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We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating
stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the
well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects
within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the
deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the
rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as
the existence of the post-Newtonian limits.
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I. INTRODUCTION

Stationary Newtonian hydrodynamic configurations are
characterized by a variety of rotation curves. The angular
momentum per unit mass j can be any function of r, where
r is the distance from the rotation axis. Other restrictions
arise from stability considerations [1]. In contrast to that,
for a long time, the only known rotation law in general-
relativistic hydrodynamics had been that with j as a linear
function of the angular velocity. Recently Galeazzi,
Yoshida, and Eriguchi [2] have found a nonlinear angular
velocity profile, that may approximate the Newtonian
monomial rotation curves Ω0 ¼ w=rλ in the nonrelativistic
limit. In this paper we define general-relativistic rotation
curves j ¼ jðΩÞ that in the nonrelativistic limit exactly
coincide withΩ0 ¼ w=rλ (0 ≤ λ ≤ 2, λ ≠ 1). We are able to
obtain the general-relativistic Keplerian rotation law that
possesses the first post-Newtonian limit (1PN) and exactly
encompasses the solution corresponding to the massless
disk of dust in the Schwarzschild spacetime.

II. HYDRODYNAMICAL EQUATIONS

We recapitulate, following Ref. [3], the equations of
general-relativistic hydrodynamics. Einstein equations,
with the signature of the metric ð−;þ;þ;þÞ, read

Rμν − gμν
R
2
¼ 8π

G
c4

Tμν; ð1Þ

where Tμν is the stress-momentum tensor. The stationary
metric reads

ds2 ¼ −e
2ν
c2ðdx0Þ2 þ r2e

2β

c2

�
dϕ −

ω

c3
ðr; zÞdx0

�
2

þ e
2α
c2ðdr2 þ dz2Þ: ð2Þ

Here x0 ¼ ct is the rescaled time coordinate, and r, z, ϕ are
cylindrical coordinates. We assume axial symmetry and
employ the stress-momentum tensor

Tαβ ¼ ρðc2 þ hÞuαuβ þ pgαβ; ð3Þ

where ρ is the baryonic rest-mass density, h is the specific
enthalpy, and p is the pressure. The 4-velocity uα is
normalized, gαβuαuβ ¼ −1. The coordinate (angular)
velocity reads ~v ¼ Ω∂ϕ, where Ω ¼ uϕ=ut.
We assume a barotropic equation of state p ¼ pðρÞ. To

be more concrete, one can take the polytropic equation of
state pðρ; SÞ ¼ KðSÞργ , where S is the specific entropy of
fluid. Then one has hðρ; SÞ ¼ KðSÞ γ

γ−1 ρ
γ−1. The entropy is

assumed to be constant.
Define the square of the linear velocity

V2 ¼ r2
�
Ω −

ω

c2

�
2

e2ðβ−νÞ=c2 : ð4Þ

The potentials α, β, ν, and ω satisfy equations that have
been found by Komatsu, Eriguchi, and Hachisu [3]. They
constitute an overdetermined, but consistent, set of equa-
tions. The general-relativistic Euler equations are solvable,
assuming an integrability condition—that the angular
momentum per unit mass,

j ¼ uϕut ¼
V2

ðΩ − ω
c2Þð1 − V2

c2 Þ
; ð5Þ

depends only on the angular velocityΩ; j≡ jðΩÞ. In such a
case, the Euler equations reduce to a general-relativistic
integroalgebraic Bernoulli equation, that embodies the
hydrodynamic information carried by the continuity equa-
tions ∇μTμν ¼ 0 and the baryonic mass conservation
∇μðρuμÞ ¼ 0. It is given by the expression

PHYSICAL REVIEW D 91, 124053 (2015)

1550-7998=2015=91(12)=124053(5) 124053-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.124053
http://dx.doi.org/10.1103/PhysRevD.91.124053
http://dx.doi.org/10.1103/PhysRevD.91.124053
http://dx.doi.org/10.1103/PhysRevD.91.124053


ln

�
1þ h

c2

�
þ ν

c2
þ 1

2
ln

�
1 −

V2

c2

�
þ 1

c2

Z
dΩjðΩÞ ¼ C:

