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This paper studies jetlike electromagnetic configurations surrounding a slowly spinning black-hole
immersed in a uniformly magnetized force-free plasma. In the first part of this paper, we present a family of
stationary solutions that are jet capable. While these solutions all satisfy the force-free equations and the
appropriate boundary conditions, our numerical experiments show a unique relaxed state starting from
different initial data, and so one member of the family is likely preferred over the others. In the second part
of this paper, we analyze the perturbations of this family of jetlike solutions, and show that the perturbative
modes exhibit a similar split into the trapped and traveling categories previously found for perturbed
Blandford-Znajek solutions. In the eikonal limit, the trapped modes can be identified with the fast
magnetosonic waves in the force-free plasma and the traveling waves are essentially the Alfvén waves.
Moreover, within the scope of our analysis, we have not seen signs of unstable modes at the light-crossing
time scale of the system, within which the numerical relaxation process occurs. This observation disfavors
mode instability as the selection mechanism for picking out a preferred solution. Consequently, our
analytical study is unable to definitively select a particular solution out of the family to serve as the
aforementioned preferred final state. This remains an interesting open problem.
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I. INTRODUCTION

The potential role of magnetospheres around compact
objects in helping power energetic phenomena has long
been recognized [1–3]. Examples of such phenomena
include pulsars and active galactic nuclei (AGN) which
represent exciting laboratories to understand physics in
extreme regimes. To date, significant insights into phe-
nomena tied to magnetospheres have been gained through
combined theoretical (analytical and numerical) efforts and
contrasting with observations. On the theoretical fronts,
considerable efforts have concentrated on the details of the
magnetosphere dynamic as it interacts with compact
objects by making use of the force-free approximation
(see, e.g. [4–24]). Of particular relevance to AGNs—as
well as other related phenomena like gamma ray bursts,
ultraluminous x-ray binaries, etc.—is the question of how
black holes power jets. Key insights towards answering this
question have been provided by complex simulations as the
inherent complexity of the relevant equations of motion,
together with particularly extreme physical setup (which

requires dealing with a black hole), hinders analytical work.
Beyond particular details, the common message from
simulations is that the magnetosphere can tap into the
black hole’s kinetic energy reservoir and induce a strong
Poynting flux from the magnetosphere. This understand-
ing, complemented with further studies as to the stability of
jets, interaction with a possible accretion disk, etc. has been
instrumental in putting forward particular models of how
jets may be launched (see e.g. [25,26] and references cited
therein).
Despite the aforementioned advances, it is arguably

desirable to also gain access to black hole–magnetosphere
interaction through analytical means. This would allow a
more convenient way to explore questions like: What
collimates the emitted radiation? What is the electromag-
netic field configuration within the jet? How do the
electromagnetic and plasma perturbations propagate
within the jets? These questions are intimately tied to
observations.
To help answer these questions, we here carry out

analytical studies complemented by numerical investiga-
tions within the force-free approximation and study the
corresponding magnetosphere as it interacts with a (slowly)
spinning black hole. That such approximation is relevant in
this context was pointed out over four decades ago in [1].
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At the core of this observation is the fact that a particle-
production cascade will take place and the magnetosphere
will be composed of a tenuous plasma which will reach
equilibrium when the electric field becomes orthogonal to
the magnetic field. The electromagnetic energy density of
the plasma dominates the plasma mass density [3], and it is
expected to remain so over time; correspondingly the
transfer of energy and momentum into the plasma is
negligible. In mathematical terms,

Fμνjν ¼ 0; ð1:1Þ

where Fμν is the electromagnetic field tensor and jν is the
4-current density. This is the so-called force-free condition
[2,3,27] which results from ∇aTab

EM ¼ 0.
In the present paper, we focus particularly on revisiting

the question of jets induced by spinning black holes. To
simplify the analysis, we shall assume that the black hole
region is threaded by an electromagnetic field configura-
tion which, asymptotically, is purely magnetic and parallel
to the black hole’s angular momentum. Consequently, the
system has a rotational symmetry around the spin axis. In
addition, we restrict ourselves to slowly rotating black
holes, and solve the force-free equations through a
perturbative expansion (considerably generalizing the
solutions found in [3,28]). Despite these approximations,
we expect the physics discussed here to carry through to
more general cases, for example with misaligned spins
[29] or more rapidly spinning black holes, and expect-
ations already supported by numerical simulations (e.g.
[16,28]). We note that while prior analytical efforts have
also concentrated in our case of interest [28], we here
adopt the powerful formalism of Euler potentials and
the techniques of exterior calculus as discussed in
Refs. [30–36] and so can explore the possible solutions
in broader terms. Our analysis will reveal the existence of
a family of solutions describing jets which emanate from
the black hole and propagate towards infinity along the
symmetry axis. These jets are enclosed by a tubelike
surface, within which energy and currents flow to infinity,
and the electromagnetic field does not asymptote to the
external constant field set up initially. Outside of this tube,
there is no charge, current or energy flux, and the field
matches the external driver at infinity. An important
observation is that all solutions within this family exhibit
the same qualitative behavior we have just described, and
we have not found a definitive selection criteria as to
which particular one is more physically realistic. In
particular, none of these solutions appear to have an
instability over the light-crossing time scale (across the
tube), as suggested by the numerical investigation in
Sec. III. However, numerical studies of the jet solutions
obtained with different initial data do support the exist-
ence of a single relaxed state determined only by the black
hole and the external field. Thus, it appears that such a

criteria may very well exist and we are failing to impose it
when solving for our stationary jetlike solutions. From our
discussion, it will be clear that the task of selecting a
particular solution is tightly connected with the resulting
angular velocity of magnetic field lines and the develop-
ment of a current sheet—where the force-free equations
are inconsistent without removing some amount of
energy. These are rather subtle and long-standing issues
in the search for force-free electrodynamics (FFE) sol-
utions. We expect any successful future resolution of them
to also provide important clarity to FFE dynamics in
general.
Having obtained such a family, we then investigate its

perturbative mode structure. We identify a clean and simple
separation into “trapped modes” and “traveling waves,”
which are analogous to the findings made on the perturbed
Blandford-Znajek configuration [37]. Interestingly, the
trapped modes behave similarly to the vacuum electromag-
netic quasinormal modes (QNM) of black holes [38–43]. In
fact, in the short wavelength (eikonal) limit, these trapped
modes become the fast-magnetosonic waves of the force-
free plasma and satisfy exactly the same equations that the
vacuum QNMs obey in the same limit. On the other hand,
the traveling waves generically carry charge, and propagate
inward towards the black hole or outward towards spatial
infinity along the background magnetic field lines. In the
eikonal limit, they become the Alfvén waves of the force-
free plasma. These observations are consistent with the
analysis of Uchida [32], where he finds fast magnetosonic
waves and Alfvén waves by examining local dispersion
relations. Moreover, our study reveals no mode instability
at the light-crossing time scale for any of these jetlike
solutions, in contrast with the fast variation that we observe
numerically in Sec. III. This suggests that stability cannot
be the criteria to single out the unique relaxed state
observed in numerical simulations.
We organize the paper as follows. In Sec. II, we introduce

the family of jetlike solutions and discuss their validity. In
Sec. III, we perform our numerical studies with different
initial data. The final relaxed states are extracted and
comparedwith each other. In Sec. IVwe apply the formalism
developed in Ref. [37] to analyze perturbations of these
jetlike configurations,where discussions onmode instability
are made. Finally, we conclude in Sec. V. Throughout this
manuscript we adopt the geometric units, setting the gravi-
tational constant G and the speed of light c to one.

