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We afford a systematic and comprehensive account of the canonical dynamics of 4D Regge calculus
perturbatively expanded to linear order around a flat background. To this end, we consider the Pachner
moves which generate the most basic and general simplicial evolution scheme. The linearized regime
features a vertex displacement (diffeomorphism) symmetry for which we derive an Abelian constraint
algebra. This permits us to identify gauge invariant lattice “gravitons” as propagating curvature degrees of
freedom. The Pachner moves admit a simple method to explicitly count the gauge and graviton degrees of
freedom on an evolving triangulated hypersurface, and we clarify the distinct role of each move in the
dynamics. It is shown that the 1–4 move generates four “lapse and shift” variables and four conjugate vertex
displacement generators; the 2–3 move generates a graviton; the 3–2 move removes one graviton and
produces the only non-trivial equation of motion; and the 4–1 move removes four lapse and shift variables
and trivializes the four conjugate symmetry generators. It is further shown that the Pachner moves preserve
the vertex displacement generators. These results may provide new impetus for exploring ‘graviton
dynamics’ in discrete quantum gravity models.
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I. INTRODUCTION

The canonical formulation of a physical theory usually
offers convenient tools for extracting its dynamical content
and, at the same time, gives a clear picture of the time
evolution of relevant degrees of freedom. Specifically,
in gravitational physics, a Hamiltonian formulation—
with initial value problem and equal time surfaces—allows
for an intuitive picture of the dynamics and simplifies the
identification and counting of physical degrees of freedom.
Suggestively, the seminal paper [1] by Arnowitt, Deser and
Misner, introducing their canonical formulation of general
relativity, carries the unequivocal title “The dynamics of
general relativity.” The beauty of this formulation of
general relativity lies in the fact that it gives the latter
the interpretation of describing the dynamics of spatial
hypersurfaces in spacetimes.
In this spirit, we shall attempt to explore the dynamics

of Regge calculus [2–4], the most well-known simplicial
discretization of general relativity. More specifically, by
building up on the general canonical formulation of Regge
calculus developed in [5,6], we shall systematically inves-
tigate, in canonical language, the dynamics of perturbative
Regge calculus to linear order in an expansion around flat
background solutions [7–13]. This linearized regime is
governed by an expansion of the Regge action to quadratic
order around a flat background. The motivation is the same:
to give an intuitive picture of the linearized Regge
dynamics and to identify and clearly distinguish

propagating lattice graviton from lapse and shift type gauge
degrees of freedom.
The presence of curvature in a Regge triangulation

generically breaks the continuum diffeomorphism sym-
metry [13–15]. More precisely, for flat Regge solutions
there exists a continuous gauge symmetry corresponding to
displacements, within the flat embedding space, of vertices
in the bulk of a triangulation which leave the geometry flat.
This vertex displacement symmetry can be interpreted as
the incarnation of diffeomorphisms in triangulated space-
times. It persists in the linearized theory because in this
regime solutions to the equations of motion are additive
such that (linearized) solutions corresponding to displace-
ments in flat directions can be added to solutions with
linearized curvature—without changing boundary data.
However, to higher order in the expansion around flat
triangulations, the symmetry becomes broken [12,13]. This
has crucial consequences: since the presence of the vertex
displacement gauge symmetry is configuration dependent,
so is the dynamical content of Regge calculus.
It should be emphasized that this breaking of the

continuum symmetries is a consequence of the particular
manner of discretizing the curved continuum geometries
and dynamics in terms of piecewise flat Regge triangu-
lations. There exist, in principle, also discretizations of
continuum theories which preserve the continuum sym-
metries and dynamics, yielding so-called “perfect discre-
tizations” [16–23]. However, in the gravitational context
this involves curved, rather than flat simplices in the
triangulation [18,22]–in contrast to the Regge case studied
here. Unfortunately, especially in the 4D case such perfect
discretizations are difficult to construct explicitly. In any*phoehn@perimeterinstitute.ca
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case, the breaking of the symmetries must disappear in a
consistent continuum limit [17].
The configuration dependence of the dynamical content

severely complicates a detailed and explicit account of the
dynamics in full Regge calculus beyond general aspects
[5]. It is therefore instructive to restrict the dynamics to a
well-defined subregime which permits an explicit explora-
tion. This is where the linearized sector of Regge calculus
assumes a special role: it is the only regime in which there
is gauge symmetry and at the same time a nontrivial
propagation of geometric degrees of freedom. And it
permits us to solve the equations of motion.
Furthermore, this near-flat sector of the theory may be
relevant for the continuum limit where the diffeomorphism
symmetry of classical general relativity ought to be restored
and geometries are locally flat [9–11].
Since the gauge symmetries are generically broken for

curved Regge triangulations, first class symmetry gener-
ators for full 4D Regge calculus do not arise [5,6].
However, the linearized theory, as we shall see, does
feature proper symmetry generating constraints (see also
[12]). These, finally, will help us to shed light on the
concept of propagating lattice “gravitons” and their dynam-
ics in Regge calculus—although their relation to the
gravitons in continuum general relativity remains to be
clarified.
In order to afford a systematic and comprehensive

