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Searches for gravitational waves (GWs) from binary black holes using interferometric GW detectors
require the construction of template banks for performing matched filtering while analyzing the data.
Placement of templates over the parameter space of binaries, as well as coincidence tests of GW triggers
from multiple detectors make use of the definition of a metric over the space of gravitational waveforms.
Although recent searches have employed waveform templates coherently describing the inspiral, merger
and ringdown (IMR) of the coalescence, the metric used in the template banks and coincidence tests was
derived from post-Newtonian inspiral waveforms. In this paper, we compute (semianalytically) the
template-space metric of the IMR waveform family IMRPHENOMB over the parameter space of masses and
the effective spin parameter. We also propose a coordinate system, which is a modified version of
post-Newtonian chirp time coordinates, in which the metric is slowly varying over the parameter space.
The match function semianalytically computed using the metric has excellent agreement with the “exact”
match function computed numerically. We show that the metric is able to provide a reasonable
approximation to the match function of other IMR waveform families, such that the effective-one-body
model calibrated to numerical relativity (EOBNRV2). The availability of this metric can contribute to
improving the sensitivity of searches for GWs from binary black holes in the advanced detector era.
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I. INTRODUCTION

Second-generation laser interferometric gravitational-
wave (GW) detectors such as Advanced LIGO [1] and
Advanced Virgo [2] are expected to start their first data-
taking runs by 2015 and are expected to reach their design
sensitivities in a few years (see [3] for a discussion of likely
observing scenarios). In addition, an advanced interfero-
metric detector, called KAGRA [4], is being constructed in
Japan, and another one in India, called LIGO-India [5] is
expected to be built in India. Coalescence of binary black
holes (BBHs) are among the most promising sources for the
first direct detection of GWs. With the designed sensitiv-
ities of these detectors, anticipated detection rate of BBH
coalescences is ∼0.4–1000 per year [6]. Observation of
GWs from BBHs is expected to make significant contri-
butions to our understanding of fundamental physics,
astrophysics and cosmology (see [7] for a review).
The expected gravitational waveforms from BBHs can

be accurately computed from general relativity using
appropriate approximation techniques or numerical meth-
ods (see, e.g. [8–10], for reviews). Different “template”
waveforms corresponding to different parameters of the
binary (such as the component masses and spin angular
momenta of the black holes), are cross-correlated with the
data looking for correlations that exceed certain threshold,
indicating the presence of a GW signal. This technique is
calledmatched filtering. Additional signal consistency tests

and multi-detector coincidence tests are employed to
further assess the true nature of the signal (see [11] for a
detailed discussion). Several searches for BBHs have been
performed in the past using data from the previous science
runs of LIGO and Virgo [12,13]. The nondetection by these
initial instruments is consistent with our expectation of the
astrophysical rates of BBH coalescences [6].
Coalescence of BBHs typically involve three stages: In

the early inspiral stage, the radial velocity of the black
holes is much smaller than their tangential velocity, which
itself is much smaller than the velocity of light
(vr ≪ vφ ≪ c). Gravitational radiation reaction causes
the binary orbit to continuously shrink and eventually
the black holes move with relativistic velocities and
ultimately merge with each other. In the final ring down
stage, the merger remnant settles into a Kerr black hole by
radiating a spectrum of quasinormal modes. Accurate
analytical models of expected GW signals from the inspiral
(see [14] for a review) and ring-down (see [15] for a review)
stages are available for the last two decades. The analytical
approximation methods cannot be applied to the merger
stage, where the gravity is strong and highly nonlinear. Due
to this, the first searches for GWs from BBHs were
performed employing templates either describing the
inspiral stage [16,17] or the ring-down stage [18,19]. In
the case of BBHs consisting of intermediate-mass
(m1; m2 ≳ 100M⊙), only the merger and ring-down stages
of the coalescence will be observable in ground-based
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detectors. Such signals appear as bursts of gravitational
radiation. Several searches have been performed in the past
that look for short-lived excess power in the data [20–22].
Recent breakthroughs in numerical relativity [23–25]

have enabled us to accurately compute the expected
gravitational waveforms from the merger stage. Large
catalogs of numerical-relativity waveforms have become
available now [26–28]. This has lead to the development
of several analytical models coherently describing the
GW signals from the inspiral, merger and ring-down
(IMR) [29–44]. Recent LIGO-Virgo searches for GWs
from BBHs made use of these IMR templates [12,13],
which significantly improved the sensitivity of these
searches.
Since the parameters of potential the GW signals buried