II. STATIONARY JET SOLUTIONS

In order to solve for the stationary field configuration in
the presence of a slowly spinning black hole, we start with a
background configuration (the “Wald-type solution”) for a
Schwarzschild black hole, and then compute the changes
required after a spin is introduced. We shall present a family
of solutions which satisfy the force-free equations and the
boundary conditions.

HUAN YANG, FAN ZHANG, AND LUIS LEHNER PHYSICAL REVIEW D 91, 124055 (2015)

124055-2



A. The Wald solution for Schwarzschild black holes

The Wald solution [44] describes the electromagnetic
field distribution surrounding a axisymmetric black hole
immersed in a constant magnetic field. In our case, we start
with the Wald configuration for a Schwarzschild black
hole. For simplicity, let us assume that the magnetic field is
oriented along the z direction (while x; y directions are
orthogonal to z), with its strength being B0. More specifi-
cally, the magnetic field in the Wald solution is (in
orthonormal coordinate)

B ¼ B0ðcos θer̂ −
ffiffiffi
f

p
sin θeθ̂Þ; ð2:1Þ

with f ≡ 1 − 2M=r. The corresponding field tensor is

F ¼ Bϕ̂dr̂ ∧ dθ̂ − Bθ̂dr̂ ∧ dϕ̂þ Br̂dθ̂ ∧ dϕ̂

¼ B0

2
dðr sin θÞ2 ∧ dϕ

¼ B0dðr sin θ cosϕÞ ∧ dðr sin θ sinϕÞ
≡ B0dx ∧ dy: ð2:2Þ

In the language of Refs. [30–36], the field tensor can be
expressed in terms of the differentials of two “Euler
potentials,” in the form of F ¼ dϕ1 ∧ dϕ2, and these
potentials are not unique. With the Wald solution, we
can either choose the gauge in which the Euler potentials
are ψ1 ≡ r sin θ cosϕ and ψ2 ≡ r sin θ sinϕ, or

ϕ1 ¼ r2sin2θ=2; ϕ2 ¼ ϕ; ð2:3Þ

together with a multiplicative constant B0. We will choose
the latter in our calculations in the next section. Recall
that the Wald solution was originally derived for vacuum
(without plasma) Maxwell equations but in the case of a
nonspinning black hole it satisfies all the force-free
requirements as there is no current, charge, or electric field
in the spacetime. Therefore in the nonspinning case, it also
provides a solution for a Schwarzschild black hole
immersed in constantly magnetized force-free plasma.

B. Small spin expansion and jet solutions

As shown in Ref. [36], the force-free Euler potentials of a
stationary, axisymmetric spacetime can only take on a very
restrictive form

ϕ1 ¼ ψðr; θÞ; ϕ2 ¼ ψ2ðr; θÞ þ ϕ −ΩFðψÞt; ð2:4Þ

where ψ corresponds to the magnetic flux enclosed by the
circle at constant r and θ, and ΩF is the angular velocity of
the field lines passing through that circle. In addition, the
force-free condition Eq. (1.1) turns into the pair of
equations:

dϕ1 ∧ d � F ¼ 0; dϕ2 ∧ d � F ¼ 0: ð2:5Þ

The potentials (2.3) are obviously in a form consistent
with Eq. (2.4), and we will use them as the background
configuration. We can then turn on the black hole spin and
investigate the change of field distributions. As the spin of
black hole a is assumed to be small, the deviation of the
Euler potentials from their background values may be
solved in a series expansion of a. Since ϕ1 and ϕ2 are given
by Eq. (2.3) in the nonrotational limit, we shall have the
following expansions:

ψ ¼ r2sin2θ=2þ aψ ð1Þðr; θÞ þ a2ψ ð2Þðr; θÞ þOða3Þ;
ψ2 ¼ aψ ð1Þ

2 ðr; θÞ þOða2Þ;
ΩF ¼ aΩð1Þ

F ðψÞ þOða2Þ: ð2:6Þ

We expand ψ to higher orders in a here for reasons which
will become clear later. In addition, the polar current is
defined as

�ðdψ ∧ dψ2Þ ¼
I
2π

dt ∧ dϕ; ð2:7Þ

where the operation with Hodge star � in a slowly spinning
Kerr spacetime is discussed in the Appendix of Ref. [37].
Using the first expression of Eq. (2.5), this polar current can
be shown to be a function of ψ only [36], as the current
flows along the magnetic field lines in the frame that
corotate with the field lines. Moreover, the polar current can
also be expanded in a: I ¼ aIð1ÞðψÞ þOða2Þ, and we have

a � ½dðr2sin2θÞ ∧ dψ ð1Þ
2 � ¼ aIð1Þ

2π
dt ∧ dϕ; ð2:8Þ

and so

dψ ∧ dψ2 ¼ − � �ðdψ ∧ dψ2Þ

≈
aIð1Þ

2π

1

f sin θ
dθ ∧ dr: ð2:9Þ

The polar current I and the angular velocity ΩF are not
independent of each other—they are related by the Znajek
boundary condition [45–47], which requires that the field
on the horizon be regular. In the current context, the Znajek
boundary condition reads

aIð1Þjrþ ¼ 2πðaΩð1Þ
F − ΩHÞψ ;θ sin θjrþ

≈ 2πðaΩð1Þ
F −ΩHÞρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − ρ2

p
rþ

; ð2:10Þ

where we have defined ρ≡ r sin θ as the cylindrical radial
coordinate, and rþ ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the outer horizon

radius andΩH ≡ a=ð2MrþÞ is the horizon angular velocity.
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As Ið1Þ and Ωð1Þ
F are both functions of ψ ≈ ρ2=2, they must

be approximately functions of ρ as well. Consequently their
functional relationship in the entire region where ρ ≤ rþ is
the same as their relationship on the horizon. It is then clear
that the Znajek boundary condition has naturally divided
the spacetime into two parts (see Fig. 1 for a schematic
illustration). The inner part is enclosed by a tube, where the
polar current and the field-line angular velocity is related
with each other by Eq. (2.10). Outside of the tube these two
quantities are less constrained. In principle, any solution of
the form prescribed by Eq. (2.4) that satisfies the stream
equation (i.e. the second force-free equation in (2.5), which
we have not used—see the next section) is admissible.
There are arguments favoring zero ΩF and polar current

