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Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects.
However, it can also be generated by electromagnetic fields if electric and magnetic fields are
simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is
assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component.
Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars
may possess independent electric dipole and neutron stars independent electric quadrupole moments
that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover,
recent observations have shown that in stars with strong electromagnetic fields, the magnetic
quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt
to characterize and quantify the effect of electromagnetic frame dragging in these kinds of
astrophysical objects, an analytic solution to the Einstein-Maxwell equations is constructed here
on the basis that the electromagnetic field is generated by the combination of arbitrary magnetic and
electric dipoles plus arbitrary magnetic and electric quadrupole moments. The effect of each multipole
contribution on the vorticity scalar and the Poynting vector is described in detail. Corrections on
important quantities such the innermost stable circular orbit (ISCO) and the epicyclic frequencies are
also considered.
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I. INTRODUCTION

Frame dragging (Lense-Thirring effect) is the quintes-
sential hallmark of general relativity and is the result of
the spacetime vorticity. It was detected by the Gravity
Probe B [1] and traditionally, it has been associated with
rotating stellar astrophysical objects and in other astro-
physical contexts, such as galactic models, the frame
dragging has been associated to the presence of magneto-
gravitational monopoles [2,3]. Surprisingly, if the astro-
physical object does not rotate but possesses both electric
and magnetic fields, the spacetime vorticity does not
vanish [4–6]. In this case, frame dragging is of purely
electromagnetic nature and it is associated with the
existence of a nonvanishing electromagnetic Poynting
vector around the source [5–9].
In most of the early models of astrophysical objects,

macroscopic charge neutrality is assumed [10] and the
magnetic field is characterized in terms of a pure dipole
component [11–14]. This idea was endorsed by the con-
firmation of many predicted features of a star with a dipole
field using two- and three-dimensional magnetohydrody-
namic numerical simulations of magnetospheric accretion
[15–18]. Thus, under this configuration the purely electro-
magnetic contribution to the vorticity tensor vanishes.
However, astrophysical objects such as strange stars may

possess independent electric dipole (see Sec. 10.4 in
Ref. [19]) and neutron stars independent electric quadru-
pole moments (see below), which may lead to the presence
of purely electromagnetic contributions to frame dragging.
A precise account of those contributions is not available
because of the lack of an analytic exact solution with such a
complex electromagnetic field configuration.
Moreover, recent observations have shown that in stars

with strong electromagnetic fields, the magnetic quadru-
pole may have significant contributions on the dynamics of
stellar processes. Therefore, it is well known by now that
the actual configuration of the magnetic field of strongly
magnetized stars may depart from the dipole configuration
[20]. As an attempt to describe the spacetime geometry
surrounding these kinds of astrophysical objects, an ana-
lytic solution to the Einstein-Maxwell field equations is
constructed here on the basis that the electromagnetic field
is generated by the combination of arbitrary magnetic and
electric dipoles plus arbitrary magnetic and electric quadru-
pole moments. This analytic exact solution allows for
analyzing, e.g., the effect of each multipole contribution
on the vorticity scalar and the Poynting vector (see Sec. V).
Moreover, it is possible to predict corrections to important
quantities such as the innermost stable circular orbit and
the epicyclic frequencies.
To motivate further the derivation of the model consid-

ered here, the observational evidence for the existence of
nondipolar fields in a variety of astrophysical objects is
discussed next.
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II. OBSERVATIONAL EVIDENCE OF
NONDIPOLAR FIELDS

Measurements of magnetic fields of strongly magnetized
stars, based on the Zeeman-Doppler imaging technique
[21], have shown that for these kinds of astrophysical
objects the magnetic field has a complicated multipolar
topology in the vicinity of the star [22–26]. This feature
certainly is of prime relevance in, e.g., the accretion-disk
dynamics in binary systems because if the quadrupole
component dominates, then the flow of matter into the star
will certainly differ from the well-known dynamics induced
by a pure dipole field [25].
Complex configurations of magnetic fields are also

present in stars such as the T-Tauri stars. They are young
stellar objects of low mass that present variations in their
luminosity. An important subclass of this kind of star is
the so-called classical T-Tauri stars (cTTS) because they
present accretion from the circumstellar disk [27]. Recent
evidence points out that in classical T-Tauri stars, the
magnetic field near the star is strongly nondipolar [26].
In the particular case of V2129 Oph, there exits a dominant
octupole, 0.12 T, and a weak dipole component, 0.035 T,
of the magnetic field [28]. Understanding the circumstellar
disk dynamics, under complex field topologies, could
provide insight into the formation of planets and the
evolution of the star itself.
The discussion above also applies to white dwarfs. The

first observations indicated that only a small fraction of
white dwarfs appear to exhibit magnetic fields. However,
the observational situation changed significantly by the
discovery of strong-field magnetic white dwarfs [29–31],
which are known to cover a wide range of field strengths
∼1–100 T and deviates from the simple dipolar configu-
ration [32,33]. Recent spectropolarimetric observations in
white dwarf have shown that, in addition to the dipole
term, the quadrupole and octupole terms make significant
contributions to the field when it is represented as an
axisymmetric multipolar expansion [34]. Many studied
cases indicate that higher multipole components or non-
axisymmetric components may be required in a realistic
model of white dwarfs (see, e.g., Ref. [35]).
Magnetars constitute an additional source of motivation.

They are characterized by their extremely powerful magnetic
fields, covering strengths from ∼108 to ∼1011 T [36,37], so
that they canhave occasional violent bursts.However, certain
magnetars, such as the SGR 0418þ 5729, undergo this
bursting phenomenon even with weak magnetic fields
(∼108 T) [38]. For SGR 0418þ 5729, the observed x-ray
spectra cannot be fit with this low field strength; hence, it has
been suggested that a hidden nondipole field component
must be present to explain the bursting episodes [39].
In summary, there is sufficient observational evidence to

develop a consistent analytic closed representation of the
exterior spacetime around stars with nondipolar magnetic
fields.

