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A Fubini instanton is a bounce solution which describes the decay of a vacuum state located at the top of
the tachyonic potential via the tunneling without a barrier. We investigate various types of Fubini instantons
of a self-gravitating scalar field under a tachyonic quartic potential. With gravity taken into account, we
show there exist various types of unexpected solutions including oscillating bounce solutions. We present
numerically oscillating Fubini bounce solutions in anti–de Sitter and de Sitter spaces. We construct the
parametric phase diagrams of the solutions, which is the extension of our previous work. Of particular
significance is that there always exist solutions in all parameter spaces in anti–de Sitter space. The regions
are divided depending on the number of oscillations. On the other hand, de Sitter space allows solutions
with codimension-one in parameter spaces. We numerically evaluate semiclassical exponents which give
the finite tunneling probabilities.
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I. INTRODUCTION

A bounce solution represents an unstable nontopological
configuration that corresponds to the saddle point configu-
ration of the Euclidean action. The second derivative of the
Euclidean action around the bounce has one negative
eigenvalue which is related to the imaginary part of the
energy. The bounce solution describes the decay of a
metastable vacuum state and determines the semiclassical
exponent of the tunneling probability [1,2]. One can use
this probability to calculate the lifetime of the metastable
vacuum state [3,4].
There are three different kinds of bounce solutions,

which have become a remarkable Euclidean solution as
applied to cosmology [5–10]. One corresponds to a vacuum
bubble. The mechanism was introduced to describe a phase
transition [1,11] without gravity. The formalism was later
developed with gravity [12] and extended to the case with
an arbitrary vacuum energy [13]. The possible types of the
true vacuum bubbles in de Sitter (dS) and general back-
ground were studied in Refs. [14,15], in which six types of
the true vacuum bubble were analyzed in more detail. For
the nucleation of a false vacuum bubble in the true vacuum
background, the nucleation of a large false vacuum bubble
in dS space was originally obtained in Ref. [16]. The
possible types of the false vacuum bubbles were inves-
tigated. The false vacuum solutions only with compact
geometry are possible in Einstein gravity [15]. The bounce

solutions mediating tunneling between the degenerate
vacua was also studied [17,18].
Another corresponds to oscillating bounce solutions with

oscillations around the minimum of the inverted potential.
The crossing number of the potential barrier by an
oscillating solution is denoted as i. With this convention
an ordinary bounce solution corresponds to i equal to 1.
The existence of oscillating solutions, i > 1, is highly
probable if the oscillating solutions are allowed and the
contribution of those could be added. Little investigation
has been carried out on the physical meaning of the
oscillating solutions in Lorentzian spacetime [10]. The
study on the existence of the Euclidean solution deserves to
receive attention in this stage. Let us see the tunneling
problem in quantum mechanics. The action of the particle
with i times oscillation around the minimum of the inverted
potential should be i times of the ordinary bounce solution.
Hence the i ¼ 1 contribution dominates the path integral
[19]. In four dimension, there is a damping term in the
scalar field equation in the absence of gravity. Therefore we
cannot expect the existence of oscillating solutions with
Oð4Þ symmetry. There can only exist an ordinary bounce
solution without oscillation. If the gravity is taken into
account, the situation changes drastically. For instance, the
role of a damping term in the scalar field equation can be
changed to an antidamping term if the dS region is included
during the transition. The oscillating solution in dS back-
ground was first studied in Ref. [17], in which the authors
numerically found the oscillating bounces. The oscillating
solutions in the symmetric double potential were obtained
in the general background space, in which the condition for
the existence of the oscillating solution was analyzed [10].
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The oscillating instantons as homogeneous tunneling
channels was also studied [20]. The properties of the
oscillating instantons were intensively studied in Ref. [21].
The other corresponds to the so-called Hawking-Moss

(HM) instanton [9]. The solution describes the scalar field
jumping simultaneously onto the top of the potential
barrier. Thus, the tunneling occurs everywhere at the same
time. Historically, the model with HM instanton was based
on the phase transition under the Coleman-Weinberg
mechanism of symmetry breaking [22]. Among three kinds
of bounce solutions, the probabilities of oscillating instan-
tons are smaller than those of Coleman-de Luccia instan-
tons and hence it was the reason why oscillating instantons
are overlooked in Einstein gravity. However, if we add
correction terms to the gravity sector, then this may change
the status of oscillating instantons. One interesting example
is nonlinear massive gravity [23–25]. In this case, the
correction term from the gravity sector may enhance HM
instantons (and hence probably oscillating instantons, too)
though we need further investigation.
The Fubini instanton [26–28] describes the decay of a

metastable vacuum state by tunneling instead of a rolling
down on the tachyonic potential consisted of a quartic term
only. In a scale invariant Lagrangian field theory, the
instanton introduces a fundamental scale of hadron phe-
nomena by means of a dilatation noninvariant vacuum
state. The conformal invariance of the scalar field theory
allows the existence of the Euclidean solution with arbitrary
size and the same probability. The explicit form of the
solution was obtained in [26]. If the scale invariance breaks
down due to the existence of the mass term a bounce
solution does not exist. In other words, the particle cannot
have enough energy to climb the hill up to Φ ¼ 0 [29]. The
Fubini instanton is a one-parameter family of bounce
solutions representing tunneling without a barrier, which
is interpolating between the state at the top of the potential
and an arbitrary state. The solutions could be considered as
a ball composed of only a thick wall except for one point at
the center of the solution with an arbitrary state lower than
the outer vacuum state, unlike a vacuum bubble that
composed of an inside part with a lower vacuum state
and a wall. When the gravity is taken into account, the
conformal invariance is broken. However, the instanton
solution was studied in a conformally invariant model in a
fixed background without the backreaction [30–32]. The
tunneling without a barrier was studied in the flat potentials
[33–35]. The solution representing the tunneling from the
local maximum of the symmetric double well potential to
one of minima of the potential was obtained in anti–de
Sitter (AdS) space [10]. Recently, the vacuum decay from
the flat Minkowski to AdS space was studied as a tunneling
without a barrier [36].
We have shown the existence of numerical solutions of

the Fubini instanton in the initial flat and AdS spaces for the
potential with only the quartic term [37]. The oscillating

