
Black hole radiation in the presence of a universal horizon

Florent Michel* and Renaud Parentani†

Laboratoire de Physique Théorique, CNRS UMR 8627, Bâtiment 210, Université Paris-Sud 11,
91405 Orsay CEDEX, France

(Received 10 May 2015; published 16 June 2015)

In Hořava and Einstein-aether theories of modified gravity, in spite of the violation of Lorentz invariance,
spherically symmetric stationary black hole solutions possess an inner universal horizon which separates
field configurations into two disconnected classes. We compute the late time radiation emitted by
a dispersive field propagating in such backgrounds. We fix the initial conditions on stationary modes by
considering a regular collapsing geometry, and by imposing that the state inside the infalling shell is
the vacuum. We find that the mode pasting across the shell is adiabatic at late time (large inside
frequencies). This implies that large black holes emit a thermal flux with a temperature fixed by the surface
gravity of the Killing horizon. In turn, this suggests that the universal horizon should play no role in the
thermodynamical properties of these black holes.
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I. INTRODUCTION

The laws of black hole thermodynamics are firmly
established in Lorentz invariant theories, and they play a
crucial role in our understanding of black hole physics [1].
In particular, the entropy and the temperature are governed
by the area and surface gravity of the event horizon. In
Lorentz violating theories, the status of these laws is
unclear because essential aspects are no longer present
[2–7]. For instance, the thermality of the Hawking flux is
inevitably lost in the presence of high frequency dispersion,
although it is approximatively recovered for large black
holes, i.e., when the surface gravity κ is much smaller than
the UV scale Λ setting the high frequency dispersion [8].
The origin of the difficulties can be traced to the fact that

the event horizon no longer separates the outgoing field
configurations into two disconnected classes. In fact, when
the dispersion is superluminal, it can be crossed by out-
going radiation. However, it was recently discovered that in
some theories of modified gravity such as Hořava gravity
[9–11] and Einstein-aether [12–15], spherically symmetric
black hole solutions possess a second inner horizon. This
horizon, named universal, cannot be crossed by outgoing
configurations, even for superluminal dispersion relations
which allow for arbitrarily large group velocities. (The
difficulty mentioned in [2] is thus evaded.) Following this
discovery, it has been argued that the universal horizon
should play a key role in the thermodynamics of such black
holes. Even though they seem to obey a first law [16,17],
a key question concerns the temperature of the Hawking
radiation they emit. Would it be essentially governed by the
(higher) surface gravity of the universal horizon, or would it
still be fixed by the surface gravity κ of the Killing horizon?

Two recent works concluded that the universal horizon
emits a steady radiation with properties governed by its
surface gravity. Because of the complicated nature of the
field propagation near that horizon, this conclusion was
indirectly obtained, in [18], by making use of a “tunneling
method,” and, in [19], by analyzing the characteristics of
the radiation field. In the present paper, we reexamine this
question by performing a direct calculation and reach the
opposite conclusion that no radiation is emitted from the
universal horizon at late time.
We proceed as follows. As in the original derivation of

Hawking [20], we identify the boundary conditions on the
outgoing modes in the near vicinity of the universal horizon
by considering a simple collapsing shell geometry, and by
assuming that the state of the field is the vacuum inside. We
then compute the mode mixing across the shell between
inside modes propagating outwards ϕin

ω , and outside sta-
tionary modes with a fixed Killing frequency ψλ. The late
time behavior is obtained by sending the inside frequency
ω → ∞. In this limit, we show that the scattering coef-
ficients involving modes with opposite norms vanish. This
result can be understood from the fact that the modes ψλ are
accurately described by their WKB approximation in the
immediate vicinity of the universal horizon. In other words,
the pasting across the shell is adiabatic in the limit ω → ∞.
Hence, for large outgoing radial momenta, the state of the
field outside the shell is the usual vacuum, as explained
in [21].
It then remains to propagate these high momentum

dispersive modes from the universal horizon till spatial
infinity. This propagation has already been studied in
detail: see [22] for a recent update. It establishes that large
black holes emit a stationary flux which is (nearly) thermal,
and with a temperature approximatively given by the
standard relativistic value. In other words, the robustness
of the Hawking process, i.e., its insensitivity to high
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frequency dispersion, which was first established in [23], is
now extended to black holes with a universal horizon.
From this it is tempting to conclude that the laws of black

hole thermodynamics should also be robust, and they
should involve the properties of the Killing horizon.
This conclusion is reinforced by the fact that the field
configurations propagating on either side of a universal
horizon come from two disconnected Cauchy surfaces and
are highly blueshifted. Hence, it seems that no Hadamard
condition of regularity [7] could be satisfied on the
universal horizon. This raises the question of the fate of
the universal horizon; see [6]. This difficult question shall
not be discussed in the present work.
Appendix A gives the details of the calculation which is

summarized in the main text. In Appendix B we compare
our model with previously studied dispersive ones without
a universal horizon and show the role of the acceleration
of the preferred frame. Appendix C shows the results of
numerical simulations confirming the approximately ther-
mal character of the emission at infinity governed by the
surface gravity of the Killing horizon.

II. MASSLESS RELATIVISTIC SCALAR FIELD
IN A COLLAPSING SHELL GEOMETRY

In this section, we briefly review the computation of the
Hawking radiation emitted at late time in a collapsing
geometry [20]. Although these concepts are well known,
we present them in a way which prepares the more involved
calculation of the late time flux when dealing with a
dispersive field in the presence of a universal horizon.
As explained in the Introduction, we shall use a direct
calculation which consists of pasting the modes across the
infalling shell. We closely follow the derivation of [24].
For simplicity, we consider an infalling spherically

symmetric lightlike thin shell. In this case, it is particularly
appropriate to work with advanced Eddington-Finkelstein
(EF) coordinates v; r, where v is the advanced null time.
At fixed r, one has dv=dtS ¼ 1, where tS is the usual
Schwarzschild time. Hence, outside the shell, the stationary
Killing field Kμ∂μ is simply ∂v. On both sides of the shell
taken to be v ¼ 4M, the line element reads

ds2 ¼
�
1−

2MðvÞ
r

�
dv2 − 2dvdr− r2ðdθ2 þ sinðθÞ2dφ2Þ;

ð1Þ

where MðvÞ ¼ Θðv − 4MÞM. These coordinates cover the
entire space-time, shown in the right panel of Fig. 1. In the
left panel, the infalling and outgoing null radial geodesics
are represented in the ðv − r; rÞ plane. One clearly sees that
the Killing horizon (where the norm KμKμ vanishes)
divides the outgoing geodesics into two separate classes.
We work in Planck units: c ¼ ℏ ¼ G ¼ 1.

Let Φ be a massless real scalar field with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð∂μΦÞð∂μΦÞ: ð2Þ

We define ψ ≡ rΦ and consider radial solutions indepen-
dent of ðθ;φÞ. Inside the shell, for v < 4M, we introduce
the null outgoing (affine) coordinate U ¼ v − 2r. Outside
the shell and for r > 2M, we introduce the null coordinate

u ¼ v − 2r�K ∈ ð−∞;∞Þ; ð3Þ

where r�K ¼ rþ 2M ln jr=2M − 1j is the usual tortoise
coordinate, which diverges on the Killing horizon. To
cover the region inside the Killing horizon, one needs
another coordinate uL ¼ −ðv − 2r�KÞ.1 The field equation
then reads

8<
:

∂U∂vψ ¼ 0; v < 4M;�
∂u∂v þ

�
1 − 2M

r

�
2M
r3

�
ψ ¼ 0; v > 4M:

ð4Þ

For simplicity, we neglect the potential engendering the
grey body factor and work with the conformally invariant
equations ∂U∂vψ ¼ ∂u∂vψ ¼ 0. The solutions can be
decomposed as

ψðu; vÞ ¼ ψuðuÞ þ ψvðvÞ; ð5Þ

and similarly for v < 4M, with u replaced by U. The
infalling v sector and the outgoing u sector completely
decouple. Moreover, the v modes ψv are regular across the
horizon and play no role in the Hawking effect. We thus
consider only the umodes, and, to lighten the notations, we
no longer write the upper index u on outgoing modes.
To compute the global solutions, we need the matching

conditions across the null shell. In the present case,
ψ is continuous along v ¼ 4M. Hence ψ insideðUÞ ¼
ψoutsideðuðUÞÞ, where the relation between null
coordinates is

uðUÞ ¼ U − 4M ln

�
−U
4M

�
; ð6Þ

for r > 2M (U < 0). For r < 2M (U > 0), one has
uLðUÞ ¼ −uðjUjÞ.
To obtain the Hawking flux one needs to relate the in

modes ϕin
ω characterizing the vacuum inside the shell, to

the out modes ϕout
λ characterizing the asymptotic outgoing

quanta with Killing frequency λ. In the internal region, a

1This sign guarantees that dU=duL will be positive. As we
shall see in Sec. III, a similar sign must be taken when studying a
dispersive field on both sides of a universal horizon.
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complete orthonormal basis of positive-norm modes is
provided by the plane waves