III. ANALYTIC FORMULAS OF THE MODEL

By combining the facts that (i) almost all the analytic
closed form models for relevant astrophysical objects have
been conceived in the frame of stationary axisymmetry
geometry (see [40–45] for the case of neutron stars);
(ii) powerful tools to construct the exact solution to the
Einstein-Maxwell field equation have been developed, e.g.
[46–48]; and (iii) systematic studies on the construction of
the exact solution from its physical content have been
performed [49,50], a new analytic exact solution to the
Einstein-Maxwell field equations is introduced below. This
solution provides physical insight, e.g., into the influence of
high order electromagnetic multipole moments in the frame
dragging and in studying quasiperiodic oscillations (QPOs),
which become a useful tool to identify the characteristics
of the compact objects present in low mass x-ray binaries
(LMXBs) [51–53]. Themodel presented here is amember of
theN-solitonic solution derived in Ref. [54]. In Appendix A
the relevant equations of the derivedmetric are summarized.
In terms of the quasicylindrical Weyl-Lewis-Papapetrou

coordinates xμ ¼ ðt; ρ; z;ϕÞ, the simplest form of the line
element for the stationary axisymmetric case was given by
Papapetrou [55],

ds2 ¼ gμνdxμdxν; ð1Þ
with gtt ¼ −fðρ; zÞ, gtϕ ¼ fðρ; zÞωðρ; zÞ, gϕϕ ¼ ρ2f−1

ðρ; zÞ − fðρ; zÞω2ðρ; zÞ, and gzz ¼ gρρ ¼ e2γðρ;zÞf−1

ðρ; zÞ. The metric functions f, ω, and γ can be obtained
from the Ernst complex potentials E and Φ
(see details in Ref. [46]). The Ernst potentials obey the
relations [46]

ðReE þ jΦj2Þ∇2E ¼ ð∇E þ 2Φ�∇ΦÞ · ∇E;
ðReE þ jΦj2Þ∇2Φ ¼ ð∇E þ 2Φ�∇ΦÞ · ∇Φ: ð2Þ

From a physical viewpoint, the Ernst potentials are relevant
because they lead to the definition of the analogues of the
Newtonian gravitational potential, ξ ¼ ð1 − EÞ=ð1þ EÞ,
and the Coulomb potential, q ¼ 2Φ=ð1þ EÞ. The real part
of ξ accounts for the matter distribution and its imaginary
part for the mass currents. Also, the real part of the q
potential denotes the electric field and its imaginary part the
magnetic field.
The Ernst equations (2) can be solved by means of

Sibgatullin’s integral method [47,48], according to which the
complex potentials E and Φ can be calculated from specified
axis data Eðz; ρ ¼ 0Þ and Φðz; ρ ¼ 0Þ [47,48]. Motivated
by the accuracy [41,42] and the level of generality of the
analytic solution derived in Ref. [42], the Ernst potential
Eðz; ρ ¼ 0Þ is chosen as in Ref. [42]. To construct the exact
solution that represents the electromagnetic field configura-
tion described above, the Ernst potential Φðz; ρ ¼ 0Þ is
chosen following the prescription in Ref. [49]. The Ernst
potentials on the symmetry axis read
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Eðz; ρ ¼ 0Þ ¼ z3 − z2ðmþ iaÞ − kzþ is
z3 þ z2ðm − iaÞ − kzþ is

;

Φðz; ρ ¼ 0Þ ¼ z2ςþ zðυþ iμÞ þ iζ þ χ

z3 þ z2ðm − iaÞ − kzþ is
: ð3Þ

The physical meaning of the parameters in Eq. (3) is derived
from the multipole moments calculated using the Fodor-
Hoenselaers-Perjés procedure [56] (see also Ref. [57]). For
the present case,

P0 ¼ m; P1 ¼ iam; P2 ¼ ðk − a2Þm; P3 ¼ −imða3 − 2akþ sÞ;

P4 ¼
1

70
m½70a4 − 210a2kþ 13aςðμ − iυÞ þ 140asþ 10kð7k −m2 þ ς2Þ þ 3ðμ2 þ υ2Þ�;

P5 ¼ −
1

21
imf−21a5 þ 84a3kþ a2ð−6μς − 63sþ 6iυςÞ þ a½−63k2 þ 6kðm − ςÞðmþ ςÞ þ μ2 þ 5iζςþ υ2 þ 5χς�

þ kð3μςþ 42s − iυςÞ þ 2iðμζ þ υχÞ þ 7sðς2 −m2Þg; ð4Þ
Q0 ¼ ς; Q1 ¼ υþ iðaςþ μÞ; Q2 ¼ −a2ς − aμþ kςþ χ þ iðaυþ ζÞ;
Q3 ¼ −a2υ − aζ þ kυþ ið−a3ς − a2μþ að2kςþ χÞ þ kμ − sςÞ;

Q4 ¼ a4ςþ a3ðμ − iυÞ þ a2ð−3kς − iζ − χÞ þ 1

70
a½140sς − ðμ − iυÞð140k − 3m2 − 10ς2Þ�

þ 1

7
fς½ςðkςþ iζ þ χÞ þ ðμ − iυÞ2� þ ð7k −m2Þðkςþ iζ þ χÞ þ 7sðμ − iυÞg;

Q5 ¼
1

21
f21ia5ςþ 21a4ðυþ iμÞ − 21ia3ð4kςþ iζ þ χÞ þ a2½63isς − ið63kþ 8ς2Þðμ − iυÞ�

þ iaf−ς½ςð8kςþ iζ þ χÞ þ 9μ2 − 16iμυ − 7υ2� þ ð21k − 2m2Þð3kςþ 2iζ þ 2χÞ
þ 42sðμ − iυÞg − iðμ − iυÞð−21k2 þ 2km2 þ μ2 þ υ2Þ þ kς2ðυ − iμÞ
þ ςð−42iks − 6μζ þ 6iμχ þ 7im2sþ 8iζυþ 8υχÞ þ 21sðζ − iχÞ þ 7isς3g: ð5Þ