solutions under a double-hump potential have been studied
in Ref. [38]. We have also shown numerically there exist
solutions for the potential with both a quartic and a
quadratic term irrespective of the value of the cosmological
constant. We obtained the solutions with Z2 symmetry in
the dS background [37]. Recently, the oscillating bounce
solutions under flat potential barriers was extensively
studied in dS space [39], in which the authors analyzed
the variety of solutions using an instanton diagram [40]. In
the present paper, we investigate oscillating Fubini instan-
tons in AdS and dS spaces constructing the parametric
phase diagram.
In the model of cosmology, the first picture of the

inflationary multiverse scenario was proposed to make the
universe scenario without the cosmological singularity
problem. The picture has the interesting property of self-
reproducing or regenerating an exponentially expanding
universe. In this scenario, the universe as a whole consists
of different parts of inflationary domains or an infinite
number of miniuniverses (bubbles) [41]. A very large class
of inflationary scenarios have been analyzed leading to a
regime called eternal inflation, in which once the inflation
can start, it never stops globally. The scenario has the
regions separated by more than an observable universe or a
Hubble volume without correlation [42–44]. Two scenarios
could be combined to the eternally inflating multiverse
scenario.
The cosmic landscape of string theory is the design that

involves a huge number of different metastable and stable
vacua, in which the vacua could be approximated by a set of
fields and a potential. The space of all string theory vacua
or these fields is called the landscape [45–47]. In the
landscape, the vacua could have a chance to obtain
the appropriate value equal to that in our universe if the
scenario could be realized. On the other hand, a super-
gravity from M-theory could have a dS maximum, which is
unbounded from below [3,4,48,49]. If there exist various
states corresponding to metastable and stable vacua, the
tunneling could be interesting phenomena. To simply
things, we could assume the potential has a lot of vacuum
states. One of them could have a very high hill. Then the
vicinity of the top of the hill could be approximated as a
tachyonic potential. In the new inflationary model the
potential could be also approximated to a tachyonic quartic
potential when the scalar field is a small value [7,8,22].
The instanton solutions have renewed interest in the

AdS=CFT correspondence [50–52]. The Fubini instanton
under a tachyonic potential in AdS bulk could be related to
an instanton solution under a tachyonic potential in the
boundary conformal field theory. The ambiguity is what
kind of instanton in the boundary corresponds to the bulk
Fubini instanton.
The tunneling process is quantum phenomenon where a

particle can penetrate through a finite potential barrier. The
simplest case in quantum tunneling is a one-dimensional

BUM-HOON LEE et al. PHYSICAL REVIEW D 91, 124044 (2015)

124044-2



problem, which is extensively studied. However, the
extension of the problem to a higher dimension is not
straightforward. If the gravity is taken into account, the
situation is much more complicated.
In these perspectives, the tunneling phenomenon includ-

ing the effect of gravity is worthwhile to be studied in more
detail. The purpose of this paper is to investigate further this
tunneling process by finding the diversity of tunneling
solutions and construct the parametric phase diagrams of
oscillating bounce solutions.
The outline of this paper is as follows: In the next section

we set up the basic framework for this paper. We explain
the boundary conditions for the numerical solutions. We
employ the potential with only the quartic self-interaction
term. In Sec. III, we present numerical solutions including
oscillating bounce solutions. For the decay probability, we
evaluate the action difference between the action of bounce
solution and that of the background by numerical calcu-
lation. In Sec. IV, we construct the parametric phase
diagram in AdS and dS spaces, which is the extension
of our previous work [37]. In the parametric phase dia-
grams, the solutions occupy the area composed of two
parameters in AdS space, while the solutions occupy the
line in dS space. In the final section, we summarize and
discuss our results. In the Appendix, we numerically prove
the finiteness of the exponent B to give the finite
probability.

II. SETUP

The law of exponential decay is a good approximation to
describe quantum tunneling phenomena. In the semiclass-
ical approximation, the decay probability coming from the
imaginary part of the energy of a metastable vacuum state is
represented as Ae−B. The prefactor A is a functional
determinant evaluated from the Gaussian integral over
fluctuations around the classical solution [2,53–55]. The
exponent B ¼ SbsE − SbgE is the difference between the
Euclidean action of the bounce solution and the back-
ground action. We are interested in finding the exponent B.
We consider the tunneling phenomena in Einstein

gravity minimally coupled to a scalar field with a tachyonic
potential. We consider the action

S ¼
Z
M

ffiffiffiffiffiffi
−g

p
d4x

�
R
2κ

−
1

2
∇μΦ∇μΦ −UðΦÞ

�

þ
I
∂M

ffiffiffi
h

p
d3x

K − Ko

κ
; ð1Þ

where g ¼ det gμν, κ ≡ 8πG, R denotes the scalar curvature
of the spacetime M, and h is the determinant of the first
fundamental form. K and Ko are the traces of the second
fundamental form of the boundary ∂M for the metric gμν
and ημν, respectively. The second term on the right-hand

side is the so-called York-Gibbons-Hawking boundary term
[56,57]. Here we adopt the sign conventions in Ref. [58].
We consider the tachyonic potential with only a quartic

self-interaction term as in Ref. [37],

UðΦÞ ¼ −
λ

4
Φ4 þ Uo; ð2Þ

where the coupling constant λ > 0. Uo is related to the
cosmological constant as Λ ¼ κUo. The background space
will be dS, flat and AdS depending on the values of Uo.
This potential is unbounded from below on either side of
the center.
We assume an initial field configuration on the top of the

potential, in which the field expectation value is spatially
homogeneous and equal to zero. This configuration on top
of the tachyonic quartic potential can be a metastable
vacuum state [26]. The field has a finite probability to leave
the top to an arbitrary state inhomogeneously by tunneling
instead of a rolling down on the tachyonic potential. In
what follows, we explore the transition process through the
nucleation of Fubini instanton. We employ the Euclidean
path integral approach for the transition probability. The
semiclassical approximation leads to the classical equation
of motion of a single particle.
We assume Euclidean Oð4Þ-symmetry for the dominant

contribution to the decay probability. The geometry is then
written as

ds2 ¼ dη2 þ ρðηÞ2½dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ�: ð3Þ
The scalar field Φ as well as ρ depends only on η. The field
equations turn out to be