account of canonical linearized Regge calculus, we shall
consider the simplicial dynamics generated by Pachner
moves [5,6,24–26]. The Pachner moves are elementary
and ergodic moves which locally change the spatial
triangulation and constitute the most basic and general
simplicial evolution scheme. As they change the spatial
triangulation, they also lead to a varying number of
degrees of freedom in discrete time which requires the
notion of evolving phase and Hilbert spaces [5,6,27–29].
As such, these moves can also be nicely interpreted as
defining canonical coarse graining/lattice shrinking or
refinement/lattice growing operations and thereby be used
to study embeddings of coarser into finer phase or Hilbert
spaces [6,16,26–29]. Specifically, for loop quantum
gravity (LQG) such considerations have led to the
discovery of a new geometric vacuum for the theory
[30] and a proposal for constructing both its dynamics
and continuum limit [17,31].
For 4D linearized Regge calculus, the Pachner moves

offer a simple and systematic method to count and describe
the generation and annihilation of “lapse and shift” gauge
modes and graviton degrees of freedom on the evolving
spatial triangulated hypersurface. In summary, in this
manuscript we shall

(i) elucidate the origin of the vertex displacement gauge
symmetry in linearized Regge calculus,

(ii) derive the (first class) constraints generating this
symmetry for arbitrary triangulated hypersurfaces,

(iii) show that these constraints are preserved by the
linearized dynamics,

(iv) identify gravitons as (potentially) propagating cur-
vature degrees of freedom that are invariant under
the vertex displacement symmetry,

(v) demonstrate how to count such gravitons via
Pachner moves, and

(vi) study the distinct role of each of the Pachner moves
in the dynamics.

These results may provide new impetus for the discus-
sion of graviton propagators in spin foam models of
quantum gravity [32,33]. While spin foam models—and
loop quantum gravity—are based on a generalization of
Regge geometries, namely twisted geometries which con-
tain Regge geometries as a subset [34–36], they yield the
Regge action in semiclassical expansions of the transition
amplitudes [37–39]. More generally, these results may
contribute to a better understanding of discretization
changing dynamics in discrete models of (quantum) gravity
[5,26–28,40–46].
The remainder is organized as follows. In order to make

this manuscript as self-contained as possible, we begin by
reviewing Regge calculus in Sec. II, the Pachner move
evolution scheme in Sec. III, the general canonical formu-
lation of Regge calculus [5] in Sec. IV, and an argument
from [12], elucidating the relation between the contracted
Bianchi identities and the vertex displacement symmetry
of linearized Regge calculus, in Sec. V. (The acquainted
reader may skip these sections.) Subsequently, in Sec. VI,
we discuss degeneracies of the Hessian and the Lagrangian
two-form on flat background solutions, resulting from
vertex displacement symmetry. Section VII introduces
the canonical variables and constraints of linearized
Regge calculus, while Sec. VIII identifies ‘lattice gravitons’
as gauge invariant curvature degrees of freedom. In Sec. IX,
a general counting of ‘gravitons’ and gauge degrees of
freedom is carried out using the Pachner moves. A
procedure to disentangle the gauge from the ‘graviton’
variables of the linearized theory is provided in Sec. X,
before we finally discuss the canonical Pachner move
dynamics of 4D linearized Regge calculus in detail in
Sec. XI. Section XII closes with a discussion and an
outlook. Technical details of this paper have been moved to
Appendixes A and B.

II. SYNOPSIS OF REGGE CALCULUS

The principal idea underlying Regge calculus [2–4] is to
replace a given smooth four-dimensional spacetime ðM;gÞ
with C2 metric g by a piecewise-linear metric living on a
triangulation T which is comprised of flat 4-simplices σ.
The metric on T is piecewise linear because it is flat on
every simplex σ and simplices are glued together in a
piecewise-linear fashion. In fact, Regge calculus is usually
considered on a fixed triangulation T . This discrete
(triangulated) spacetime is commonly viewed as an
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approximation to the continuum spacetime, but may
equally well be taken as a regularization thereof.
While the geometry within continuum general relativity

can be entirely encoded in the metric g, the length variables
associated to all edges e in the triangulation T , flege∈T ,
completely specify the (piecewise–linear) geometry of the
triangulation (assuming generalized triangle inequalities
are satisfied). In other words, the edge lengths le of the
triangulation completely encode the piecewise–linear flat
metric living on T and are therefore the configuration
variables of standard (length) Regge calculus. For formu-
lations using other geometric variables (e.g., areas and
angles) see, for instance, [47,48].
The challenge in formulating the Regge action is to

translate the Ricci curvature term R from the Einstein–
Hilbert action into the triangulation. To this end, note that
from the edge lengths one can compute any dihedral angle
θσt around any triangle t in T . θσt is the inner angle in the
4-simplex σ between the two tetrahedra sharing the triangle
t. Curvature in the discrete arises as follows: take a triangle
t in the bulk of T . t will be contained in many 4-simplices.
(Levi–Civita) parallel transporting a vector along a closed
path around t rotates the vector by the deficit angle

