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We apply the methods of transformation optics to theoretical descriptions of spacetimes that support
closed null geodesic curves. The metric used is based on frame dragging spacetimes, such as the van
Stockum dust or the Kerr black hole. Through transformation optics, this metric is analogous to a material
that in theory should allow for communication between past and future. Presented herein is a derivation and
description of the spacetime and the resulting permeability, permittivity, and magnetoelectric couplings that
a material would need in order for light in the material to follow closed null geodesics. We also address the
paradoxical implications of such a material and demonstrate why such a material would not actually result
in a violation of causality. A full derivation of the Plebanski equations is also included.
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I. INTRODUCTION

Since the first papers by Pendry [1] and Leonhardt [2],
the subject of invisibility cloaks has garnered much
attention in the literature. For the design of these cloaks,
the recent field of transformation optics (TO) was devel-
oped. Though TO bestows on the scientist near-unlimited
control of the movement of light, most research efforts have
been directed to perfecting the invisibility devices that
initially drew attention to the field.
TOuses the coordinate invariance ofMaxwell’s equations

to set up an analogy betweenMaxwell’s equations in curved
vacuum spacetime to Maxwell’s equations in a flat space-
time with a particular medium. Therefore, so long as we
have a mathematical description of a curved spacetime, an
analogous material can be constructed within which light
will behave similarly to the curved spacetime. For a fuller
introduction to the subject of TO, the reader is referred to the
excellent paper by Leonhardt and Philbin [3].
Due to the direct parallels between TO and general

relativity (GR), some interest has been directed toward the
design of materials that would simulate various models of
spacetime, hopefully allowing astronomers to study systems
such as black holes in the laboratory. Proposals for materials
mimicking the effects of de Sitter space [4], Schwarzschild
black holes [5], Kerr black holes [6], spatial wormholes [7],
Alcubierre warp drive geometries [8], and so-called optical
black holes [9,10] have been put forward. The possibilities
for materials are nearly endless, and any kind of spacetime
geometry, no matter how bizarre—including those which do
not solve the Einstein equations—can, at least in theory, be
modeled using the formalism of TO.
Herein, we propose a material that will use transforma-

tion optics to simulate one of the more imaginative and
hotly debated aspects of curved spacetimes; namely, the

possibility of time travel to the past along closed causal
curves. In the literature, most interest in time travel metrics
has been directed toward curves that allow matter to move
back in time, often called closed timelike curves (CTCs). In
TO, we are interested in the movement of light, which in
GR is known to follow null geodesics. Of particular interest
is the case of closed null geodesics (CNGs), which would
form a continuous loop in lab time from the future to the
past. In Sec. III we construct a metric that produces CNGs,
without regard to the usual physical constraints of the
energy conditions.
Using the same procedure that led to the invisibility

cloak design and the dielectric black hole design, we use
the metric tensor of our spacetime that supports CNGs to
generate material parameter tensors (MPs), namely per-
mittivity ϵ, permeability μ, and magnetoelectric tensors
γ1; γ2, the effect of which on the fields is expressed by

~D ¼ ϵ~Eþ γ1 ~H; ~B ¼ μ ~H þ γ2 ~E: ð1Þ

We will show that within this resultant material there exist
CNGs that can span a finite lab time difference T, allowing
signaling from the future to the past along the CNGs. This
would, in theory, allow information from the future to have
an impact on the past.
In Sec. II we derive the Plebanski equations [11], which

relate curved spacetimes to material parameters, following
the Minkowski formalism of electromagnetism. After this,
in Sec. III we propose a simplified spacetime metric that
should produce such curves. In Sec. IV we combine the
results of the previous sections and explicitly solve for the
MPs based on the formalism presented. We also provide a
sketch showing how such a material could be used to
communicate with the past. Finally, in Sec. V, we point out
technical limitations which should impede the actual
functioning of any such device as that proposed here.*rboston@physast.uga.edu
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II. TRANSFORMATION OPTICS IN SPACETIME

Here we derive the Plebanski equations, which connect
curved spacetimes with bianisotropic media. These equa-
tions were predicted by many, including Landau and
Lifschitz [12], but saw their first practical use by
Plebanski [11] in 1959. We begin our derivation following
Thompson et al. [13], with the field-strength tensor
F ¼ dA. In Cartesian components,

Fμν ¼

0
BBB@

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

1
CCCA; ð2Þ

and its dual tensor is G ¼ ⋆F, with Cartesian components

Gμν ¼

0
BBB@

0 Hx Hy Hz

−Hx 0 Dz −Dy

−Hy −Dz 0 Dx

−Hz Dy −Dx 0

1
CCCA; ð3Þ

both given in Minkowski spacetime using c ¼ 1 and the
(−þþþ) sign convention for the metric.
In terms of these two tensors, the four Maxwell equa-

tions simplify to the two equations

dF ¼ 0 ⇔ ∇½αFβγ� ¼ 0 ð4aÞ

dG ¼ J ⇔ ∇½αGβγ� ¼
ffiffiffiffiffi
jgj

p
ϵαβγδjδ; ð4bÞ

where g ¼ detðgÞ and g is the metric tensor of spacetime.
The defining equationG ¼ ⋆F states thatG is the Hodge

dual of F, where ⋆ is the Hodge star operator, the effect of
which on F can be expressed in component form by