Φ00 þ 3ρ0

ρ
Φ0 ¼ −

dð−UÞ
dΦ

; ρ00 ¼ −
κ

3
ρðΦ02 þUÞ; ð4Þ

and the Hamiltonian constraint is given by

ρ02 − 1 −
κρ2

3

�
1

2
Φ02 −U

�
¼ 0; ð5Þ

where the prime denotes differentiation with respect to η.
The first equation in Eq. (4) is formally equal to a one-
particle equation of motion in the inverted potential in
Newtonian mechanics. The second term on the left-hand
side can be interpreted as a damping term. It can play the
role of an antidamping term if ρ0 is negative as in dS space.
To solve the equations of motion, we should impose

appropriate boundary conditions. In the absence of gravity,
the boundary conditions of the Fubini instanton are
dΦ
dη jη¼0 ¼ 0 and Φjη¼∞ ¼ 0 as in Ref. [26]. The first
condition is for the solution being regular at the origin.
The second condition is for the requirement to describe the
outside state of the solution, i.e. the initial background
configuration. This makes the decay probability finite. The
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solutions exist for an arbitrary Φo due to the scale
invariance. We can interpret the equation of motion as
follows: The particle starts with the zero velocity atΦ ¼ Φo
and rolls down to the bottom in the inverted potential.
Finally, the particle stops at Φ ¼ 0 at η ¼ ∞ without any
oscillation. In the presence of gravity, we should impose
two additional boundary conditions for ρðηÞ. The geometry
is noncompact for flat or AdS space and compact for dS
space which reads us for the convenience to choose the
different type of boundary conditions at η ¼ 0 and
η ¼ ηmax. The ηmax is infinite for flat and AdS spaces
while is finite for dS space.
For flat or AdS space, we can impose boundary con-

ditions as follows [10]:

ρjη¼0 ¼ 0;
dρ
dη

����
η¼0

¼ 1;

dΦ
dη

����
η¼0

¼ 0; and Φjη¼ηmax
¼ 0: ð6Þ

The first condition is for a geodesically complete space.
The second condition stems from Eq. (5). For dS space, we
can impose boundary conditions as follows:

ρjη¼0 ¼ 0; ρjη¼ηmax
¼ 0;

dΦ
dη

����
η¼0

¼ 0; and
dΦ
dη

����
η¼ηmax

¼ 0: ð7Þ

Analytic solutions are not known in the presence of gravity,
hence we employ the numerical computation. To solve the
Euclidean field equations (4) and (5) numerically, we make
dimensionless variables as in Ref. [37]. In this procedure,
the parameter κ corresponds to the ratio between Planck
mass and the mass scale in the theory. In what follows, we
employ dimensionless variables without a tilde. We choose
the initial values of ΦðηinitialÞ, Φ0ðηinitialÞ, ρðηinitialÞ, and
ρ0ðηinitialÞ at ηinitial ¼ 0þ ϵ for ϵ ≪ 1 as follows:

ΦðϵÞ≃ Φo −
ϵ2

8
Φ3

o þ � � � ;

Φ0ðϵÞ≃ −
ϵ

4
Φ3

o þ � � � ;
ρðϵÞ≃ ϵþ � � � ;
ρ0ðϵÞ≃ 1þ � � � : ð8Þ

The initial value of Φ0 is taken to be positive in the present
paper. Once we specify the initial positionΦo, then all other
quantities can be exactly determined from Eq. (8). To
diminish numerical errors Taylor expansion with higher
precisions was considered in Ref. [59].
To get the tunneling probability, we only need to

consider the bulk part of the Euclidean action, since the
contribution from the York-Gibbons-Hawking boundary

term between the bounce solution and the background
cancels out each other. The bulk action is evaluated as
follows:

SE ¼
Z
M

ffiffiffiffiffi
gE

p
d4xE

�
−
RE

2κ
þ 1

2
Φ02 þ U

�

¼ 2π2
Z

ρ3dη½−U�; ð9Þ

where RE ¼ 6½1=ρ2 − ρ02=ρ2 − ρ00=ρ�. We used Eqs. (4)
and (5) to get the last expression. We define the “Euclidean
action density” as EξðηÞ ¼ 2π2ρ3ξ. Then Eq. (9) implies
the density ξ ¼ −U. Now we evaluate the action difference.
If one use the variable dη the upper bounds of η for both
actions have the different value. In other words, ηbsðρ̄Þ is
different from ηbgðρ̄Þ, in which ρ̄ is the radius of a bounce
solution. Hence, we change the variable dη into dρ. As a
result, the action difference B is written as follows:

B ¼ 2π2
Z

ρmax

0

"
ρ3dρ½−UðbsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κρ2

3
½1
2
Φ02 −UðbsÞ�

q

−
ρ3dρ½−UðbgÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ2

3
½−UðbgÞ�

q
#
; ð10Þ

where ρmax is the maximum value of the radius ρ. For the
case of dS space, ρmax is the radius of 4-sphere, which is
finite. Thus, the probability is guaranteed to be finite. For
the cases of AdS space and flat space, the ρmax is infinite.
Therefore we should check the probability more carefully.
In the next section and Appendix we will straightforwardly
compute the action difference according to Eq. (10).

III. VARIOUS TYPES OF NUMERICAL
SOLUTIONS

In this section, we numerically solve the coupled
equations of the scalar field and gravity. We concentrate
on various types of numerical solutions both in AdS and dS
spaces. We will show that the solutions can be classified by
the number of oscillations.

A. Computational methods

In order to solve the coupled equations of motion
numerically, we employ the fourth-order Runge-Kutta
method with the Euclidean evolution parameter step size
of 10−7. Three quantities, κ, Uo, and Φo, are chosen as
numerical parameters. They correspond to the reduced
Newtonian gravitational constant, the maximum value of
the potential when the initial background state is located at
Φ ¼ 0, and the initial value of a scalar field in numerical
computation, respectively. The parameter Uo is related to
the cosmological constant as Λ ¼ κUo. The background
space is dS, flat and AdS depending on the values of Uo.
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The maximum value of the evolution parameter η, the
Euclidean time, is also determined by the values of Uo. It is
finite for dS space, while it is infinite for AdS and flat
space. Consequentially, the types of solutions depend on
the values ofUo. In the absence of gravity with κ ¼ 0, there
is only one parameter Φo, regardless of Uo. For an arbitrary
value of Φo, there are bounce solutions without oscillation.
The initial value Φo is related to the size of the instanton.