Specifically, the interpretation of the parameters based on
the multipole expansion in Eqs. (4) and (5) is as follows.
The real parameter m corresponds to the total mass,
and a to the total angular moment per unit mass while k
and s are related to the mass-quadrupole moment and the
differential rotations, respectively. For later convenience,
an electric monopole contribution Q0, characterized by the
parameter ς, was introduced above. Parameters υ and μ are
associated with the electric and magnetic dipole moments,
respectively, whereas χ and ζ with the electric and magnetic
quadrupole moments, respectively. The existence of an
electric dipole is theorized for strange stars (see Ref. [58]).
A summary of the arbitrary parameters and the multipole
moments they are related to can be found in Table I.
The mass moment P2 governs the deformation of the star

and it is composed of two parts: the term a2m that is the
usual rotation-induced deformation and a second contri-
bution km that accounts for a possible intrinsic deformation
of the star [59,60]. An analogous argument can be
formulated in the case of the electric moments. The real
part ofQ2 accounts for the electric quadrupole contribution
to the total electromagnetic quadrupole moment. The terms
−a2ς and −aμ account for the rotation-induced redistrib-
ution of the electric charge and deformation of the magnetic
dipole, whereas the term kς accounts for the contribution

from the charge distributed over the intrinsic deformed
mass. The additional parameter χ is added to account for
any additional possible contribution to the total quadrupole
moment.
The multipole expansion in Eq. (5) shows that even if

the magnetic dipole parameter is zero (μ ¼ 0), a magnetic
dipole component (imaginary part of Q1) is present
provided by the rotation of the electric charge Q0.
Similarly, even if the magnetic quadropole parameter ζ
is set to zero, a rotating electric dipole can induce a
magnetic quadrupole (imaginary part of Q2). For the
electric part of the multipole expansion in Eq. (5), an
analogous behavior is observed; namely, a rotating mag-
netic dipole can induce an electric quadrupole moment and

TABLE I. Summary of the electromagnetic parameters and the
multipole moments they are related to.

Symbol Associated multipole moment

ς Electric monopole
υ Electric dipole
χ Electric quadrupole
μ Magnetic dipole
ζ Magnetic quadrupole
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a rotating magnetic quadrupole can generate an electric
octupole moment. Based on these processes, the astro-
physical source can afford a nonvanishing induced
Poynting vector and, correspondingly, an induced non-
vanishing flux of electromagnetic energy around the source
that will contribute to the frame dragging induced solely by
the mass currents.

IV. CHARACTERIZATION OF THE
ELECTROMAGNETIC FIELDS

To describe the electromagnetic properties of the sol-
ution, the electric and magnetic fields, in the spacetime
surrounding the star, are calculated by means of the
expressions

Eα ¼ Fαβuβ; Bα ¼ −
1

2
ϵαβ

γδFγδuβ; ð6Þ

where Fαβ is the electromagnetic field tensor Fαβ ¼ 2A½β;α�,
Aμ ¼ ð0; 0; Aϕ;−AtÞ is the electromagnetic four-potential,
uα is a timelike vector and ϵαβγδ is the totally antisymmetric
tensor of positive orientation with norm ϵαβγδϵ

αβγδ ¼ −24
[61]. For a congruence of observers at rest in the frame
of (1), the four-velocity is defined by the timelike vector
uα ¼ ð1= ffiffiffi

f
p

; 0; 0; 0Þ. The vectorial fields have components
in the ρ and z directions only. The components of the
electric field are given by

Eρ ¼ −
ffiffiffi
f

p
e2γ

At;ρ; Ez ¼ −
ffiffiffi
f

p
e2γ

At;z; ð7Þ

and for the magnetic field by

Bρ ¼
f3=2

ρe2γ
ð−ωAt;z þ Aϕ;zÞ; ð8Þ

Bz ¼ −
f3=2

ρe2γ
ð−ωAt;ρ þ Aϕ;ρÞ: ð9Þ

The explicit form of the fields can be found in Appendix B.
Figure 1 shows the force lines of the magnetic field for

various values of the magnetic quadrupole parameter ζ and
for realistic values of the mass and mass current multipoles.
Specifically, the vacuum multipole moments of the solution
mass, angular moment, mass quadrupole and current
octupole have been fixed to the numerical ones obtained
in Ref. [62]. They are listed in Table II. In particular, for
Fig. 1(a), ζ ¼ 0 km3; for 1(b), ζ ¼ 10 km3; for 1(c),
ζ ¼ 25 km3 and for 1(d), ζ ¼ 50 km3. The increasing of
the separation between consecutive force lines indicates
that the magnetic field decreases while the distance
increases. Figure 1 not only shows how the reflection
symmetry around the plane z ¼ 0 is broken because of the
magnetic quadrupole [6], but also shows that at large
distances from the source, the magnetic field behaves like

a magnetic dipole despite the presence of strong nondipolar
contributions.
Figure 2 shows the force lines of the electric field for a

variety of values of the electric quadrupole for realistic
values of the mass and mass current multipoles listed in
Table II. Specifically, for Fig. 2(a), χ ¼ 0 km3; for 2(b),
χ ¼ 10 km3; for 2(c), χ ¼ 25 km3 and for 2(d),
χ ¼ 50 km3. As above, it is clear that reflection symmetry
is broken and that at large distances the electric dipole
component dominates the field configuration.
In general, the electromagnetic field of astrophysical

objects is expected to be a combination of the results
depicted in Figs. 1 and 2. Moreover, as shown below, the
breaking of the reflection symmetry has an important role
on the vorticity of the spacetime. After characterizing the
electromagnetic fields, the generation of purely electro-
magnetic frame dragging is discussed below.