G ¼ ⋆F ⇔ Gαβ ¼
1

2

ffiffiffiffiffi
jgj

p
ϵαβμνgμλgνκFλκ: ð5Þ

From here, Ref. [13] goes on to derive a covariant
expression of TO in spacetime. The authors propose a
slightly more general relationship, G ¼ χð⋆FÞ, where χ is
an antisymmetric 4-tensor that is meant to contain all
information about media in the spacetime. They then apply
coordinate transformations to express the effect of a curved
spacetime with metric g in terms of a flat spacetime with a
medium given by χ. Their result proves TO to be a
covariant theory applicable to any coordinate system.
Having noted their result, and the concomitant assurance

that TO works in any spacetime, we take a slightly simpler
approach, following that of Plebanski [11]. We will work
only in Cartesian coordinates and assume our medium to be
stationary relative to the laboratory coordinates. Let us start
with (5),

Gμν ¼ ð⋆FÞμν ¼ 1

2

ffiffiffiffiffi
jgj

p
ϵμναβgαλgβκFλκ: ð6Þ

From the forms given by (2) and (3), clearly Ea ¼ Fa0,
Ha ¼ G0a, Da ¼ 1

2
ϵabcGbc, and Fab ¼ ϵabcBc. Let us first

consider specifically the D1 ¼ G23 component. Then

D1 ¼
ffiffiffiffiffijgjp
2

ϵ23αβgαλgβκFλκ

¼
ffiffiffiffiffijgjp
2

ϵ23αβ½gα0gβaF0a þ gαagβ0Fa0 þ gαagβbFab�

¼
ffiffiffiffiffijgjp
2

½2g0ag10Fa0 − 2g1ag00Fa0 þ 2g0ag1bFab�

¼
ffiffiffiffiffi
jgj

p
ðg10g0a − g00g1aÞEa þ

ffiffiffiffiffi
jgj

p
g0ag1bϵabcBc:

Performing the same evaluation on the other two compo-
nents, we find

Da ¼
ffiffiffiffiffi
jgj

p
ðga0gb0 − g00gabÞEb þ

ffiffiffiffiffi
jgj

p
gadg0cϵdcbBb:

ð7Þ

Next we look at H1 ¼ G01. Here

H1 ¼
ffiffiffiffiffijgjp
2

ϵ01αβgαλgβκFλκ

¼
ffiffiffiffiffijgjp
2

ϵ1ab½ga0gbcF0c þ gacgb0Fc0 þ gacgbdFcd�

¼
ffiffiffiffiffi
jgj

p
ϵ1abga0gbcEc þ

1

2

ffiffiffiffiffi
jgj

p
ϵ1abgacgbdϵcdeBe;

with the general result

Ha ¼
ffiffiffiffiffi
jgj

p
ϵabcgb0gcdEd þ

ffiffiffiffiffijgjp
2

ϵabcgbdgceϵdefBf: ð8Þ

These two equations can be written more simply as

Da ¼ eabEb þ fabBb; Ha ¼ habBb þ kabEb; ð9Þ

and, upon rearrangement and simplification to the standard
form, we arrive at the result of Plebanski,

Da ¼ −
ffiffiffiffiffijgjp

g00
gabEb þ ϵabc

g0b
g00

Hc ð10aÞ

Ba ¼ −
ffiffiffiffiffijgjp

g00
gabHb − ϵabc

g0b
g00

Ec: ð10bÞ

In terms of the MPs, this gives

ϵab ¼ μab ¼ −
ffiffiffiffiffijgjp

g00
gab ð11aÞ
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γab1 ¼ ðγT2 Þab ¼ ϵacb
g0c
g00

; ð11bÞ

where

Da ¼ ϵabEb þ γab1 Hb; Ba ¼ μabHn þ γab2 Eb: ð12Þ

Thus, the curved spacetime of gαβ is equivalent to a flat
spacetime with MPs ϵab; μab; γab1 ; γab2 .
As Thompson and Plebanski both note [11,13], the

above equations do not conserve index type, nor are they
covariant, and they are only applicable to stationary media
within a locally flat lab frame in Cartesian coordinates.
Despite this, the above equations are completely equivalent
to the more general, covariant approach in Ref. [13] for the
case of a stationary medium and can be extended to the
covariant equations. These equations should therefore be
applicable to a medium intended to emulate the effects of a
curved spacetime.