ϕin
ω ≡ e−iωU

2
ffiffiffiffiffiffi
πω

p ; ð7Þ

where ω ∈ Rþ is the inside frequency i∂U. In the external
region, the (positive-norm) stationary modes for r > 2M
are

ϕout
λ ≡ Θðr − 2MÞ e

−iλu

2
ffiffiffiffiffi
πλ

p ; λ ∈ Rþ: ð8Þ

A similar equation defines ϕðLÞ
λ ðuLÞ in the trapped region,

for r < 2M. The modes ϕout
λ ;ϕðLÞ

λ0 and their complex
conjugate form a complete orthonormal basis. One easily
verifies that the conserved scalar product for the u modes
can be written as

ðψ1;ψ2Þ ¼ i
Z

∞

−∞
duðψ�

1∂uψ2 − ψ2∂uψ
�
1Þ: ð9Þ

The Bogoliubov coefficients encoding the Hawking flux
are then given by the overlaps between the two sets of
modes:

αλ;ω ¼ ðϕout
λ ;ϕin

ωÞ;
βλ;ω ¼ ððϕout

λ Þ�;ϕin
ωÞ: ð10Þ

Using uðUÞ of Eq. (6), they can be computed explicitly;
see [24] for details. The late time behavior is obtained
by sending the inside frequency ω → ∞. In this limit, one
recovers the standard thermal result

���� βλ;ωαλ;ω

����2 ∼
ω→∞

e−8πMλ: ð11Þ

To prepare for the forthcoming analysis, it is instructive
to compute the Bogoliubov coefficients by the saddle point
method [25,26]. For the αλ;ω coefficient, when ω ≫ λ, i.e.,
at late time, the location of the saddle is given by

λ ¼ ωðe−κðu−u0Þ þOðe−2κðu−u0ÞÞÞ; ð12Þ

where u0 is a constant which drops out of the late time flux.
(In the present model, u0 vanishes.) From this equation
we recover the time-dependent redshift relating ω, the large
frequency emitted from the collapsing star, to λ, the
frequency received at infinity and measured using the
proper time of an observer at rest. In particular, we recover
the characteristic exponential law governed by the surface

FIG. 1 (color online). (Left panel) Null radial geodesics in the ðv − r; rÞ plane in units of M. The coordinate v − r coincides with the
Minkowski time T inside the mass shell, and with the Schwarzschild time tS for r → ∞. The solid black lines are null radial geodesics
which are reflected on r ¼ 0. The dashed green line represents the trajectory of the null shell v ¼ 4M. The blue, dot-dashed one shows
the Killing horizon at r ¼ 2M outside the shell. The dotted purple line shows the locus r ¼ M, v > 4M, which will play a crucial role in
Sec. III. The wavy line shows the singularity, located at r ¼ 0; v > 4M. (Right panel) Penrose-Carter diagram of the collapsing shell
geometry. The vertical line corresponds to r ¼ 0; v < 4M. I− corresponds to u;U → −∞, and Iþ to v → ∞.
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gravity κ ¼ ∂u lnUðuÞ ¼ 1
4M. Had we considered a col-

lapsing shell following a (regular) infalling timelike curve,
Eq. (12) would still have been obtained at late u − u0 time.
This is the kinematical root of the universality of

Hawking radiation in relativistic theories. Indeed, when
studying the βλ;ω coefficient, one finds that the saddle point
is now located at λ ¼ −ωe−κus:p: . When taking into account
the fact that the integration contour should be deformed
in the lower u-complex plane, one finds that us:p:. has an
imaginary part ℑðus:p:Þ ¼ −π=κ, whereas its real part is
unchanged. This gives a relative factor expð−πλ=κÞ with
respect to the αλ;ω coefficient. Upon squaring their ratio, we
recover Eq. (11). We also recover here that the Hawking
temperature κ=2π is fixed by the late time exponential
decay rate entering Eq. (12). We finally notice that the
stationarity of the flux is nontrivial. It follows from the fact
that the ratio of Eq. (11) is independent of ω, and from the
fact that jβλ;ωj2 ∝ 1=ω for ω → ∞ [26].

III. EMISSION FROM A UNIVERSAL HORIZON

A. The model

We aim to compute the late time radiation of a dispersive
field propagating in a collapsing geometry. In principle, the
radiation and the background fields should both obey the
field equations of some extended theory of gravity, such
as Hořava-Lifschitz gravity [9] or Einstein-aether theory
[12,13]. Since our aim is to study the radiation rather than
the collapse, the latter shall be described by a simplified
model. At the end of the calculations, we shall argue that
our results do not qualitatively rely on the particular model
we use.
For reasons of simplicity, we assume that the collapsing

object is a null thin shell, and that the external geometry is
still Schwarzschild. In this case, the metric is again given
by Eq. (1), and the Penrose diagram of Fig. 1 still covers the
whole space-time. To describe the (unit timelike) aether
field uμ in the external region outside the shell, we adopt
the solution of [16] (also used in [19]), with c123 ¼ 0,
r0 ¼ 2M, and ru ¼ 0. The Killing horizon is still at
r ¼ 2M, whereas the universal horizon, where
uμKμ ¼ 0, is located at r ¼ M. Inside the shell, we assume
that the aether field is at rest. To our knowledge, this
configuration has not been shown to be a solution of the
field equations. However, as explained in Sec. III E, small
deviations from this configuration should not significantly
modify our conclusions.
In EF coordinates, on both sides of the shell, the aether

field uμ, and its orthogonal spacelike unit field sμ are given by

uμ∂μ ¼ ∂v −
MðvÞ
r

∂r;

sμ∂μ ¼ ∂v þ
�
1 −

MðvÞ
r

�
∂r; ð13Þ

whereMðvÞ ¼ Θðv − 4MÞM. We introduce the “preferred”
coordinates t; X by imposing that uμdxμ ∝ dt and
sμ∂μ ¼ sgnðr −MÞ∂X. Their precise definition is given
in Appendix A 1. In these coordinates, the metric takes
the Painlevé-Gullstrand form:

ds2 ¼ c2dt2 − ðdX − VdtÞ2; ð14Þ

where

V ¼ −
MðvÞ
r

;

c ¼ jKμuμj ¼
����1 −MðvÞ

r

����: ð15Þ

At fixed t, outside the shell, V and c only depend on X.
We notice that

uμdxμ ¼ cdt: ð16Þ

The factor c ensures that dt is a total differential. Moreover,
as explained in Appendix B, c is constant when the aether
field is geodesic. Here we work with an accelerated aether,
which is a necessary condition to have a universal horizon.
Importantly, c vanishes on the universal horizon.2 In fact,
the novelties of the present situation with respect to the
standard case studied in [8] only arise from the vanishing of
c, and the associated divergence of the dispersive scaleΛ=c.
In Fig. 2 we show the lines of constant preferred time,

and the direction of the aether field uμ, in the v; r plane. The
coordinate t is discontinuous across the shell trajectory,
as was the null coordinate u in the former section. As in
the relativistic case, outside the shell we must use two
coordinates t and tL, now on either side of the universal
horizon. The inside coordinate T evaluated along the shell,
at v ¼ 4M−, is a monotonically increasing function of both
tðv ¼ 4Mþ; rÞ for r > M and of tLðv ¼ 4Mþ; rÞ for
r < M. So, the foliation of the entire space-time by the
inside coordinate T is globally defined and monotonic.
We consider a real massless dispersive field Φ with a

superluminal dispersion relation. Its action is given by
Eq. (2) supplemented by a term quartic in derivatives:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ð∂μΦÞð∂μΦÞ

−
1

Λ2
ð∇μðhμν∇νΦÞÞð∇ρðhρσ∇σΦÞÞ

	
; ð17Þ

2In an analogue gravity perspective [27,28], to reproduce such
a situation one needs a medium in which the group velocity of
low-frequency waves vanishes at a point. From Eq. (21), we see
that the effective dispersive scale Λ=c must be divergent at the
point where c → 0. It would be interesting to find media which
could approximatively reproduce this behavior.
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where ∇μ is the covariant derivative and hμν ≡ gμν − uμuν

is the projector on the hyperplane orthogonal to uμ. The
dispersive momentum scale is given by Λ. The field
equation reads

∇μ∇μΦþ 1

Λ2
ð∇μhμν∇νÞ2Φ ¼ 0: ð18Þ

Using a (1þ 1)-dimensional approximation, Eq. (18)
reduces to

�
½∂t þ ∂XV�

1

c
½∂t þ V∂X� − ∂Xc∂X

þ 1

Λ2
∂Xc∂X

1

c
∂Xc∂X

	
ψ ¼ 0 ð19Þ

when working in the preferred coordinates. Since this (self-
adjoint) equation is second order in ∂t, the Hamilton
structure of the theory is fully preserved. In particular,
the conserved scalar product has the standard form