in the detector data are not known a priori, the data has to
be cross-correlated with a “bank” of template waveforms
corresponding to different parameters. A discrete set of
template parameters has to be chosen such that, for any
signal, there is always a template that is sufficiently close to
it. At the same time, in order to minimize the computational
burden of the search, it is desirable to keep the number of
templates in the bank to a minimum. In order to address this
covering problem in template placement, a geometrical
method has been developed [45–47]. In this method,
templates are placed in the parameter space such that inner
product between neighboring templates is fixed to a
predetermined value (called the minimal match [46]),
say 0.97. This ensures that the loss of signal-to-noise ratio
(SNR) due to the mismatch between the signal and the
closest template in the bank is acceptably small, say 3%.
This geometric formalism introduces the notion of a

metric in the space of GW signals, which allows us to place
templates in the parameter space employing lattice-based
methods [48–51] or stochastic placement methods [52–55].
In addition, the multi-detector coincidence test [56]
employed in these searches also requires the knowledge
of the metric. The metric can be computed from the
template waveforms using the formalism introduced in
[46]. Metrics in the space of post-Newtonian (PN) wave-
forms describing the inspiral part of the coalescence have
been computed in the past [46,55,57,58]. In the past
searches for GWs from BBHs, even those employing
IMR templates, the PN metric was employed in the
construction of template banks and in the multi-detector
coincidence tests. Although the degradation of the SNR due
to this choice of the metric was not drastic, future searches
will greatly benefit from the knowledge of the actual metric
in the space of IMR waveforms.
In this paper, we compute the metric in the space of the

IMR waveform family IMRPHENOMB [40]. We identify a
coordinate system in which the metric is slowly varying
over the parameter space of interest, which is desirable in
the construction of template banks. We show that the inner
product between the waveforms (known as the match)

computed using the metric has excellent agreement with the
exact numerical computation of the match. We also show
that the match function computed using the IMRPHENOMB
metric agrees well with that computed numerically from
other IMR waveform families, such as the EOBNRV2 [30].
This metric can be employed in the construction of
template banks as well as in multi-detector coincidence
tests. We expect that this will significantly contribute to
improving the sensitivity of searches of GWs from BBHs in
the advanced detector era.
The rest of the paper is organized as follows: Section II

provides a brief overview of the geometrical approach
employed in the template placement, introducing the notion
of the metric. Section III describes the calculation of the
metric for the IMRPHENOMB family and discusses the
coordinates in terms of which the metric is more or less
uniform. A discussion of the results, in particular the
comparison of the match function computed using the
metric with exact match function, is provided in Sec. IV,
while Sec. V provides some concluding remarks and lists
the future directions.

II. GEOMETRICAL APPROACH TO
TEMPLATE PLACEMENT

Here we provide a brief overview of the metric formal-
ism originally introduced in [46] for laying down waveform
templates in the parameter space of compact binaries. A set
of intrinsic and extrinsic parameters λ ¼ fλextrinsic; λintrinsicg
parametrize a gravitational waveform hðf; λÞ. The intrinsic
parameters are parameters that are intrinsic to the source,
such as the masses and spins of the compact objects, while
the extrinsic parameters are those which depend on the
relative location of the source with respect to the detector
(such as the time of arrival t0 of the signal at the detector
and the phase of the signal φ0 at a reference time t0.

1

The match between any two waveforms hðf; λÞ and
hðf; λþ ΔλÞ is defined as:

Mðλ; λþ ΔλÞ
≡maxΔλextrinsichĥðf; λÞ; ĥðf; λþ ΔλÞi; ð2:1Þ

where ha; bi denote the noise weighted inner product:

ha; bi≡ 2

Z
∞

f0

aðfÞb�ðfÞ þ bðfÞa�ðfÞ
ShðfÞ

ð2:2Þ

where ShðfÞ is the one-sided power spectral density of the
detector noise, f0 is the low-frequency cutoff of the

1In the case of binaries not exhibiting spin precession, if we
neglect the effect of higher harmonics (no-quadrupole modes), it
can be shown that all other extrinsic parameters are degenerate
with the parameters t0 and φ0, and can be absorbed into these.
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detector, and a “hat” denotes a normalized waveform: ĥ≡
h=‖h‖ where ‖h‖≡ ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