B. Numerical results

We first solve Eqs. (4) and (5) with the boundary
conditions (6) in AdS space. We take κ ¼ 0.30 and
Uo ¼ −0.30. The solution exists for any initial value Φo.

The numerical solutions for Φ and ρ in AdS space are
shown in Fig. 1 for five different initial values Φo. That is,
−2.00000 presented with the black line, −3.69897 with the
red line, −6.00000 with the green line, −7.95711 with the
blue line, and −10.00000 with the sky blue line, respec-
tively. Figure 1(a) presents the solutions for Φ with respect
to η. The profile ΦðηÞ drops from Φo at η ¼ 0 and
asymptotically approaches to 0 at η → ∞. In each figure,
we denote the oscillating solutions as si, where the index i
represents the number of oscillations. An ordinary bounce
solution “oscillates” one, i.e., i ¼ 1. The black, green and
sky blue lines correspond to the solutions with the
oscillation 1, 2, and 3 times, respectively. We denote the
oscillating solution at the boundary between sj and sjþ1

FIG. 1 (color online). (a) Numerical solutions for Φ, (b) solutions for ρ, (c) the variation of Φ0 with respect to η, (d) the variation of Φ0
with respect to ρ, (e) phase diagram of Φ0 versus Φ, and (f) Euclidean action density Eξ evaluated at constant η in AdS space. We take
κ ¼ 0.30 and Uo ¼ −0.30.
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solutions as bj. In other words, bj is the marginal solution
of sj solutions. The red and blue lines correspond to the
marginal solutions with the oscillation 1 and 2 times,
respectively. There is the tendency that the number of
oscillations is decreased as the value of Φo is decreased.
This solution has the thick wall separating the true vacuum
consisted of only one point at the center of the solution
from the outside false vacuum state. Figure 1(b) presents
the solutions for ρ. The curves move upwards with
increasing value of jΦoj. The general behavior of the
numerical solution can be easily understood if one thinks
of the shape of the solution in a fixed AdS space as

ρ ¼
ffiffiffi
3
Λ

q
sinh

ffiffiffi
Λ
3

q
η. Figure 1(c) presents Φ0 with respect to

η. The value of Φ0 has the maximum value around η ≤ 1.
This means that the field rolls down the inverted potential,
its velocity has the maximum value at the very early state
around η ≤ 1, and the velocity is decreased as η goes to
infinity. In the usual bubble solutions, the maximum
velocity occurs in the middle of the bubble wall.
Therefore, one could consider the location as the size of
the instanton. For the Fubini instanton whose shape is
highly asymmetric, it is not clear how to determine the size
of the instanton. Figure 1(d) presents the solutions for Φ0
with respect to ρ. Figure 1(e) presents Φ0 versus Φ. Each
trajectory begins with zero velocity Φ0 ¼ 0. The velocity
rapidly increases to the maximum and then decreases
linearly up to the turning point as shown in Ref. [37].
Figure 1(f) presents the Euclidean action density EξðηÞ
whose integration over η gives the Euclidean action SE.
The first peak is due to nontrivial contributions from the
potential and kinetic energy. The increase of the Euclidean
action density with respect to η is due to the increase of ρ in
AdS space.
We now compute the action difference for the solutions

in Fig. 1. We examine whether or not the scalar field has the
exponentially decaying property in the asymptotic region to
give the action difference finite.
First, we carry out the action integral in the range of

0≦ρ≦1011 numerically. We straightforwardly compute the
action difference B using Eq. (10). As shown in the
Appendix, the exponent B diverges for the solutions sj,
while finite for the marginal solutions bj. We summarize
the exponent B for two marginal solutions in Table I. We
comment that there are hopes to regularize Euclidean
actions for sj using the no-boundary regulator [60]. This
method is also worthwhile to investigate further for quartic

potentials, while we only have restricted for the quadratic
potentials in [60]. As a different check, we postpone this
issue for future papers.
Second, we present the qualitative argument for evalu-

ating the exponent. The potential near the tachyonic top can
be expanded as follows:

U ¼ Uo −
1

2
m2Φ2 −

λ

4
Φ4 � � � : ð11Þ

Around the asymptotic values of η, the approximate
behavior of the scalar field becomes

Φ≃ A1 exp

��
−
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2

r �
Hη

�

þ A2 exp

��
−
3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2

r �
Hη

�
; ð12Þ

where H2 ≃ −κUo=3 and A1;2 are constants [61].
According to Ref. [62], the condition of the converging
action is A1 ¼ 0. If the tachyonic top has only the quartic
term, then approximately

Φ≃ A1 þ A2 exp½−3Hη�: ð13Þ

For asymptotic AdS space, A1 should be controlled to be
zero. This suggests that the tunneling probability may be
finite. However we need to numerically confirm the
behavior of the scalar field in the asymptotic region.
Last, therefore, we examine the scalar field in more

detail, how fast it approaches to zero in the asymptotic
region. Figure 2 presents the log-log scale plot of Φ versus
η, and the phase diagram of Φ0 versus Φ in the asymptotic
region. We take κ ¼ 0.30 and Uo ¼ −1.00. In this figure
the nine s1 solutions and one b1 solution (purple line) are
plotted. In Fig. 2(a), we can see that all s1 solutions whose
initial positions are starting from Φo ¼ −0.5 to Φo ¼ −4.5
converge to a certain linear line. Using this property, we
approximate a scalar field for the late-time behavior as

log jΦj ¼ −E log ηþ F; ð14Þ

where the E and F are positive constants. The above
equation is reduced to

jΦj ¼ F0η−A; ð15Þ

where F0 ¼ eF which is a constant. Therefore, we can see
that the s1 solutions with above late-time behaviors obey
Eq. (15) and the scalar field goes to zero when η goes to
infinity. This asymptotic power behavior makes the action
infinity. However, the late-time behavior of the b1 solution
(purple line, Φo ¼ −4.96283) is totally different from
those of other solutions. The slope of the line tends to
increase to approximately log η ¼ constant as η increases.

TABLE I. Parameter choices and exponent Bs for the marginal
solutions bj plotted in Fig. 1.