ðψ1jψ2Þ ¼ i
Z

dXðψ�
1Π2 − Π�

1ψ2Þ; ð20Þ

where Π ¼ uμ∂μψ ¼ ð∂tψ þ V∂XψÞ=c is the momentum
conjugated to ψ . For more details, see Appendix A 2.
The Hamilton-Jacobi equation associated with

Eq. (19) is

Ω2 ¼ ðλ − VðXÞPÞ2 ¼ cðXÞ2
�
P2 þ P4

Λ2

	
: ð21Þ

We introduce the Killing frequency λ, the preferred
frequency Ω, and the preferred momentum P:

λ ¼ −Kμ∂μS ¼ −∂tS; ð22Þ

Ω ¼ −cðXÞuμ∂μS ¼ λ − VðXÞP; ð23Þ

P ¼ sμ∂μS ¼ ∂XS: ð24Þ

In these equations S should be conceived as the action of a
point particle; see [21,22,29]. As explained in these works,
S governs the WKB approximation of the solutions of
Eq. (19). Notice that Eq. (22) only applies outside the shell,
whereas all the other equations make sense on both sides.

B. The modes and their characteristics

To compute the late time radiation, one should identify
the various solutions of Eq. (19) and understand their
behavior. In the presence of dispersion, one loses the neat
separation of null geodesics into the outgoing u ones, and
the infalling v ones. In what follows, we call Pu (Pv) the
roots of the dispersion relation which have a positive
(negative) group velocity in the frame at rest with respect
to the “fluid” of velocity V; see [8]. Similarly, the
corresponding modes will also carry the upper index u
or v.

1. The in and out asymptotic modes

In the internal region v < 4M, the situation is particu-
larly simple. Since the velocity field V vanishes, the
preferred frequency is ω ¼ −∂TS, and the dispersion
relation Eq. (21) becomes

ω2 ¼ P2 þ P4

Λ2
: ð25Þ

This relation is shown in the left panel of Fig. 3. At fixed ω,
the positive frequency modes with wave vectors PuðωÞ > 0

and PvðωÞ < 0 define the two in modes ϕu;in
ω and ϕv;in

ω .
They both have a positive norm, which can easily be set to
unity through a normalization factor. The mode ϕu;in

ω is the
dispersive version of the relativistic in mode of Eq. (7).
Outside the shell, for v > 4M, at fixed Killing frequency

λ > 0, the situation is more complicated as the number of
real roots depends on r. Outside the Killing horizon, for
r > 2M, one has c > jVj. So, Eq. (21) possesses two real

FIG. 2 (color online). In this figure we show the lines of
constant preferred time for the collapsing geometry in the plane
ðv − rÞ=M; r=M. The dashed line represents the trajectory of the
null shell v ¼ 4M, and arrows show the direction of the aether
field uμ. Notice that the external preferred time t diverges on the
universal horizon r ¼ M, v > 4M, whereas the internal time T,
which is equal to v − r inside the shell, covers the entire
space-time.
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roots PuðλÞ > 0 and PvðλÞ < 0, which describe outgoing
and infalling particles, respectively. The WKB expression
for the corresponding stationary modes [the solutions of
Eq. (19)] is

ψ ðiÞ
λ ðt; XÞ ≈ exp ð−iðλt − R

X PðiÞðλ; X0ÞdX0ÞÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩðλ; PðiÞÞ=ðcðXÞ∂λPðiÞÞj

q ; ð26Þ

where PðiÞðλ; XÞ is a real solution of Eq. (21) at fixed λ, and
Ωðλ; PðiÞÞ the corresponding preferred frequency. These
WKB modes generalize the expressions of [22,30] in that c
is no longer a constant. Using Eq. (20), one
easily verifies that they have a unit norm. One also verifies
that the group velocity along the ith characteristic is
dXðiÞ=dt ¼ 1=∂λPðiÞ. When considered far away from
the black hole, r=ð2MÞ ≫ 1, the u-WKB mode is the
dispersive version of the relativistic out mode of Eq. (8).
From this analysis, we see that there is no ambiguity to

define the asymptotic behavior of the in and out modes,
solutions of Eq. (19). As before, these two sets encode the
black hole radiation through the overlaps of Eq. (10). To be
able to compute these overlaps, we need to construct the
globally defined modes. To this end, we must study both
the behavior of ψ ðiÞ

λ near the two horizons and the third kind
of stationary modes which propagate in this region.

2. Near horizon modes

Inside the Killing horizon but outside the universal
horizon, for M < r < 2M, one has c < jVj. As can be
seen from the right panel of Fig. 3, one recovers the two
roots PuðλÞ > 0 and PvðλÞ < 0 we just described. One
notices that the u root PuðλÞ has been significantly blue-
shifted, whereas the infalling root PvðλÞ hardly changed.

Locally, in the WKB approximation, the corresponding
modes are again given by Eq. (26).
In addition, below a certain critical frequency λc that

depends on c and V, we have two new real roots we call

−Pðu;→Þ
−λ and −Pðu;←Þ

−λ , where the arrow indicates the sign of
the group velocity given by 1=∂λP. [The minus signs in
front of these roots and λ come from the fact that they have
a negative preferred frequency Ω for λ > 0. Hence, for

λ ¼ −jλj, the mirror image roots, Pðu;→Þ
−jλj and Pðu;←Þ

−jλj , have a
positive Ω.] Since Ω < 0, the WKB modes associated with
these roots have a negative norm [22]. We call the right-
moving one ðψu;→

−λ Þ� and the left-moving one ðψu;←
−λ Þ�, so

that the modes without complex conjugation have a
positive norm. Both of them carry a negative Killing
energy −λ. Using Eqs. (26) and (20), one easily verifies
that ðψu;→

−λ Þ� and ðψu;←
−λ Þ� have a negative unit norm within

the WKB approximation. As we shall see, they describe the
negative energy partners trapped inside the Killing horizon
before and after their turning point, respectively. To
summarize the situation, it is appropriate to represent the
characteristics of the three types of modes. We proceed as
in [21,22].

3. The characteristics

As said above, the characteristics are solutions of the
Hamilton-Jacoby equation dX

dT ¼ 1
∂λP. Since the frequency is

a constant of motion on each side of the mass shell, they
can then be computed straightforwardly. In Fig. 4, they are
shown in the external region v > 4M for a small value of
jλj=Λ ¼ 0.01 (left panel) and a moderate one jλj=Λ ¼ 1
(right panel). The solid lines correspond to positive energy
solutions while the dashed ones correspond to negative
energy solutions.

FIG. 3. (Left panel) Dispersion relation in the internal region, where the preferred frame is at rest, in the Ω; P plane. The solid line
shows ω ¼ Ω versus P for the positive-norm modes. The dashed line corresponds to negative Ω, i.e., negative-norm modes. The
intersections with a line of fixed ω > 0 (dotted line) give the two solutions Pu

ω and Pv
ω. (Right panel) Dispersion relation in the

“superluminal” region for M < r < 2M in the λ; P plane. The two additional roots on the negative Ω u branch are clearly visible.
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The u-like characteristics with positive energy (in red),
corresponding to the WKB modes ψu

λ , emerge from the
universal horizon from its right (r > M) at early times.
When t increases, the momentum Pu

λ is redshifted while r
increases. At a finite time, the characteristics cross the
Killing horizon and go to infinity as t → ∞ (almost along
null outgoing geodesics when λ=Λ ≪ 1).
The second u-like characteristics (orange, dashed line)

describe the trajectories followed by the negative-energy
partners. For t → −∞, they also emerge from r ¼ Mþ.
However, with an increasing t they have a turning point
inside the Killing horizon, after which they move towards
the universal horizon, smoothly cross it, and hit the
singularity at r ¼ 0 at finite values of v and tL. Before
the turning point, they are described by the WKB mode
ðψu;→

−λ Þ�, and after the turning point by ðψu;←
−λ Þ�.