ð6Þ
III. ROTATION LAWS

The general-relativistic rotation law employed in the
literature [3–7] has the form

jðΩÞ ¼ A2ðΩc −ΩÞ; ð7Þ

where A and Ωc are parameters. In the Newtonian limit and
large A, one arrives at the rigid rotation, Ω ¼ Ωc, while for
small A one gets the constant angular momentum per
unit mass. A three-parameter expression for j is proposed
in Ref. [2].
Below we define a new family of rotation laws,

jðΩÞ≡ w1−δΩδ

1 − κ
c2 w

1−δΩ1þδ þ Ψ
c2
; ð8Þ

where w, δ; κ, and Ψ are parameters. The rotation curves
Ωðr; zÞ ought to be recovered from the equation

w1−δΩδ

1 − κ
c2 w

1−δΩ1þδ þ Ψ
c2
¼ V2

ðΩ − ω
c2Þð1 − V2

c2 Þ
: ð9Þ

For δ ≠ −1, the general-relativistic Bernoulli equation (6)
acquires a simple algebraic form,

�
1þ h

c2

�
eν=c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

V2

c2

s

×

�
1 −

κ

c2
w1−δΩ1þδ þ Ψ

c2

� −1
ð1þδÞκ ¼ C: ð10Þ

We shall explain now the meaning and status of the four
constants w, δ; κ, and Ψ. Assume that there exists the
Newtonian limit [the zeroth order of the post-Newtonian
expansion (0PN)] of the rotation law. This yields

Ω0 ¼
w

r
2

1−δ
: ð11Þ

Thus, w and δ can be obtained from the Newtonian limit.
Moreover, the constant w is any real number, while δ is
nonpositive—due to the stability requirement [1]—and
satisfies the bounds −∞ ≤ δ ≤ 0 and δ ≠ −1. These two
constants can be given a priori within the given range of
values. Let us remark at this point that the rotation law (8),
and consequently the Newtonian rotation (11), applies
primarily to single rotating toroids and toroids rotating
around black holes. In the case of rotating stars, one would
have to construct a special differentially rotating law, with
the aim of avoiding singularity at the rotation axis.

The two limiting cases δ ¼ 0 and δ ¼ −∞ correspond to
the constant angular momentum per unit mass (Ω0 ¼ w=r2)
and the rigid rotation (Ω ¼ w), respectively. The Keplerian
rotation is related to the choice of δ ¼ −1=3 and w2 ¼ GM,
where M is a mass [8]. The case with δ ¼ −1 should be
considered separately, but we expect that the reasoning will
be similar.
The values of κ andΨ are problematic. One possibility to

get them is to apply the post-Newtonian (PN) expansion.
The rotation law in the PN expansion scheme should not be
given a priori but is expected to build up—in the
subsequent orders of c−2—from the Newtonian rotation
law. The Newtonian rotation curves are specified arbitrar-
ily, but the next PN corrections should be defined uniquely.
This is, however, a well-known property of the post-
Newtonian expansions, that they are nonunique.
Damour, Jaranowski, and Schäfer [9] demand that a test
body rotating circularly in a Schwarzschild space-time
satisfies exactly the Keplerian rotation law with
Ω2 ¼ GM=R3, where R is the areal radius. Inspired by
this we impose a fixing condition (F-condition hereafter)—
that a rotating infinitely thin disk made of dust in a
Schwarzschild space-time satisfies exactly the Bernoulli
equation and the Keplerian rotation law.
Consider a rotating, infinitely thin, and weightless disk

of dust in the Schwarzschild geometry. This is textbook
knowledge that there exists a stationary solution—each
particle of dust can move along a circular trajectory of a
radius R with the angular velocity Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
. We

shall present this solution in conformal coordinates,
using our formalism. The conformal Schwarzschild
metric reads ds2¼−Φ2=f2ðdx0Þ2þf4ðdr2þdz2þr2dϕ2Þ,
where Φ ¼ 1 −GM=ð2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
Þ and f ¼ 1þ GM=