III. CONSTRUCTING A METRIC WITH CLOSED
NULL GEODESICS

There has been much debate in scientific circles about
the possibility of time travel to the past. Forward time travel
is, of course, trivially simple to achieve; it is the reverse
situation that gives us such trouble. Most proposals require
either particular models of the entire Universe that are
empirically false (for instance the Gödel metric [14]) or else
highly idealized systems that cannot be physically realized
(such as the negative energy densities of wormholes or the
infinite rotating systems of van Stockum spacetimes [15]).
For this reason, many physicists are comfortable dismissing
the predicted causality violations in these contrived space-
times as purely mathematical and unphysical—as they
say, “garbage in/garbage out.” More damning, Stephen
Hawking has proposed a mechanism dubbed the
Chronology Protection Conjecture [16], whereby quantum
propagators approaching CTCs (should any exist) are
shown to be unstable—leading to divergent stress-
energies—and hence break whatever time-travel metric
they come from, prohibiting time travel. For a fuller
discussion of the possibilities of time travel in a general
relativistic framework, the reader is referred to a lecture by
Thorne [17] on the topic of the possibility of CTCs in GR.
Whether such a spacetime can or cannot be realized

physically through various arrangements of stress-energy is
not of interest of this present work; we make our curved
spacetimes with metamaterials, not stress-energy densities.
We are interested, however, that a spacetime with CNGs
can be described mathematically in terms of a metric tensor.
As in Eq. (10) above, if we have a spacetime with a

metric gαβ, it is possible to use this metric to calculate a
related material with MPs ϵab; μab; γab1 ; γab2 so that light
inside the material emulates light in the curved spacetime.
We will now explicitly construct a metric that allows for

CNGs. Our calculation is intended as a proof of concept,
and hence we will keep the result as theoretically simple as
possible.
We begin with a simple metric with two unspecified

functions,

ds2 ¼ −dt2 þ dr2 þ Bdϕ2 þ dz2 þ 2Fdϕdt; ð13Þ

where c ¼ 1 and B and F are functions of r and ϕ only. We
will use the most general case for now and apply some
reasonable restrictions later. The metric tensor and its
inverse are then

gαβ ¼

0
BBB@

−1 0 F 0

0 1 0 0

F 0 B 0

0 0 0 1

1
CCCA;

gαβ ¼

0
BBB@

−B
BþF2 0 F

Bþf2 0

0 1 0 0

F
BþF2 0 1

BþF2 0

0 0 0 1

1
CCCA: ð14Þ

The condition for a curve to be a null curve is

0 ¼ ds2 ¼ −dt2 þ dr2 þ Bdϕ2 þ dz2 þ 2Fdtdϕ: ð15Þ

In addition to the null condition, a null geodesic also
satisfies the geodesic equations

d2xα

dλ2
þ Γα

βγ

dxβ

dλ
dxγ

dλ
¼ 0; ð16Þ

for any affine parameter λ. This requires knowledge of the
Christoffel symbols, which we can find using the formula

Γα
βγ ¼

1

2
gαδðgδβ;γ þ gδγ;β − gβγ;δÞ: ð17Þ

Solving, all vanish, except for

Γ0
01 ¼

1

2

F
Bþ F2

∂F
∂r ; Γ2

01

1

2

1

Bþ F2

∂F
∂r

Γ1
02 ¼ − 1

2

∂F
∂r ; Γ1

22 ¼ − 1

2

∂B
∂r

Γ0
12 ¼

1

2

F ∂B
∂r − B ∂F

∂r
Bþ F2

; Γ2
12 ¼

1

2

F ∂F
∂r þ ∂B

∂r
Bþ F2

Γ0
22 ¼

−B ∂F
∂ϕ þ 1

2
F ∂B

∂ϕ
Bþ F2

; Γ2
22 ¼

F ∂F
∂ϕ þ 1

2
∂B
∂ϕ

Bþ F2
:

We now impose a specific form for our curve, having
constant radius and height; that is, t ¼ tðϕÞ,
r ¼ const; z ¼ const, and we are using ϕ to parameterize.
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To enforce closure of the curve, we require that
tðϕÞ ¼ tðϕþ 2πÞ. For simplicity, we will use uðϕÞ ¼ dt

dϕ
in all future equations.
There are two first integrals of note. The null condition

(15) becomes

0 ¼ −u2 þ 2Fuþ B: ð18Þ

Also, since our spacetime has no time dependence, we have
the Killing equation (see Ref. [18]) with Killing vector
ξα ¼ ð1; 0; 0; 0Þ, which leads to

−K ¼ gαβξαuβ ¼ −uþ F; ð19Þ

for constant K. Further, the geodesic equations give us

0 ¼ du
dϕ

− B
Bþ F2

∂F
∂ϕ þ 1

2

F
Bþ F2

∂B
∂ϕ ð20Þ

0 ¼ 2F
∂F
∂ϕ þ ∂B

∂ϕ ð21Þ

0 ¼ −2
∂F
∂r u − ∂B

∂r : ð22Þ

We now attempt to solve this system of coupled equations
for F and B.
Consider Eq. (19); here u ¼ uðϕÞ and F ¼ Fðr;ϕÞ.