The infalling v-like characteristics corresponding to ψv
λ

(in blue) approach the universal horizon from infinity and
cross it at a finite value of v. (When sending λ → 0 they
asymptote to null infalling geodesics v ¼ cst.) As their
wave vectors are finite for r → Mþ, these characteristics
will play no role in the sequel. As in the relativistic case,
the v modes act as spectators in the Hawking effect.
(Interestingly, v-like characteristics have a turning point
inside the universal horizon r < M. (The presence of the
turning point may be understood from the fact that, close to
r ¼ 0, jVj and c go to infinity but jVj=c goes to 1. So, at
fixed λ two roots merge at a point r ¼ rtp > 0. The turning
point approaches r ¼ 0 in the limit λ → 0.) For later
(preferred) times, they return towards the universal horizon,

approach it asymptotically for v → −∞, tL → þ∞, and are
highly blueshifted. In addition, for r < M, there is a new v
mode with negative norm for λ > 0. It is indicated by a
dashed green line in Fig. 4. It emerges from the singularity
and approaches the universal horizon while closely follow-
ing the positive Killing frequency characteristic after its
turning point. (In fact, this new vmode is directly related to
the u modes emerging from the singularity in [2]: inside a
universal horizon, u and v modes are swapped because of
the vanishing of c at r ¼ M.) Since some of the v modes
originate from the singularity, and since the blueshift they
experience is unbounded for r → M−, the v part of the state
will not obey Hadamard regularity conditions. This
strongly indicates that the inner side of the universal
horizon should be singular. This interesting question goes
beyond the scope of the present paper.)
It is important to notice that the only novel aspect with

respect to the standard dispersive case (treated in full detail
in [22]) concerns the behavior near the universal horizon.
To clarify these new aspects, we represent in Fig. 5 the
global structure of the characteristics in the collapsing mass
shell geometry.

4. The characteristics in the collapsing geometry

In the internal region v < 4M, the characteristics are
straight lines. Coming backwards in time from the outside
region, the inside trajectories are fixed by the value of the
inside frequency which is determined (as in the relativistic
case) by continuity of the field ψ across the mass shell; see
Appendix A 3 for details. As a result, the derivative ∂rψ

FIG. 4 (color online). Characteristics in a Schwarzschild stationary geometry for λ ¼ 10−2Λ (left panel) and λ ¼ Λ (right panel). The
arrows indicate the direction of increasing preferred time along each characteristic. Solid lines correspond to positive-norm modes, and
dashed ones to negative-norm modes. For r > M, each characteristic is named by the corresponding mode. The green dashed line
corresponds to an extra v mode confined in r < M. As explained in the main text, the infalling v mode (described by the blue line)
possesses a turning point inside the universal horizon. The mode corresponding to the orange, dashed line is the high momentum WKB
mode ðψu;→

−λ Þ� before the turning point, and the low momentum mode ðψu;←
−λ Þ� after it.

BLACK HOLE RADIATION IN THE PRESENCE OF A … PHYSICAL REVIEW D 91, 124049 (2015)

124049-7



must be continuous across v ¼ 4M. At the level of the
characteristics (i.e., in the geometrical optic approxima-
tion), this implies that kv, the radial momentum at fixed v,
is continuous along the shell. In terms of the inside and
outside preferred momenta PuðωÞ and Puðλ; rÞ, evaluated
at v ¼ 4M− and v ¼ 4Mþ, respectively, the continuity
condition gives���� r

r −M

����ðλþ Puðλ; rÞÞ ¼ ωþ PuðωÞ: ð27Þ

This equation has two solutions, but only one is well
behaved, as the other one gives a trajectory along which the
preferred time is not monotonic. A straightforward calcu-
lation using the dispersion relation Eq. (21) also shows
that the sign of Ω is preserved. It should be noted that
Eq. (27) is the dispersive version of the relativistic equation
jr=ðr − 2MÞjλ ¼ ω, which gives back Eq. (12) for r > 2M,
ω ≫ λ and uses u rather than r.
It should be also emphasized that all outgoing u-like

characteristics originate from inside the shell, as in the
relativistic case. This is shown in Fig. 5. Therefore, thanks
to the universal horizon, the state of the field inside the shell
determines the state of the u modes. In this we avoid the
problem discussed in [2], namely, that in the absence of a
universal horizon, the u modes of a superluminal field
originate from the singularity at r ¼ 0. As explained in the

previous subsection, these modes still exist, but they are
now trapped inside the universal horizon.
Finally, we notice that the Killing frequency λin of the

incoming v modes which generate the outgoing u modes
exiting the shell at rc ≈M is very large. More precisely,
when dealing with u characteristics with positive Ω (i.e.,
modes with a positive norm), irrespective of the sign of
their Killing frequency λ, the Killing frequency λin is
positive. A straightforward calculation (based on the
continuity of kv applied to the v modes) shows that it
scales as λin ≈ 3ΛM=ðrc −MÞ.
For completeness, we have also represented in Fig. 5 a

couple of infalling v characteristics which enter the shell for
0 < r < M. One comes from r ¼ 0 (the dashed line), and
one from r ¼ ∞ (the solid line). They both reach the
singularity after having bounced at r ¼ 0 inside the shell.
These characteristics, although interesting, play no role in
the Hawking process.

C. Behavior of the WKB modes near
the universal horizon

To be able to compute the late time behavior of the
Bolgoliubov coefficients, we need to further understand the
properties of the stationary modes in the immediate vicinity
of the universal horizon at r ¼ M. For r > M, the two roots
Pv
λ and Pu;←

−λ remain finite as r → M. As can be seen in
Fig. 4, the associated trajectories smoothly cross the
horizon. They thus play no role in the large ω limit. In
fact, they describe out modes.
The two other roots, Pu

λ and Pu;→
−λ , both diverge as

r → M. Importantly, they both satisfy

Pin
�λ ¼

ΛM
r −M

� r
M

λþO
�
1 −

M
r

�
; ð28Þ

where the þ sign applies to Pu
λ , and the − sign to Pu;→

−λ . We
have added a superscript in to emphasize that this behavior
is relevant at early time t, just after having crossed the shell.
The simple relation between Pu

λ and Pu;→
−λ implies that for

r → M, the two WKB modes, ψu
λ and ψ

u;→
−λ , are also related

to each other by flipping the sign of λ. In the forthcoming
discussion, to implement these points, we shall replace
ψu;→
−λ by ψu

−λ and add a superscript in to the WKB modes
ψu
�λ.
The appropriate character of this superscript can be

understood as follows. Although the divergence in
1=ðr −MÞ in Eq. (28) resembles what is found in the
relativistic case, it has a very different nature due to the
different relationship between r and the preferred coor-
dinate X. This can be seen by looking at the validity of
the WKB approximation for ψu;in

λ close to the universal
horizon. Deviations from this approximation come from
terms in ð∂XrÞ=ðrPÞ, ð∂Xðr −MÞÞ=ððr −MÞPÞ, and
ð∂XPÞ=P2. Using

FIG. 5 (color online). Characteristics crossing the infalling shell
in the v − r; r plane. The Killing frequencies of the outgoing u
modes and the incoming v modes is λ ¼ �0.5Λ. The solid
(dashed) lines represent characteristics for which the value of the
Killing frequency λ of the outgoing umode is positive (negative).
The arrows indicate the future direction associated with the aether
field. When tracing backwards the u-like characteristics associ-
ated with the Hawking quanta (λ > 0) and their inside negative
energy partners (λ < 0), we see that they both originate from
infalling v-like superluminal characteristics with a high and
positive Killing frequency λin. The v mode which emanates from
the singularity (the dashed line) returns to it after having bounced
at the center of the shell (not represented), closely following the
characteristic of the v mode coming from infinity which hits the
shell at the same value of r.
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∂X ¼ r −M
r

∂r; ð29Þ
we find that these three terms go to zero as r → M.
Therefore, close to the universal horizon, the WKB
approximation of Eq. (26) becomes exact for ψu;in

�λ . In fact,
these modes behave as the dispersive in modes near a
Killing horizon [21,22]. Namely, they have a positive norm
for all values of λ and, moreover, contain only positive
values of Pu. We recall that this is the key property which
also characterizes the so-called Unruh modes [26,31] for a
relativistic field.
These are strong indications that no stationary emission

should occur close to the universal horizon, as the pair
production mechanism rests on deviations from the WKB
approximation. This is confirmed in the next subsection.

D. Bogoliubov coefficients from the scattering
on the shell

We are now in a position to determine the scattering
coefficients which govern the propagation across the null
shell. Inside the shell, one has the in mode ϕu;in

ω . Along the
shell, for v ¼ 4M−, it is a plane wave which behaves as
ϕu;int
ω ∼ exp ½iðωþ PuðωÞÞr�. After having crossed the

shell, for r=M − 1 ≪ 1, it may be expanded in terms of
the four WKB modes (which form a complete basis):

ϕu;in
ω ¼

Z
∞

−∞
dλðγω;λψu;in

λ þ δω;λðψu;in
−λ Þ�

þ Aω;λψ
v
λ þ Bω;λðψu;←

λ Þ�Þ: ð30Þ

We are interested in the coefficients γω;λ and δω;λ which
multiply the two modes with divergent wave vectors and
opposite norms. It should be pointed out that the integral
over λ runs from −∞ to∞. The other two coefficients, Aω;λ

and Bω;λ, multiply the two modes which remain regular
across the universal horizon in the ðv; rÞ coordinates. They
vanish in the limit ω → ∞.
The calculation of γω;λ and δω;λ is straightforward in the

ðv; rÞ coordinates; see Appendixes A 4 and A 5. For
jλj≲ Λ, we find that their ratio decays as

���� δω;λγω;λ

���� ¼ω→∞ O
� ffiffiffiffiffiffiffiffi

MΛ
p

ω

�
× exp ð−2MPuðωÞÞ; ð31Þ

where PuðωÞ ∼ ffiffiffiffiffiffiffi
ωΛ

p
in the present high frequency regime.