.
The match function has its maximum value (Mmax ¼ 1)

at Δλ ¼ 0. Taylor-expanding the match function about
Δλ ¼ 0 up to quadratic order gives:

Mðλ; λþ ΔλÞ≃ 1þ 1

2

� ∂2M
∂Δλi∂Δλj

�
ΔλiΔλj: ð2:3Þ

The mismatch 1 −Mðλ; λþ ΔλÞ can be thought of as
the proper distance between points λ and λþ Δλ (in the
signal manifold), and can be written as

1 −M≃ gijΔλiΔλj: ð2:4Þ

This introduces the notion of a metric in the parameter
space, defined as

gij ≡ −
1

2

� ∂2M
∂Δλi∂Δλj

�
: ð2:5Þ

The metric over the intrinsic parameter space can be
calculated from the Fisher information matrix by projec-
ting it on to the subspace orthogonal to the space of
extrinsic parameters. The Fisher information matrix is
defined as:

Γij ¼
1

2
h∂iĥðf; λÞ; ∂jĥðf; λÞi; ð2:6Þ

where ∂i denotes partial derivative with respect to the
parameter λi. The metric over the three-dimensional space
of intrinsic parameters can be computed from this as

g ¼ Γ1 − ΓT
2Γ−1

3 Γ2; ð2:7Þ

where Γ1 is the Fisher matrix over the intrinsic parameters,
Γ3 the same over the extrinsic parameters, and Γ2 that
describe the cross terms. Assuming three intrinsic param-
eters (say, total mass, mass ratio and one spin parameter as
described in Sec. III A), and two extrinsic parameters
(reference time and phase), Γ1;Γ2;Γ3 are defined, respec-
tively, as

2
64
Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

3
75;

�Γ41 Γ42 Γ43

Γ51 Γ52 Γ53

�
;

�Γ44 Γ45

Γ54 Γ55

�
:

ð2:8Þ

Similarly for a two dimensional metric corresponding to,
say, the two mass parameters, Γ1;Γ2;Γ3 read

�Γ11 Γ12

Γ21 Γ22

�
;

�Γ31 Γ32

Γ41 Γ42

�
;

�Γ33 Γ34

Γ43 Γ44

�
; ð2:9Þ

respectively.

III. COMPUTATION OF THE METRIC
IN THE SPACE OF THE INSPIRAL, MERGER,

RINGDOWN WAVEFORMS

A. IMRPHENOMB waveform

The IMRPHENOMB waveform models GW signals from
the IMR phases of a coalescing black hole binary with
nonprecessing spins [40]. The waveform is described by
three intrinsic parameters: the total massM≡m1 þm2, the
symmetric mass ratio η≡m1m2=M2, and a single effective
spin parameter χ ≡ ðm1χ1 þm2χ2Þ=M, where χ1;2 are the
dimensionless spins of the two black holes and m1;2 are
the masses of the binary components. The waveform is
written as hðfÞ≡ AðfÞe−iΨðfÞ where the amplitude AðfÞ is
defined as

AðfÞ≡ Cf−7=61

8>>><
>>>:

f0−7=6
h
1þP

3
i¼2 αiv

i
i

f0 ≤ f < f1

wmf0−2=3
h
1þP

2
i¼1 ϵiv

i
i

f1 ≤ f < f2

wrLðf; f2; σÞ f2 ≤ f < f3

ð3:1Þ

where C ¼ M5=6

dπ2=3
ð5η
24
Þ1=2 and d is the effective distance to the

source.2 The frequencies f1; f2 are the transition frequen-
cies between the inspiral, merger and merger, ringdown
stages. The amplitude is zero below the cutoff frequency f0
and above the cutoff frequency f3. The other quantities
appearing in the above expression are, f0 ≡ f=f1,
v≡ ðπMfÞ1=3, Lðf; f2; σÞ is a Lorentzian function with
width σ centered around the frequency f2. The normali-
zation constants wm and wr make the amplitude smooth
over the transition frequencies f1 and f2. The phenom-
enologically introduced parameters ϵ1 ¼ 1.4547χ − 1.8897
and ϵ2 ¼ −1.8153χ þ 1.6557 model the amplitude of the
merger part, while α2 ¼ −323=224þ 451η=168 and α3 ¼
ð27=8 − 11η=6Þ are the 1.5PN accurate PN corrections to
the inspiral amplitude.
The phase of the waveform is given by

ΨðfÞ≡ 2πft0 þ ϕ0 þ
3

128ηv5

�
1þ

X7
k¼2

ψkvk
�
; ð3:2Þ

2Effective distance is a combination of the luminosity distance,
the antenna pattern functions of the detector and the inclination
angle of the binary, which determines the observed amplitude of
GW signals in the detector.
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where t0 and ϕ0 are the time of arrival of the signal and the
corresponding phase by t0 and ϕ0, respectively. The
phenomenologically calibrated parameters ψk describes
the phase evolution of the binary and are given in
Table I of [40].