density in the outer region: In the inner region, the rotation of
the field lines and the currents are both sourced by the
rotation of the black hole, whereas in the outer region they
have to be driven by sources at infinity. As it is not physically
motivated to have such sources at infinity, we should expect
ΩF ¼ 0 and I ¼ 0. In fact, as shown in [36], we have

dL
dt

¼ −
Z
P
Idψ ;

dE
dt

¼ −
Z
P
IΩFdψ ; ð2:11Þ

where P identifies some curve in the ðr; θÞ plane. Physically,
the equations above imply that nonvanishing ΩF and I

would always introduce energy and angular momentum
fluxes, which are injected (along the field lines) by the
sources at infinity and eventually escape out. As it is
physically more nature to impose outgoing boundary con-
ditions at infinity, such flux injections should not be allowed.
While these arguments, strictly speaking, only apply to
regions near the outer boundary, instead of the entire space
outside of the tube, previous numerical simulations do favor
zeroΩF and constant I outside the jet tube [16]. Therefore in
the analysis below we mainly focus on the solution inside
the tube.
We note however, that there is one subtlety when we

allow the presence of a current sheet, where currents can be
launched at, and move away from the equatorial plane. This
may provide an additional driving mechanism for ΩF and I
outside of the black-hole-driven tube, and effectively
enlarge the jet tube. This is likely what we observe in
Fig. 2 and Fig. 3, where the tube radius of the final relaxed
state is clearly greater than rþ. As the analytical description
of the dynamical effect of a current sheet feeding back onto
the force-free plasma remains elusive, we are not able to
further constrain these current-sheet-driven regions.
Finally, we note that although the discussion in this

section relies on an expansion in a, we expect this basic
picture of a tube dividing the magnetosphere into a jet
region and an outside region to remain valid when a is not a
small quantity. In particular, inside the jet, the Znajek
boundary condition [without taking the small a limit as in
Eq. (2.10)] should still provide us with a relationship
between I and ΩF.

C. The stream equation

The stream equation is derived from the force-free
conditions [Eq. (1.1) or more precisely the second expres-
sion in Eq. (2.5) [36]], and it is also often referred to as the
Grad-Shrafranov equation [48,49]. In a covariant language
it can be written as [36]

∇aðjηj2∇aψÞ þ ΩF;ψ hdt; ηijdψ j2 −
II;ψ
4π2gT

¼ 0; ð2:12Þ

where

η≡ dϕ −ΩFðψÞdt: ð2:13Þ

Given I and ΩF’s dependence on ψ , the stream equation
determines the distribution of ψ in the spacetime. In the
case of a slowly spinning Kerr background, it has been
shown in Ref. [3]1 that ψ ð1Þ is zero and ψ ð2Þ is sourced by
Ωð1Þ

F and Ið1Þ. In particular, for any Ωð1Þ
F and Ið1Þ, as long as

FIG. 1 (color online). A schematic illustration for a jetlike
solution launched from a rotating black hole. The magnet field
lines originated at the θ ¼ π=2 ring of the horizon separate inner
and outer regions of the jet. In the inner region, current and the
angular velocity of the field lines are related by the Znajek
boundary condition, whereas they are less constrained in the outer
region. The red arrow labels the rotation direction of the
black hole.

1It has a slightly different set of notations. We have the
following identifications between the quantities of that paper and
those utilized in the current presentation: Xðr; θÞ ↔ ρ2=2,
xðr; θÞ ↔ ψ ð1Þ, Wðr; θÞ ↔ Ωð1Þ

F , and Yðr; θÞ ↔ Ið1Þ=ð2πÞ.
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they satisfy the Znajek boundary condition, the resulting
ψ ð2Þ from the stream equation is well defined (bounded).
Therefore the small-a-expansion analysis implies that there
is a family of force-free electrodynamic solutions in the jet
tube, corresponding to different choices of the angular
velocity function ΩF. As mentioned earlier, inside the jet
tube, the magnetic field does not asymptote to the external
driving field, which is a fundamental difference between
force-free electrodynamics and vacuum electromagnetism.
In Sec. III we shall explore this observation numerically,
but first, let us discuss two physically interesting solutions.

D. Physically interesting solutions

We have now obtained a family of regular (on the
horizon and elsewhere) solutions, which is too broad for
the purpose of understanding jet physics (also see [50] for
discussions on different stationary solutions). Ideally, we
would like to single out a unique physically realistic
solution. However, as recent experiences with analytical
searches for solutions in other spacetimes (such as in the
near-extremal Kerr back holes [51–53]) show, being unable
to pick a unique solution is a natural state of affairs.
Routinely, the condition of regularity is insufficient to pin
down a unique solution.
We mention in passing that a jet solution has been found

in Refs. [54,55], and their conclusion would seem to imply
the solution found is unique. Motivated from the I versus
ΩF relationship of the monopole solution, the jet solution
obtained in these works is indeed valid and belongs to the
family of solutions we have presented here. However, the
additional constraint employed for singling out a unique
solution in [54,55] is motivated by the desire to link to the
split monopole solution which need not be the physically
natural condition.
Despite the lack of any solid conditions to single out

particular solutions from the family, we nevertheless note
that there are solutions within this family possessing
interesting physical properties. For instance, demanding
that the solution maximizes the energy radiated dE=dt from
the jet, it is clear from Eq. (2.11) and the Znajek boundary
condition Eq. (2.10) that the optimal choice isΩF ¼ ΩH=2.
In this case, the field tensor inside the flux tube is given, to
OðaÞ, by

F ¼ ar2 sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − ρ2

p
16fM3

dr ∧ dθ

þ ar2 sin θ cos θ
8M2

dt ∧ dθ −
arsin2θ
8M2

dr ∧ dt

þ r2 sin θ cos θdθ ∧ dϕþ rsin2θdr ∧ dϕ ð2:14Þ

while outside the tube, we have the background “Wald
solution” of Eq. (2.2).
If one instead requires that the energy stored within the

tube is minimized, we realize that only the part of the tube

in the asymptotically flat region needs to be considered,
which accounts for most of the volume and contains most
of the energy. In other words, we can simply require

ρE ∝ B2 þ E2 ¼ B2
0

�
1þ a2

Ið1Þ2

ð2πÞ2ρ2 þ a2Ωð1Þ
F

2
ρ2
�

¼ B2
0

�
1þ 1

r2þ
ðΩF −ΩHÞ2ρ2ðr2þ − ρ2Þ þ Ω2

Fρ
2

�
;

ð2:15Þ

to be minimized, giving

aΩð1Þ
F ¼ r2þ − ρ2

2r2þ − ρ2
ΩH: ð2:16Þ

For this case, the field tensor inside the tube is

F ¼ rξ
2fM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − ρ2

q
dr ∧ dθ

þ r2 sin θ cos θdθ ∧ dϕþ rsin2θdr ∧ dϕ;