Equation (31) is the main result of the present work. Its
meaning is clear: at late time, corresponding to the emission
close to the universal horizon and thus to very large values
of Pu

λ ∼ Λ=ðr=M − 1Þ—see Eq. (28)—the propagation
across the shell induces no mode mixing between the
inside in mode ϕu;in

ω and the high momentum WKB mode
with negative norm ðψu;in

−λ Þ�, irrespective of the value (and
the sign) of λ. As a result, outside the shell, the state of
the field is stationary, and the vacuum with respect

to the annihilation operators is associated with ψu;in
λ for

λ ∈ ð−∞;∞Þ.3 It thus correspond to the in vacuum as
described in [21,22].4

E. Genericness of Eq. (31)

In this subsection, we distance ourselves from the model
we considered to see how the above results may be affected.
We first consider a modification of the mass shell trajectory
close to the universal horizon. From the calculation of
Appendixes A 4 and A 5, the factor expð−2M ffiffiffiffiffiffiffi

Λω
p Þ in

Eq. (31) comes from the fact that the phase of the mode
inside the mass shell is θint ≈ −ωT ≈ ωðr − vÞ, while that
of the mode outside the mass shell is θout ≈ ΛM=x, where
x≡ ðr=MÞ − 1. At fixed v, we find that the stationary
phase condition applied to θin � θout (the upper sign applies
to γ, while the lower sign applies to δ) gives back the large
frequency limit of Eq. (27), with x real for γ, while x is
purely imaginary for δ, with a modulus

ffiffiffiffiffiffiffiffiffi
Λ=ω

p
. Let us now

consider an arbitrary shell trajectory close to the universal
horizon. We define an affine parameter y along this
trajectory. The possible saddle points are located where

d
dy

�
ωT ∓ ΛM

x

�
¼ 0; ð32Þ

i.e.,

ω
dT
dy

� ΛM
x2

dx
dy

¼ 0: ð33Þ

So, the location of the saddle is

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓ M

dx
dT

Λ
ω

r
: ð34Þ

We get the same result as before, up to the factor −M dx
dT.

Therefore, the ratio jδω;λ=γω;λj is still suppressed by an
exponential factor in M

ffiffiffiffiffiffiffi
Λω

p
, with a coefficient depending

on the velocity of the mass shell when it crosses r ¼ M.

3This conclusion differs from that reported in [18]. We do not
understand the procedure adopted there, which apparently
implies that the leading term in Eq. (28) does not contribute
to the ratio of Eq. (31), thereby giving rise to a steady thermal
radiation governed by the surface gravity of the universal horizon.
Instead, the saddle point evaluation of δω;λ performed in
Appendix A 5 establishes that the leading term of Eq. (28) gives
the exponential damping in e−2MP of Eq. (31).

4To be complete, one should propagate backwards in time the
inside field configurations and verify that they correspond to
vacuum v-like configurations for r → ∞, t → −∞. To verify this,
we computed the scattering coefficients encoding a change of the
norm of the v modes when crossing the shell. We found that they
also decrease exponentially in

ffiffiffiffiffiffiffi
ωΛ

p
for ω → ∞. We also recall

here that the Killing frequency of the v modes engendering a
stationary u mode diverges as λin ≈ 3ΛM=ðrc −MÞ, where rc is
the radius when the u mode exits the shell.
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We now consider a generalization of the dispersion
relation Eq. (21) with higher-order terms. Specifically,
we consider the dispersion relation

Ω2

c2
¼

XN
j¼0

P2j

Λ2ðj−1Þ
j

: ð35Þ

Close to the universal horizon, the divergent wave vectors
follow

P ≈�ΛNx
−1
N−1: ð36Þ

As before, the coefficient γ corresponds to � ¼ þ in
Eq. (36). The value of the saddle point is then real, and
the exponential factor appearing in γω;λ has a unit modulus.
Instead, for the coefficient δ, corresponding to the minus
sign in Eq. (36), the solutions of the saddle point equation
are

x� ¼
�
ω

Λ

�1−N
N

eiπ
1þ2l
N ; l ∈ Z: ð37Þ

Taking only the saddle points with negative imaginary
parts, we find that δω;λ is suppressed by a factor which is
exponentially large in ω1=N . Interestingly, when using the
inside spatial wave number PuðωÞ rather than the inside
frequency ω, the norm of the coefficient δω;λ always
decreases as expð−MAPuðωÞÞ with A > 0, which means
that it is the diverging character of PuðωÞ which guarantees
that its sign does not flip when crossing the shell.
Similarly, the exponential factor suppressing δω;λ is

mildly affected by a change in the metric and/or the form
of the aether field, provided the inside wave vector remains
smooth, whereas the outside one diverges as a power law
for r → rUH, where rUH is the radius of the universal
horizon. This should remain valid as long as there is no
divergence (or cancellation) preventing us from defining
preferred coordinates in which the dispersion relation takes
the form of Eq. (35) close to the universal horizon. Indeed,
the construction of Appendix A 1 can be easily extended to
a generic space-time with a Killing vector χ, endowed with
a generic timelike, normalized aether field uμ.

IV. CONCLUSIONS

We computed the late time properties of the Hawking
radiation in a Lorentz violating model of a black hole with a
universal horizon. To identify the appropriate boundary
conditions for the stationary modes of our dispersive field,
we worked in the geometry describing a regular collapse
and assumed that the inside state of the field is vacuum at
(ultra)high inside frequencies ω ≫ Λ. We then computed
the overlap along the thin shell of the outwards propagating
inside positive-norm modes, and the outside stationary
modes. In the limit where the shell is close to the universal
horizon, we show that the overlap between modes of
opposite norms decreases exponentially in the radial
momentum P. This result comes from the peculiar behavior

of the momentum when approaching the universal horizon
with a fixed Killing frequency; see Eq. (28). Although this
behavior was found in a specific model, we then argued that
it will be found for generic (spherically symmetric) regular
collapses and superluminal dispersion relations.
As a result, irrespective of the model, at late time, the

state of the outgoing field configurations is accurately
described, for both positive and negative Killing frequen-
cies, by the WKB modes with large positive momenta P
(and a positive norm). In this we recover the standard
characterization of outgoing configurations in their vacuum
state in the near horizon geometry. Indeed, the condition to
contain only the positive momenta P prevails for both
relativistic and dispersive fields in the vicinity of the Killing
horizon. The present work, therefore, shows that this
simple characterization still applies in the presence of a
universal horizon.
Once this is accepted, the calculation of the asymptotic

flux is also standard and shows that for large black holes the
thermality and the stationarity of the Hawking radiation are,
to a good approximation, both recovered. This suggests that
the laws of black hole thermodynamics should also be
robust against introducing high frequency dispersion.
As a corollary of the divergence of the radial momentum

on both sides of the universal horizon, noticing that the
inside configurations are blueshifted (towards the future),
and that they have no common past with the outside
configurations, it seems that the field state cannot satisfy
any regularity condition across the universal horizon. It
would be interesting to study the space of the field states
and determine whether some dispersive extension of the
Hadamard condition can be imposed on the universal
horizon. In the negative case, it seems that the universal
horizon will be replaced by a spacelike singularity.
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APPENDIX A: WAVE EQUATION
AND BOGOLIUBOV COEFFICIENTS

In this appendix, we give the general formulas and main
steps in the derivation of the results presented in Sec. III.

1. Preferred coordinates

The preferred coordinates ðt; XÞ are defined by the
following four conditions:
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(a) sμ∂μ ¼ �∂X at fixed t;
(b) ∂v ¼ �∂t at fixed X;
(c) ∂rT < 0 along the shell trajectory;
(d) ∂rX > 0 along the shell trajectory.
These four conditions uniquely define t and X as

t ¼
8<
:

v − r; v < 4M;

v − r�U; v > 4M ∧ r > M;

−ðv − r�UÞ; v > 4M ∧ r < M;

ðA1Þ

and

X ¼
8<
:

r; v < 4M;

r�U; v > 4M ∧ r > M;

−r�U; v > 4M ∧ r < M:

ðA2Þ

In these expressions, r�U ¼ rþM ln j r
M − 1j is the tortoise

coordinate built around the universal horizon.