ϵt ¼ 2π −
X
σ⊃t

θσt ð2:1Þ

in the plane perpendicular to t (the sum ranges over all
4-simplices σ containing t). ϵt measures the deviation from
2π of the sum of the dihedral angles around the triangle
and thereby the intrinsic curvature concentrated at t.1 That
is, it is the bulk triangles which carry the curvature of the
triangulation in the form of deficit angles in 4D Regge
calculus.
The Regge action, without a cosmological constant term

(and in Euclidean signature), defining a discrete spacetime
dynamics for a 4D triangulation T with boundary ∂T and
interior T ° ≔ T n∂T is given by summing over all curva-
ture contributions and consists of a bulk and a boundary
term [2,49]2

SR ¼
X
t⊂T °

Atϵt þ
X
t⊂∂T

Atψ t; ð2:2Þ

where At denotes the area of the triangle t and appears
because ϵt only has support on t. The boundary term is in
shape identical to the bulk term, except that deficit angles
are replaced by extrinsic angles,

ψ t ¼ π −
X
σ⊂t

θσt for t ⊂ ∂T ð2:3Þ

which measure the deviation from π of the sum of dihedral
angles around the triangles in the boundary of T . Notice
that all quantities appearing in (2.2) are functions
of flege∈T .
Thanks to the boundary term in (2.2) the action is

additive in the following sense: if we glue two pieces of
triangulations together then the total action contribution
of the resulting glued triangulation is simply the sum of
the action contributions of the two pieces of triangulation
that we glued together.3 This will be important in the
canonical Pachner move evolution below where we glue a
single 4-simplex onto a 3D triangulated hypersurface Σ
during each move. The action of a 4-simplex σ is a pure
boundary term

Sσ ¼
X
t⊂σ

Atðktπ − θσt Þ: ð2:4Þ

The coefficient kt depends on the gluing process: if t is a
new triangle in Σ kt ¼ 1. If, on the other hand, it is
already present in Σ before the gluing of σ, only the new
dihedral angle of the simplex must be subtracted from the
already present extrinsic angle (2.3) so that in this
case kt ¼ 0.
Varying the action (2.2) with respect to the lengths le of

the bulk edges e ⊂ T ° and fixing the lengths of the
boundary edges e ⊂ ∂T yields the Regge equations of
motion. To this end, the Schläfli identity,

X
t⊂σ

Atδθ
σ
t ¼ 0; ð2:5Þ

is essential which shows that the variation of the deficit
angles vanishes. (It is the four-dimensional generalization
of the two–dimensional fact that the sum of the dihedral
angles in a triangle is constant.) This gives the Regge
equation of motion the following form:

X
t⊃e

∂At

∂le ϵt ¼ 0: ð2:6Þ

In this article we will be primarily concerned with
perturbations (to linear order in an expansion parameter)
around special Regge solutions, namely around flat sol-
utions with vanishing deficit angles ϵt ¼ 0, ∀ t ∈ T °.
Abstractly, flat Regge triangulations only occur for special
boundary configurations, but concretely, of course, any
triangulation of flat 4D space will be such a solution. Flat
solutions are not unique because vertices in the bulk can be
displaced within the flat 4D embedding space without
changing flatness. This is ultimately the reason for a vertex
displacement gauge symmetry for flat configurations and

1This notion of curvature is distributional and only has support
on the triangles because any closed path which is contractible
(i.e., does not wind around a triangle) will yield a trivial
holonomy.

2We work in units of c ¼ 8πG ¼ 1.

3This is not true for an action
P

t sinðϵtÞAt although it
converges to the Regge action in the limit of small deficit angles.
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linear perturbations around them. We shall discuss this in
detail in the sequel. On the other hand, there is strong
numerical evidence [13] that curved solutions to (2.6) are
generally unique. In consequence, the gauge symmetries of
the flat and linearized sector of Regge calculus are broken
to higher orders [12].
We shall henceforth work in Euclidean signature to avoid

subtleties arising from causal structure which would only
unnecessarily cloud the main results. Note, however, that
the canonical formulation below makes a priori no
assumption about the signature and is equally applicable
to Lorentzian signature.

III. CANONICAL EVOLUTION FROM
PACHNER MOVES

We shall review crucial ingredients for a canonical
evolution scheme for simplicial gravity. A key hurdle to
be overcome in a general formulation of canonical Regge
calculus is the problem of foliations: different 3D triangu-
lated hypersurfaces of a generic foliation of a 4D Regge
triangulation support different numbers of edges and thus
configuration variables (see Fig. 1). A generic Regge
triangulation implies varying numbers of degrees of free-
dom in ‘time’ and requires the notion of evolving phase
spaces [5,6,29]. Furthermore, hypersurfaces will generi-
cally overlap.
First attempts [50,51] to circumvent this problem were

based on the continuum 3þ 1 splitting and triangulating
the spatial manifold Σ, but keeping a continuous time. Such
an approach has two major problems: (1) The related
discretization of the continuum first class constraint algebra
leads to second class constraints (which are not automati-
cally preserved under the dynamics) [50–52]. (2) More
importantly, the end result of such a continuous canonical
evolution of a spatial triangulation clearly is not a four-
dimensional spacetime triangulation and, thus, not com-
patible with the covariant picture.
Instead, consistency requires that the canonical dynamics

be equivalent to the covariant dynamics, directly following
from the Regge action. In particular, a canonical dynamics
consistent with the discrete action must produce a discrete
time evolution. In contrast to the continuum, such a
dynamics cannot be generated by a set of constraints via

a Poisson bracket structure which necessarily has an
infinitesimal action.4 Rather, a well-defined set of evolution
moves is required to generate such a discrete dynamics, and
any constraints arising from the Regge action should be
consistent with the evolution moves [6].
What are possible evolution moves in simplicial gravity?