Type κ Uo Φo B

b1 0.30 −0.30 −3.69897 37.6506
b2 −7.95711 579.9922
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This suggests that the b1 solution may reach Φ ¼ 0 and
Φ0 ¼ 0 within a finite time. In Fig. 2(b), s1 solutions are
shown to approach to the asymptotic curve. In other words,
all s1 solutions converge to the curve exponentially. Thus,
s1 solutions converge to the origin point when η goes to
infinity. However, the b1 solution falls down directly at
Φ ¼ 0 and Φ0 ¼ 0. This analysis shows that the oscillations
are finished before the scalar field reaches zero. Thus, if the
scalar field shows the late-time asymptotic behavior, we
can stop at that finite η to count the number of oscillations.
The similar analysis can be applied for i > 1. This is the
reason why we are safe to cut the Euclidean time when we
count the number of oscillations.
In summary of this part, the marginal solutions bj are

shown to have a finite probability, while sj solutions have a
vanishing probability. In the Appendix, the behavior of Φ
and the exponent B are numerically examined in more
detail.

Now we are going to turn to the solutions in dS space.
Unlike the solutions in AdS space, the solution exists only
for some values Φo in dS space. Hence, we adopt the so-
called undershoot-overshoot procedure [1] to get the
solutions in dS space. Suppose we have two initial values
Φ1 and Φ2 which are diverging to positive and negative
infinity, respectively. Then, we expect that there is the
initial value Φo between Φ1 and Φ2 which does not give the
divergence to infinity. We choose κ ¼ 0.10 and Uo ¼ 1.00.
Figure 3 presents the behaviors of scalar fields with
different initial values. Since the system is invariant under
Φ → −Φ, the only one signature of Φo can be chosen
without loss of generality. In the numerical computations,
only specific parameter value Φo ¼ −4.31876 can satisfy
given boundary conditions Eq. (7) as shown in Fig. 3. Other
values are diverging to the positive or negative infinity at
ηmax. Note that the instanton solution stops near the point
Φ ¼ 0 rather than at Φ ¼ 0 [see the green line in Fig. 3(a)].

FIG. 3 (color online). The figure represents the behaviors of scalar fields with different initial values which is to describe the
undershoot-overshoot procedure for the case in dS space. We take κ ¼ 0.10 and Uo ¼ 1.00.

FIG. 2 (color online). (a) Log-log scale plot of Φ versus η and (b) the phase diagram of Φ0 versus Φ for the nine s1 solutions with the
initial position starting from Φo ¼ −0.5 to Φo ¼ −4.0 and one b1 solution (purple line) with Φo ¼ −4.96283. We choose κ ¼ 0.30 and
Uo ¼ −1.00.

OSCILLATING FUBINI INSTANTONS IN CURVED SPACE PHYSICAL REVIEW D 91, 124044 (2015)

124044-7



This means that the tunneling occurs from near the top to a
certain state in dS space. The corresponding tunneling
process is drawn in Fig. 3(b).
We note that the Euclidean compact dS space is invariant

under the Z2 transformation η → ηmax − η. For this reason,
there exist solutions with Z2 symmetry of even or odd
parity for some specific values Φo as shown in Ref. [37].
In addition, there can be Z2-asymmetric solutions for

other values Φo as shown in Figs. 4 and 5. These solutions
are denoted as aiL (green line) and aiR (red line), which are
connected by Z2 transformation. The subscript index i is
the number of oscillation. L and R mean Φo < 0 and
Φo > 0, respectively.
Figure 4(a) presents the numerical solutions for Φ with

the number of oscillations i equal to 1. The a1L (green line)
starts at 4.31876 with zero velocity, is decreasing, mono-
tonically passing the point Φ ¼ 0, and arrives at −0.22912.
The a1R (red line) starts at −0.22912 with zero velocity, is
monotonically passing the point Φ ¼ 0, increasing due to
the antidamping term, and arrives at 4.31876. The Fubini
instanton solution stops near the pointΦ ¼ 0 in dS space as
mentioned before. To see that this is consistent with
equations of motion, we can estimate numerically the
magnitudes in the asymptotic region as dU

dΦ ∼ −Φ3
fs and

3ρ0
ρ Φ0 ∼ − 3

4
Φ3

fs. The choice of Φ00 ∼ − 1
4
Φ3

fs satisfies the

equations of motion. For the cases of flat and AdS spaces,
the equations of motion are trivially satisfied sinceΦfs goes
to zero. Figure 4(b) shows the numerical solutions for ρ.
Figure 4(c) presents the phase diagram of Φ0 versus Φ. The
first rising stage of the red curve satisfies dΦ0=dΦ ¼ c, i.e.
a positive constant, the second stage dΦ0=dΦ ¼ 0, and the

third stage Φ0 ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2
ðΦ4

o − Φ4Þ
q

[37]. Figure 4(d) presents

the Euclidean action density EξðηÞ.
Figure 5(a) presents Φ with i equal to 3. The a3L (green

line) starting at 7.60997 with zero velocity is decreasing,
then oscillates passing the point zero (Φ ¼ 0) three times,
decreasing, and arrives at −6.33115. The a3R (red line)
starting at −6.33115 with zero velocity is increasing,
oscillates passing the point zero (Φ ¼ 0) three times,
increasing, and arrives at 7.60997. Figure 5(b) presents
the numerical solutions for ρ. Figure 5(c) presents the phase
diagram of Φ0 versus Φ. The first rising stage of the red

curve starting at the most left satisfies Φ0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2
ðΦ4

o − Φ4Þ
q

,

the second stage dΦ0=dΦ ¼ 0, the third stage
dΦ0=dΦ ¼ −c, i.e. a negative constant, the fourth
stage the behavior near the origin point, the fifth stage
dΦ0=dΦ ¼ c, the sixth stage dΦ0=dΦ ¼ 0, and the seventh

stage Φ0 ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2
ðΦ4

o − Φ4Þ
q

. The upper box in the same

FIG. 4 (color online). (a) Numerical solutions for Φ, (b) solutions for ρ, (c) phase diagram of Φ0 versus Φ, and (d) Euclidean action
density Eξ evaluated at constant η of Z2 asymmetric cases in dS space. We choose κ ¼ 0.10 and Uo ¼ 1.00.
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figure shows the magnification of the small region repre-
senting behavior of the curves, which shows each curve is
passing the point zero (Φ ¼ 0) three times. Figure 5(d)
presents the Euclidean action density EξðηÞ. The green
and red lines are overlapping in Figs. 5(b) and 5(d). We
summarize the parameter choices and probabilities of
several Z2-asymmetric solutions in Table II.