2. Wave equation and scalar product

The action (17) has a Uð1Þ invariance under Φ → eiθΦ,
from which we derive the conserved current density

J μ ≡ −i
ffiffiffiffiffiffi
−g

p �
Φ∇μΦ� −

1

Λ2
hμνð∇νΦÞð∇ρhρσ∇σΦ�Þ

þ 1

Λ2
Φhμν∇ν∇ρhρσ∇σΦ�

�
þ c:c:; ðA3Þ

where c.c. stands for the complex conjugate, satisfying

∂μJ μ ¼ 0: ðA4Þ

As the wave equation (18) is linear, one easily shows that
J μ defines a conserved (indefinite) inner product in the
following way. Considering two solutions Φ1 and Φ2 of
Eq. (18), we first define J μðΦ1;Φ2Þ by replacing Φ� by Φ�

1

and Φ by Φ2 in Eq. (A3). The inner product of these two
solutions is then defined by

ðΦ1;Φ2Þτ ≡
Z

d3xnμJ μðΦ1;Φ2Þ; ðA5Þ

where nμ is the unit vector perpendicular to the 3-surface
defined by τ ¼ cst and τ is a time coordinate. When
considering the 3-surfaces defined by t ¼ cst, the above
overlap simplifies and gives the standard (Hamiltonian)
conserved scalar product of Eq. (20).

3. Matching conditions on the mass shell

In order to compute the overlap of two modes defined
on either side of the mass shell, we need the matching
conditions to propagate the modes from the internal region
to the external one and vice versa. As we now show, they
appear naturally when considering the behavior of J v ≡
J μ∂μv across the shell. To see this, we first rewrite
J vðΦ1;Φ2Þ as

J vðΦ1;Φ2Þ ¼ −i
�
Φ2

ffiffiffiffiffiffi
−g

p �
∇v þ 1

Λ2
hvμ∇μ∇ρhρσ∇σ

�
Φ�

1

−
1

Λ2

ffiffiffiffiffiffi
−g

p ðhvμ∇μΦ2Þð∇ρhρσ∇σΦ�
1Þ
�

− ðΦ�
1 ↔ Φ2Þ: ðA6Þ

Inspecting Eq. (18) and requiring that the second term has
no singularity which cannot be canceled by the first one, we
find that the quantities
(a) Φ,
(b)

ffiffiffiffiffiffi−gp
h0ν∇νΦ,

(c) ∇ρhρσ∇σΦ, and
(d)

ffiffiffiffiffiffi−gp ð∇0 þ 1
Λ2 h0ν∇ν∇ρhρσ∇σÞΦ

are continuous across v ¼ 4M. Since the complex con-
jugate of a solution of Eq. (18) is still a solution, this applies
to Φ ¼ Φ�

1 as well as to Φ ¼ Φ2. Therefore, in evaluating
Eq. (A6) one can evaluate Φ�

1 and the operators acting on it
on one side of the shell, v ¼ 4M − ϵ, ϵ → 0, while Φ2

and the operators acting on it are evaluated on the other
side, v ¼ 4M þ ϵ.

4. Calculation of γω;λ
Let us consider two radial modes known on different

sides of the mass shell: Φ1 is known for v < 4M and Φ2 for
v > 4M. The complete expression of the scalar product in
the v; r coordinates is somewhat cumbersome, but it greatly
simplifies in the relevant limit where
(a) ψ1 has a large frequency jωj ≫ Λ;
(b) ψ2 has a large wave vector jkv;2j ≫ λ;Λ.
We have introduced the wave vector kv ≡ ∂rS at a fixed v.
For the modes we are interested in, kv;2 ¼ ðλ2 þ P2Þ=x and
ω are of order Λ=x2, where x ¼ ðr=MÞ − 1. Keeping only
the leading terms in the inner product then gives

ðΦ1;Φ2Þv ≈
4iπ
Λ2

Z
dr

�
−ψ2ð∂v þ ∂rÞ3ψ�

1 þ
�
1 −

M
r

�
∂rψ2ð∂v þ ∂rÞ2ψ�

1

þ ψ�
1

�
1 −

M
r

�
3∂3

rψ2 − ð∂v þ ∂rÞψ�
1

�
M
r
− 1

�
2∂2

rψ2

�
; ðA7Þ
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with relative corrections of the order of x. When choosing for ψ1 the in mode of frequencyω, and for ψ2 the stationaryWKB
mode of Eq. (26) with the large momentum given by Eq. (28), we get

ðΦ1;Φ2Þv ≈ 4πM
Z
x>0

dx

�
P3
ω

Λ2
� P2

ω

Λx
� Λ
x3

þ Pω

x2

�
ψ�
1ψ2

≈
Me4iMðω−λÞe−iMðωþPωÞ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛjωðdωdPÞ1j

q Z
x>0

dx

�
P3
ω

Λ2
� P2

ω

Λx
� Λ
x3

þ Pω

x2

�

× exp

�
i

�
∓ ΛM

x
þ ð2λ� ΛÞM ln jxj −Mðωþ PωÞx

��
: ðA8Þ

In this equation, as well as in the remainder of this
appendix, the sign � discriminates between γ and δ; see
below. In the large frequency limit, we evaluate this integral
through a saddle point approximation. The possible saddle
points are the values of x where

d
dx

�
∓ ΛM

x
−Mðωþ PωÞx

�
≈

d
dx

�
∓ ΛM

x
−Mωx

�
¼ 0;

ðA9Þ

i.e.,

x2 ≈�Λ
ω
: ðA10Þ

This is very similar to the saddle point condition applied
to the Bogoliubov coefficients describing the scattering
of plane waves on a uniformly accelerated mirror [32,33].
The coefficient γω;λ is defined for �ω > 0. Since the

integral runs over x > 0, we must choose the saddle point
x� at

x�γ ≈

ffiffiffiffiffiffi
Λ
jωj

s
: ðA11Þ

We get

γω;λ ≈�
ffiffiffiffiffiffiffiffiffiffiffiffi
∓ iM
2πjωj

s
exp

�
iM

�
3ω − 4λ − Pω ∓ 2

ffiffiffiffiffiffiffiffiffiffi
Λjωj

p
þ 1

2
ð2λ� ΛÞ ln

�
Λ
jωj

�
∓ Λ

��
: ðA12Þ

It is easily shown that, under these approximations, the
following unitarity relation is satisfied:

Z
∞

0

dωγ�ω;λγω;λ0 ≈ δðλ − λ0Þ: ðA13Þ

This implies that the δω;λ coefficients are suppressed in the
limit ω → ∞.

5. Calculation of δω;λ
The calculation of δω;λ follows the same steps. The

saddle point equation now is

x�2δ ¼ −
Λ
jωj : ðA14Þ

To be able to deform the integration contour to include the
saddle point, we must choose the solution in the half-plane
where the exponential decreases, i.e.,

x�δ ¼ −sgnðωÞi
ffiffiffiffiffiffi
Λ
jωj

s
: ðA15Þ

The exponential factor in the integral then gives a sup-
pression factor

exp

�
−M

�
2

ffiffiffiffiffiffiffiffiffiffi
Λjωj

p
þ π

�
−sgnðωÞλþ Λ

2

�
þ Λ

��
:

ðA16Þ

In addition, to the order to which the calculation was
performed, the prefactor vanishes. As the first relative
corrections from neglected terms are of the order
Oðx�Þ ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffi

Λ=jωjp Þ, we get

δω;λ ¼ O
� ffiffiffiffiffiffiffiffi

MΛ
p

jωj
�
exp ð−2M

ffiffiffiffiffiffiffiffiffiffi
Λjωj

p
Þ: ðA17Þ
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APPENDIX B: ACCELERATION
OF THE AETHER FIELD

The acceleration of the aether field is

γμ ¼ uν∇νuμ: ðB1Þ

Using Eq. (13), this gives, for v ≠ 4M,

γμγμ ¼ −
MðvÞ2
r4

: ðB2Þ

For completeness, we now show that in 1þ 1 dimen-
sions a stationary universal horizon requires that the aether
field has a nonvanishing acceleration, thereby generalizing
what was found in de Sitter in [7]. We consider a stationary
space-time with Killing vector Kμ, endowed with a timelike
aether field uμ. The universal horizon is defined as the locus
where Kμuμ ¼ 0. (Notice that the Killing field must thus be
spacelike on the universal horizon.) In particular,Kμ cannot
be aligned with uμ. Using the Killing equation, the variation
of Kμuμ along the flow of uμ is

uμ∇μðKνuνÞ ¼ Kμγ
μ: ðB3Þ

If uμ is freely falling, γμ ¼ 0 and uμ is tangent to the
hypersurfaces of constant Kμuμ. In particular, it is tangent
to the universal horizon. In 1þ 1 dimensions, since Kμ and
uμ cannot be aligned, Kμ is not a tangent vector to the
universal horizon, which is thus not stationary. Models with

a stationary universal horizon are thus in a different class
than those studied in [22].
To see the combined effects of the dispersion and