However, the two added together equal a constant, K.
Therefore, it must be the case that Fðr;ϕÞ ¼ fðϕÞ. We can
then cross out all ∂F

∂r terms in Eqs. (20)–(22). Now let us
combine (18) with (19); this gives us

B ¼ K2 − f2; ð23Þ

which likewise implies that Bðr;ϕÞ ¼ bðϕÞ, and we can
remove all ∂B

∂r terms. Note that in this case, with
K2 ¼ f2 þ b, Eqs. (21) and (22) are trivially satisfied.
The last step is to check (20). Note that in terms of u

Fðr;ϕÞ ¼ fðϕÞ ¼ u − K ð24Þ

Bðr;ϕÞ ¼ bðϕÞ ¼ 2Ku − u2: ð25Þ

From this, we find

∂F
∂ϕ ¼ du

dϕ
;

∂B
∂ϕ ¼ 2K

du
dϕ

− 2u
du
dϕ

¼ −2f du
dϕ

such that

du
dϕ

− b
K2

∂F
∂ϕ þ 1

2

f
K2

∂B
∂ϕ

¼ du
dϕ

− b
K2

du
dϕ

− f2

K2

db
dϕ

¼ du
dϕ

�
1 − b

K2
− f2

K2

�

¼ du
dϕ

�
1 − K2

K2

�
¼ 0:

Therefore, all four geodesic equations are satisfied for a
curve uα ¼ ðuðϕÞ; 0; 1; 0Þ, in a spacetime with metric
components defined as in Eqs. (25) and (24). Note that
here uðϕÞ is unspecified. We are free to pick u however
we would like, subject to the restriction that
uðϕÞ ¼ uðϕþ 2πÞ. Here we will choose the path

tðϕÞ ¼ T sin2
ϕ

2
ð26Þ

uðϕÞ ¼ hðϕÞ ¼ T
2
sinϕ; ð27Þ

which will loop up by T in time, before looping back to
the origin.
We can write the metric, in terms of hðϕÞ ¼ T

2
sinϕ, as

gαβ ¼

0
BBBBB@

−1 0 h − K 0

0 1 0 0

h − K 0 hð2K − hÞ 0

0 0 0 1

1
CCCCCA
: ð28Þ

Note, it is crucial that K ≠ 0, for then the metric will be
singular.
Suppose we consider a new geodesic, parametrized by

affine parameter λ with 4-velocity uα ¼ ð_t; _r; _ϕ; _zÞ. This
geodesic satisfies the geodesic equations, which are now
simplified to

0 ¼ ̈tþ
_ϕ2

K2

�
1

2
f
∂b
∂ϕ − b

∂f
∂ϕ

�
ð29Þ

0 ¼ ̈r ð30Þ

0 ¼ ϕ̈þ
_ϕ2

K2

�
f
∂f
∂ϕþ 1

2

∂b
∂ϕ

�
ð31Þ

0 ¼ ̈z; ð32Þ

where fðϕÞ ¼ hðϕÞ − K and bðϕÞ ¼ 2KhðϕÞ − hðϕÞ2.
These solve as

_tðλÞ ¼ _ϕohðϕÞ þ _to ð33Þ
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rðλÞ ¼ _roλþ ro ð34Þ

ϕðλÞ ¼ _ϕoλþ ϕo ð35Þ

zðλÞ ¼ _zoλþ zo; ð36Þ

giving the requirements for a geodesic in this spacetime.
If we choose _to ¼ _ro ¼ _zo ¼ 0, then _tðϕÞ ¼ _ϕohðϕÞ,
returning our desired curve, up to the choice of affine
parametrization in _ϕo.
As a check of the physicality of (28), we follow Landau

and Lifschitz [12] and ensure that the sign of the sub-
determinants of the metric is negative. Most of these are
trivially satisfied, with the exception of

���� g00 g02
g20 g22

���� ¼
����−1 f

f b

����;
�������
g00 g01 g02
g10 g11 g12
g20 g21 g22

�������
¼

������
−1 0 f

0 1 0

f 0 b

������;
�������
g00 g02 g03
g20 g22 g23
g30 g32 g33

�������
¼

������
−1 f 0

f b 0

0 0 1

������; ð37Þ

all of which reduce to −b − f2 ¼ −K2 < 0. Thus, as per
Landau and Lifschitz, the metric in (28) corresponds to a
physical spacetime.
We have thus proved that our spacetime permits a CNG.

We will now move on to combining this equation with the
Plebanski equations, to solve for the analogous medium.

IV. ANTITELEPHONIC MEDIUM

The metric above has been shown to support closed null
geodesics—paths along which light is known to move
backward relative to lab time. TO allows us to use the
spacetime metric (28) to formulate a material within which
light should exhibit the same behavior as in the curved
spacetime above; namely, light in the material should also
move in CNGs. We propose a device that uses this material
to communicate with the past or the future, which we
henceforth refer to as the TO antitelephone for its purported
ability of anticausal signaling, after the famous thought
experiment by Einstein using tachyons to the same
purpose [19].
Our metric tensor in Cartesian components is

gαβ ¼

0
BBBBB@

−1 − fy
r2

fx
r2 0

− fy
r2 1 − ð1 − b

r2Þ y
2

r2 ð1 − b
r2Þ xyr2 0

fx
r2 ð1 − b

r2Þ xyr2 1 − ð1 − b
r2Þ x

2

r2 0

0 0 0 1

1
CCCCCA
; ð38Þ

still using c ¼ 1. We calculate the MPs as in (11). These
we find to be

ϵab ¼ μab ¼

0
BB@

r
K
y2

r2 þ K
r
x2

r2 ðKr − r
KÞ xyr2 0

ðKr − r
KÞ xyr2 r

K
x2

r2 þ K
r
y2

r2 0

0 0 K
r

1
CCA ð39aÞ

γab1 ¼ ðγT2 Þab ¼

0
BB@

0 0 − f
r
x
r

0 0 − f
r
y
r

f
r
x
r

f
r
y
r 0

1
CCA; ð39bÞ

listed in Cartesian components. Due to symmetries, the
MPs take the simplest form in (orthonormal) cylindrical
components,