þ r cos θχdt ∧ dθ − sin θχdr ∧ dt; ð2:17Þ

where

χ ¼ ξ

�
1 −

ρ2

4M2

�
; ξ ¼ aρ

8M2 − ρ2
: ð2:18Þ

III. NUMERICAL SEARCHES FOR THE
RELAXED STATE

A powerful way to analyze the steady state solutions
possibly achieved by a system described by the force-free
equations is to study numerical solutions obtained under
different initial configurations and examine their late-time
properties. To this end, we employ a numerical code
described in [16] which has been thoroughly tested and
employed to study different systems in e.g. [56–58]. This
code implements the force-free equations and ensures
sufficient resolution is achieved efficiently through the
use of adaptive mesh refinement (AMR) via the HAD
computational infrastructure that provides distributed,
Berger-Oliger style AMR [59,60] with full subcycling in
time, together with an improved treatment of artificial
boundaries [61]. We also note that a Cartesian grid structure
is employed without imposing any symmetries. As a result,
truncation errors introduce the typical m ¼ 4 perturbation.
As we will illustrate next, a rather unique steady state
solution is achieved irrespective of the initial configuration,
provided the asymptotic conditions on the electromagnetic
field are the same. This observation, together with the fact
that the m ¼ 4 perturbation does not seem to affect the
observed behavior reinforces the belief that it is attractive
and stable.
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For simplicity, and since the electromagnetic field’s
backreaction on the spacetime is negligible, we adopt for
the geometry a spinning black hole solution in terms of
ingoing Eddington-Finkelstein coordinates. For the initial
electromagnetic fields, we adopt the two physical cases
described in Sec. II D which we label case P1 and case P2
for the radiated energy maximizing and minimizing energy
stored configurations respectively. As well, we use an
additional initial data with Ea ¼ Fabnb ¼ 0 and Ba ¼
�Fabnb ¼ B0δ

z
a (case A1).

We note that P1, P2 of these initial configurations are
stationary solutions of the force-free equations, while A1 is
not. Nevertheless, in all cases, one observes an Alfvén-
wave-like transient that is radiated away from the equatorial
plane and then, after a few crossing times, the solution is
seen in all cases to relax to the same solution. As an
illustration, Fig. 2 shows the value of ΩF obtained after the
relaxed state is reached for the P1 and P2 cases, together
with a higher resolution run for case A1 (Fig. 2 shows the

earlier evolution of this quantity). Clearly, despite different
initial configurations adopted, there is an agreement in the
relaxed states achieved by all cases. Moreover, the final
solution is axisymmetric as expected, which is illustrated in
Fig. 4 that plots the (norm of the) difference between the
ΩF values on the x ¼ 0 and y ¼ 0 planes, as a function of
time and for both the P1 and P2 cases. As time progresses,
the differences decay exponentially to zero.

IV. THE MODE STRUCTURE OF THE
JET SOLUTIONS

In addition to the stationary configurations, it is also
interesting to study the dynamical evolution of black hole
magnetospheres and the jets. In fact, many radio observa-
tions of quasars and pulsars have revealed significant time-
dependent variations (see e.g. Refs. [62–65]), which invite
further studies of the generation and propagation mecha-
nisms of perturbations within the jets. In Ref. [37] we
studied the mode structure of the Blandford-Znajek
split-monopole configuration, and here we apply similar
techniques to the axisymmetric and stationary jetlike
solutions discussed in Sec. II. We shall first explain the
perturbation method, and demonstrate its usage by finding
the modes of general axisymmetric and stationary solutions
in flat spacetime. After that we shall tackle the more
difficult task of analyzing the mode structure of jetlike
solutions of the slowly rotating Kerr spacetime. At the end
of the section, we will comment on the stability of this
family of solutions.

A. Formulation

For any stationary and axisymmetric solution described
by Eq. (2.4), the perturbed force-free configurations can be
written as

F ¼ FB þ δF ¼ ðdϕ1 þ ϵdαÞ ∧ ðdϕ2 þ ϵdβÞ;

0 0.5 1 1.5 2
ρ/ρ

EH

0

0.2

0.4
Ω

F
/Ω

H

P1, t= 0M
P1, t=10M
P1, t=20M
P1, t=30M
P2, t= 0M
P2, t=10M
P2, t=20M
P2, t=30M

FIG. 2 (color online). ΩF versus x at z ¼ 7M at different early
times in a spinning black hole with a=M ¼ 0.1 for cases P1,
and P2.
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FIG. 3 (color online). ΩF versus x at z ¼ 7M at different times
in a spinning black hole with a=M ¼ 0.1 for cases P1, and P2 and
also the case A1 at t ¼ 120M. Despite the initial differences, all
three solutions relax to a single one.
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FIG. 4 (color online). L2 norm of the difference between the
values of ΩF obtained with the two “physical” cases for a
spinning black hole with a=M ¼ 0.1.

HUAN YANG, FAN ZHANG, AND LUIS LEHNER PHYSICAL REVIEW D 91, 124055 (2015)

124055-6



where α; β are the perturbative Euler potentials and ϵ is a
flag that helps us track the order of these perturbative fields.
The perturbative part of the field tensor is given by

δF ¼ dα ∧ dϕ2 þ dϕ1 ∧ dβ: ð4:1Þ

At OðϵÞ, the force-free Eqs. (2.5) then become

dα ∧ d � F þ dϕ1 ∧ d � δF ¼ 0; ð4:2Þ

dβ ∧ d � F þ dϕ2 ∧ d � δF ¼ 0: ð4:3Þ

Before we attempt to solve these equations, we note that
when we substitute in the background Euler potential ϕ2

(2.5) for the slowly rotating solutions, the force-free
equations above pick up an explicit t dependence tied to
our gauge choice. This will of course not feed into the final
results for the perturbed field tensor, which should respect
the time-translational symmetry of the background solu-
tion, but is certainly undesirable. It is both preferable and
convenient to refine the perturbing field β, so that the
resulting force-free field tensor becomes

F ¼ FB þ δF

¼ ðdψ þ dαÞ ∧ ðdψ2 − dðΩFtÞ þ dϕþ d½β − tΩ0
Fα�Þ;
ð4:4Þ

where the perturbative Euler potentials α; β are now
invariant under a time-redefinition t → tþ C. Under this
choice the force-free equations result,

dα ∧ d � FB þ dψ ∧ d � δF ¼ 0; ð4:5Þ

ðdβ − αΩ0
FdtÞ ∧ d � FB

þ ðdψ2 −ΩFdtþ dϕÞ ∧ d � δF ¼ 0; ð4:6Þ

which contain no explicit t dependence.
Note that these equations are coupled and nonseparable.

To proceed our analysis, we next adopt some simplifying
approximations which enable us to handle them. These
approximations will allow us to study their modal structure,
under different limits, in the next sections.