acceleration, we show in Fig. 6 the local value of the
wave vector in the v; r coordinates, kv, for the outgoing u
mode, as a function of r. We compare three models with the
same parameters, and for λ ¼ 10−2Λ. The blue, solid curve
shows the result for the model of Sec. III. The green, dotted
curve shows the relativistic case. The red, dashed one
shows the result for a dispersive model with a nonaccel-
erated preferred frame chosen to coincide with the aether
frame of Sec. III at r ¼ 2M. We see in Fig. 6 that the three
models give very similar results for r < 2M. Close to
r ¼ 2M, the relativistic wave vector diverges, while the
nonaccelerated dispersive model still closely follows the
accelerated one. When r is further decreased, the predic-
tions of the two models separate: the nonaccelerated one
gives a finite wave vector at r ¼ M, while the accelerated
one gives k ∝ ðr −MÞ−2.
As a final remark, it must be noted that the freely-falling

model is not well defined for r → ∞. The reason is that at
r ¼ 2M, we have u · ∂v ¼ 1=2. A nonaccelerated vector
field w which coincides with u at r ¼ 2M must thus satisfy
the two conditions w · ∂t ¼ 1=2 and w · w ¼ 1 at r ¼ 2M.
From the free-fall condition, these two properties extend to
the whole domain where the preferred frame is defined.
Since they are incompatible in Minkowski space, we
deduce that the domain in which the preferred frame can
be defined does not extend to r → ∞. A straightforward
calculation shows that it extends up to r ¼ 8M=3.
However, as this model is well defined close to and inside
the Killing horizon, it can be used to see the qualitative
differences between the nonaccelerated and acceler-
ated cases.

APPENDIX C: HAWKING RADIATION IN THE
PRESENCE OF A UNIVERSAL HORIZON

In Sec. III, we showed that the late time emission from
the universal horizon is governed by Bogoliubov coeffi-
cients which are exponentially suppressed when the inside
frequency ω ≫ λ. This result was obtained using the WKB
approximation of the stationary modes just outside the
universal horizon. This approximation is trustworthy, as we
verified that the deviations from the WKB treatment go to
zero when approaching the universal horizon. This implies
that at late time the inside vacuum is adiabatically trans-
ferred across the shell. Hence, the u part of the field state
can be accurately described by the WKB high (preferred)
momentum mode ψu;in

λ for both signs of λ. In this we
recover the situation described in [21,22,29]. Therefore,
the nonadiabaticity that will be responsible for the asymp-
totic radiation will be found in the propagation from the
universal horizon to spatial infinity. The value of the
Bogoliubov coefficients should essentially come from

FIG. 6 (color online). Comparison of three wave vectors
kðr; λÞ=Λ as a function of x ¼ r=M − 1 (both in logarithmic
scales) in the relativistic case (green, dotted line), for the freely
falling preferred frame (red, dashed line), and in the model of
Sec. III (blue, solid line). The Killing frequency is λ ¼ 10−2Λ,
and the Killing horizon is located at x ¼ 1. One clearly sees the
unbounded growth of the relativistic wave number. More im-
portantly, one also sees that the two dispersive wave vectors
behave in the same manner across the Killing horizon. Hence the
acceleration of uμ has a significant effect on k only when
approaching the universal horizon.
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the stationary scattering near the Killing horizon. Hence,
we expect to get a nearly thermal spectrum governed by the
surface gravity of the Killing horizon, and with deviations
in agreement with those numerically computed in [34,35].
To verify this conjecture, we numerically propagate the

outgoing mode ϕu
λ from a large value of r=2M down inside

the trapped region to r → Mþ. This mode can be written in
the limits r → M and r → ∞ as

ϕu
λðrÞ ∼

r→∞
ψu
λ þ Aλψ

v
λ ;

ϕu
λðrÞ ∼

r→M
αλψ

u;in
λ þ βλðψu;in

−λ Þ�; ðC1Þ

where the WKB modes are as described in Sec. III. The
coefficient Aλ governs the grey body factor. In our (1þ 1)-
dimensional model, we have verified that it plays no
significant role. (We found that jAλj2 is bounded by
0.16.) Hence, as usual, the Hawking effect is essentially
encoded in the mode mixing of umodes of opposite norms.
To efficiently perform the numerical analysis, we regu-

larized the metric and the aether field. In practice we
worked with a metric of the form

ds2 ¼ ð1 − 2fðrÞÞdv2 − 2dvdr; ðC2Þ

and a unit norm aether field

uμ∂μ ¼ ∂v − fðrÞ∂r: ðC3Þ

These expressions generalize the model of Sec. III which
is recovered for fðrÞ ¼ M=r. The Killing horizon corre-
sponds to fðrÞ ¼ 1=2, and the universal horizon to
fðrÞ ¼ 1. We can then define the preferred coordinate X
along the lines of Appendix A 1. For the numerical

integration of Eq. (19), it is appropriate to work with f
expressed as a known function of X. A convenient choice is

fðrðXÞÞ ¼ 1

2

�
1 − η tanh

�
X
X0

��
: ðC4Þ

η is a positive parameter which must be equal to 1 to have
an asymptotically flat space at r → ∞ and a universal
horizon at r → M, i.e., X → −∞. In our numerical sim-
ulations, we worked with η < 1 to avoid large numerical
errors due to the divergence of the dispersive roots Pin

�λ
close to the universal horizon. We verified that the
scattering coefficients become independent on η in the
limit η → 1, as should be the case since the WKB
approximations become exact on both sides. The advantage
of this model is that the metric coefficients and the aether
field converge exponentially to their asymptotic values
so that the asymptotic modes become exact solutions for
r → ∞, provided the decay rate of the exponentially
decaying mode is small enough.6 The characteristics out-
side the universal horizon r ¼ rU are shown in Fig. 7. They
exhibit the main properties of Fig. 4. In the right panel we
show the parameter governing the nonadiabatic corrections,
ð∂XPλÞ=P2

λ , as a function of the preferred coordinate X in
the present model and the one of Sec. III. In the present
model, they go to zero exponentially both for X → ∞ and
X → −∞. In the model of Sec. III, they decay exponen-
tially at X → −∞ but only polynomially at X → ∞. The
two models become equivalent, in the sense that the value
of Pu

λðrÞ follows the same law close to the Killing horizon
when working with the same surface gravity.

FIG. 7 (color online). (Left panel) Characteristics in the v − x; x=xK coordinates, where x≡ r − rU and xK gives the location of the
Killing horizon. Only the region outside the mass shell and the universal horizon is represented. The parameters are Λ=κ ∼ 1.1,
X0 ¼ 0.5, and λ=Λ ¼ 0.01. (Right panel) Amplitude of the nonadiabatic corrections in the present model (blue, solid line) and the one
from Sec. III (orange, dashed line) for λ=Λ ¼ 0.01, as a function of the preferred coordinate X − XK , where XK denotes the position of
the Killing horizon. In this example, the surface gravity is κ ∼ Λ. We thus verify that the norm of the coefficient βλ is of the order of the
maximal value of the nonadiabatic parameter ∼10, as expected from the analysis of nonadiabaticity [24].

6Notice that an exponential convergence for X → −∞ is
required to have a universal horizon at a finite value of
r ¼ rU, such that df=drðr ¼ rUÞ ≠ 0.
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The field equation was integrated numerically using
[36], and the same techniques as in [34,37]. The results are
shown in Fig. 8. We obtain two important results. First, at
fixed Λ and κ, the effective temperature defined by

jβλj2 ¼
1

eλ=Tλ − 1
ðC5Þ

becomes independent of the regulator η as η → 1−. Second,
at low frequencies λ ≪ Λ, we get a Planckian spectrum,
i.e., Tλ ¼ constant, with deviations from the Hawking
temperature compatible with the results of [8,34]. This
establishes that the propagation between the two horizons

does not alter the thermal character of the outgoing
spectrum.
To conclude this numerical analysis, we numerically

verify that the WKB approximation becomes exact when
approaching the universal horizon. To this end, we show in
Fig. 9 the logarithm of the relative deviation between the
numerical solution and the weighted sum of the WKB
waves αλψ

u;in
λ þ βλðψu;in

−λ Þ�. As X → −∞, we clearly see
that the numerical values of the deviations decay following
the rough estimation of the WKB corrections given by
jð∂XPu

λÞ=ðPu
λÞ2j. (The relatively important spread and the

plateau for X < −1.8 seem to be due to numerical errors.
Indeed, as the wave vector becomes very large, typically of
order 102, even a relatively small error in its value gives
important and rapidly oscillating errors.)

[1] R. M. Wald, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics, Chicago Lectures in
Physics (University of Chicago Press, Chicago, 1994).

[2] T. Jacobson, Lorentz violation and Hawking radiation,
arXiv:gr-qc/0110079.