B. Choice of coordinates

It is desirable to have a coordinate system in which the
metric is (at least nearly) constant over the parameter space.
For example, the approximation for the mismatch given in
Eq. (2.4) assumes that the metric is nearly constant over the
two points in the parameter space for which the match is
computed, and hence is slowly varying over the parameter
space. Additionally, knowledge of a coordinate system in
which the local density of templates (which is proportionalffiffiffiffiffiffijgjp

) over the parameter space is nearly constant is greatly
helpful for stochastic placement methods, since the new
random “proposals” of the templates can be drawn from a
simple uniform distribution [55]. The conventional “physi-
cal” parameters of the binary, such as fM; η; χg do not form
a nice coordinate system for this purpose, since

ffiffiffiffiffiffijgjp
varies

by at least 4 orders of magnitude over the parameter space
of interest (1M⊙ ≲m1; m2, m1 þm2 ≳ 10M⊙, −0.95 ≲
χ ≲ 0.95). A set of coordinates termed chirp times
were introduced by [45] in which the nonspinning PN
metric is slowly varying. This was generalized to the
case of nonprecessing spins by [55]. The square root of
the determinant of the PN metric computed in this
coordinate system is found to have variation ≲30 over
the “low-mass” region in the parameter space
(1M⊙ ≲m1; m2 ≲ 20M⊙) [55].
We have found that in the PN chirp time coordinate system,

the square root of the determinant of the IMRPHENOMB
metric has a variation of ∼100 over the parameter
space of interest (1M⊙ ≲m1; m2, m1 þm2 ≳ 10M⊙,
−0.95≲ χ ≲ 0.95). Here we introduce a new coordinate
system fξ0; ξ3; ξ3Sg, which is a modified version of the
PN chirp time coordinates.

ξ0 ≡ 5

128ηðπMf0Þ5=3
; ð3:3Þ

ξ3 ≡ π

4ηðπMf0Þ2=3
; ð3:4Þ

ξ3S ≡ πð17022 − 9565.9χÞ
4ðπMf0Þ2=3

: ð3:5Þ

It can be seen that ξ0 and ξ3 are nothing but the dimensionless
chirp times introduced in [47]:

ξ0 ¼ 2πf0τ0; ξ3 ¼ −2πf0τ3; ð3:6Þ

where τ0 and τ3 are the familiar Newtonian and 1.5PN chirp
times [45,59], and f0 is the low-frequency cutoff of the
detector noise.
The PN chirp time coordinates are judiciously chosen to

make the corresponding PN coefficients in the phasing
formula (at 0PN and 1.5PN order) linear in these coor-
dinates. For the case of nonspinning IMRPHENOMB wave-
forms, the 0PN term in the phase is the same as that of the
PN waveform. Also the η− independent coefficient (test-
mass limit) in the 1.5PN term is the same as that of the PN
waveform (see Table I of [40]). Hence the corresponding
(dimensionless) PN chirp times (ξ0; ξ3) make the metric
nearly constant over the two dimensional space of mass
parameters. But, when spins are included, the 1.5PN
coefficient of the IMRPHENOMB phase has terms up to
quadratic order in η and χ. Further, for ease of computa-
tions, the coordinates have to be invertible and the trans-
formation has to be bijective. With these aims, we write ξ3S
as a product of ξ3 and the terms linear in η and ηχ in the
1.5PN order coefficient of IMRPHENOMB waveform phase.
Admittedly, our procedure of finding the new coordinate
system is somewhat ad-hoc and there may be a better
coordinate system in which the variation of the metric is
even smaller. However, we believe that this coordinate
system is adequate for the purposes of template placement
and coincidence tests.
The physical parameters can then be written in terms of

our new coordinates fξ0; ξ3; ξ3Sg as

M ¼ 5

32π2f0

ξ3
ξ0

ð3:7Þ

η ¼
�
16π5

25

�
1=3 ξ2=30

ξ5=33

ð3:8Þ

χ ¼ 17022

9565.9
−

ξ3S
9565.9

�
25ξ23
16π5ξ20

�
1=3

ð3:9Þ

In this coordinate system,
ffiffiffiffiffiffijgjp

has a maximum variation
of ≲40 over the parameter space of interest. Figure 1
provides a comparison of the

ffiffiffiffiffiffijgjp
as computed in the two

different coordinate systems.

