ηðr ¼ rextÞ. From Fig. 17 we see that if we
solve equation m ¼ const. for rh, we can distinguish three
cases depending on the value of m. For m > mext, there
exist two value for rh ¼ r� and thus we have two horizons,
for m ¼ mext the two horizons meet. In this case we
encounter an extremal black hole with zero temperature.
Besides, for m < mext there is no horizon. In summary, the
metric of Eqs. (61) and (29) can describe a topological
dilaton black hole with inner and outer event horizons
located at r− and rþ, provided m > mext, an extreme
topological black hole in the case of m ¼ mext, and a
naked singularity if m < mext.

It is worth noting that for β → ∞, we obtain the
temperature of topological dilaton black holes of EMd
gravity [14]

Tþ ¼ −k
b−γrγ−1þ
2π

−
mðα2 − 3Þ
4πðα2 þ 1Þ r

γ−2
þ −

q2b−γ

πr3−γþ
þO

�
1

β2

�
:

ð46Þ

We employ the area law to obtain the entropy of the
topological black holes. It is easy to show that
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FIG. 18 (color online). T versus rþ for β ¼ 2, k ¼ 0, m ¼ 4,
and q ¼ 1.
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FIG. 19 (color online). T versus rþ for α ¼ 0.5, k ¼ −1,
m ¼ 3, and β ¼ 1.
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S ¼ A
4
¼ bγr2−γþ ω

4
: ð47Þ

The gauge potential At corresponding to the electromag-
netic field (34) can be obtained through relation
Fμν ¼ ∂μAν − ∂νAμ. Since our solution is static, the gauge
potential is only a function of r. From Ftr ¼ ∂tAr − ∂rAt
with ∂tAr ¼ 0 we have

Ftr þ ∂rAtðrÞ ¼ 0; ð48Þ
and hence the gauge potential At can be derived as

AtðrÞ ¼ −
Z

Ftrdr

¼ −
Z

2q
r2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2b2γr4−2γ

s �
−1
dr: ð49Þ

Integrating yields

At ¼
q
r
× 3F2

��
1

2
; 1;

α2 þ 1

4

�
;

�
2;
α2 þ 5

4

�
;−η

�
; ð50Þ

where 3F2 is the hypergeometric function and we have set
the constant of integration equal to zero, since for r → ∞ or
β → ∞, Eq. (50) should restore the well-known relation
At ¼ q=r. Using the standard definition for the electric
potential U [30],

U ¼ Aνχ
νjr→∞ − Aνχ

νjr¼rþ ; ð51Þ

we find
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FIG. 21 (color online). T versus rþ for α ¼ 0.5, k ¼ 1, m ¼ 4,
and q ¼ 1.
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FIG. 22 (color online). UðrþÞ versus rþ for α ¼ 0.5 and
q ¼ 1 ¼ b.
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FIG. 20 (color online). T versus rþ for α ¼ 0.5, β ¼ 1, m ¼ 4,
and q ¼ 1.
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FIG. 23 (color online). UðrþÞ versus rþ for q ¼ 1 ¼ b and
β ¼ 1.
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U ¼ q
rþ

× 3F2

��
1

2
; 1;

α2 þ 1

4

�
;

�
2;
α2 þ 5

4

�
;−ηþ

�
: ð52Þ

Expanding for large β, we get

U ¼ q
rþ

−
b−2γðα2 þ 1Þ
4β2ðα2 þ 5Þ

q3

r5−2γþ
þO

�
1

β4

�
: ð53Þ

The behavior of the electric potential U as a function of
horizon radius rþ is shown in Figs. 22 and 23. From this
figures we see that the electric potential can be finite as
rþ → 0, depending on the model parameters, and goes to

zero as rþ → ∞, independent of the model parameters.
Again, we see that the divergency of U, for small rþ,
increases with increasing α and β.
Having the conserved and thermodynamic quantities

at hand, we are in the position to check the validity of
the first law of thermodynamics on the horizon for
the topological dilaton black holes. For this purpose, we
first obtain the mass M as a function of extensive quantities
S and Q. Combining expressions for the charge, the mass,
and the entropy given in Eqs. (20), (41), and (47), and
using the fact that fðrþÞ ¼ 0, we obtain a Smarr-type
formula as