[3] S. L. Dubovsky and S. M. Sibiryakov, Spontaneous
breaking of Lorentz invariance, black holes and
perpetuum mobile of the 2nd kind, Phys. Lett. B 638,
509 (2006).

[4] T. Jacobson and A. C. Wall, Black hole thermodynamics
and Lorentz symmetry, Found. Phys. 40, 1076 (2010).

[5] G. Betschart, E. Kant, and F. R. Klinkhamer, Lorentz
violation and black-hole thermodynamics, Nucl. Phys.
B815, 198 (2009).

[6] D. Blas and S. Sibiryakov, Horava gravity versus thermo-
dynamics: The black hole case, Phys. Rev. D 84, 124043
(2011).

[7] X. Busch and R. Parentani, Dispersive fields in de Sitter
space and event horizon thermodynamics, Phys. Rev. D 86,
104033 (2012).

[8] J. Macher and R. Parentani, Black/white hole radiation from
dispersive theories, Phys. Rev. D 79, 124008 (2009).

FIG. 8 (color online). Plot of the effective temperature Tλ of
Eq. (C5) divided by the Hawking temperature as a function of
λ=κ, where κ is the surface gravity. The values of Λ=κ are 1=2
(solid line) and 3=2 (dashed line). For the smallest value of Λ, we
show the results for η ¼ 0.9 (blue line), 0.94 (cyan line), and 0.98
(magenta line). For the largest value of Λ, these three curves are
undistinguishable up to numerical errors. This indicates that the
limit of the regulator η → 1− is well defined, which was checked
using a larger range of values for η ∈ ð0.8; 0.99Þ. Moreover, when
increasing the dispersive scale Λ, we see that Tλ closely agrees
with the Hawking value κ=2π for a larger domain of Killing
frequencies.

FIG. 9 (color online). Deviations from the WKB approxima-
tion. The solid line shows the natural logarithm of jð∂XPu

λ Þ=
ðPu

λ Þ2j as a function of the preferred coordinate X in units of 1=Λ,
and the points show the logarithm of the relative difference
between the solution computed numerically and the correspond-
ing sum of the WKB modes for Λ ¼ 1, X0 ¼ 0.5, η ¼ 0.99, and
λ ¼ 0.1. The important spread seems to be a result of numerical
errors due to the increase of the momentum as X → −∞. The
Killing horizon is located at X ¼ 0.

BLACK HOLE RADIATION IN THE PRESENCE OF A … PHYSICAL REVIEW D 91, 124049 (2015)

124049-15

http://arXiv.org/abs/gr-qc/0110079
http://dx.doi.org/10.1016/j.physletb.2006.05.074
http://dx.doi.org/10.1016/j.physletb.2006.05.074
http://dx.doi.org/10.1007/s10701-010-9423-5
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.017
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.017
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.86.104033
http://dx.doi.org/10.1103/PhysRevD.86.104033
http://dx.doi.org/10.1103/PhysRevD.79.124008


[9] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[10] T. P. Sotiriou, Horava-Lifshitz gravity: A status report,
J. Phys. Conf. Ser. 283, 012034 (2011).

[11] S. Janiszewski, Asymptotically hyperbolic black holes in
Horava gravity, J. High Energy Phys. 01 (2015) 018.

[12] T. Jacobson and D. Mattingly, Gravity with a dynamical
preferred frame, Phys. Rev. D 64, 024028 (2001).

[13] C. Eling, T. Jacobson, and D. Mattingly, inDeserfest (World
Scientific, Singapore, 2004), Chap. 13, p. 163.

[14] C. Eling and T. Jacobson, Black holes in Einstein-aether
theory, Classical Quantum Gravity 23, 5643 (2006).

[15] E. Barausse, T. Jacobson, and T. P. Sotiriou, Black holes
in Einstein-aether and Horava-Lifshitz gravity, Phys. Rev. D
83, 124043 (2011).

[16] P. Berglund, J. Bhattacharyya, and D. Mattingly, Mechanics
of universal horizons, Phys. Rev. D 85, 124019 (2012).

[17] P. Hořava, A. Mohd, C. M. Melby-Thompson, and P.
Shawhan, GR 20 parallel session A3: Modified gravity,
Gen. Relativ. Gravit. 46, 1720 (2014).

[18] P. Berglund, J. Bhattacharyya, and D. Mattingly, Towards
Thermodynamics of Universal Horizons in Einstein-æther
Theory, Phys. Rev. Lett. 110, 071301 (2013).

[19] B. Cropp, S. Liberati, A. Mohd, and M. Visser, Ray tracing
Einstein-æther black holes: Universal versus Killing hori-
zons, Phys. Rev. D 89, 064061 (2014).

[20] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[21] R. Brout, S. Massar, R. Parentani, and P. Spindel, Hawking
radiation without trans-Planckian frequencies, Phys. Rev. D
52, 4559 (1995).

[22] A. Coutant, R. Parentani, and S. Finazzi, Black hole
radiation with short distance dispersion, an analytical
S-matrix approach, Phys. Rev. D 85, 024021 (2012).

[23] W. G. Unruh, Sonic analog of black holes and the effects of
high frequencies on black hole evaporation, Phys. Rev. D
51, 2827 (1995).

[24] S. Massar and R. Parentani, Particle creation and non-
adiabatic transitions in quantum cosmology, Nucl. Phys.
B513, 375 (1998).

[25] R. Parentani and R. Brout, Physical interpretation of black
hole evaporation as a vacuum instability, Int. J. Mod. Phys.
D 01, 169 (1992).

[26] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, A primer
for black hole quantum physics, Phys. Rep. 260, 329
(1995).

[27] W. G. Unruh, Experimental Black Hole Evaporation, Phys.
Rev. Lett. 46, 1351 (1981).

[28] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Relativity 8, 12 (2005); C. Barcelo, S. Liberati,
and M. Visser, Analogue Gravity, Living Rev. Relativity 14,
3 (2011).

[29] R. Balbinot, A. Fabbri, S. Fagnocchi, and R. Parentani,
Hawking radiation from acoustic black holes, short dis-
tance and back-reaction effects, Riv. Nuovo Cimento 28, 1
(2005).

[30] A. Coutant and R. Parentani, Black hole lasers, a mode
analysis, Phys. Rev. D 81, 084042 (2010).

[31] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

[32] N. Obadia and R. Parentani, Uniformly accelerated mirrors.
Part 1. Mean fluxes, Phys. Rev. D 67, 024021 (2003).

[33] N. Obadia and R. Parentani, Uniformly accelerated
mirrors. Part 2. Quantum correlations, Phys. Rev. D 67,
024022 (2003).

[34] S. Finazzi and R. Parentani, Hawking radiation in dis-
persive theories, the two regimes, Phys. Rev. D 85,
124027 (2012).

[35] S. J. Robertson, The theory of Hawking radiation in labo-
ratory analogues, J. Phys. B 45, 163001 (2012).

[36] Wolfram Research, Inc., Mathematica, version 10.0, 2014.
[37] F. Michel and R. Parentani, Probing the thermal character of

analogue Hawking radiation for shallow water waves?,
Phys. Rev. D 90, 044033 (2014).

FLORENT MICHEL AND RENAUD PARENTANI PHYSICAL REVIEW D 91, 124049 (2015)

124049-16

http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1088/1742-6596/283/1/012034
http://dx.doi.org/10.1007/JHEP01(2015)018
http://dx.doi.org/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1088/0264-9381/23/18/009
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1103/PhysRevD.85.124019
http://dx.doi.org/10.1007/s10714-014-1720-4
http://dx.doi.org/10.1103/PhysRevLett.110.071301
http://dx.doi.org/10.1103/PhysRevD.89.064061
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1103/PhysRevD.85.024021
http://dx.doi.org/10.1103/PhysRevD.51.2827
http://dx.doi.org/10.1103/PhysRevD.51.2827
http://dx.doi.org/10.1016/S0550-3213(97)00718-9
http://dx.doi.org/10.1016/S0550-3213(97)00718-9
http://dx.doi.org/10.1142/S0218271892000082
http://dx.doi.org/10.1142/S0218271892000082
http://dx.doi.org/10.1016/0370-1573(95)00008-5
http://dx.doi.org/10.1016/0370-1573(95)00008-5
http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://dx.doi.org/10.12942/lrr-2005-12
http://dx.doi.org/10.12942/lrr-2011-3
http://dx.doi.org/10.12942/lrr-2011-3
http://dx.doi.org/10.1103/PhysRevD.81.084042
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRevD.67.024021
http://dx.doi.org/10.1103/PhysRevD.67.024022
http://dx.doi.org/10.1103/PhysRevD.67.024022
http://dx.doi.org/10.1103/PhysRevD.85.124027
http://dx.doi.org/10.1103/PhysRevD.85.124027
http://dx.doi.org/10.1088/0953-4075/45/16/163001
http://dx.doi.org/10.1103/PhysRevD.90.044033