C. Computation of the metric

The codes to compute the metric are available as part of
the LALSIMULATION package, which is part of the LSC
Algorithms Library [60]—the core software package used
for GW data analysis by the LIGO-Virgo collaborations.
Here we provide some details of the numerical implemen-
tation of the computation of the metric in LALSIMULATION.
The IMRPHENOMB waveform amplitude described in
Sec. (III A) can be rewritten as
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AðfÞ≡
8><
>:

A1ðfÞ; f0 ≤ f < f1
A2ðfÞ; f1 ≤ f < f2
A3ðfÞ; f2 ≤ f < f3:

ð3:10Þ

Above,

A1ðfÞ ¼
X3
k¼0

βkðλÞfð2k−7Þ=6; βk ≡ CαkðπMÞk=3;

A2ðfÞ ¼
X2
k¼0

κkðλÞfðk−2Þ=3; κk ≡ CwmϵkðπMÞk=3f−1=21 ;

A3ðfÞ ¼ ξðλÞLðf; f2; σÞ; ξ≡ Cwrf
−7=6
1 ð3:11Þ

where λ≡ fM; η; χg is the set of intrinsic parameters.3

Similarly, the phase can be written as

ΨðfÞ ¼
X7
k¼0

φkðλÞfðk−5Þ=3; ð3:12Þ

where

φk ¼
3

128η
ψkðπMÞðk−5Þ=3 for k ≠ 5;

φ5 ¼
128η

3
: ð3:13Þ

This allows us to rewrite the Fisher matrix defined in
Eq. (2.6) as

Γij≃ 1

2‖h‖2
X3
a¼1

½hAa∂iΨ;Aa∂jΨiþh∂iAa;∂jAai�; ð3:14Þ

where

FIG. 1 (color online). Variation of the square root of the determinant of the IMRPHENOMB metric over the parameter space. The plots
show the contours of 1

2
ðlog jgj − log jgjminÞ, where jgjmin is the minimum value of jgj in each panel. In the top panel, the metric is

computed in the fM; η; χg coordinate system, while in the bottom panel the metric is computed in the fξ0; ξ3; ξ3Sg coordinate system
[see Eq. (3.3) for definition]. It can be seen that the variation of the quantity over the parameter space in the bottom panels is significantly
smaller than that in the top panels.

3Note that α1 ¼ 0 in Eq. (3.11).
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∂iA1ðfÞ ¼
X3
k¼0

∂iβkðλÞfð2k−7Þ=6;

∂iA2ðfÞ ¼
X2
k¼0

∂iκkðλÞfðk−2Þ=3;

∂iA3ðfÞ ¼ ξðλÞ∂iLðλ; fÞ þ ∂iξðλÞLðλ; fÞ;

∂iΨðfÞ ¼
X7
k¼0

∂iφkðλÞfðk−5Þ=3: ð3:15Þ

The Fisher matrix is computed by numerically integrating
the expression (3.14) where the derivatives are computed
analytically. Note that, in this way, the derivatives have to
be evaluated only once for one computation of the metric,
improving the efficiency of the computation.
The Fisher matrix computed in physical coordinate

system λ≡ fM; η; χg can be transformed to the modified
chirp time coordinate system θ≡ fξ0; ξ3; ξ3Sg in the
following way:

Γ0 ¼ JTΓJ; ð3:16Þ
where J is the Jacobian matrix of coordinate transformation
Jik ¼ ∂λi=∂θk. The Fisher matrix Γ0 in the modified chirp
time coordinate system is used to compute the template-
space metric using Eq. (2.7).

IV. RESULTS AND DISCUSSION

In this section, we discuss the results for the two-
dimensional metric of the nonspinning IMRPHENOMB
waveform and the three-dimensional metric of the non-
precessing IMRPHENOMB waveform. Metric calculations
have been done assuming ALIGOZERODETHIGHPOWER

noise power spectral density of advanced LIGO [61]
employing a low-frequency cutoff f0 ¼ 20 Hz.