B. Eikonal limit perturbations in flat spacetime

We begin with the simple case of a flat background
spacetime. Despite its simplicity, it is already a good
approximation when we examine that part of the jet that
lies far away from its host black hole. In addition, we shall
leave the functions ψ2 and ΩF generic, without specifying
their detailed forms, but we do assume that the flux
function ψ is just ρ2=2, which is consistent with the class
of solutions described in Sec. II. If one wishes to consider
the jet of, say, a rapidly spinning black hole in the far zone

in the future, it will be straightforward to insert the
corresponding ψðρÞ and repeat the analysis in this section.
Note that as the perturbations are in general not stationary

and/or axisymmetric, we do not have simplifications to the
perturbing Euler potentials like those leading to Eq. (2.4).
Nevertheless, as the background jet solution is axi
symmetric, we can Fourier expand α and β in Eq. (4.4) in ϕ:

α ¼
X
m

eimϕαmðt; r; θÞ; β ¼
X
m

eimϕβmðt; r; θÞ; ð4:7Þ

and solve for αm; βm for individual m’s separately without
worrying about the background introducing coupling
between different m’s. The resulting wave equations
[cf. Eqs. (4.5) and (4.6)] are still coupled (between α and
β) and nonseparable, with the following form:

H1αm þ V1βm ¼ 0;

H2βm þ V2αm ¼ 0: ð4:8Þ

The quantities H1;2 and V1;2 are lengthy differential oper-
ators which we do not present until further restrictions are
introduced. In order to make further progress and obtain
physical solutions, we focus on the short-wavelength (com-
pared to the size of the black hole) perturbations, which are
relevant for most astrophysical scenarios. Under this eikonal
limit, one writes αm; βm as

αm ∼ AmeiS=ϵ; βm ∼ BmeiS=ϵ: ð4:9Þ

Here Am and Bm are the amplitude functions which are
assumed to vary slowly with location (on the length scale of
the black hole size), while S is the common phase factor
shared bybothwave components, and it changesmuch faster
than Am and Bm under the eikonal approximation. To keep
track of this separation of scales, we introduced the book-
keeping symbol ϵ which in essence labels the Wentzel-
Kramers-Brillouin (WKB) orders. Similar WKB treatments
for uncoupled waves can be found in Refs. [43,66–68], and
readers interested in further details can consult these refer-
ences. Note that the phase matching between αm and βm
follows from the assumption that we are solving for a single
eigenmode, in which case phase coherence should be
preserved during propagation. In general though, the field
perturbations could comprise a linear combination of a
multitude of different modes, where Eq. (4.9) is of course
no longer directly applicable.
With Eq. (4.9) plugged into Eq. (4.8) and only keeping

the leading order terms in ϵ, the coupled wave equations
become a matrix equation of the form2

64
H1 V1

V2 H2

3
75�Am

Bm

�
¼ 0; ð4:10Þ
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where the detailed expressions for H1, H2, V1 and V2 are
given in Appendix A. The determinant of the above matrix
has to be zero for there to be a solution for Am and Bm,
which requires that H1H2 ¼ V1V2 (henceforth referred to
as the “determinant equation”). After some lengthy but
nevertheless straightforward manipulations, we can factor-
ize the determinant equation into the product of the
following Hamilton-Jacobi equations:

∂S
∂t �HA;B ¼ 0; ð4:11Þ

with

HA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ2
þ p2

θ

r2
þ p2

r

s
;

HB ¼ 1

ð1þ IðψÞ2
4π2ρ2

Þ

"
−ΩFðψÞ

�
IðψÞpz

2π
þm

�

�
�
pz −

mIðψÞ
2πρ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ IðψÞ2

4π2ρ2
− ρ2ΩFðψÞ2

s #
;

ð4:12Þ

where the “momenta” are defined by

pC ≡ ∂S
∂C ; ð4:13Þ

with C being any coordinate. We also note that pϕ ¼ m and
the terms inside the square brackets in HB are proportional
to B2 − E2, which is a non-negative geometric scalar for
the force-free plasma. These two Hamilton-Jacobi equa-
tions describe two different sets of modes. The first one is
equivalent to

gμνkμkν ¼ ημν∂μS∂νS ¼ 0; ð4:14Þ

which is the eikonal limit of the wave equation for vacuum
electromagnetic quasinormal modes. As discussed in
Ref. [32] by writing down the local dispersion relation,
this family of modes corresponds to the fast-magnetosonic
waves in the force-free plasma; it is also consistent with the
(eikonlal limit of the) “trapped mode” classification we
found in analyzing the modal structure of the Blandford-
Znajek solution [37]. We emphasize that this agreement is
only in the eikonal limit, as the trapped modes differ from
the vacuum electromagnetic quasinormal modes for longer
wavelengths.
The propagation of the second family of modes can be

determined through the Hamiltonian equations of motion.
In fact, based on the form of HB in Eq. (4.12), we can see
that

dz
dt

¼ ∂HB

∂pz

¼ 1

ð1þ I2

4π2ρ2
Þ

 
−
ΩFI
2π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2

4π2ρ2
− ρ2Ω2

F

s !
;

dϕ
dt

¼ ∂HB

∂pϕ

¼ 1

ð1þ I2

4π2ρ2
Þ

 
−ΩF ∓ I

2πρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2

4π2ρ2
− ρ2Ω2

F

s !
;

ð4:15Þ

where the � sign labels the propagation direction and the
equations above suggest that this wave has a null group
velocity (as opposed to phase velocity) and freely prop-
agates along the magnetic field lines in the frame of
vanishing electric field (i.e. the “rest-frame” of the mag-
netic fields). These properties are consistent with those of
the Alfvén waves in the force-free plasma [32]. On the
other hand, this family of waves can obviously be seen as
the eikonal limit of the traveling waves identified in
Ref. [37] (in that paper the traveling waves follow the
mostly radial monopolelike background magnetic field
lines).
Now that we have introduced the necessary WKB

techniques for handling coupled wave equations and
learned about the mode structure of jets in the flat
spacetime, we are now ready to study the wave propagation
properties in a slowly spinning Kerr background, where
relativistic effects are non-negligible.