(a) (b)

(d)(c)

FIG. 1. Magnetic field force lines for m ¼ 2.071 km,
j ¼ 0.194, Q ¼ −2.76 km3, s ¼ −2.28 km4, ς ¼ 0 km,
υ ¼ 0 km2, χ ¼ 0, μ ¼ 1 km2 for (a) ζ ¼ 0 km3,
(b) ζ ¼ 15 km3, (c) ζ ¼ 30 km3 and (d) ζ ¼ 50 km3. The
nonelectromagnetic parameters correspond to the model 2 for
the equation of state L in Ref. [62] (see also Table II).

TABLE II. Realistic numerical solutions for rotating neutron
stars derived by Pappas and Apostolatos [62] for the equation of
state L. Here,m is the total mass of the star, j is the dimensionless
spin parameter where j ¼ J=M2 (J being the angular momen-
tum), Q is the quadrupole moment and s is the current octupole
moment. See Table VI of [62].

Model m (km) j Q (km3) s (km4)

M2 2.071 0.194 −2.76 −2.28
M3 2.075 0.324 −7.55 −10.5
M4 2.080 0.417 −12.2 −22.0
M5 2.083 0.483 −16.2 −33.9
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V. VORTICITY SCALAR AND
POYNTING VECTOR

The physics of the frame dragging states that the rotation
of the source induces a twist in the neighborhood that drags
any frame of reference near the source. In the case of
spacetimes endowed by complex electromagnetic fields
and mass currents, frame dragging originates from a
combination of the vorticity of the electromagnetic field
and the vorticity associated with the mass currents.
Poynting vector.—The Poynting vector S carries the

information about the electromagnetic energy flux in the
spacetime. Because of the axially symmetric character of
the spacetime, only the component along the unitary vector
êϕ survives [6]. In terms of the Ernst potentials Sϕ ¼ffiffiffi
f

p
ImðΦ�

;ρΦ;zÞ=ð4πρe2γÞ [63] or more conveniently

Sϕ ¼
ffiffiffi
f

p
8πρe2γ

∇Φ� ×∇Φ; ð10Þ

where it is clear that Sϕ vanishes if Φ is purely real, purely
imaginary or when their real and imaginary parts are
proportional to each other. Due to the complex combination
of the electromagnetic moments with the mass currents,
their effects on the Poynting vector (and subsequently to
the vorticity) are often subtle. However, the multipole
expansion in Eq. (5) allows for a detailed description of
each contribution. For instance, if υ ¼ 0, χ ¼ 0 and
jaςj < jμj, it is then clear that, to leading order, a sign
change in the magnetic dipole moment parameter μ
changes the sign of the magnetic field. This has the effect
of changing the rotation direction of the Poynting vector

(see Fig. 3) and as discussed below, it could decrease the
total vorticity of the spacetime. Figure 3 depicts the
Poynting vector circulation around the source, when μ is
chosen parallel (left panel) and antiparallel (right panel) to
the star’s rotation axis.
The change of the circulation of the Poynting vector can

be understood from the potential qðρ; zÞ that is analogous to
the Coloumb potential (see above). Under the condition
that the reflection symmetry is not broken, υ ¼ 0 and
ζ ¼ 0, a sign change of the magnetic dipole parameter μ is
equivalent to changing the sign of the coordinate z with a
global minus sign, namely, qðρ; z; υ ¼ 0; ζ ¼ 0;−μÞ ¼
−qðρ;−z; υ ¼ 0; ζ ¼ 0; μÞ ¼ −q�ðρ; z; υ ¼ 0; ζ ¼ 0; μÞ.
Therefore, under the conditions that reflection symmetry
imposes [49], all the electric field moments change sign and
this leads to a global sign of the Poynting vector.
Vorticity scalar.—For an observer at rest with respect to

(1), the vorticity tensor is defined by ωαβ ¼ u½α;β� þ _u½αuβ�.
The direct calculation of ωαβ for (1) yields to [6]

ωαβ ¼

0
BBB@

0 0 0 0

0 0 0 − 1
2

ffiffiffi
f

p
ω;ρ

0 0 0 − 1
2

ffiffiffi
f

p
ω;z

0 1
2

ffiffiffi
f

p
ω;ρ

1
2

ffiffiffi
f

p
ω;z 0

1
CCCA: ð11Þ

To quantify the vorticity, it is convenient to introduce the
vorticity scalar that is defined by the contraction of the
vorticity tensor and reads

ωv ¼ ðωα
βω

β
αÞ12 ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðω2

;ρ þ ω2
;zÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2γρ2

q
; ð12Þ

with ω;ρ ¼ −ρf−2ℑðE;z þ 2Φ�Φ;zÞ and ω;z ¼ ρf−2×
ℑðE;ρ þ 2Φ�Φ;ρÞ. More explicitly, it reads

(a) (b)

(c) (d)

FIG. 2. Electric field force lines for m ¼ 2.071 km, j ¼ 0.194,
Q ¼ −2.76 km3, s ¼ −2.28 km4, ς ¼ 0 km, υ ¼ 1 km2,
μ ¼ 0 km2, ζ ¼ 0 for (a) χ ¼ 0 km3, (b) χ ¼ 10 km3,
(c) χ ¼ 25 km3 and (d) χ ¼ 50 km3.

FIG. 3. Vector field of the Poynting vector for the star model
m ¼ 2.071 km, j ¼ 0.194, Q ¼ −2.76 km3, s ¼ −2.28 km4.
The electromagnetic multipoles were chosen zero except
ς ¼ 0.1 km, μ ¼ 1 km2 in the left panel and μ ¼ −1 km2 in
the right panel. The direction of the Poynting vector is due to
the sign change in the multipole expansions in Eq. (5). Figures
are presented in the quasi-Cartesian auxiliary coordinates
r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ arctanðy=xÞ.