IV. PARAMETRIC PHASE DIAGRAM

In this section, we construct the parametric phase
diagram of various solutions with respect to the parameters
κ,Uo andΦo. There are several types of solutions including

oscillating solutions as we discussed in Sec. III. We
investigate the properties of those solutions.

A. Computational methods

We employ the matrix plot that gives a visual represen-
tation of the values of elements in a matrix. Figure 6
presents the matrix plot for visual representation of the
oscillating solutions in AdS and dS spaces. We choose
κ ¼ 0.30. We divide into two parametric phase diagrams
depending on the values of Uo. The X-axis in each plot
corresponds to Φo, which is from 0 to −14.00, and the Y-
axis corresponds toUo. Because this process can show only
approximated points of solutions, we should gather more
dense data in all regions.
Figure 6(a) presents the parametric phase diagram in

AdS space. The Y-axis is from 0 to −2.00 where the
direction is downward. We first divide the X-axis and the Y-
axis as 100 pieces. In this case, η grows up to infinity,
however we are safe to count the number of oscillations
during the finite Euclidean time as we discussed at
Sec. III A. We count the number of oscillations for every
point in the phase diagram. In general, this process can only
recognize the si solutions. Thus, we need to take a more

FIG. 5 (color online). (a) Numerical solutions for Φ, (b) solutions for ρ, (c) phase diagram of Φ0 versus Φ, and (d) Euclidean action
density Eξ evaluated at constant η of Z2 asymmetric cases in dS space. We choose κ ¼ 0.05 and Uo ¼ 0.05.

TABLE II. Parameter choices and probabilities of Z2-asym-
metric solutions.

Type κ Uo Φo Scs Sbg B

a1L 0.10 1.00
−0.22912 −23654 −23687 33

a1R 4.31876 −23654 33
a3L 0.05 0.05

−6.33115 −189486 −189496 10
a3R 7.60997 −189486 10
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elaborated approach to find the bj solutions and get the data
more dense rather than those in Fig. 6(a). For AdS space,
there exist an infinite number of solutions occupying the
area composed of two parameters Uo and Φo with given
value of κ as shown in Fig. 6(a).
Similarly with the previous figure, Fig. 6(b) presents the

parametric phase diagram in dS space. The Y-axis is from 0
to 2.50 where the direction is upward. We divide the X-axis
as 100 pieces and the Y-axis as 125 pieces. η is finite as
ηmax. We check the divergence at all points using the
shooting method, i.e. undershoot-overshoot procedure. The
result is illustrated in Fig. 6(b). The oscillating solutions
with both Z2-symmetric and asymmetric solutions are
included. There exist the solutions only on the curve.

B. Numerical results

We consider four cases for different values of κ. We plot
the parametric phase diagrams ofUo and Φo in AdS and dS
spaces.
We choose κ ¼ 0.05, 0.10, 0.30, and 0.50. Figure 7

presents the phase diagrams in AdS space. In this figure, we
consider only up to i equal to 3 oscillating solutions. There
are solutions with oscillation more than 3 near the Uo equal
to 0. However, we do not display these solutions because of
the numerical difficulty. We take κ ¼ 0.05, 0.10, 0.30, and
0.50 for (a), (b), (c), and (d), respectively. Uo is from
−2.0 × 10−4 to −2.00 and Φo is from 0 to −14.00. The
black lines correspond to the b1 solutions and the red lines
the b2 solutions for the given range of Uo ’s. The points out
of lines are si solutions with the oscillation i times.
Consequentially, the solutions fill up the whole area
composed of two parameters, Uo and Φo.
We can observe the behavior of the solutions with

respect to the parameter values in Fig. 7. In general the
number of oscillations is decreased as the value of Φo is

decreased. Let us fix the valueΦo in each figure. The higher
number of oscillating solutions could exist as the value of
jUoj is decreased. As can be seen from four figures, bj
solutions move to the left and upward as κ is increased.
From this behavior of bj solution, we can see that there is
the minimum value of Uo which does not allow the higher
number of oscillations. For example, if we fix Uo ¼ −1.00
then the solution can oscillate up to i equal to 3. All bj
solutions have similar property. Moreover, for any number
of oscillations the initial values Φos which give the bj
solutions are approaching to zero asUo goes to zero. To see
this behavior more clearly, we examine the behavior using
the log-log scale plot of the absolute values of Uo and Φo.
Figure 8 shows the log-log scale plot with same marginal

solutions used in Fig. 7. The left four curves correspond to
b1, while the right four curves correspond to b2. Because b1
and b2 solutions with respect to Uo and Φo are linear in the
vicinity of Uo ¼ 0 and Φo ¼ 0, each of the solutions has a
relation between these two parameters as follows:

log jUoj ¼ E log jΦoj þ F ⇒ Uo ¼ �eFjΦojE; ð16Þ

where E and F are positive constant. We take the − sign for
our case and the other sign for Φo > 0. We can easily see
that the b1 solution and the b2 solution approach to the
point Uo ¼ 0 and Φo ¼ 0 from Eq. (16). From this
numerical result, we can expect that all bj solutions behave
like the b1 solution.
Figure 9 presents parametric phase diagrams in dS space

[39]. The Uo is from 10−2 to 2.50 and Φo is from 0 to
−14.00. The solutions exist only on the presented curves
unlike the case in AdS space. In other words, the points out
of the curves do not satisfy the boundary conditions. We do
not display the solutions with oscillation more than i equal
to 4 for the Z2-symmetric solution, denoted as zi, because