We shall henceforth label discrete time steps by k ∈ Z. Let
Σk be the 3D “spatial”5 triangulated hypersurface of step k,
constituting the future boundary of the triangulation to the
past of Σk. An evolution move evolves Σk to Σkþ1 by gluing
a 4D piece of triangulation T kþ1 to Σk such that part of the
boundary of T kþ1, consisting of tetrahedra, is identified
with a subset of the tetrahedra of Σk. In particular, we
disallow singular evolution moves which do not preserve
the simplicial manifold property by identifying only lower
than 3D subsimplices (triangles, edges or vertices) of the
new simplex and the hypersurface.
Obviously, there are many possibilities for such sim-

plicial evolution moves. Fortunately, we can systematically
handle all of them if we impose an additional restriction
on the canonical dynamics: recall that in canonical general
relativity one restricts from the outset to globally hyper-
bolic spacetimes with topologyM ¼ R × Σ, where Σ is the
spatial manifold. Similarly, we shall also restrict ourselves
to evolution moves which preserve the spatial topology
such that the 4D triangulation will likewise be of topology
T ¼ I × Σ, where I is some (closed) interval.
Clearly, we could consider global evolution moves by fat

slices which evolve an entire hypersurface at once such that
Σk∩Σkþ1 ¼ 0 (see Fig. 2 for a schematic representation).
While such global moves are relevant for the canonical
dynamics [5,6], as we shall see below, they are neither
elementary because they can involve arbitrarily many 4-
simplices, nor do they admit a nice geometric interpretation
within the spatial hypersurfaces Σk. It is, therefore, difficult
to give a systematic and completely general account of the
canonical dynamics by means of global moves alone.

FIG. 1. The problem of foliations: in a generic triangulation,
hypersurfaces overlap and are comprised of different numbers of
simplices σ which carry the variables of the theory.

FIG. 2. Global evolution by gluing fat slices at each step. This
evolution is not elementary.

4The exception are topological models for which a continuous
time evolution can be recovered as a symmetry generated by
constraints, namely the translation of vertices in time direction.

5Since we work in Euclidean signature, we write “spatial” in
quotation marks.
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Instead, a decomposition of the global moves into their
smallest 4D building blocks, namely the 4-simplices,
does allow for a clear and systematic description of the
canonical dynamics under the above restrictions. We shall
therefore consider the simplest evolution moves conceiv-
able: gluing locally at each elementary time step k a
single 4-simplex σ onto Σk (see Fig. 3) [5,53]. In this
way, we evolve the hypersurface forward in a multi-
fingered time through the full 4D Regge solution, in
close analogy to canonical general relativity. There are
precisely four different possibilities for gluing a single
4-simplex σ onto Σk: one can identify one, two, three or
four of the five tetrahedra τ of σ with tetrahedra in Σk,
but clearly one cannot glue all five tetrahedra at once to
Σk. These four different gluing types have the nice
interpretation of 3D (or canonical) Pachner moves
[24,25] within Σk. More precisely, in order of increasing
number of identified τ these are as follows (see [5] for
further details).
1–4 Pachner move: introduces one new vertex v� and four
new boundary edges in Σkþ1, but does not generate any
internal triangles or bulk edges of T (see Fig. 4). Accord-
ingly, this move neither produces curvature (deficit angles)
nor a Regge equation of motion.
2–3 Pachner move: introduces one new boundary edge n
and one new bulk triangle t�, but does not generate any
internal edges (see Fig. 5). Accordingly, this move pro-
duces curvature through a single new deficit angle, but does
not give rise to a Regge equation of motion.
3–2 Pachner move: removes one old edge owhich becomes
bulk of T and introduces three new bulk triangles, but does
not introduce new boundary edges (see Fig. 5). Accord-
ingly, this move produces one Regge equation of motion
and three deficit angles.

4–1 Pachner move: removes one old vertex v� and four old
edges and introduces six new bulk triangles, but does not
introduce new boundary edges (see Fig. 4). Accordingly,
this move produces four Regge equations of motion and six
deficit angles.
Notice that the 1–4 and 4–1 moves, as well as the 2–3
and 3–2 moves, are inverses of each other, respectively.
All four Pachner moves are discretization changing
evolution moves: they change the connectivity of Σ
and the number of edges contained in it and therefore
produce a temporally varying discretization and number
of degrees of freedom. In particular, the 1–4 and 2–3
moves introduce new but do not remove old edges and
can thereby be interpreted as canonical refining (or lattice
growing) moves. On the other hand, the 3–2 and 4–1
moves remove old but do not introduce new edges and
may thus be viewed as canonical coarse graining (or
lattice shrinking) moves [26–29].
The Pachner moves [24,25] are exactly what is needed in

order to construct the most general canonical evolution
scheme for Regge calculus. They are

(i) elementary in that they involve only a single
4-simplex at the 4D level and between one and
four tetrahedra within the 3D triangulated hypersur-
face Σ. That is, the moves are local in Σ.