ELECTROMAGNETICALLY INDUCED FRAME DRAGGING … PHYSICAL REVIEW D 91, 124047 (2015)

124047-5



ωv ¼
e−γffiffiffiffiffiffi
2f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℑ½E;z þ 2Φ�Φ;z�2 þ ℑ½E;ρ þ 2Φ�Φ;ρ�2:

q
ð13Þ

The vorticity scalar can be understood in terms of its fluid
mechanics analogue. It represents the rotation of the fluid.
In the general relativistic case, it can be related to the
rotation velocity of a family of congruences.
Equation (13) is very useful to analyze the contribu-

tions to the vorticity because the electromagnetic and
mass current terms can be easily identified there.
Moreover, this identification can be accompanied by
further expressing these contributions in terms of the
parameters of the Ernst potentials (3). In particular, in
absence of electromagnetic fields, the imaginary part of E
is associated with mass currents. Thus, for static sources
one could attempt to assume E as real in Eq. (13) and focus
only on the electromagnetic contributions encoded in Φ.
However, because E and Φ are not independent objects
[see, e.g., Eq. (2)], in the presence of electromagnetic
fields, E and Φ are complex even for nonspinning astro-
physical objects. Notwithstanding, if Φ is purely real or
purely imaginary, for nonrotating objects, the imaginary
part of E vanishes [see, e.g., Eq. (2)]. Therefore, interest
here is in identifying when the electromagnetic contribution
does not vanish.
In doing so, it is convenient to express ωv ¼ jℑð∇Eþ

2Φ�∇ΦÞj=ð ffiffiffiffiffiffi
2f

p
eγÞ, so that the term ℑΦ�∇Φ vanishes if Φ

is purely real, purely imaginary or when their real and
imaginary parts are proportional to each other. Based on the
discussion above [see also Eq. (5)], the purely real case
corresponds to the absence of magnetic fields and the
purely imaginary case to the absence of electric fields. In
the cases when the Poynting vector is zero, the electro-
magnetic contribution to the vorticity vanishes; this gen-
eralizes the results in Ref. [6] where a particular spacetime
was considered. The particular case of proportional real and
imaginary parts leads to the case of proportional electric
and magnetic fields and corresponds to the cases studied in
Refs. [4,6].
Note that the considerations above on the vorticity scalar

and the Poynting vector are completely general and valid
for any stationary axially symmetric spacetime.
To study the contribution of the electromagnetic energy

flux to the vorticity, characterize first the contributions of
the rotation of the source. In this case, the Ernst potential Φ
that encodes all the electromagnetic moments is zero and E
is complex. For fast rotating stars, the vorticity scalar (and
the Lense-Thirring effect) is larger than for slow rotating
stars, this can be seen in Fig. 4.
When one includes an electromagnetic field to a par-

ticular star model, the Ernst potential Φ is no longer zero,
and it has an important role in the vorticity scalar. The
particular contribution depends on the structure generated
by the multipole expansion and the Poynting vector. Before
considering the purely electromagnetic contribution to the

frame dragging in realistic situations (zero or negligible
total electric charge), consider the case of a source with a
dipole magnetic field and electric charge.
The upper panel of Fig. 5 depicts the functional

dependence of the vorticity scalar on the distance from

FIG. 4 (color online). Vorticity generated by the mass currents.
All the electromagnetic moments are zero in this case. The
vorticity of the spacetime was calculated for the models 2
(j ¼ 0.194), 3 (j ¼ 0.324), 4 (j ¼ 0.417) and 5 (j ¼ 0.483)
with the equation of state L in Ref. [62]. They are listed in the
Table II.

FIG. 5 (color online). Electromagnetically generated vorticity
by the presence of a magnetic dipole and a fixed electric
monopole of ς ¼ 0.1 km (upper panel with υ ¼ 0, χ ¼ 0 and
ζ ¼ 0) and an electric dipole of υ ¼ 10 km2 (lower panel with
ς ¼ 0, χ ¼ 0 and ζ ¼ 0). The vorticity of the spacetime was
calculated for model 2 for the equation of state L in Ref. [62].
Parameters are listed in Table II.
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the star for a fixed value of the electric monopole and for a
variety of magnetic dipole moments. The vorticity scalar
decreases (increases) from its value in the vacuum situation
(μ ¼ 0) when the dipole is parallel (antiparallel) to the star’s
rotation axis. The reason for this phenomenon can be
understood in terms of Eq. (13). To do so, note that E
decreases monotonically as a function of z and ρ; thus, its
derivatives carry a negative sign. Although the same
argument applies to Φ, when the sign of μ changes (see
above), the Poynting vector changes its circulation and that
is enough to change the sign of its contribution to the
vorticity scalar [see Eq. (13)]. Alternatively, assume that the
reflection symmetry exists and set the mass current
parameters a and s to zero; for this case, Φðρ; z; a ¼ 0; s ¼
0;−μÞ ¼ Φ�ðρ; z; a ¼ 0; s ¼ 0; μÞ and therefore ℑΦ�∇Φ
changes sign.
The lower panel of Fig. 5 depicts the functional

dependence of the vorticity scalar on the distance from
the star for a fixed value of the electric dipole and for a
variety of magnetic dipole moments. The contribution in
this case is weaker than in the case of an electric monopole.
However, results in the lower panel of Fig. 5 are more
realistic than those in the upper panel. Interestingly, in the
lower panel, there is no change in the sign of the
electromagnetic contribution to the vorticity scalar when
μ changes sign. The reason for this relies on the fact that for
υ ≠ 0 or ζ ≠ 0, the reflection symmetry around the equa-
torial plane breaks down and the arguments provided above
do not apply; i.e.,Φðρ; z; a ¼ 0; s ¼ 0;−μÞ does not equate
to Φ�ðρ; z; a ¼ 0; s ¼ 0; μÞ.
Based on the processes described above on the gener-