C. Eikonal waves in a slowly spinning Kerr spacetime

With a rotating black hole sourcing the jet, we can
still write down the wave equations of the jet perturba-
tions based on Eqs. (4.5) and (4.6), subject to the Kerr
background:

ds2 ¼ −
�
1 −

2Mr
ρ̄2

�
dt2 −

4aMrsin2θ
ρ̄2

dtdϕ

þ ρ̄2

Δ
dr2 þ ρ̄2dθ2

þ sin2θ

�
r2 þ a2 þ 2Ma2rsin2θ

ρ̄2

�
dϕ2: ð4:16Þ

Here Δ≡ r2 − 2Mrþ a2 and ρ̄2 ¼ r2 þ a2 cos2 θ. As
discussed in Sec. II, the family of jet solutions is only
known for a ≪ 1, in which case ψ ;ΩF; I are expanded
with respect to a and solved order by order [see
Eq. (2.6)]. Under this slow rotation limit, we can still
Fourier decompose α and β as in Eq. (4.7), and the wave
equations have the same form as Eq. (4.8), but with the
operators now given by
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Hi ¼ Hð0Þ
i þ aHð1Þ

i þOða2Þ;
Vi ¼ Vð0Þ

i þ aVð1Þ
i þOða2Þ; ð4:17Þ

where

Hð0Þ
1 ¼ −

∂2

∂t2 þ
fsin2θ
r2

∂2

∂ cos θ2 þ f

�
f
∂
∂r
�

;r
;

Hð0Þ
2 ¼ −

r −M þM cos 2θ
rf

∂2

∂t2 þ f

�
sin θ
r

∂
∂θ − cos θ

∂
∂r
�

2

−
1

2r
½ð2f − 1Þ cos 2θ − 1� ∂∂rþ

3f − 1

2r2
sin 2θ

∂
∂θ

−
m2

r2
ðcot2θ þ fÞ;

Vð0Þ
1 ¼ ifsin2θm

�
cot θ

∂
∂θ þ fr

∂
∂r
�
;

Vð0Þ
2 ¼ im

r4sin2θ

�
cot θ

∂
∂θ þ fr

∂
∂r
�

ð4:18Þ

(notice that Hð0Þ
i and Vð0Þ

i give the wave equations of the Wald background configuration, with a Schwarzschild black
hole and surrounding force-free plasma),
and

Hð1Þ
1 ¼ −

im
r2

�
2r2f2

∂ψ ð1Þ
2

∂r
∂
∂rþ 2r2Ωð1Þ

F
∂
∂tþ 2f

∂ψ ð1Þ
2

∂θ
∂
∂θ

þ
�
f2r2

∂2ψ ð1Þ
2

∂r2 þ 2fM
∂ψ ð1Þ

2

∂r þ f
∂2ψ ð1Þ

2

∂θ2 − f cotðθÞ ∂ψ
ð1Þ
2

∂θ
��

; ð4:19Þ

Vð1Þ
1 ¼ 1

2
sinðθÞ

�
þ2r2sin2ðθÞ

�
fr sinðθÞ ∂ψ

ð1Þ
2

∂r þ cosðθÞ ∂ψ
ð1Þ
2

∂θ
� ∂2

∂t2 − 2f2r2sin2ðθÞ cosðθÞ ∂ψ
ð1Þ
2

∂θ
∂2

∂r2

− 2f2rsin3ðθÞ ∂ψ
ð1Þ
2

∂r
∂2

∂θ2 þ 2f2rsin2ðθÞ
�
sinðθÞ ∂ψ

ð1Þ
2

∂θ þ r cosðθÞ ∂ψ
ð1Þ
2

∂r
� ∂2

∂r∂θ
− 2fsin3ðθÞð2M − r3Ωð1Þ

F Þ ∂2

∂t∂rþ
sinð2θÞ sinðθÞ

r
ðr3Ωð1Þ

F − 2MÞ ∂2

∂t∂θ
þ 2 sinðθÞ

r
½−2Mð1þ 3 cosðθÞÞ þ 4r2ðr − 3Msin2ðθÞÞΩð1Þ

F þ r4ðr − 2Msin2ðθÞÞsin2ðθÞΩð1Þ0
F � ∂∂t

þ sinðθÞ
�
sinð2θÞfð8M − 5rÞ ∂ψ

ð1Þ
2

∂θ þ 2ð3 cosð2θÞ þ 1Þf2r2 ∂ψ
ð1Þ
2

∂r þ f2r2 sinð2θÞ ∂
2ψ ð1Þ

2

∂r∂θ − 2f2rsin2ðθÞ ∂
2ψ ð1Þ

2

∂θ2
� ∂
∂r

− 2sin2ðθÞ
�
fð5r − 2MÞ cosðθÞ ∂ψ

ð1Þ
2

∂r − 2fr sinðθÞ ∂ψ
ð1Þ
2

∂θ þ f2r

�
r cosðθÞ ∂

2ψ ð1Þ
2

∂r2 − sinðθÞ ∂
2ψ ð1Þ

2

∂r∂θ
�� ∂

∂θ
þ 2fm2

�
fr sinðθÞ ∂ψ

ð1Þ
2

∂r þ cosðθÞ ∂ψ
ð1Þ
2

∂θ
��

; ð4:20Þ

Hð1Þ
2 ¼ −

4imMðM cosð2θÞ −M þ rÞ
fr4

∂
∂t ; ð4:21Þ
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Vð1Þ
2 ¼ 1

2r6

�
2r4

f

�
fr

∂ψ ð1Þ
2

∂r þ cotðθÞ ∂ψ
ð1Þ
2

∂θ
� ∂2

∂t2 − 2fr4 cotðθÞ ∂ψ
ð1Þ
2

∂θ
∂2

∂r2 − 2fr3
∂ψ ð1Þ

2

∂r
∂2

∂θ2

− 2r2ð2M − r3Ωð1Þ
F Þ ∂2

∂t∂rþ
2r cotðθÞ

f
ðr3Ωð1Þ

F − 2MÞ ∂2

∂t∂θ þ 2fr3
�∂ψ ð1Þ

2

∂θ þ r cotðθÞ ∂ψ
ð1Þ
2

∂r
� ∂2

∂r∂θ
þ 4r

f
½Mðcot2ðθÞ − 1Þ þ r2ð3M − rcsc2ðθÞÞ� ∂∂t

þ r2
�
4fr

∂2ψ ð1Þ
2

∂θ2 − 4 cotðθÞð5M − 2rÞ ∂ψ
ð1Þ
2

∂θ − fr2csc2ðθÞ
�
2 sinð2θÞ ∂

2ψ ð1Þ
2

∂r∂θ þ ð3 cosð2θÞ þ 1Þ ∂ψ
ð1Þ
2

∂r
�� ∂

∂r
þ 2r2

�
2fr2 cotðθÞ ∂

2ψ ð1Þ
2

∂r2 − 2fr
∂2ψ ð1Þ

2

∂r∂θ þ cotðθÞð2M þ rÞ ∂ψ
ð1Þ
2

∂r −
∂ψ ð1Þ

2

∂θ
� ∂
∂θ

þ 2m2r2csc2ðθÞ
�
fr

∂ψ ð1Þ
2

∂r þ cotðθÞ ∂ψ
ð1Þ
2

∂θ
��

: ð4:22Þ

While the equations are generally coupled in their α and
β variables, and their r and θ dependence are not separable,
it remains instructive to apply the eikonal approximation,
and study the propagation of short-wavelength wave
packets.
Using the WKB technique illustrated in Sec. IV B, we

first make the ansatz of Eq. (4.9), obtain the matrix equation
as in Eq. (4.10) but with different matrix components (see
Appendix B), and then solve the determinant equation.
After some lengthy calculations we can show that two
factor equations for ∂tS follow naturally from the deter-
minant equation [up to OðaÞ]. The first one reads