(ii) ergodic piecewise-linear homeomorphisms; any
two finite 3D triangulations Σ and Σ0 of the same
topology are connected via finite sequences of the
Pachner moves. In particular, any other local or
global evolution move can be decomposed into the
latter.

(iii) applicable to arbitrary Regge triangulations.
Consequently, understanding the role of the four Pachner

evolution moves in detail in canonical language means
essentially understanding the full canonical dynamics of
Regge calculus. We shall review their canonical imple-
mentation and then focus on their specific role within
linearized Regge calculus.

IV. REVIEW OF CANONICAL
REGGE CALCULUS

In order to make this article self-contained, we shall
summarize the canonical formulation of Regge calculus, as
developed in detail in [5,6,53] which we will later employ
for the linearized theory.
Consider a global evolution move 0 → k from an

initial triangulated hypersurface Σ0 to another hypersur-
face Σk as depicted in Fig. 6. Denote by Sk the piece of
Regge action of the entire triangulation between Σ0 and
Σk. We shall label the edges in Σk by e and denote the
corresponding lengths by lek, while edges which are
internal between Σ0 and Σk are labeled by i and have
lengths lik. To distinguish the edges in the initial
hypersurface Σ0, we label these edges by a and denote
their lengths by la0 such that Sk ¼ Skðlek; lik; la0Þ. This

FIG. 3. Schematic representation: at each time step k a single
4-simplex σ is glued to Σk giving a new Σkþ1.

FIG. 4. The 1–4 and 4–1 Pachner moves within the 3D
hypersurface Σ are inverses of each other.
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piece of action can be taken as a Hamilton-Jacobi
functional, i.e., generating function of the first kind,
depending on old and new configuration variables. The
canonical momenta conjugate to the lengths then read
[5,6]

þpk
e ¼

∂Sk
∂lek ;

þpk
i ¼

∂Sk
∂lik ¼ 0; −p0

a ¼ −
∂Sk
∂la0 : ð4:1Þ

We emphasize that these equations are well defined
regardless of the number of variables at the various time
steps; they hold specifically for temporally varying spatial
triangulations. The þp are called “postmomenta,” while
the −p are called “premomenta.” In fact, the ðlek; þpk

eÞ and
ðlik; þpk

i Þ form canonical Darboux coordinate pairs on the
phase space Pk ≔ T�Qk, where Qk ≃RNiþNeþ is the
Regge configuration manifold of the edges labeled by i
and e and Ni; Ne are the numbers of edges labeled by i; e,
respectively [6]. Similarly, ðla0; −p0

aÞ are canonical Darboux
pairs on the phase space P0 ≔ T�Q0, where Q0 ≃RNaþ is
the Regge configuration manifold for Σ0. In analogy to
continuum general relativity, the pairs ðlek; þpk

eÞ encode the
intrinsic geometry of Σk via flekge⊂Σk

and the extrinsic
geometry of Σk via fþpk

ege⊂Σk
—an observation that

becomes more apparent when writing Sk in terms of
the Regge action (2.2) [5].
Notice that (4.1) defines an implicit Hamiltonian time

evolution map h0∶P0 → Pk; given initial data ðla0; −p0
aÞ one

can try to solve these equations for ðlek; þpk
eÞ and ðlik; þpk

i Þ.
This will clearly not give unique solutions in general. More
precisely, if the coefficient matrices of the Lagrangian

two-form on Q0 ×Qk (see especially Appendix A of [6],
but also [5,54])6

Ωk ¼ −
∂2Sk
∂lek∂la0 dl

a
0∧dlek − ∂2Sk

∂lik∂la0 dl
a
0∧dlik ð4:2Þ

possess any left or right null vectors (degenerate directions)
then the implicit function theorem implies that (4.1) does
not define an isomorphism between P0 and Pk.
However, for a genuine canonical formulation of Regge

calculus we would rather like to have time evolution maps
directly between the ‘equal time’ hypersurfaces Σ0;Σk.
Noting that the second equation in (4.1) constitutes the
Regge equations of motion for the bulk lengths lik,

7 one can
solve these as a boundary value problem for likðlek; la0; κkÞ.
This will generally not be uniquely possible in which case
free parameters κk must be chosen. Substituting this into
the piece of Regge action Sk yields an ‘effective’ action (or
Hamilton’s principal function) ~Skðlek; la0Þ from which the κk
again drop out [6]. This permits us to define a new effective
Hamiltonian time evolution map ~h0∶P0 → ~Pk, where
~Pk ≔ T�RNeþ , via

þpk
e ¼

∂ ~Sk
∂lek ;

−p0
a ¼ −

∂ ~Sk
∂la0 ; ð4:3Þ

i.e. for variables only associated to Σ0;Σk. Note that
dimP0 ≠ dim ~Pk is expressly allowed such that we have
evolving phase spaces.
If the coefficient matrices of the effective Lagrangian

two-form associated to ~Sk [6],

~Ωk ¼ −
∂2 ~Sk
∂lek∂la0 dl

a
0∧dlek; ð4:4Þ

FIG. 6. Global evolution from Σ0 to Σk. Sk is the contribution of
the Regge action to this piece of triangulation. For simplicity, we
assume here Σ0∩Σk ¼ 0.