ation of a Poynting vector from the fields induced by the
mass currents (a ≠ 0 and s ≠ 0), it is clear that even if the
parameters associated with the electric field (ς, υ and χ) are
set to zero, but the parameters associated with the magnetic
field (μ and ζ) are nonvanishing, then a rotationally induced
electromagnetic contribution to the vorticity scalar is
present. A similar scenario takes place if the parameters
associated with the magnetic field are set to zero and
nonvanishing electric parameters are considered. In par-
ticular, even in the low rotation regime, a non-negligible
electric field is generated [64] and may be important to
characterize the evolution of the electromagnetic structure
in neutron stars. Moreover, in the case of fast rotation, the
frame dragging caused by a Kerr black hole significantly
distorts the structure of an external magnetic field and this
scenario may be relevant for low accreting black holes as
the one present in the Milky Way center [65,66].
The most relevant contributions to the vorticity scalar

from the electromagnetic field were considered above.
However, in general, all the multipole moments contribute
to the vorticity scalar and the details of the net result may
deviate from those discussed above; albeit, the magnitude
of the effect is not expected to differ from the predictions
in Fig. 5.

VI. ORBITAL EQUATORIAL MOTION AND
EPICYCLIC FREQUENCIES

In general relativity, as in Newtonian gravitation, all the
physical characteristics of the source have an effect on the
dynamics of orbiting of particles. One of the most distinc-
tive points between both theories is the frame dragging, but
is not an observable by itself. A way to measure it is to
appeal to the dynamics around the source and characterize
the behavior of, e.g., neutral test particles [40,53].
Observationally, the Keplerian motion of matter could be

useful to model the quasiperiodic oscillations (QPOs) that
are present in the LMXBs containing a neutron star [67].
These oscillations occur at frequencies in the range of kHz
and come in pairs; the upper and the lower mode corre-
spond to the frequencies of Keplerian motion and perias-
tron precession of the accreted matter in the close vicinity
of the star [52]. An additional effect is that these equatorial
orbits will exhibit a relativistic nodal precession due to
frame dragging [53], causing a detectable signal in the
spectra of LMXBs [68].
The following subsections are devoted to quantifying the

magnetic quadrupole effect in the innermost stable circular
orbit (ISCO) and the epicyclic frequencies for different
models of neutron stars [62].

A. Influence of the field on the ISCO radii

The dynamics of an orbiting particle can be analyzed by
using the Lagrangian formalism. To do so, consider a
particle of rest mass m0 ¼ 1 moving in the spacetime
described by the metric functions in Eq. (1); the Lagrangian
of the particle is then given by

L ¼ 1

2
gμν _xμ _xν; ð14Þ

where the dot denotes differentiation with respect to the
proper time τ, and xμðτÞ are the Weyl-Lewis-Papapetrou
coordinates. For a stationary and axisymmetric spacetime,
there are two constants of motion related to the time
coordinate t and azimuthal coordinate ϕ. Thus, the energy
and the canonical angular momentum, respectively, are
conserved (see Ref. [69] for details). Assuming that the
motion takes place in the equatorial plane of the star z ¼ 0,
and taking into account the four velocity normalization
for massive particles gμνuμuν ¼ −1, one can identify an
effective potential that characterizes the motion in the plane
(see, e.g., Ref. [70])

VeffðρÞ ¼ 1 −
E2gϕϕ þ 2ELgtϕ þ L2gtt

g2tϕ − gϕϕgtt
: ð15Þ

For a particle moving in a circular orbit, the energy E and
the canonical angular momentum L are determined by the
conditions VeffðρÞ ¼ 0 and dVeff=dρ ¼ 0 (see, e.g.,
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Ref. [71]). The marginal stability condition reads
d2Veff=dρ2 ¼ 0. Thus, the ISCO’s radius is determined
by solving numerically the previous equation for ρ.
The importance of determining the ISCO is that accre-

tion disks extend from the last stable orbit to exterior zones,
so the ISCO is an inner boundary for the accreted matter.
As stated above, the inclusion of a magnetic field causes a
dependence of all physical quantities of the intensity on
the field. From the International System of Units (SI), the
conversion to geometrized units is given by

μgeom ¼ 10−6
ffiffiffiffiffiffiffiffi
Gμ0

p
c2

μSI; ð16Þ

where G is the gravitational constant, μ0 is the vacuum
permittivity, c is the speed of light and μ is given in units of
Am2. The units of ζ are Am3 and the conversion for the
quadrupole reads

ζgeom ¼ 10−9
ffiffiffiffiffiffiffiffi
Gμ0

p
c2

ζSI: ð17Þ

In the same way, the electric multipole moments can be
written in geometrized units as

ςgeom ¼
ffiffiffiffiffiffiffiffi
Gμ0
4π

r
ςSI; ð18Þ

υgeom ¼ 10−3

ffiffiffiffiffiffiffiffi
Gμ0
4π

r
υSI; ð19Þ

χgeom ¼ 10−6

ffiffiffiffiffiffiffiffi
Gμ0
4π

r
ςSI: ð20Þ

Consider a superposition of a fixed dipolar and quadru-
pole component that will be varied from 1 to 50 km3.
Figure 6 depicts the ISCO radius as a function of the
parameter μ and ζ for three realistic numerical solutions for
rotating neutron stars models derived in Ref. [62]. The
parameter μ is set to 1 km2 that corresponds to a magnetic
dipole field of 1012 T. The quadrupole parameter ζ is
chosen between 0 and 50 km3 that corresponds to magnetic
quadrupoles from 0 to 5 × 1035 Am3, respectively. In all
these cases, the ISCO radius decreases for increasing ζ.
This can be explained as a result of the deformation of the
spacetime by the energy stored in the electromagnetic (see,
e.g., Ref. [40]). We elaborate more on this in the next
section.