MðS;QÞ ¼ −k
b−α

2ð4SÞðα2þ1Þ=2

8πðα2 − 1Þ þ Λðα2 þ 1Þbα2ð4SÞð3−α2Þ=2
8πðα2 − 3Þ −

β2ðα2 þ 1Þðα2 − 5Þbα2ð4SÞð3−α2Þ=2
2πðα2 − 3Þ2

−
β2ðα2 þ 1Þbα2ð4SÞð3−α2Þ=2

πðα2 − 3Þ2 2F1

��
−1
2

;
α2 − 3

4

�
;

�
α2 þ 1

4

�
;−ζ

�

þ β2ðα2 þ 1Þbα2
2πðα2 − 3Þ ð4SÞð3−α2Þ=2

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
− ln

�
ζ

2

�
þ lnð−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
Þ
�
; ð54Þ

where ζ ¼ π2Q2

S2β2 . For large β, MðS;QÞ reduces to

MðS;QÞ ¼ −k
b−α

2ð4SÞðα2þ1Þ=2

8πðα2 − 1Þ þ Λðα2 þ 1Þbα2
8πðα2 − 3Þ ð4SÞð3−α2Þ=2

þ 2πQ2bα
2ð4SÞð−α2−1Þ=2 − 4Q4π3ðα2 þ 1Þbα2

β2ðα2 þ 5Þ ð4SÞð−α2−5Þ=2 þO

�
1

β4

�
: ð55Þ

This expression is nothing, but the Smarr-type formula of
the topological black holes of EMd theory in the limit
β2 → ∞ [14]. Consider S and Q as a complete set of
extensive parameters for the massMðS;QÞ, one may define
the intensive parameters conjugate to S and Q as

T ¼
�∂M
∂S
�

Q
; U ¼

�∂M
∂Q
�

S
: ð56Þ

It is a matter of calculation to show that the intensive
quantities calculated by Eq. (56) coincide with Eqs. (44)
and (52). This implies that these quantities satisfy the first
law of black hole thermodynamics,

dM ¼ TdSþ UdQ: ð57Þ

IV. THERMAL STABILITY OF THE SOLUTIONS

In this section, we are going to investigate thermal
stability of the solutions. The stability of a thermodynamic
system with respect to small variations of the thermody-
namic coordinates is usually performed by analyzing the

behavior of the entropy SðM;QÞ around the equilibrium.
The energy MðS;QÞ can also be the other parameter to
study the stability. Depending on the set of thermodynamic
variable or state functions of the system, we can study the
stability in both canonical and grand canonical ensembles.
In the canonical ensemble, the charge is a fixed parameter
and therefore the positivity of the heat capacity CQ is
sufficient to ensure the local stability [39,40]. The heat
capacity is calculated via

CQ ¼ T

�∂S
∂T
�

Q
¼ T

�∂2M
∂S2

�
−1

Q
: ð58Þ

Hence, in the ranges where T is positive, the positivity of
ð∂2M=∂S2ÞQ guarantees the local stability of the solutions.
Since CQ has long sentences, so for economic reasons we
avoid bringing it here. To have better understanding of the
region of stability, we have plotted temperature T and
∂2M=∂S2 in Figs. 24–27. If both T and ∂2M=∂S2 are
positive in a special region, so we have stability in that
region. It is important to recall that negative temperature
is not acceptable physically. For simplicity we have chosen
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FIG. 26 (color online). Thermal stability for β ¼ 1.5, k ¼ −1, and rþ ¼ :8. (a) ∂2M=∂S2 versus q, (b) Temperature versus q.
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FIG. 24 (color online). Thermal stability for β ¼ 1.5, q ¼ 1, and rþ ¼ 1.7. (a) ∂2M=∂S2 versus α, (b) Temperature versus α.
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FIG. 25 (color online). Thermal stability for β ¼ 1.5, q ¼ 2, and rþ ¼ 1.7. (a) ∂2M=∂S2 versus α, (b) Temperature versus α.