�∂S
∂t
�

2

þ 4amM
r3

∂S
∂t − f2p2

r −
fm2csc2θ

r2
−
fp2

θ

r2
¼ 0;

ð4:23Þ

which is just the vacuum Teukolsky equation (before
separating out the θ dependence) in the eikonal limit.2

Therefore, clearly this family of modes is the “trapped”
modes in the eikonal limit, as we have seen in the flat
spacetime case.
The second equation contains I and ΩF, so that this

family of modes is affected by the background electro-
magnetic field, in contrast to the trapped modes. The
eikonal wave equation in this case reads

Impz½f2r2ðM − rÞ − f2Mr2 cosð2θÞ�

− πF2r4
∂S
∂t sin

2ðθÞ
�
2mΩF þ ∂S

∂t
�

þ πf2Fr3sin2θp2
z ¼ 0; ð4:24Þ

with

F≡ r − 2Msin2θ; pz ¼ r cos θpr − sin θpθ: ð4:25Þ

We note that Eq. (4.24) suggests that the wave propagates
along z and ϕ directions. It is thus apparent that the second
family of modes is traveling waves, as expected. We present
some example trajectories of wave packets following the
equation of motion determined by Eq. (4.24) in Fig. 5.

D. Stability of the jet solutions

As shown in Sec. III, given an external magnetic field
and a rotating black hole, the relaxed state of the mag-
netosphere is independent of the initial configuration we
chose. On the other hand, we have also shown in Sec. II that
there is a whole family of stationary and axisymmetric

FIG. 5 (color online). A demonstrative example showing the
trajectories (orange curves) of the wave packets inside the jet
region (bounded by the transparent tube), following the equation
of motion as determined by Eq. (4.24). For this example, the mass
of the black hole is chosen to be 1 and the spin 0.1. The value of
ΩF is fixed at ΩH=2 and I is subsequently given by Eq. (2.10).2See Eq. (4.7) in [38] and keeping only the OðaÞ terms.
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solutions which satisfy the force-free conditions. To rec-
oncile the uniqueness of the steady state with the large
available pool of candidates, it is natural to suppose that of
all the members of the jet-solution family, only the steady
state is in fact stable.
To ascertain if this were the case, we need to examine the

stability of the family of solutions, withmodal stability being
the simplest approach. The analysis in Secs. IV C and IVD
focuseson thewaveequations in theeikonal limit,wherewave
damping or amplification may be ignored as they are slow
when comparedwithwave oscillations. In order to study their
stability, we need to go beyond the leading order WKB
analysis employed thus far. This is a technically arduous task
to carry out, and beyond the scope of this paper, but we can
offer somephysical arguments to this end. First, sincewe only
impose axisymmetric initial data in Sec. III, and such
symmetry is well preserved dynamically, it is sufficient to
concentrate on the modes with m ¼ 0. For these modes,
Eqs. (4.17), (4.18) and (4.19), suggest that α “almost”
describes the propagation of trapped modes while β almost
describes thepropagationof travelingwaves.Thisobservation
follows from the fact that for the Schwarzschild background
(a ¼ 0), α and β exactly describe trapped and propagating
modes. For the slowly spinning-Kerr background, α and β
fields are only mildly coupled with each other since the off-
diagonal terms (given by Vi) are of order OðaÞ, while the
principal operators Hi change only at order Oða2Þ.
Consequently the resulting eigenfrequencies can be at most
orderOða2Þ away from their Schwarzschild limits [69]. Now,
recall that trapped modes decay in Schwarzschild therefore
trappedmodes for small values of a can not suddenly become
unstable. On the other hand, traveling waves in the
Schwarzschild spacetime should have zero damping as their
scattering potential is infinitely shallow. Therefore, their
counterparts in a slowly spinning-Kerr spacetime can be
unstable with a growth rate ∼Oða2Þ at most. However, this
time scale is apparently much longer than the transient period
we observe in Sec. III. The arguments above thus point to
modes, if unstable, only being so in much longer time scales
than those observed in the dynamical studies.
Of course, we emphasize that the above arguments are

based on modal stability, which is different from linear
stability. While our numerical investigation disfavors
modal instability as the feature that renders alternative
steady state candidates unfavorable, it does not also rule out
nontrivial linear instabilities. However, given the broadness
of the range of available jet solutions, our expectation is
that this “selection rule” comes instead from more general
mechanisms, such as the physics of current sheets—places
where the force-free equations break down as they signal
electrically dominated regions.

V. DISCUSSION

We have presented jetlike solutions of the force-free
equations for spacetimes containing a slowly spinning

black hole. Our discussion illustrates that a family of such
solutions can be found. Interestingly though, our numerical
simulations clearly indicate that the configurations tend to
change in time and approach a unique final steady solution,
regardless of the initial configuration chosen. We have also
carried out further analysis that disfavors modal instability
as the triggering mechanism for this dynamical develop-
ment. Instead, such behavior appears connected to the
development of an equatorial current sheet which triggers
Alfvén waves propagating through the tube and rearranging
the solution towards the final one (similar observations
have been made in the context of neutron stars [47,70–73]).
This would imply that current sheets play a vital role in

the dynamical evolution of force-free magnetospheres. It
dissipates a portion of the field energy, dynamically feeds
back into the field evolution and helps to stabilize the
magnetosphere. Therefore a complete study of the stability
of different magnetospheric configurations should include
current sheets as dynamical entities, in addition to the
force-free plasma. An analytical treatment of this kind is
still lacking, which will be the subject of our future studies.
We note that one striking consequence of this numeri-

cally observed dynamical behavior is that the force-free
solution in black hole spacetimes might also obey a sort of
“no-hair theorem” whereby the final stable (stationary)
solution is uniquely determined by the external field, the
black hole mass and its spin. This is natural to be expected
for EinsteinþMaxwell black holes, but rather nontrivial
with the presence of plasma and current sheets as we
discussed.
As a final comment we note that quite differently from

tracing the dynamics of individual plasma particles, which
is usually the topic of study for magnetospheric radiations,
the “modes” investigated in this paper represent phononlike
collective motions of the entire magnetospheric plasma.
Such collective modes encode the fundamental parameters
of the black hole and the large scale structures within the
magnetosphere and may be tied to potentially observable
phenomena.
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APPENDIX A: THE FLAT SPACETIME FORCE-FREE EQUATIONS IN THE EIKONAL LIMIT