A. Metric of the nonspinning
IMRPHENOMB waveforms

The nonspinning IMRPHENOMB waveforms, described
by fM; η; t0;ϕ0g, can be easily obtained by setting the

FIG. 2 (color online). Comparison of the match ellipses computed from the nonspinning IMRPHENOMB metric (black ellipses) with
contours of the “exact”match function of IMRPHENOMB computed numerically (color contours). The rows correspond to different total
masses (20M⊙; 50M⊙; 100M⊙) and the columns correspond to different symmetric mass ratios (0.25,0.16,0.08,0.02). The solid
(dashed) black ellipses correspond to a match of 0.99(0.97).
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effective spin parameter χ ¼ 0 in the waveform discussed
in Sec. III A. We then compute the corresponding 4 × 4
Fisher matrix using Eq. (2.6) and obtain the two-
dimensional metric by projecting the Fisher matrix
orthogonal to t0 and ϕ0 using Eq. (2.7). The quantityffiffiffiffiffiffijgjp

has a large variation over the parameter space while
using ðM; ηÞ as the coordinates (see Fig. 1). Hence keeping
the template placement problem in mind, we use ðξ0; ξ3Þ,
the PN chirp times coordinates, in the future calculations.
Figure 2 compares the ellipses corresponding to constant

matches (0.97 and 0.99) obtained semianalytically within
the quadratic metric approximation (black ellipses) with the
contours of the match function computed numerically
(colored contours). Rows denote different total masses
20M⊙, 50M⊙ and 100M⊙ and the columns denote differ-
ent symmetric mass ratios 0.25, 0.16, 0.08 and 0.02. It is
clear from the figure that the semianalytical and numerical
contours agree very well for a match of 0.99 but they differ
slightly for a smaller match of 0.97. This is likely due to the

inaccuracy of the quadratic approximation to the match
function [see Eq. (2.4)] for larger values of parameter
differences. The inaccuracy of the metric approximation is
the largest for binaries with large, comparable masses,
likely due to the fact that they have a small number of GW
cycles in the detector band. Despite this, the agreement
between the semianalytical and numerical contours is
excellent, suggesting that the nonspinning metric computed
here can be used for construction of template banks and for
multi-detector coincidence tests in searches employing
IMRPHENOMB templates.
The IMRPHENOMB waveform has been calibrated

against numerical-relativity simulations with mass ratio
≤4, and is not expected to be faithful toward GW signals
from BBHs with large mass ratios [40]. However, several
more recent models, in particular the EOBNRV2 model,
have been constructed and are expected to be more faithful
for large mass ratios as well. Having verified that our metric
is able to produce an excellent approximation to the match

FIG. 3 (color online). Comparison of the match ¼ 0.97 ellipses computed from the nonspinning IMRPHENOMBmetric (black ellipses)
with contours of the numerically-computed “exact” match function of the nonspinning EOBNRV2 waveforms (color contours). Also
shown are the match ellipses from the metric of 3.5PN waveforms truncated at LSO (red ellipses) and the metric of the 1.5PN waveforms
truncated at 1024Hz (black dashed ellipses). The rows correspond to different total masses (20M⊙; 50M⊙; 100M⊙) and the columns
correspond to different symmetric mass ratios (0.25,0.16,0.08,0.02).
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function of the IMRPHENOMB waveform, we now inves-
tigate the ability of the IMRPHENOMB metric, and some
variants of the PN metric, to model the match function of
the EOBNRV2 waveform.
The results are displayed in Fig. 3. It can be seen that the

IMRPHENOMB metric produces a reasonable approximation
to the size of the 0.97 match contour at all points in the
parameter space; but the orientation of the ellipses start to
deviate from that of the constant match contours for small
mass ratios (η → 0). We also compare the numerical match
contours of theEOBNRV2with twovariants of the PNmetric:
(i) the metric of the restricted PN waveform with 3.5PN
accurate phasing terminated at the last stable orbit frequency
fLSO of the Schwarzschild geometry, and (ii) the metric of
the restricted 1.5PN waveform terminated at 1024 Hz. The
former is the most accurate PN metric available now and the
latter is the metric used for two of the previous searches
(employing IMR templates) for GWs from high-mass BBHs
on the LIGO-Virgo data [12,13]. It is evident that the
3.5PN metric overestimates the size of the match contour