B. Influence of the electromagnetic field in the
Keplerian and the epicyclic frequencies

Imposing the conditions of constant orbital radius,
dρ=dτ ¼ 0, and taking into account that dϕ=dτ ¼
ΩKdt=dτ, the Keplerian frequency reads (see, e.g.,
Ref. [69])

ΩK ¼ dϕ
dt

¼
−gtϕ;ρ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;ρÞ2 − gϕϕ;ρgtt;ρ

q
gϕϕ;ρ

; ð21Þ

where “þ” and “−” denote the Keplerian frequency for
corotating and counterrotating orbits, respectively. In
Ref. [40] the functional dependence of the Keplerian
frequency on the magnetic dipole parameter μ was dis-
cussed; here interest is in the functional dependence on the
magnetic quadrupole parameter ζ. The upper panel of Fig. 7
depicts the functional dependence on ζ, as in the case
analyzed in Ref. [40], the Keplerian frequency increases
with increasing ζ because the ISCO’s radius decreases (see
Fig. 6) as a consequence of the additional deformation of
the spacetime by the electromagnetic field. In particular, the
energy of the electromagnetic field shifts the marginally
unstable region toward the star.
Analytical expressions for the radial and vertical

frequencies follow from allowing slightly radial and ver-
tical perturbations of the orbit. According to Ref. [69], the
radial and vertical epicyclic frequencies are given by

να ¼
1

2π

�
−
gαα

2

�
ðgtt þ gtϕΩkÞ2

�
gϕϕ
ρ2

�
;αα

− 2ðgtt þ gtϕΩkÞðgtϕ þ gϕϕΩkÞ
�
gtϕ
ρ2

�
;αα

þ ðgtϕ þ gϕϕΩkÞ2
�
gtt
ρ2

�
;αα

��
; ð22Þ

with α ¼ fρ; zg. In the relativistic precession model (RPM)
[51], the periastron νpρ and the nodal νpz frequencies are the
observationally relevant ones; they are defined by

νpα ¼ ΩK

2π
− να: ð23Þ

At the ISCO, the radial oscillation frequency equals the
Keplerian frequency and only the vertical precession α ¼ z

FIG. 6 (color online). ISCO radius as a function of magnetic
quadrupole parameter ζ, with μ ¼ 0 km2. The physical param-
eters for the star correspond to the models 2–4 listed in Table II.
We can see that the ISCO radius decreases for increasing ζ.
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is considered here. The influence of the magnetic quadru-
pole on the vertical precession frequency is depicted in the
lower panel of Fig. 7. The behavior and the underlying
physical mechanism are analogous to those for the
Keplerian frequency.
The frequency νLT that characterizes the Lense-Thirring

effect is given by (see, e.g., Ref. [69])

νLT ¼ −
1

2π

gtϕ
gϕϕ

; ð24Þ

and could be relevant to model the horizontal branch
oscillations observed in the LMXBs [51]. The strength
of the frame-dragging effect increases for fast rotating
objects and, as shown in the central panel of Fig. 7, for
stronger magnetic fields. Figure 7 also shows that the
electromagnetically induced frame dragging has a direct
effect on the orbiting particles, even if they are neutral.

VII. CONCLUDING REMARKS

We present a new stationary axisymmetric nine-param-
eter closed-form analytic solution that generalizes the Kerr
solution with arbitrary mass-quadrupole moment, octupole
current moment, electric and magnetic dipole and electric
and magnetic quadrupole moments. The analytic form of its
multipolar structure and their electric and magnetic fields
are also presented. According to the arguments presented
through the paper, this solution could be used to model the
exterior gravitational and electromagnetic fields around
strongly magnetized stars, in particular white dwarfs. Also,
this model could be used even for the description of exotic
stars such as the τ Sco recently reported by Donati
et al. [72].
This solution allowed for a comprehensive analysis of

the contribution of complex and intense electromagnetic
fields to a quintessential hallmark of general relativity,
namely, the Lense-Thirring effect. It was shown that if the
value of the parameters is such that the reflection symmetry
is preserved [49], then a sign change of the magnetic dipole
parameter μ is enough to change the direction of the
circulation of the Poynting vector and the sign of
the electromagnetic contribution to the vorticity scalar.
The influence of complex electromagnetic fields on the
ISCO’s radius and the epicyclic frequencies were also
considered and it was shown that for strong magnetic fields,
the influence is not negligible.
Additional interest is in studying the effect of the

magnetic field in the quadrupole moment of the star
(see, e.g., Refs. [73,74]). This topic has gained recently
theoretical and observational interest and is currently
discussed under the title of I-Love-Q relations [74]. Due
to the great generality of the present analytic exact solution,
this subject will be explored in a forthcoming contribu-
tion [75].
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APPENDIX A: METRIC FUNCTIONS OF THE
DEVELOPED SOLUTION

This appendix summarizes the relevant equations of the
developed metric. The potentials in the symmetry axis can
be written as [54]

FIG. 7 (color online). Influence of the magnetic quadrupole
moment ζ in the epicyclic frequencies for different models of
neutron stars with ς ¼ 0, μ ¼ 1 km2, υ ¼ 0 and χ ¼ 0. Vacuum
parameters of the star are listed in Table II.
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eðzÞ ¼ 1þ
X3
i¼3

ei
z − βi

; fðzÞ ¼
X3
i¼3

fi
z − βi

; ðA1Þ

with

ej ¼ ð−1Þj 2mβ2j
ðβj − βkÞðβj − βiÞ

;

fj ¼
iζ þ ðςþ iμÞβj

ðβj − βkÞðβj − βiÞ
; i; k ≠ j: ðA2Þ

Then, the Ernst potentials and the metric functions in
whole spacetime are derived with the aid of Sibgatullin’s

integral method [47,48]. By using the representation
proposed in Ref. [76] and used also in Ref. [42],