FIG. 6. Matrix plots in (a) AdS space with white, gray and black colors which correspond to the different number of oscillations such
as 1, 2, and 3, respectively, and in (b) dS space with white and black colors which correspond to the direction of divergence such as
negative and positive, respectively. We choose κ ¼ 0.30.
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of the numerical difficulty. The Z2-parity of zi is ð−1Þi. We
illustrate z1 solutions with the red line, z2 with the green, z3
with the blue, z4 with the green, a1 with the black, and a3
with the gray. The number of oscillations is decreased asUo

or κ is increased. For example, if we fix Uo ¼ 1.50 and
κ ¼ 0.30 then only the z1 solution is possible. We note that
there exist closed loops composed of aiL and aiR solutions.
For example, a1L and a1R solutions make a closed loop,
which meets with the z1 solution at a certain Uo and Φo.
This point is known as a bifurcation point for Z2-asym-
metric solutions [17,39]. The curves move to the left and
downward as κ is increased. The size of the closed loop
composed of a1L and a1R solutions is decreased as κ is
increased. We can see the second closed loop and the
bifurcation point for the a3 solution, i.e. the branch which
i > 1 in Fig. 9(a). We expect that such a closed loop and
bifurcation point can be observed for the higher i branches
as the value of κ is decreased.
From these parametric phase diagrams, we can estimate a

parametric phase diagram or type of solution in the flat
Minkowski space by limiting κ to be zero. Let us consider
taking κ to be zero from the solutions in AdS space. In this
case, the b1 solution goes to the right and downward
direction as the value of κ is decreased. Then, the s1
solution space is expanded by this effect. Finally we can
expect that whole phase space will be covered by only the
s1 solution at κ equal to zero. This expectation gives the

FIG. 8 (color online). Parametric phase diagram of the log-log
scale of jUoj and Φo with four different values of κ in AdS space.

FIG. 7 (color online). Parametric phase diagram in AdS space with (a) κ ¼ 0.05, (b) κ ¼ 0.10, (c) κ ¼ 0.30, and (d) κ ¼ 0.50,
respectively.
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exactly same result which is obtained by Fubini in the
absence of gravity [26].

V. SUMMARY AND DISCUSSION

There are three different kinds of bounce solutions. They
are vacuum bubbles, oscillating bounce solutions, and the
HM instanton, respectively. Oscillating bounce solutions
and HM instanton are possible only if gravity is taken into
account. In this paper, we have investigated oscillating
Fubini bounce solutions of a self-gravitating scalar field
under a tachyonic quartic potential and constructed the
parametric phase diagrams. This is the extension of our
previous paper [37]. The Fubini instanton describes the
decay of a state located at the top of the potential to an
arbitrary state through the tunneling. This solution connects
one point at the center of the solution to a lower energy state
through a thick wall.
The Euclidean bounce trajectory ΦbðηÞ is constrained by

the specific boundary conditions at η ¼ 0 and η ¼ ηmax.
The evolution parameter ηmax is finite for dS space, while
it is infinite for flat and AdS spaces. In AdS space, the

late-time behavior of marginal solutions, bj solutions, is
totally different from those of other solutions, sj solutions.
The marginal solution reaches at Φ equal to 0 essentially
within a finite time, while other solutions reach at Φ equal
to 0 when η goes to infinity. These late-time behaviors
affect the tunneling probabilities. The action difference B is
finite for the marginal solution bj, while the action differ-
ence B diverges for other solutions sj. In other words, the
tunneling probabilities for the marginal solutions are finite,
while the tunneling probabilities for other solutions are
suppressed. In dS space, there exist Z2-symmetric solutions
[37,39]. This is because the geometry of Euclidean dS
space is invariant under the transformation η → ηmax − η.
We have shown that there exist Z2-asymmetric a3 solutions.
We expect that the closed loop composed of aiL and aiR
solutions and bifurcation point can be observed for the
higher i branches as the value of κ is decreased. There exist
solutions stopped near the point zero (Φ ¼ 0). In other
words, the tunneling occurs from the point near the top of
the potential to a certain state in dS space. It might be
described by using thermal interpretation [63]. Another
interpretation is that dS spacetime has a gravitationally

FIG. 9 (color online). Parametric phase diagrams in dS space with (a) κ ¼ 0.05, (b) κ ¼ 0.10, (c) κ ¼ 0.30, and (d) κ ¼ 0.50,
respectively.
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repulsive property which may prevent a full stop at Φ equal
to 0.
We have presented the parametric phase diagrams of the

oscillating solutions with respect to three parameters (κ,
Uo, and Φo) in AdS and dS spaces. Of particular signifi-
cance is that there always exist solutions in all parameter
space in AdS space. The regions are divided depending on
the number of oscillations. The solutions fill up the volume
composed of three parameters. On the other hand, dS space
allows solutions with codimension-one in parameter space.
In other words, the solutions fill up the area composed of
three parameters. Therefore, the solutions are more rich in
AdS space than those in dS space. The dS space has
compact geometry and the corresponding boundary con-
ditions, which restrict the solution space. AdS spacetime
has a gravitationally attractive property which may allow
the wide range of a solution space, i.e. it promotes a full
stop at Φ ¼ 0.
From these parametric phase diagrams, we can estimate a

parametric phase diagram or type of solutions in the flat
Minkowski space by limiting κ to be zero. Let us consider
taking κ to be zero from the solutions in AdS space. In this
case, the b1 solution goes to the right and downward
direction as the value of κ is decreased. Then, the s1
solution space is expanded by this effect. Finally we can
expect that whole phase space will be covered by only the
s1 solution at κ equal to zero. This expectation gives exactly
the same result which is obtained by Fubini in the absence
of gravity [26].
The issue on the instability of a tachyonic vacuum is very

subtle. There are three possible modes, i.e. quantum
fluctuation, the typical decay mode representing the homo-
geneous rolling on the potential, and the tunneling without
a barrier [33,34] as inhomogeneous transition. We did not
consider quantum fluctuation in the present paper. The
possibility may depend on both the curvature of the
tachyonic top and the cosmological constant. If the shape
of the potential near its top is very sharp we could not
expect the existence of the tunneling without a barrier. If the
shape near its top is flat enough, there exist two decay
modes for the rolling and the tunneling. If so there is a
competition between them. As pointed out in [34], if the
size of a solution is much smaller than the horizon size, the
decay mode by the tunneling is distinguishable from others,
while if the sizes are comparable, the decay mode by the
tunneling becomes indistinguishable from others. To ana-
lyze which mode is dominant, one may need to estimate the
decay time for each mode. If the decay time for the rolling
is less than that for the tunneling the rolling becomes the
dominant decay mode, and vice versa. In general all modes
mix together. All modes may affect the cosmological large
scale structure formation and CMB. To reach more under-
standing of the issue with all modes, further studies are
needed. We will leave this issue as a future paper. In AdS
space, a tachyonic top is known as a perturbatively stable

one without causing an instability of the background if the
mass squared is at or above the Breitenlohner and
Freedman bound [64,65]. Then the tunneling without a
barrier is worthwhile to be explored as the only decay mode
of a tachyonic vacuum.
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APPENDIX: NUMERICAL PROOF FOR THE
FINITENESS OF THE EXPONENT B