PHASE TRANSITION AND THERMODYNAMIC GEOMETRY … PHYSICAL REVIEW D 91, 124057 (2015)

124057-13



l ¼ b ¼ 1 in these figures. As one can see from Fig. 24(a),
there is a maximum value for the dilaton coupling constant,
αmax, in which ∂2M=∂S2 is positive for α < αmax and
negative for α > αmax. The value of αmax depends on the
other parameters. On the other hand, αmax decreases with
increasing the constant curvature k. By probing the related
temperature in 24(b), it is clear that Tþ has a singularity at
α ¼ 1. Tþ is always positive for k ¼ 0. In the case of
k ¼ −1, Tþ is positive for α > 1 but it depends on the value
of the other parameters for α < 1, while for k ¼ 1, Tþ has
an inverse behavior. From Fig. 25(a), we see that by
increasing q with respect to Fig. 24(a), ∂2M=∂S2 becomes
positive for different constant curvature but the temperature
tends to have negative value as α gets larger. In Fig. 26(a),
we have plotted ∂2M=∂S2 versus q for different α. In this
figure for α < 1, we see that ∂2M=∂S2 is always positive,
but for α > 1, the plot comes in the negative region.
However, if we investigate the corresponding temperature
in Fig. 26(b), we see that α > 1 has more action in the
positive region. In Fig. 27(a), we have plotted ∂2M=∂S2
versus β for α < 1 and different q. For different values of q,
∂2M=∂S2 is positive. It is clear that by increasing q, the
value of ∂2M=∂S2 increases too. This implies that increas-
ing q makes the system thermally more stable. Also the
corresponding temperature 27(b) is positive for these values
of q but by increasing q, the value of ∂2M=∂S2 becomes
smaller.
Next, we study stability in the grand canonical ensemble.

In the grand canonical ensemble Q is no longer fixed and
the positivity of the Hessian matrix guarantees thermal
stability of the system. In our case, the mass is a function of
entropy and charge and therefore the system is locally
stable provided HM

SQ > 0, where the determinant of
Hessian matrix can be calculated as

HM
SQ ¼

�
H11 H12

H21 H22

�
; ð59Þ

where

H11 ¼
�∂2M
∂S2

�
;

H22 ¼
�∂2M
∂Q2

�
;

H12 ¼ H21 ¼
� ∂2M
∂S∂Q

�
: ð60Þ

In this case, entropy and charge are thermodynamic
variables. We should consider the region where both
Hessian matrix determinant and temperature are positive.
We have plotted Figs. 28–31 to investigate stability in the
grand canonical ensemble. Again, we have fixed
l ¼ b ¼ 1. In Fig. 28(a), we showed the behavior of
Hessian matrix determinant versus α for different value
of β. There is a maximum value for α, called ðαmaxÞ, in
which the determinant is positive for α < αmax while it is
negative for α > αmax. Note that αmax < 1 and is indepen-
dent of the value of nonlinear parameter β. If we investigate
the related temperature, the figures are the same. Note that
temperature is singular at α ¼ 1. For α < 1, Tþ is positive
while for α > 1, its sign depends on the other parameters.
In conclusion α < αmax is a reasonable region in which the
system is thermally stable. In Fig. 29(a), we have plotted
the determinant of the Hessian matrix in terms of q for
different value of β. In three curves, we have a qmin
for which det(H) is positive for q > qmin but negative
for q < qmin. The value of qmin is the same for three curves.
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FIG. 27 (color online). Thermal stability for k ¼ 0, α ¼ 0.8, and rþ ¼ 1.8. (a) ∂2M=∂S2 versus β, (b) Temperature versus β.
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By considering its conjugate temperature, we have a qmax,
which is different for each curve. Indeed, by decreasing
β, the value of qmax increases. For q < qmax, the temper-
ature is positive but for q > qmax it is negative. The
stable and the physical solutions is in the region that
qmin < q < qmax. In Fig. 30(a) we see that for α < 1, both
determinant of the Hessian matrix and temperature are
positive, while for α > 1, the determinant of the Hessian
matrix is negative, so we cannot have stability for these
cases. Finally, in Fig. 31(a), we have plotted Hessian
matrix determinant versus β for different rþ. By increasing
rþ, the value of det(H) goes to 0 but all of them are in the
positive region. Also, temperature increases by increasing
rþ. So for these ranges of the parameters, our solutions are
thermally stable.