ϵab ¼ μab ¼

0
B@

K
r 0 0

0 r
K 0

0 0 K
r

1
CA;

γab1 ¼ ðγT2 Þab ¼

0
B@

0 0 − f
r

0 0 0
f
r 0 0

1
CA: ð40Þ

The magnetoelectric couplings γ1; γ2 can both be reex-
pressed in terms of cross products with the vector
~w ¼ − f

r ϕ̂, such that γ1~v ¼ ~w × ~v and γ2~v ¼ −~w × ~v, for
any vector ~v. Following Leonhardt and Philbin [3], this
vector ~w can be interpreted as the velocity of a moving
medium. Our ~w corresponds to a material rotating axially
with varying angular velocity, parallel to the rotating
sources that give rise to frame dragging in GR. Since
fðϕÞ is oscillatory in ϕ, a physical material moving with
velocity ~w ¼ − f

r ϕ̂ will be axially compressed and
stretched during its rotation.
The material parameters in (39), if realized, should lead

to the formation of closed causal curves, as discussed
already in Sec. III. To further solidify this connection, in the
Appendix we solve the Maxwell equations in the anti-
telephonic medium using the eikonal approximation; in
(A21) we find that in the limit of geometric optics the light
rays obey

0 ¼ gαβS;αS;β ¼ bðϕÞðS;0Þ2 − 2fðϕÞS;0S;2 − ðS;2Þ2; ð41Þ

in the usual interpretation of S;0 ¼ ω as the frequency and
∇S ¼ ~k as the wave vector of the electromagnetic fields.
That is, the wave 4-vector of the fields moving in (39) is a
null vector in the corresponding curved spacetime of
(28). This further establishes the connection between the
spacetime and the medium.
We now sketch a rough picture of how the antitelephonic

medium might be used to send signals to the past.
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We suppose, first of all, some cylinder with MPs as in
(39). The cylinder need not be solid, to avoid the singu-
larities when r ¼ 0. We also assume that r ≤ K, which will
let ϵ; μ retain non-negative values. Outside of the cylinder,
there needs to be a method of shunting light into and out of
the constant-radius CNGs; this might be accomplished by
means of fiber optic cables pointed tangentially to the
cylinder. At any time between t ¼ to and t ¼ tf (with
T ¼ tf − to), the light can be extracted at a suitable angular
position around the antitelephonic medium, according to
t ¼ tðϕÞ as in (26). By whatever means light is inserted and
extracted, it will be important that the future recipients
receive the message it encodes sometime before t ¼ tf, to
give them time to respond.
In Fig. 1 we provide a visual illustration for how

information from the future can be sent to the past.
Here, Alice and Bob are communicating by light signals
propagating along a CNGwithin the TO antitelephone. The
optical spacetime geometry of the antitelephonic medium
allows for Bob’s message to reach into the past, enabling
Alice to know the future. This presents an apparent

violation of causality. We now look at possible solutions
to this quandary.

V. LIMITATIONS TO CAUSALITY VIOLATION

The preservation of causality is essential in the classical
understanding of physics. Therefore, it is prudent to
examine a number of possible mechanisms that will prevent
a device like the TO antitelephone from working as
outlined above.
Within the context of GR, there exist situations where the

standard understanding of causality can become muddled.
As an example, supposing a laboratory frame moving along
a CTC, the causal order inside the laboratory will proceed
as normal, and all experiments performed therein will
function properly. However, in a frame of reference outside
of the CTC, an inertial observer may see such bizarre
occurrences as shards of glass collecting themselves in to a
beaker and rising in to the air. If the laboratory is caused to
move into and out of the CTC, an experimenter inside the
lab may find herself arriving before she left, as measured by
exterior clocks, even if her own clocks show an increase in
time [20].
While this violation of causality is allowable in the

classical understanding of GR, Stephen Hawking has
proposed the Chronology Protection Conjecture in order
to, as he says, “make the universe safe for historians” [16].
In his paper, Hawking claims that any curved spacetime
allowing CTCs is impossible to construct in GR because it
will require unphysical distributions of stress energy, such
as negative energy density. To go further, Hawking then
demonstrates that even if such a spacetime were to exist, it
would be impossible for an object to move in to the region
containing CTCs due to divergences in its quantum
mechanical propagator and the resulting recurvature of
spacetime from the energy needed to reach that region. Kim
and Thorne [21] likewise find this problem of diverging
stress-energy but suggest that perhaps quantum gravitation
effects will limit it; whether this is or is not the case will
depend on the form of the eventual theory of quantum
gravitation, which is still being debated. In this present
work, we are not dealing with actual gravity, and hence
quantum gravitational effects are not of interest. Further, we
do not need to approach the noncausal region directly; as
mentioned earlier, we could also use fiber optic cables,
completely bypassing this objection.
In pursuit of chronology protection, Hawking briefly

considers a metric very similar to our own, namely

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ − fdϕ2

þ 2fdϕdt;

for f ¼ r2t2 sin4 θ sin2 πr
a , to demonstrate the inability of

causality violation. This spacetime differs from ours mostly
in the form of the frame-dragging coefficients. Hawking’s