In Sec. III B, we have presented the finiteness of the
exponent B for the marginal solutions. In order to show the
finiteness of the exponent B, we perform the numerical
computation more carefully. We take κ ¼ 0.30
and Uo ¼ −0.30.
First, we examine the behavior of the solution Φ as a

function of ρ in the log-log scale plot in more detail. We
search for the numerical solutions in the small range of the
initial values Φo between −3.6 to −3.8 around the marginal
solution, b1. Figure 10 shows the plot of Φ as a function of
ρ. Figure 10(a) presents the plot ofΦ, in which the right box
in the same figure shows the magnification of a small
region representing the late behavior of ten solutions. Only
seven lines are shown in this figure. We insert two breaks,
3 × 10−5 ∼ 3 × 10−6 and −3 × 10−5 ∼ −3 × 10−6. The bro-
ken line corresponds to overlapping five lines. After a
break, −3 × 10−5 ∼ −3 × 10−6, the line is divided into
three lines. The middle line corresponds to overlapping
three lines with Φo among −3.69896867 and −3.69897.
The line of Φo equal to −3.8 crosses over Φ equal to 0
around ρ≃ 10, the line ofΦo equal to −3.70 crosses overΦ
equal to 0 around ρ≃ 50, and the line of Φo equal to
−3.699 crosses over Φ equal to 0 around ρ≃ 170, while
the remaining seven lines are still within the negative region
among ten lines in the graph. Figure 10(b) presents the
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log-log scale plot of jΦj with ρ. The solutions are divided
into two groups depending on whether they have the
downward peak or not. Since we plot the absolute value
of Φ, the downward peaks indicate the region where the
sign of a field changes. They represent the behavior coming
back to Φ equal to 0 after oscillation in numerical
computation. The upper cases in the plot legend correspond
to the s1 solution, while the lower five cases to the s2
solutions. The dashed line indicates the marginal solution,
which has the initial values Φo between −3.69896867 and
−3.69896868. In this figure, all the solutions show a certain
behavior. The fields are slowly decreasing at the first stage,
and after that they are linearly decreasing. The later
behavior of solutions is quite different. The splitting occurs
along the dashed line as it approaches the initial value of Φo
for the marginal solution. That is, the splitting point moves
downward as the initial value of jΦoj is increased among s1
solutions, while the splitting point moves upward as the
initial value is increased among s2 solutions after over
the initial value for the marginal solution. In other words,

the field with Φo equal to −3.6 rolls down the inverted
potential quickly and is slowly approaching to Φ equal to 0
after splitting from the dashed line. If the initial value is
increased to Φo equal to −3.69, the field trajectory is
approaching a little more and slows down a little later. The
splitting occurs a little later. If the initial value is over that
for the marginal solution, the splitting occurs in the
opposite way to the above cases. This kind of behavior
represents the existence of the marginal solution as the
undershoot-overshoot numerical procedure.
Second, we numerically evaluate the exponent B.

Figure 11 shows the plot of the integrand b as a function
of ρ for ten solutions. Figure 11(a) presents the plot of b.
The upper five lines in the plot legend correspond to the s1
solutions, while the lower five lines to the s2 solutions. The
bs have the maximum value at the first stage, cross over to
the negative region, and cross over again to the positive
region except for the marginal solution. For the marginal
solution, the value of b is asymptotically approaching to
zero. The right figure in the same figure (a) shows the

FIG. 10 (color online). (a) The plot ofΦ versus ρ for five s1 solutions and five s2 solutions withΦo from¼ −3.6 to¼ −3.8 and (b) log-
log scale plot of jΦj. The dashed line indicates the marginal solution. We choose κ ¼ 0.30 and Uo ¼ −0.30.

FIG. 11 (color online). (a) The plot of the integrand b and (b) log-log scale plot of jbj.
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magnification of a small region representing the late
behavior of the solutions. The two lines crossing over to
the positive region are shown in the figure. Figure 11(b)
presents the log-log scale plot of the integrand jbj as a
function of ρ for ten solutions. From Eq. (10), the integrand
b is given by

2π2

2
64 ρ3½−UðbsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κρ2

3
½1
2
Φ02 − UðbsÞ�

q −
ρ3½−UðbgÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κρ2

3
½−UðbgÞ�

q
3
75:
ðA1Þ

The first downward peak represents the value of b going to
the negative value. The second downward peak represents
the value of b turning back to the positive value. The five
cases with initial values Φo between −3.69896 and −3.699
are overlapped. These overlapping lines are approaching

the zero value. In Fig. 11(b), the overlapping lines are
linearly decreasing with the slope about −4. Others are
separated from the overlapping lines after the second
downward peak. They have the slope about þ2 as the late
behavior. Thus, the integrand for those solutions seems to
diverge. The integrand b of the marginal solution has the
slope −4, we can integrate directly within the range ðρ1; ρ2Þ
as

B≃
Z

ρ2

ρ1

ρ−4dρ ¼ 1

3
ðρ−31 − ρ−32 Þ; ðA2Þ

where the ρ1 and ρ2 terms indicate the integration of each
square bracket in Eq. (A1). We take ρ2 ¼ 1011, then the ρ2
term has an extremely small value. Thus, we do not need to
consider the integration range for the maximum ρ because
it gives a negligible effect.
In this point, it is difficult to divide the overlapping lines

into each line due to the limitation of the precision in the
numerical calculation. We include the wad of ending region
in overlapping lines. There seems to be an error after the
wad. We leave the graph without splitting for the over-
lapped solutions.
Figure 12 shows the exponent B as a function of ρ. The

graph shows the existence of the constant line, which
indicates the finiteness of B for the marginal solution. The
splitting occurs along the constant line as it approaches the
initial value of Φ for the marginal solution. The five lines
with initial values Φo between −3.69896 and −3.699 are
overlapped in the constant line. We expect that the
exponent B for these overlapping solutions will diverge
at very large ρ except for the exact marginal solution. This
kind of behavior for the marginal solution represents the
existence of the finite B to give the finite probability.
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