ð2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
Þ. The angular velocity is equal to

the Keplerian velocity Ω2 ¼ GM=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
3f6Þ and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
f2. The total energy per unit mass Ψ van-

ishes for a test dust. Let the disk lie on the z ¼ 0 plane, and
assume the rotation law with δ ¼ −1=3 and κ ¼ 3:

w4=3Ω−1=3

1 − 3
c2 w

4=3Ω2=3 ¼
V2

Ωð1 − V2

c2 Þ
: ð12Þ

Here V2 ¼ Ω2r2f6=Φ2. Notice that h ¼ 0; the enthalpy per
unit mass vanishes for dust. This is a simple exercise to
show that w ¼ ffiffiffiffiffiffiffiffi

GM
p

and Ω2 ¼ GM=ðr3f6Þ solve both
Eq. (12) and the Bernoulli equation (10); the constant in
(10) equals unity.

IV. 1PNCORRECTIONS TOANGULARVELOCITY

Taking into account the above, we shall prove that if
κ ¼ ð1 − 3δÞ=ð1þ δÞ þOðc−2Þ and Ψ ¼ 4c0 þOðc−2Þ,
where c0 is the Newtonian hydrodynamic energy per unit
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mass, then the exact solution satisfies the 1PN equations.
We shall use the formalism of Ref. [3] and the rotation
law (9) and recover most of the results obtained in the 1PN
approach employed in Ref. [10]. Notice that if δ ¼ −1=3,
then κ ¼ 3—one recovers the coefficient in front of
w4=3Ω2=3 in (12) that is required by the F-Condition.
The 1PN approximation corresponds to the choice of

metric exponents α ¼ β ¼ −ν ¼ −U with jUj ≪ c2 [11].
Define ω≡ r−2Aϕ. The spatial part of the metric

ds2 ¼ −
�
1þ 2U

c2
þ 2U2

c4

�
ðdx0Þ2 − 2c−3Aϕdx0dϕ

þ
�
1 −

2U
c2

�
ðdr2 þ dz2 þ r2dϕ2Þ ð13Þ

is conformally flat.
We split different quantities (ρ, p, h, U, and vi) into their

Newtonian (denoted by subscript 0) and 1PN (denoted by
subscript 1) parts. For example, for ρ, Ω, Ψ, and U, this
splitting reads

ρ ¼ ρ0 þ c−2ρ1; ð14aÞ

Ω ¼ Ω0 þ c−2vϕ1 ; ð14bÞ

Ψ ¼ Ψ0 þOðc−2Þ; ð14cÞ

U ¼ U0 þ c−2U1: ð14dÞ

Notice that, up to the 1PN order,

1

ρ
∂ip ¼ ∂ih0 þ c−2∂ih1þOðc−4Þ; ð15Þ

where the 1PN correction h1 to the specific enthalpy can be
written as h1 ¼ dh0

dρ0
ρ1. For the polytropic equation of state,

this gives h1 ¼ ðγ − 1Þh0ρ1=ρ0.
Making use of the introduced above splitting of quan-

tities into Newtonian 0PN and 1PN parts, one can extract
from Eq. (6) the 0PN- and 1PN-level Bernoulli equations.
The 0PN equation reads

h0 þU0 −
δ − 1

2ð1þ δÞΩ
2r2 ¼ c0; ð16Þ

where c0 is a constant that can be interpreted as the energy
per unit mass. At the Newtonian level, this is supplemented
by the Poisson equation for the gravitational potential

ΔU0 ¼ 4πGρ0; ð17Þ

where Δ denotes the flat Laplacian. The first correction vϕ1
to the angular velocity Ω is obtained from the perturbation

expansion of the rotation law (9) up to terms of the order
c−2. Assuming that Ψ0 ¼ 4c0, one arrives at

vϕ1 ¼ −
2

1 − δ
Ω3

0r
2 þ Aϕ

r2ð1 − δÞ −
4Ω0h0
1 − δ

; ð18Þ

where we applied Eqs. (11) and (16).
Remember that in the Newtonian gauge imposed in the

line element (13) the geometric distance to the rotation axis
is given by ~r ¼ rð1 − U0=c2Þ þOðc−4Þ. It is enlightening
to write down the full expression for the angular velocity,
up to the terms Oðc−4Þ:

Ω ¼ Ω0 þ
vϕ1
c2

¼ w

~r2=ð1−δÞ
−

2

c2ð1 − δÞΩ0ðU0 þΩ2
0r

2Þ

þ Aϕ

r2c2ð1 − δÞ −
4

c2ð1 − δÞΩ0h0: ð19Þ

This expression reduces to

Ω ¼ Ω0 þ
vϕ1
c2

¼ w

~r2=ð1−δÞ
−

4

rc2ð1 − δÞΩ0h0; ð20Þ

in the case of test fluids, at the symmetry plane z ¼ 0. For
the dust, in the Schwarzschild geometry, we get

Ω ¼ Ω0 þ
vϕ1
c2

¼ w
~r3=2

; ð21Þ

the 1PN correction to Ω0 is equal to 3U0

2c2 Ω0. Thus, the
F-condition is satisfied in the 1PN order.
After these considerations we are able to interpret the

meaning of various contributions to the 1PN angular
velocity Ω. The first term is simply the Newtonian rotation
law rewritten as a function of the geometric distance, as
given at the 1PN level of approximation, from the rotation
axis. The second term in (19) vanishes at the plane of
symmetry, z ¼ 0, for circular Keplerian motion of test
fluids in the monopole potential −GM=R. Thus, it is
sensitive both to the contribution of the disk self-gravity
at the plane z ¼ 0 and the deviation from the strictly
Keplerian motion. The third term is responsible for the
geometric frame dragging. The last term represents the
recently discovered dynamic antidragging effect; it agrees
(for the monomial angular velocities Ω0 ¼ r−2=ð1−δÞw) with
the result obtained earlier in Ref. [10].

A. A comment on the term − 2
c2ð1−δÞΩ

3
0r

2,

that has been missing in ref. [10]

The reason for this omission is the following. There is a
gauge freedom in choosing an integrability condition for
the 1PN hydrodynamic equation, due to the fact that the
Bernoulli equation of the 1PN order is specified up to a
function FðrÞ. We assumed in Ref. [10], in order to get the
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1PN Bernoulli equation as in Ref. [11], that FðrÞ ¼ 0; but
that is not consistent with the F-condition. It appears that
the right value is FðrÞ ¼ −Ω4

0r
4=ð1þ δÞ, which leads to

the emergence of the term in question.
The vectorial component Aϕ satisfies the following

equation:

ΔAϕ − 2
∂rAϕ

r
¼ −16πGr2ρ0Ω0: ð22Þ

The 1PN Bernoulli equation does not influence the 1PN
correction to the angular velocity. It has the form

c1 ¼ −h1 −U1 −Ω0Aϕ þ 2r2ðΩ0Þ2h0 −
3

2
h20

− 4h0U0 − 2U2
0 −

δ − 1

4ð1þ δÞ r
4Ω4

0 þ FðrÞ; ð23Þ

where c1 is a constant. To derive (23) we again used
Ψ0 ¼ 4c0. This result agrees with the 1PN calculation of
Ref. [10] up to the term FðrÞ.
The 1PN potential correction U1 can be obtained from

ΔU1¼ 4πGðρ1þ2p0þρ0ðh0−2U0þ2r2ðΩ0Þ2ÞÞ: ð24Þ

Equations (22) and (24) have been derived in Ref. [10] in
the framework of 1PN approximation. They can be also
obtained directly from the Einstein equations written for the
metric (2), as derived, e.g., in Ref. [3]. Here we recall a
version similar to that used in Ref. [6]; it turns out to be
more convenient than the original form of Ref. [3]. The
relevant equations read