V. GEOMETROTHERMODYNAMICS

In the final section we would like to investigate phase
transition by using the method of geometry in thermody-
namics (GTD). GTD is a method that describes the
properties of thermodynamic systems in terms of concepts
of differential geometry. This method was first developed
by Weinhold [41] who introduced in the equilibrium space
a Riemannian metric defined in terms of the second
derivatives of the internal energy with respect to entropy
and other extensive variables of a thermodynamic system.
Then, Ruppeiner [42] proposed a Riemannian metric
structure in thermodynamic fluctuation theory, and related
it to the second derivatives of the entropy. The Ruppeiner
metric is based on the thermodynamic state space geometry.
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FIG. 32 (color online). Ricci scalar (R), heat capacity (CQ), and temperature(T) versus rþ for α ¼ 0 and β ¼ 2. (a) k ¼ 1, (b) k ¼ 0,
(c) k ¼ −1.
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For the second order phase transitions, the Ruppeiner scalar
curvature, R, is expected to diverge at the critical points. We
should note that Ruppeiner’s metric is conformally related
to the Weinhold’s metric with the inverse temperature as the
conformal factor [43]. Sometimes, the singular points
of the Weinhold and Ruppeiner metrics do not coincide
with the ones of the heat capacity, unfortunately that causes
us to go to other methods. Then Quvedo proposed another
geometric formulation of thermodynamics [44–47] to
solve this problem. Quvedo’s metric was invariant under
Legendre transformation. Now we introduce a new
Legendre invariant metric,

ds2 ¼ −S
∂
∂SMðS;QÞ ∂2

∂S2MðS;QÞdS2

þ S
∂
∂SMðS;QÞ ∂2

∂Q2
MðS;QÞdQ2: ð61Þ

Based on metric (61), we calculate the Ricci scalar, R.
SinceR has long sentences and for the economic reason, we
avoid bringing it here. However, we plot the behavior of R

for different values of the parameters in Figs. 32–34. In
addition to the Ricci scalar, we have also plotted the
behavior of heat capacity (58) and temperature to inves-
tigate phase transition points. In these figures, we have
fixed b ¼ 2 and l ¼ 1, for simplicity. As one can see, these
figures have different behavior for α < 1 and α > 1. For
α < 1, the Ricci scalar diverges exactly at the point where
both T and CQ become zero. At this point we have a phase
transition. This kind of phase transition happens when the
black hole changes its behavior from an unreal case to a real
case because CQ goes from the negative region to the
positive region. For α > 1, in addition to the first point
where T and CQ are zero and the Ricci scalar becomes
infinite, we have an additional point for which T is positive
and both CQ and the Ricci scalar diverge. In this second
point we have a first order phase transition. This kind of
phase transition happens when the black hole changes from
a larger size to a smaller one or vice versa. The effects of the
curvature constant k is only a shifting in these points as one
can see from the figures. Indeed, with decreasing k the
point of divergency increases.
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FIG. 33 (color online). Ricci scalar (R), heat capacity (CQ), and temperature(T) versus rþ for α ¼ 0.8 and β ¼ 1. (a) k ¼ 1, (b) k ¼ 0,
(c) k ¼ −1.
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VI. CONCLUSION AND DISCUSSION