significantly. The overestimation becomes severe as we go to
higher mass systems. Using this metric in the template
placement will cause severe under-coverage of the parameter
space. Surprisingly, themetric of 1.5PNwaveform terminated
at 1024 Hz provides a reasonable approximation to the
EOBNRV2 match contours at low masses. However, in the
high-mass regime ðM ≳ 50M⊙Þ, the analyticalmatch ellipses
computed using this metric are significantly smaller than the
exact match contours. This will cause significant over-
coverage of the template bank when used in template
placement. However, we note that it might be possible to
improve the agreement of this metric (which, we believe is
accidental) by tuning the termination frequency.

B. Metric of the nonprecessing
spin IMRPHENOMB waveforms

The three-dimensional metric corresponding to the two
mass parameters and the effective spin parameter can be
computed starting from a 5 × 5 Fisher matrix correspond-
ing to fξ0; ξ3; ξ3S; t0;ϕ0g, where ξk represent the new

FIG. 4 (color online). Comparison of the match ellipses computed from the nonprecessing spin IMRPHENOMB metric (black ellipses)
with contours of the “exact” match function of IMRPHENOMB computed numerically (color contours). The total mass, symmetric mass
ratio, and the effective spin parameter (M; η; χ) corresponding to point in the parameter space relative to which the match function is
computed is shown on the top of each column. The different rows correspond to two-dimensional slices of these contours in the
Δξ0 − Δξ3 plane (top row),Δξ0 − Δξ3S plane (middle row) andΔξ3 − Δξ3S plane (bottom row). The solid black ellipses correspond to a
match of 0.99 and dashed black ellipses correspond to a match of 0.97.
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coordinates introduced in Sec. III B. Projection of the
Fisher matrix orthogonal to (t0;ϕ0) will give the three-
dimensional IMRPHENOMB metric for nonprecessing bina-
ries. Ellipses corresponding to the two-dimensional slices
of the three-dimensional ellipsoid are shown in Fig. 4,
which are compared against the two-dimensional slices of
the contours of the three-dimensional match function
computed numerically for IMRPHENOMB waveform.
Each column specifies the total mass, symmetric mass
ratio and effective spin parameter that are considered. The
solid black ellipses represent the contours of match 0.99
and the dashed black ones correspond to a match of 0.97.
We find excellent agreement between the ellipses obtained
from metric and the numerical contours for a match of 0.99.
The agreement is not so good for a match of 0.97 as it is for
a match of 0.99. Such a disagreement we have already
encountered in the case of two-dimensional ellipses and is
argued to be due to the breakdown of the (quadratic) metric
approximation to the match function. However, in general,
the agreement between the analytically computed match
function from the metric and the numerical exact match
contours is excellent.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper we computed the template-space metric of
the inspiral, merger, ringdown gravitational waveform
family IMRPHENOMB. We proposed a coordinate system
(which is an adaptation of the PN chirp time coordinates) in
which the metric is slowly varying over the parameter space
of interest. The semianalytical match function computed
using the metric has excellent agreement with the exact
match function of the IMRPHENOMB waveform computed
numerically. In addition, we have also shown that the
analytical match function computed using the
IMRPHENOMB metric agrees well with the exact match
function of other IMR waveform families, such as the
EOBNRV2 over the entire parameter space of interest. This
will potentially allow us to use the IMRPHENOMB metric in
the searches for GWs from BBHs that employ more
accurate IMR waveform families as well (the ones that
are already available and those under development). There
is ongoing work to employ this metric in the construction of

IMR template banks (primarily using stochastic placement
methods) as well as in multi-detector coincidence tests [62].
We anticipate that this will contribute to improving the
sensitivity of searches for GWs from BBHs in the advanced
detector era.
We note that there is an alternative proposal to use “exact

coincidence” criterion between multi-detector triggers,
whereby the same template bank is used in multiple
detectors and two triggers are considered coincident only
if they are detected with exactly the same parameters (see,
e.g., [63]). While this method has its own advantages, it is
quite possible that a given signal is ascribed different
parameters in two detectors due to the presence of noise,
potentially missing a coincidence. Thus, designing a
coincidence criterion based on the real metric of the
templates is likely to be advantageous. However, only an
apples-to-apples comparison can quantify the advantage or
disadvantage of these methods, and we leave this as
future work.
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