FIG. 5. The 2–3 and 3–2 Pachner moves within the 3D hypersurface Σ are inverses of each other. For the 3–2 move replace the label n
by o for the ‘old’ removed edge.

6We emphasize that the coefficient matrix Ωk
ae ≔ − ∂2Sk∂la

0
∂lek of the

Lagrangian two-form is not symmetric in the indices a and e,
Ωk

ae ≠ Ωk
ea, because both refer to different variables from differ-

ing time steps. In particular, on a temporally varying spatial
triangulation amay run over a different number of edges than e in
which case Ωk

ae is not even a quadratic matrix. Accordingly, (4.2)
does not vanish trivially.

7These lengths do not occur in any other action contribution.
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possess left or right null vectors, the implicit function
theorem tells us that the left and right equations in (4.3)
cannot each comprise an independent set such that there
must exist primary constraint relations,

þCkðlek; þpk
eÞ ¼ 0; −C0ðla0; −p0

aÞ ¼ 0; ð4:5Þ

among only variables of Σk and Σ0, respectively. These are
the post- and preconstraints, respectively, which form two
first-class sets of constraints [5,6]. In fact, the postcon-
straint surface Cþk ⊂ ~Pk is the image and the preconstraint
surface C−0 ⊂ P0 is the preimage of ~h0. It can be shown that
~h0 preserves the symplectic structure restricted to these
constraints.
To every hypersurface Σk there are associated both

pre- and postmomenta −pk and þpk and, if occurring,
both pre- and postconstraints −Ck; þCk. For instance, if one
continued the global evolution of Fig. 6 by another fat
slice bounded by Σk to the ‘past’ and some ΣkþX to the
future, one likewise would have an effective Regge
action contribution, call it ~Sk−ðlek; le

0
kþXÞ, associated to it.

Equations (4.3) could then similarly be written for ~Sk−. It
turns out that the Regge equations of motion for e ⊂ Σk,
arising when gluing the new fat slice onto Σk, are equivalent
to a momentum matching [5,6,29,54]

pk
e ≔ þpk

e ¼! −pk
e; ∀ e ⊂ Σk: ð4:6Þ

As a consequence, on solutions to the equations of
motion, both pre- and postconstraints −Ck; þCk have to
be implemented simultaneously. This has many nontrivial
consequences, as the two sets may in general be indepen-
dent. A thorough constraint analysis and classification has
been devoted to this issue [6,29] which we shall not repeat
here, but in summary: (1) gauge symmetry generators are
coinciding pre- and postconstraints Ck ¼ −Ck ¼ þCk and
first class (we shall see them as vertex displacement
generators in linearized Regge calculus below) and (2) when
taken together, −Ck; þCk, can become second class, fixing
free parameters. These two cases stand in close analogy to
the continuum. However, there are two further possibilities
which are specific to a temporally varying number of degrees
of freedom in the discrete: (3) preconstraints can be “coarse
graining conditions” [26–29] which are first class (thus
reducing the dynamical content by one canonical pair each)
but no symmetry generators. These preconstraints ensure
that a finer 3D hypersuface Σk, carrying more dynamical
data, can be consistently evolved into a coarser ΣkþX which
can support less dynamical information than Σk. Similarly,
(4) postconstraints can be “refining conditions” [17,26–31]
which are first class but not gauge symmetry generators.
These guarantee that the smaller amount of dynamical
information of a coarser Σk can be consistently embedded
in the larger phase space of a finer ΣkþX.

The discretization changing dynamics in discrete gravity
will generically generate such coarse graining and refining
constraints and we shall also see them below in the Pachner
moves. This is important because it entails that canonical
constraints generically arise in Regge calculus which are
not the discrete analogue of Hamiltonian and diffeomor-
phism constraints, but which assume another crucial role.
In particular, as mentioned in Sec. II, the existence of the
vertex displacement gauge symmetry (the discrete analogue
of diffeomorphisms) is highly configuration dependent in
Regge calculus; this symmetry is broken for curved
solutions [13]. One can, therefore, not expect a discrete
version of the Dirac hypersurface deformation algebra for
generic Regge solutions [5,55]. However, if the vertex
displacement symmetry is present in the solution, the set of
pre- and postconstraints will contain the generators of these
vertex displacements. In the sequel, we shall see this
explicitly for linearized Regge calculus for which these
vertex displacement generators even satisfy an Abelian
algebra. This is as close as one comes to a consistent
hypersurface deformation algebra in standard Regge cal-
culus with flat simplices.
In this article we will be concerned with the notion of