In this paper, we generalized the study on the logarithmic
nonlinear electrodynamics to dilaton gravity. For this pur-
pose, we considered an action in which gravity is coupled to
dilaton and logarithmic nonlinear electrodynamics. As far as
we know, this is for the first time that Lagrangian (6) is
introduced in the literature. Then, by varying the action we
obtained the field equations. By choosing the potential
associated with the dilaton field in the form of Liouville-
type with two terms, as given in (5), we constructed a new
class of topological black hole solutions of this theory. We
found that these solutions can describe black holes with two
horizons, an extreme black holes or a naked singularity
depending on the model parameters. In the case of k ¼ �1
our solutions do not exist for the string case where α ¼ 1.
Besides for α ≠

ffiffiffi
3

p
, our solutions are ill-defined. We found

that, in contrast to the linearMaxwell theory, the electric field
can have finitevaluenear the originwhere r → 0. Indeed,we
found out that the divergency of the electric field near the
origin, increases with increasing the dilaton coupling param-
eter α. Besides, the divergency of the electric field near the
origin for LNd is weaker than EMd and stronger than BId
theory. We also showed that near the origin and for fixed r,
with increasing α, the electric field of BId and LNd black
holes approaches to the electric field of EMd black holes.
In order to study the casual structure of the spacetime, we

investigated the behavior of the metric function fðrÞ versus
r for different model parameters. Interestingly enough, we
found that in the case of k ¼ 1 and fixed value of m, α, and
q, there is a minimum (extreme) value for the nonlinear
parameter βminðβextÞ, for which we have a black hole with a
nonextreme horizon provided β ≤ βmin, black hole with two
horizons for βmin < β < βext, black hole with an extreme
horizon for β ¼ βext and naked singularity for β > βext.
When α ¼ γ ¼ 0 our solutions reduce to the four-
dimensional topological black hole solutions of LN electro-
dynamics [31], while in the limit β → ∞ they reduce to the
topological black holes of EMd gravity [14].
We also computed the charge, mass, temperature,

entropy, and electric potential of the topological dilaton
black holes and verified that these quantities satisfy the first
law of black hole thermodynamics. The satisfaction of the
first law of thermodynamics for the obtained conserved and
thermodynamic quantities, together with the fact that these

quantities in two limiting cases, namely in the absence of
the dilaton field (α ¼ 0 ¼ γ), and for large values of the
nonlinear parameter (β → ∞), reduce to the known results
of LN theory [31] and EMd gravity [14], respectively,
indicate that the conserved and thermodynamic quantities
obtained in this paper are correct and in agreement with
other methods such as the Euclidean action method [48].
Then, we investigated thermal stability of the solutions in
canonical and grand canonical ensembles. For stability in
the canonical ensemble, the heat capacity should be
positive. For example for k ¼ 0 and different value of q,
we have thermally stable solution for an arbitrary β. In
grand canonical ensemble, both the Hessian matrix deter-
minant and temperature should be positive. For example,
for k ¼ 1, if α < 1, the solutions are thermally stable, while
for α > 1, the system is in an unstable phase. At the end we
found phase transition points using the method of thermo-
dynamical geometry of the solutions. For this purpose, we
proposed a new metric and calculated the related Ricci
scalar. This metric was a good choice because the phase
transition occurs at the point that the Ricci scalar becomes
either zero or infinity. For α < 1, we have a type of phase
transition that the Ricci scalar becomes zero, while for
α > 1, in addition to the first point we have a first order
phase transition in which the Ricci scalar becomes infinity.
Although, in this paper we constructed static topological

dilaton black holes in the presence of logarithmic nonlinear
electrodynamics, many issues however still remain to be
investigated. For example, it would be nice to derive
rotating black hole/string solutions of these field equations.
It is also interesting to generalize the study to higher
dimensions and construct both static and rotating black
holes/branes of LNd theory in arbitrary dimensions.
Magnetic rotating string/brane solutions of this theory is
another subject which can be explored. These issues are
now under investigation and the results will appear soon.
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