Δν ¼ 4π
G
c2

e2α=c
2

�
ρðc2 þ hÞ 1þ V2=c2

1 − V2=c2
þ 2p

�

þ 1

2c4
r2e2ðβ−νÞ=c2∇ω ·∇ω −

1

c2
∇ðβ þ νÞ ·∇ν

and

�
Δþ 2

r
∂r

�
ω ¼ −16π

G
c2

e2α=c
2

ρðc2 þ hÞ Ω − ω=c2

1 − V2=c2

þ 1

c2
∇ðν − 3βÞ · ∇ω;

where ∇ denotes the “flat” gradient operator. The remain-
ing Einstein equations yield corrections of higher orders.
In summary, we have shown that—for −∞ < w < ∞

and −∞ ≤ δ ≤ 0, δ ≠ −1—the choice κ ¼ ð3 − δÞ=
ð1þ δÞ þOðc−2Þ and Ψ ¼ 4c0 þOðc−2Þ in the rotation
law (9) guarantees that, if there exists an exact solution
analytic in powers of c−2, then it satisfies the 0PN and 1PN
approximating equations.

One easily finds out that the rotation law (8) satisfies the
generalized Rayleigh criterion [12] for stability dj

dΩ < 0 up
to 1PN order, assuming that δ is strictly negative.

B. Comments on the 1PN corrections
to the angular velocity

In the following considerations, we assume w > 0,
which means Ω0 > 0, but the reasoning is symmetric under
the parity operation w → −w. The specific enthalpy h ≥ 0

is nonnegative; thence − 4Ω0h0
1−δ is nonpositive—the instanta-

neous 1PN dynamic reaction discovered in Ref. [10] slows
the motion: it “antidraggs” a system. In contrast to that, the
well-known geometric term with Aϕ is positive [10], and

the contribution Aϕ

r2ð1−δÞ to the angular velocity is positive—it

pushes a rotating fluid body forward. Thus, the two terms in
(18) counteract.
Dust is special—the specific enthalpy h0 vanishes, and

hence dust test bodies are exposed only to the geometric
effect: the frame dragging. Even more special is the rigid
(uniform) rotation—the correction terms vϕ1 are propor-
tional to 1=ð1 − δÞ, and they vanish, because now δ ¼ −∞.
Uniformly rotating disks are already known to minimize
the total mass energy for a given baryon number and total
angular momentum [13]. The vanishing of the 1PN
correction vϕ1 is their another distinguishing feature.
It follows from our discussion that, assuming the

F-condition, one has three free parameters: w, δ, and Ψ;
the parameter κ is a given function of δ. The full system of
Einstein–Bernoulli equations can be solved numerically
within this class of data, and the resulting solutions are
expected to possess 0PN and 1PN limits.

V. CONCLUDING REMARKS

We write down the general-relativistic rotation laws,
recover the well-known geometric dragging of frames, and
derive a full form of the two other weak-field effects,
including the dynamic antidragging effect of Ref. [10]. The
latter can be robust according to the numerics of Ref. [10],
but the ultimate conclusion requires a fully general-
relativistic treatment, that is the use of the new rotation
laws. The frame dragging occurs—through the Bardeen–
Petterson effect [14]—in some active galactic nuclei
(AGNs) [15]. The two other effects can lead to its
observable modifications in black hole systems with heavy
disks.
In the weak-field approximation of general relativity,

the angular velocity of toroids depends primarily on the
distance from the rotation axis—as in the Newtonian
hydrodynamics—but the weak-field contributions make
the rotation curve dependent on the height above the
symmetry plane of a toroid.
The new rotation laws would allow the investigation of

self-gravitating fluid bodies in the regime of strong gravity
for general-relativistic versions of Newtonian rotation
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curves. In particular, they can be used in order to describe
stationary heavy disks in tight accretion systems with
central black holes. These highly relativistic systems can
be created in the merger of compact binaries consisting of
pairs of black holes and neutron stars [16,17], but they
might exist in some active galactic nuclei.
The new general-relativistic rotation laws can be applied

to the study of various open problems in the post-
Newtonian perturbation scheme of general-relativistic
hydrodynamics. We demonstrate in this paper that an
adaptation of the condition used in Ref. [9] ensures

uniqueness up the 1PN order. Further applications include
the investigation of convergence of the post-Newtonian
pertubation scheme as well as the existence of the
Newtonian and post-Newtonian limits of solutions.
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