The operators appearing in Eq. (4.10) are

H1 ¼ −
sinðθÞ
r2

�
r2
�
r2
�∂ψ2

∂r
�

2

þ
�∂ψ2

∂θ
�

2

þ csc2ðθÞ
��∂S

∂t
�

2

× 2r2pr
∂ψ2

∂r
�
r2ΩF

∂S
∂t þ pθ

∂ψ2

∂θ þmcsc2ðθÞ
�
þ 2pθ

∂ψ2

∂θ
�
r2ΩF

∂S
∂t þmcsc2ðθÞ

�
þ 2mr2ΩFcsc2ðθÞ

∂S
∂t

þ r2p2
r

�
−
�∂ψ2

∂θ
�

2

þ r2Ω2
F − csc2ðθÞ

�
− p2

θ

�
r2
�∂ψ2

∂r
�

2

− r2Ω2
F þ csc2ðθÞ

�

−m2csc2ðθÞ
�
r2
�∂ψ2

∂r
�

2

þ
�∂ψ2

∂θ
�

2

− r2Ω2
F

��
; ðA1Þ

H2 ¼ − r2
�
−r2sin2ðθÞ

�∂S
∂t
�

2

þm2 þ sin4ðθÞp2
θ þ r2sin2ðθÞcos2ðθÞp2

r − 2rsin3ðθÞ cosðθÞpθpr

�
; ðA2Þ

V1 ¼ r sinðθÞpr

�
r2ΩFsin2ðθÞ

�∂S
∂t
�
þ sinðθÞpθ

�
sinðθÞ ∂ψ2

∂θ þ r cosðθÞ ∂ψ2

∂r
�
þm

�

þ cosðθÞpθ

�
r2ΩFsin2ðθÞ

�∂S
∂t
�
þm

�
þ
�
r sinðθÞ ∂ψ2

∂r þ cosðθÞ ∂ψ2

∂θ
��

r2sin2ðθÞ
�∂S
∂t
�

2

−m2

�

− r2sin2ðθÞ cosðθÞp2
r
∂ψ2

∂θ − rsin3ðθÞp2
θ

∂ψ2

∂r ; ðA3Þ

V2 ¼ −rpr

�
r2ΩFsin2ðθÞ

�∂S
∂t
�
þ sinðθÞpθ

�
sinðθÞ ∂ψ2

∂θ þ r cosðθÞ ∂ψ2

∂r
�
þm

�

− pθ

�
r2ΩF sinðθÞ cosðθÞ

�∂S
∂t
�
þm cotðθÞ

�
þ
�
r
∂ψ2

∂r þ cotðθÞ ∂ψ2

∂θ
��

m2 − r2sin2ðθÞ
�∂S
∂t
�

2
�

þ r2 sinðθÞ cosðθÞp2
r
∂ψ2

∂θ þ rsin2ðθÞp2
θ

∂ψ2

∂r : ðA4Þ

Note that we have defined the momenta to be

pC ≡ ∂S
∂C ; ðA5Þ

for any coordinate C. We also note that we have the relationship

I ¼ −2πrsin2ðθÞ
�
sinðθÞ ∂ψ2

∂θ − r cosðθÞ ∂ψ2

∂r
�

ðA6Þ

from Eq. (2.7), which is utilized when deriving Eq. (4.12).

APPENDIX B: THE KERR SPACETIME FORCE-FREE EQUATIONS IN THE EIKONAL LIMIT

The operators appearing in the Kerr spacetime version of Eq. (4.10) are

H1 ¼
cscðθÞ
fr2

�
−2af2mr2pr

∂ψ ð1Þ
2

∂r − 2afmpθ
∂ψ ð1Þ

2

∂θ − r2
∂S
∂t
�∂S
∂t þ 2amΩð1Þ

F

�
þ f2r2p2

r þ fp2
θ

�
; ðB1Þ
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H2 ¼ −
sinðθÞ
4f

�
4

�
ðr − 2Msin2ðθÞÞ

�
−4amMsin2ðθÞ ∂S∂t − r3sin2ðθÞ

�∂S
∂t
�

2

þ fm2r

�
þ f2r2sin4ðθÞp2

θ

�

þf2r4sin2ð2θÞp2
r − 8f2r3sin3ðθÞ cosðθÞpθpr

�
; ðB2Þ

V1 ¼ mðfr sinðθÞpr þ cosðθÞpθÞ

−
a
2fr

�
r
∂ψ ð1Þ

2

∂θ
�
2 cosðθÞ

�
fm2 − r2sin2ðθÞ

�∂S
∂t
�

2
�
þ f2r2 sinð2θÞ sinðθÞp2

r − 2f2rsin3ðθÞpθpr

�

þ sinðθÞ
�
2 sinðθÞð2M − r3Ωð1Þ

F Þðfr sinðθÞpr þ cosðθÞpθÞ
∂S
∂t

−fr
∂ψ ð1Þ

2

∂r
�
r3
�∂S
∂t
�

2

þ r3ð− cosð2θÞÞ
�∂S
∂t
�

2

þ fr2 sinð2θÞpθpr − 2frsin2ðθÞp2
θ þ 4m2M − 2m2r

���
; ðB3Þ

V2 ¼ −mðfr sinðθÞpr þ cosðθÞpθÞ

þ a
2fr

�
r
∂ψ ð1Þ

2

∂θ
�
2 cosðθÞ

�
fm2 − r2sin2ðθÞ

�∂S
∂t
�

2
�
þ f2r2 sinð2θÞ sinðθÞp2

r − 2f2rsin3ðθÞpθpr

�

þ sinðθÞ
�
2 sinðθÞð2M − r3Ωð1Þ

F Þðfr sinðθÞpr þ cosðθÞpθÞ
∂S
∂t

−fr
∂ψ ð1Þ

2

∂r
�
r3
�∂S
∂t
�

2

þ r3ð− cosð2θÞÞ
�∂S
∂t
�

2

þ fr2 sinð2θÞpθpr − 2frsin2ðθÞp2
θ þ 4m2M − 2m2r

���
; ðB4Þ

where we have expanded the expressions up to OðaÞ, adopting expanded expressions such as Ωð1Þ
F for clarity. Despite the

unwieldy appearance of Hi and Vi, many of their terms cancel out in the determinant equation, which can be written as

r2
�
πrsin2ðθÞ

�
f2p2

z − r
∂S
∂t
�
2amΩð1Þ

F þ ∂S
∂t
�
F

�
− aIð1Þmpz

��
F

�
r2
�∂S
∂t
�

2

− fm2csc2ðθÞ
�
− frðfp2

z þ q2ρÞ
�

¼ − 4amMcsc2ðθÞ
�
Ið1ÞðM − rÞpz

�
sin2ðθÞ

�
frðfp2

z þ q2ρÞ − r2
�∂S
∂t
�

2

F

�
þ fm2F

�

þ πf2r2
∂S
∂t sin

4ðθÞp2
zF − πr3

�∂S
∂t
�

3

sin4ðθÞF2

�
: ðB5Þ

It is now straightforward to verify that the product of Eqs. (4.23), (4.24) and r2 agrees with the determinant equation above
at OðaÞ.
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