propagating degrees of freedom on temporally varying
discretizations. To this end, consider again the global
evolution 0 → k of Fig. 6. In the presence of pre- and
postconstraints (4.5) there will generally not be sufficient
equations in (4.3) for ~h0 to be invertible. For every
postconstraint þCk there will exist an a priori free
configuration datum λk which cannot be predicted via ~h0
[6,29]. Similarly, for every preconstraint −C0 there will
exist an a posteriori free configuration datum μ0 that cannot
be postdicted using ~h0 and given final data ðlek; þpk

eÞ.
A priori and a posteriori free data, therefore, do not
correspond to degrees of freedom which propagate in
the global move 0 → k.
Instead, the propagating data of the move 0 → k corre-

sponds to those canonical data at Σ0 and Σk which can be
uniquely mapped into each other, using the effective time
evolution map ~h0 (4.3). This set of propagating data is
isomorphic to P0==C−0 ≃ ~Pk==C

þ
k and thus is incarnated at

step 0 as the set of Dirac preobservables on C−0 which
Poisson commute with all −C0 and at k as the set of Dirac
postobservables on Cþk which Poisson commute with all
þCk [6,29]. In linearized Regge calculus we shall see them
as lattice gravitons below.
It is important to note that in Regge solutions with

temporally varying spatial discretization Σ, the notion of a
propagating degree of freedom as a pre- or postobservable
depends on the triangulated spacetime region and always
requires two time steps—in contrast to the continuum. For
instance, the preobservables at Σ0 depend on the future
hypersurface Σk. Gluing another fat slice onto Σk which
produces a new coarser future hypersurface ΣkþX and
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which thus comes with coarse graining preconstraints at k,
in fact, generates new effective coarse graining constraints
at Σ0 too in order to restrict the initial data on Σ0 to the
subset which consistently maps onto the coarse graining
preconstraints at k [6,27–29]. That is, any preobservable
propagating from 0 via k to kþ X must also Poisson
commute with the new effective preconstraints on Σ0. In
this way, further evolution into the future can reduce the
number of degrees of freedom which propagate from Σ0 to
the future hypersurface under consideration. Nevertheless,
the dynamics is fully consistent—albeit spacetime-region
dependent—and reflects the fact that canonical coarse
graining or refining operations change the dynamical
content of a given 3D hypersurface Σ0 (for further details,
we refer the reader to [6,26–29]).
Finally, we review the implementation of the Pachner

moves into canonical language. A Pachner move Σk →
Σkþ1 can be viewed as locally updating the global move
Σ0 → Σk to Σ0 → Σkþ1. Accordingly, the canonical data8

ðlek; pk
eÞ must be updated in the course of the move. To

clarify this, we introduce a new notation specific to Pachner
moves: edges in Σk∩Σkþ1 will be labeled by e, new edges
introduced during the 1–4 or 2–3 moves which occur in
Σkþ1 but not in Σk will be labeled by n, and old edges
removed during the 2–3 and 4–1 moves which appear in Σk
but not in Σkþ1 will be labeled by o. In order to describe the
temporally varying number of variables, it is convenient to
extend the phase spaces: for every pair ðlnkþ1; p

kþ1
n Þ which

appears at kþ 1 but not k, one can artificially introduce a
new spurious pair ðlnk; pk

nÞ and thereby extend the phase
space at k. Similarly, one can do the time reverse for
canonical pairs labeled by o such that one has extended
phase spaces of equal dimension before and after the move.
The correct local time evolution equations are given

by momentum updating which for the 1–4 and 2–3 Pachner
moves (see Figs. 4 and 5) is identical in shape and
reads [5,6]

lek ¼ lekþ1; pkþ1
e ¼ pk

e þ
∂Sσðlekþ1; l

n
kþ1Þ

∂lekþ1

; ð4:7Þ

pk
n ¼ 0; pkþ1

n ¼ ∂Sσðlekþ1; l
n
kþ1Þ

∂lnkþ1

; ð4:8Þ

except that n runs over four new edges for the 1–4 move
and a single new edge in the 2–3 move. Sσðlekþ1; l

n
kþ1Þ is the

Regge action (2.4) of the newly glued 4-simplex σ. (We
refer to [5] for details on how to write (4.7)–(4.10) in terms
of the Regge action.) The last equation in (4.8) defines four

postconstraints þCkþ1
n ≔ pkþ1

n − ∂Sσðlekþ1
;lnkþ1

Þ
∂lnkþ1

for the 1–4 and
one similar postconstraint for the 2–3 move. In particular,

there are no equations of motion involved in these moves
such that lnkþ1 is unpredictable and thus a priori free, given
the data at k; notice that lnkþ1 and