FIG. 1. Alice and Bob, separated by total time T ¼ tf − to,
communicate using the TO antitelephone. The axis of the
cylinder is along the time axis. (a.) Alice encodes her message
(“X”) at time t ¼ to and places it in the antitelephone. (d.) Alice
receives Bob’s message (“O”) at time t ¼ tA. (b.) Bob receives
Alice’s message of “X” at time t ¼ tB. (c.) At any time before
t ¼ tf, Bob replies to Alice with his own message of “O.”After tf
in the lab frame of reference, the light in the antitelephone
vanishes.
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principal objection to such a spacetime is that, based on the
Einstein equations, such a metric must come from negative
energy density; otherwise, Hawking accepts that such a
spacetime will in fact lead to violations of causality if
objects could reach the noncausal regions. This issue of
negative energy density is not a problem for us in TO, since
we intend to construct our optical spacetime from a
metamaterial, which does not have to follow any sort of
energy condition. Therefore, while Hawking’s conjecture
offers a strong argument against general relativistic time
machines to the past, neither of his arguments is of interest
to the TO antitelephone.
From a general relativistic point of view, light moving in

a spacetime with a metric such as (28) will violate causality.
While effects of GR are predicted to stop this, these effects
have no bearing in TO. Therefore, if the material can be
built, then theory predicts that it can be used to violate
causality. Since a violation of causality has never been
observed, we should look closer at the material.
Looking at the MPs in (39), they are seen to be

anisotropic, inhomogeneous, and to take values not pos-
sible in natural materials. This is analogous to other
systems studied with TO. For instance, the invisibility
cloak is anisotropic and requires an infinite light speed near
the boundary of the cloaked region, yet has been subject to
much study and lately constructed in reduced models [22].
These pathologies are usually physically achieved by
means of metamaterials, such as those made of lattices
of split-ring resonators. Each lattice site can be modeled as
an RLC circuit, where the loop of the ring itself is the
inductor and the tiny gap in the ring serves as the capacitor.
From this, we find the permittivity and permeability follow
a Lorentz model [23]. Looking at ϵϕ ¼ r=K from (40), in
the Lorentz model this becomes [24]

ϵϕðωÞ ¼ 1 − ω2
P

ω2
o − ω2 − iωγ

; ð42Þ

where ωP is a function of the capacitance and inductance,
ωo is the resonant frequency of the circuit, and γ is related
to the resistivity, specifying the loss in the circuit. This kind
of model will allow us to physically implement even the
pathological values of the components of ϵ; μ called for
in (39).
The MPs in (39) also include magnetoelectric couplings.

These are not present in most simple TO applications, such
as the invisibility cloak, though they do appear in the TO
model of the Alcubierre warp drive presented by
Smolyaninov in Ref. [8], where much attention is given
to ensure that the MPs of the warp drive conform to
physically reasonable standards. In particular, a theoretical
study by Brown et al. [25] (paralleling an earlier study by
O’Dell [26]) shows that the magnetoelectric coupling has
an upper bound placed on it by thermodynamic free energy
considerations, namely

ðγab1 Þ2 ≤ ϵaaμbb: ð43Þ

A typical component for us is γ311 ¼ f
r cosϕ. We also have

ϵ33 ¼ K
r and

μ11 ¼ r
K
sin2 ϕþ K

r
cos2 ϕ:

Therefore,

f2

r2
cos2 ϕ ¼ ðγ311 Þ2 ≤ ϵ33μ11 ¼ sin2 ϕþ K2

r2
cos2 ϕ

¼ 1þ f2

r2
cos2 ϕþ

�
b − r2

r2

�
cos2 ϕ; ð44Þ

or

0 ≤ 1þ
�
b − r2

r2

�
cos2 ϕ; ð45Þ

so that thermodynamic stability of γ1 reduces to the
condition that bðϕÞ ≥ 0 for all ϕ. However, it is not
possible for bðϕÞ to be strictly non-negative, as the
negativity of bðϕÞ is crucial to the reversal of the time
direction in the metric (28) that allows for the closure of the
null geodesic.
The antitelephonic medium considered in Sec. IV is

therefore thermodynamically prohibited. While it may be
true that a material such as (39) would violate causality if
actually constructed, it is not actually possible to construct a
medium with the necessary γ1; γ2. Thus, the TO antitele-
phone represents another instance of garbage in/garbage
out—we put in the requirement of causality violation, and
out come unphysical magnetoelectric tensors.
Having defeated the specific TO antitelephone of

Sec. IV, we note a more general principle that should
defeat any TO antitelephone. Consider light in an isotropic
medium that follows the Lorentz model (42). We have

~DðtÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dωϵðωÞ~EðωÞe−iωt: ð46Þ

As is well known, if we write ~EðωÞ as a Fourier transform
of the time domain, insert into (46), and exchange the order
of integration, the above can be simplified to