E ¼ Aþ B
A − B

; Φ ¼ C
A − B

;

f ¼ AĀ − BB̄þ CC̄
ðA − BÞðĀ − B̄Þ ; e2γ ¼ AĀ − BB̄þ CC̄

KK̄
Q

6
n¼1 rn

;

ω ¼ Im½ðAþ BÞH̄ − ðĀþ B̄ÞG − CĪ�
AĀ − BB̄þ CC̄

; ðA3Þ

where

A ¼
X

1≤i<j<k≤6
aijkrirjrk; B ¼

X
1≤i<j≤6

bijrirj; C ¼
X

1≤i<j≤6
cijrirj; K ¼

X
1≤i<j<k≤6

aijk;

H ¼ zA − ðβ1 þ β2 þ β3ÞBþ
X

1≤i<j<k≤6
hijkrirjrk þ

X
1≤i<j≤6

ðαi þ αjÞbijrirj;

G ¼ −ðβ1 þ β2 þ β3ÞAþ zBþ
X

1≤i<j≤6
gijrirj þ

X
1≤i<j<k≤6

ðαi þ αj þ αkÞaijkrirjrk;

I ¼ ðf1 þ f2 þ f3ÞðA − BÞ þ ðβ1 þ β2 þ β3 − zÞCþ
X

1≤i<j<k≤6
pijkrirjrk þ

X6
i¼1

piri þ
X

1≤i<j≤6
½pij − ðαi þ αjÞcij�rirj;

with

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − αiÞ2

q
; aijk ¼ ð−1Þiþjþ1ΛijkΓljmn; bij ¼ ð−1ÞiþjλijHljmnp;

cij ¼ ð−1Þiþjλij½fðαlÞΓmjnp − fðαmÞΓnjpl þ fðαnÞΓpjlm − fðαpÞΓljmn�;
hijk ¼ ð−1ÞiþjþkΛijkðe�1δ23jlmn þ e�2δ31jlmn þ e�3δ12jlmnÞ;
gij ¼ ð−1ÞiþjλijðαlΓmjnp − αmΓnjpl þ αnΓpjlm − αpΓljmnÞ;
pi ¼ ð−1ÞiDi½fðαlÞHmjnps − fðαmÞHnjpsl þ fðαnÞHpjslm − fðαpÞHsjlmn þ fðαsÞHljmnp�;
pij ¼ ð−1Þiþjλijðe�1ϒ23jlmnp þ e�2ϒ31jlmnp þ e�3ϒ12jlmnpÞ;
pijk ¼ ð−1Þiþjþ1Λijkðe�1Ψ23jlmn þ e�2Ψ31jlmn þ e�3Ψ12jlmnÞ;

and

λij ¼ ðαi − αjÞDiDj; Λijk ¼ ðαi − αjÞðαi − αkÞðαj − αkÞDiDjDk; Di ¼
1

ðαi − β1Þðαi − β2Þðαi − β3Þ
;

Γljmn ¼ H3ðαlÞΔ12jmn þH3ðαmÞΔ12jnl þH3ðαnÞΔ12jlm; Δlmjnp ¼ HlðαnÞHmðαpÞ −HlðαpÞHmðαnÞ;

HlðαnÞ ¼
2
Q

p≠nðαp − β�l ÞQ
3
k≠lðβ�l − β�kÞ

Q
3
k¼1ðβ�l − βkÞ

− 2
X3
k¼1

f�l fk
ðβ�l − βkÞðαn − βkÞ

; δlmjnps ¼ Δlmjnp þ Δlmjps þ Δlmjsn;

hljmnp ¼ H3ðαlÞδ12jmnp; Hljmnp ¼ hljmnp þ hmjnpl þ hnjplm þ hpjlmn;

Ψlmjnps ¼ fðαnÞΔlmjps þ fðαpÞΔlmjsn þ fðαsÞΔlmjnp;

ϒlmjnprs ¼ fðαnÞδlmjprs − fðαpÞδlmjrsn þ fðαrÞδlmjsnp − fðαsÞδlmjnpr;
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α’s being the roots of Sibgatullin’s equation [47,48]

eðzÞ þ ~eðzÞ þ 2~fðzÞfðzÞ ¼ 0: ðA4Þ

APPENDIX B: ELECTROMAGNETIC FIELD:
ANALYTIC FORM

The At potential is the real part of the electromagnetic
Ernst potential Φ, and the potential Aϕ can be calculated as
the real part of the Kinnersley potentialK ¼ Aϕ þ iA0

t [77],
which can be obtained using Sibgatullin’s method and can
be written as

K ¼ −i
Iðf1 þ f2Þ
A − B

: ðB1Þ

Thus, the closed-form expressions for the electric and
magnetic fields are

Eρ ¼ −
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAj2 − jBj2 þ jCj2
p Re

��
C;ρ − C lnðA − BÞ;ρ

A − B

��
;

Ez ¼ −
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAj2 − jBj2 þ jCj2
p Re

��
C;z − C lnðA − BÞ;z

A − B

��
;

Bρ ¼
ImðA − BÞH̄ þ ðĀ − B̄ÞG − CĪ�

ρjA − Bj2 Ez

þ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj2 − jBj2 þ jCj2

p
ρjA − Bj2 Im

×

�ðf̄1 þ f̄2Þ½Ī;z − Ī lnðĀ − B̄Þ;z�
A − B

�
;

Bz ¼ −
ImðA − BÞH̄ þ ðĀ − B̄ÞG − CĪ�

ρjA − Bj2 Eρ

þ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj2 − jBj2 þ jCj2

p
ρjA − Bj2 Im

×

�ðf̄1 þ f̄2Þ½Ī;ρ − Ī lnðĀ − B̄Þ;ρ�
A − B

�
:

when

Λ ¼ jKj2Q6
n¼1 rn

jA − Bj :
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