~DðtÞ ¼ ~EðtÞ þ
Z

∞

−∞
dτ~Eðt − τÞχðτÞ; ð47Þ

where χðτÞ is a response function telling us how strongly
the electric field ~Eðt − τÞ at time t − τ contributes to the
field ~EðtÞ at the present. Notice, for τ < 0, it is not
specifically ruled out that the future fields contribute to
the present fields; if χðτÞ is nonzero for τ < 0, then we will
have the future electric fields influencing the present.
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However, for the Lorentz model, the response function
takes the form of a contour integral,

χðτÞ ¼ 1

2π

Z
∞

−∞
dω

ω2
Pe

−iωτ
ω2
o − ω2 − iγω

: ð48Þ

This integrand has poles at ω ¼ −i γ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
o − γ2

4

q
, which

are in the lower half-plane. When τ > 0 (meaning we are
considering past contributions), our contour is in the
bottom half-plane, and we pick up contributions from
these two poles. When τ < 0 (meaning we are considering
future contributions), our contour is in the top half-plane,
which has no zeros, so χðτÞ ¼ 0 for all τ < 0. Therefore, in
the Lorentz model, future fields do not affect the present
[24]. Though we have applied this thought to a much
simpler situation than that of the bianisotropic materials in
TO antitelephones, it still serves to illustrate the problem.
We further notice that this effect is due to a nonzero

resistivity γ; for if γ ¼ 0 above, then the poles of the
contour integral in (48) fall on the real axis, which will
contribute for both half-planes (that is, from the future and
the past). This is a curious point. The resistivity γ represents
in a certain sense the loss of energy in the system due to
heat as current passes through a resistive element. This loss
in resistive elements is connected to heat, and this suggests
entropy.
Any real material—whether it follows the Lorentz model

or not—must undergo loss to heat as electric fields move
through it. Imagine, then, light within an antitelephonic
medium from the future event tn moving to a slightly earlier
event tn−1 as it travels along a CNG. To do this, the electric
fields of the light must interact with the elements of the
material, which produces some amount of heat δQ over
the time tn−1 − tn, which gets transmitted as waste heat to
the air in the room. In the lab frame, this means that the
overall heat of the system is decreasing over time tn − tn−1
and thatwaste heat δQ is being absorbed by the element from
the air to go into diverting the path of light. This clearly
entails a decrease in entropy in a process that does nothing
more than convert heat to useful work (the work in the
response of the material to the light fields). Hence, for any
real material, no matter what its material parameters may do
on paper, it is impossible for the future to communicate with
the past. We find this consideration the strongest, as the
Second Law has thus far proven unassailable.

VI. CONCLUSIONS AND FUTURE WORK

We have seen then that the theoretical framework behind
TO allows for materials that support CNGs. We have
explicitly derived just such a material ourselves. These
materials, if possible to physically construct, have the
predicted effect of allowing for the violation of causality,
with information from the future being able to reach the
past. This behavior follows from nothing more than the

macroscopic material properties of the medium, in terms of
how it responds to incoming electromagnetic (E&M) fields.
However, it is ultimately impossible to actually construct

such a material. This raises an interesting limitation to
transformation optics that suggests the need for a set of
equations—analogous to the energy conditions from gen-
eral relativity—that can relate the metric tensor to definite
physical limits of the material parameters. Such equations
would be able to quickly tell researchers the limits of their
transformation media. These might be able to determine,
for instance, whether it is the case that any material coming
from a spacetime with CNGs (and not just that considered
here) will be impossible to actually build.
Apart from such equations, it would be of interest to

investigate the propagators corresponding to the advanced
and retarded solutions in the spacetime/medium considered
here. In particular, future work may wish to investigate the
behavior of the advanced and retarded solutions at the
turning point of tðϕÞ in (26), their possible symmetries, and
what this says about the causal behavior of the system. This
behavior could be studied in both the curved space and the
bianistropic material, to see if there is any discrepancy in
the two which may shed additional light on the failure of
the material to actually violate causality.
In conclusion, thermodynamic limitations to the mag-

netoelectric effect will prevent the TO antitelephone from
being built, and further thermodynamic considerations
prevent any such device from violating causality, even if
they could be built. Thus, even for transformation optics,
history will indeed remain safe for historians.
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APPENDIX: EIKONAL APPROXIMATION IN
THE ANTITELEPHONIC MEDIUM

Consider electromagnetic fields ~Eðt;ϕÞ ¼ EoeiSðt;ϕÞ=εẑ
and ~Hðt;ϕÞ ¼ HoeiSðt;ϕÞ=εr̂, initially propagating in the
medium (40) in the axial direction. Note that because
the MPs in (40) are diagonal in cylindrical components
ϵ~E ¼ μ~E ¼ K

r
~E, and similarly ϵ ~H ¼ μ ~H ¼ K

r
~H. We will

insert this ansatz for the electromagnetic fields into
Maxwell’s equations and in the end take the eikonal
approximation by collecting only terms of highest order
in 1

ε; this will return us to the picture of geometric optics.
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Beginning with Maxwell’s equation for ∇ × ~H ¼ ∂
∂t ~D,

we have

∇ × ~H ¼ ∂
∂t ~D ¼ ∂

∂t ðϵ~Eþ ~w × ~HÞ ðA1aÞ

¼ K
r
∂
∂t ~Eþ ∂

∂t ð~w × ~HÞ: ðA1bÞ

Proceeding in the usual way, taking the curl and using
Maxwell’s equation ∇ × ~E ¼ − ∂

∂t ~B, we find

∇ × ð∇ × ~HÞ

¼ K
r
∂
∂t ð∇ × ~EÞ þ ∂

∂t∇ × ð~w × ~HÞ ðA2aÞ

¼ K
r
∂
∂t

�
− ∂
∂t ~B

�
þ ∂
∂t∇ × ð~w × ~HÞ ðA2bÞ

¼ −K
r
∂2

∂t2 ðμ ~H − ~w × ~EÞ þ ∂
∂t∇ × ð~w × ~HÞ ðA2cÞ

¼ −K
r
∂2

∂t2
�
K
r
~H − ~w × ~E

�
þ ∂
∂t∇ × ð~w × ~HÞ ðA2dÞ

¼ −K2

r2
∂2

∂t2 ~H þ K
r
∂2

∂t2 ð~w × ~EÞ þ ∂
∂t∇ × ð~w × ~HÞ:

ðA2eÞ

Evaluating the cross products, we find

~w × ~E ¼ − f
r
Ezϕ̂ × ẑ ¼ − f

r
Ezr̂ ðA3Þ

∇ × ð∇ × ~HÞ ¼ 1

r
∂
∂ϕ

�
− 1

r
∂
∂ϕHr

�
r̂ − ∂

∂r
�
− 1

r
∂
∂ϕHr

�
ϕ̂

ðA4Þ

∇ × ð~w × ~HÞ ¼ 1

r
∂
∂ϕ

�
f
r
Hr

�
r̂ − ∂

∂r
�
f
r
Hr

�
ϕ̂: ðA5Þ

Further, evaluating the derivatives with
Hr ¼ HoeiS=ε; Ez ¼ EoeiS=ε,

∂2

∂t2 ~H ¼
�
i
S;00
ε

− ðS;0Þ2
ε2

�
Hrr̂ ðA6Þ

∂2

∂t2 ð~w × ~EÞ ¼ −
f
r

�
i
S;00
ε

− ðS;0Þ2
ε2

�
Ezr̂ ðA7Þ

∇ × ð∇ × ~HÞ ¼ −
1

r2

�
i
S;22i
ε

− ðS;2Þ2
ε2

�
Hrr̂ − 1

r2
i
S;2
ε
Hrϕ̂

ðA8Þ

∂
∂t∇ × ð~w × ~HÞ

¼
�
i
f0

r2
S;0
ε

þ i
f
r2
S;02
ε

− f
r2
S;2S;0
ε2

�
Hrr̂ − i

f
r2
S;0
ε
Hrϕ̂:

ðA9Þ

Taking the eikonal approximation, ignoring terms of first or
lower order in 1

ε, these simplify to

∂2

∂t2 ~H ¼ − ðS;0Þ2
ε2

Hrr̂ ðA10Þ

∂2

∂t2 ð~w × ~EÞ ¼ f
r
ðS;0Þ2
ε2

Ezr̂ ðA11Þ

∇ × ð∇ × ~HÞ ¼ 1

r2
ðS;2Þ2
ε2

Hrr̂ ðA12Þ

∂
∂t∇ × ð~w × ~HÞ ¼ −

f
r2
S;2S;0
ε2

Hrr̂: ðA13Þ

The right-hand side of (A2e) is

RHS ¼
�
1

ε2

���
K2 þ Kf

Eo

Ho

�
ðS;0Þ2 − fS;2S;0

�
r̂
HoeiS

r2
;

ðA14Þ

while the left-hand side of (A2e) is just

LHS ¼
�
1

ε2

�
ðS;2Þ2r̂

HoeiS

r2
: ðA15Þ

Putting both together and canceling common terms on both
sides,

ðS;2Þ2 ¼
�
K2 þ Kf

Eo

Ho

�
ðS;0Þ2 − fS;2S;0: ðA16Þ

Finally, in Eq. (A16), we need a way to express Eo
Ho
. Note

that from (A1), we have

∇ × ~H ¼ K
r
∂
∂t ~Eþ ∂

∂t ð~w × ~HÞ ðA17Þ

or

− 1

r
iS;2Ho ¼

K
r
iS;0Eo þ

f
r
iS;0Ho: ðA18Þ

Rearranging, then
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Eo

Ho
¼ − fS;0 þ S;2

KS;0
; ðA19Þ

so that

K2 þ Kf
Eo

Ho
¼ K2 − Kf

fS;0 þ S;2
KS;0

¼ K2 − f2 − f
S;2
S;0

:

ðA20Þ
Plugging in to (A16),

0 ¼ ðS;0Þ2
�
K2 − f2 − f

S;2
S;0

�
− S2;2 − fS;2S;0 ðA21aÞ

¼ bðϕÞðS;0Þ2 − 2fðϕÞS;0S;2 − ðS;2Þ2: ðA21bÞ

This is the eikonal equation for light in a curved
spacetime,

0 ¼ gαβS;αS;β; ðA22Þ

where we take gαβ as given above in (28). Thus, in the usual
interpretation of geometric optics, the light rays in the
medium will follow the same paths as light rays in our
curved space and thus should be expected to move
along CNGs.
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