þCkþ1
n are conjugate. (The

spurious lnk are pure gauge.) This has distinct consequences
for the two types of moves.
1–4 move: The four unpredictables lnkþ1 are the lengths of
the four new edges at the new vertex v�. These can be
interpreted as lapse and shift degrees of freedom. We shall
see below that these are indeed gauge degrees of freedom
in linearized Regge calculus and the four corresponding
þCkþ1

n turn into discrete diffeomorphism generators.
2–3 move: The deficit angle around the newly generated
bulk triangle t� depends on the unpredictable lnkþ1. Thus,
the new curvature variable is itself a priori free. We shall
see below that, in the linearized theory, this unpredictable
deficit angle corresponds to a gauge invariant graviton and
the corresponding single þCkþ1

n assumes the role of a
“refinement consistency condition.”
On the other hand, for both the 3–2 and 4–1 Pachner

moves, momentum updating is given by [5,6]

lekþ1 ¼ lek; pk
e ¼ pkþ1

e −
∂Sσðlek; lokÞ

∂lek ; ð4:9Þ

pkþ1
o ¼ 0; pk

o ¼ −
∂Sσðlek; lokÞ

∂lok ; ð4:10Þ

except that o runs over a single edge for the 3–2 move and
over four edges for the 4–1 move. The last equation in
(4.10) constitutes a single preconstraint for the 3–2 and four
preconstraints for the 4–1 move. These preconstraints
−Ck

o ≔ pk
o þ ∂Sσðlek;lokÞ∂lok are equivalent to the Regge equations

of motion for the new bulk edges labeled by o. (The
spurious lokþ1 are pure gauge.) The repercussions are
3–2 move: The preconstraint is generally nontrivial. It can
be viewed as a coarse graining consistency condition. This
will also be true in the linearized theory below where,
furthermore, lok will correspond to an annihilated lattice
graviton.
4–1 move: While the four −Ck

o may be nontrivial in full
Regge calculus, we shall see that they are automatically
satisfied and diffeomorphism generators in the linearized
theory. The lok are the lengths of the four edges adjacent to
the removed vertex v�, corresponding to lapse and shift.
The notion of propagation remains the same for Pachner

moves: variables at kþ 1 which are predictable under
momentum updating correspond to propagating degrees of
freedom on the evolving phase spaces.
A final observation: the general pre- and postconstraints

(4.8), (4.10) of the Pachner moves are associated to edges.
By contrast, the gauge symmetry of flat and linearized
Regge calculus corresponds to vertex displacements. We
shall now turn to the linearized theory and explore how the

8We shall, henceforth, often drop the superscript þ on the
postmomenta, tacitly assuming that (4.6) holds.
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vertex displacement generators can be produced from the
edge pre- and postconstraints.

V. BIANCHI IDENTITIES AND VERTEX
DISPLACEMENT SYMMETRY

The contracted Bianchi identities, ∇aGab ¼ 0, of con-
tinuum general relativity follow from the diffeomorphism
invariance of the Einstein-Hilbert action [56]. They con-
stitute four differential relations among the ten Einstein
field equations such that the latter are not fully independent
and the ten metric components cannot be uniquely
computed—given enough boundary or initial data.
The situation is somewhat similar for Regge calculus

[7,8,12,15,57–59]. In contrast to the continuum, however,
the contracted Bianchi identities are satisfied as geometrical
identities on rotation matrices rather than dynamical
variables [59,60] such that they generally do not render
the Regge equations of motion interdependent. The excep-
tion is the regime of small deficit angles (and sufficiently
“fat” simplices) where an approximate interdependence
among the equations of motion arises thanks to the
contracted Bianchi identities [15]. In fact, this interdepend-
ence becomes exact in the linearized theory on a flat
background triangulation. This is the origin of many of the
special dynamical features of linearized Regge calculus
which shall be discussed in the core of this manuscript.
For the sequel, it is therefore necessary to summarize the
relation between the contracted Bianchi identities, the
degeneracies of the Hessian of the flat background
Regge action and the vertex displacement gauge symmetry
of linearized Regge calculus as originally clarified in [12].
In a flat triangulation the bulk vertices can be freely

displaced within the flat embedding space without
affecting the (vanishing) deficit angles and thereby without
violating the Regge equations of motion (2.6). Such vertex
displacements in flat directions are thus gauge symmetries
of the Regge action on flat solutions [7,8,13,61–63].
Infinitesimally, for every vertex v, the corresponding length
changes δle of the adjacent edges are encoded in a set of
four vectors δlevI ¼ Ye

vI (I ¼ 1;…; 4), where

Ye
vI ¼

~BI · ~E
e
vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Ee
v · ~E

e
v

q : ð5:1Þ

Every edge e connected to v is associated to a 4D vector ~Ee
v

in the embedding space which points along the edge and

whose length coincides with the edge length. The ~BI
comprise a basis in the 4D flat embedding space corre-
sponding to four linearly independent displacement direc-
tions. Clearly, the components of Ye

vI for edges e not
connected to v vanish.
On flat backgrounds, the Ye

vI leave the deficit angles
(2.1) around bulk triangles t invariant

Ye
vI
∂ϵt
∂le

����
flat

¼ 0 ∀ v; I; t: ð5:2Þ

Contracting with a factor ∂At=∂le0 and summing over
triangles, yields

Ye
vI

X
t

∂At

∂le0
∂ϵt
∂le

����
flat

¼ 0: ð5:3Þ

Notice that e0 can also be a boundary edge.
On the other hand, thanks to the Schläfli identity (2.5),

the matrix of second partial derivatives of the Regge action
(2.2) on a flat triangulation, ϵt ¼ 0, ∀ t, reads

∂2SR
∂le0∂le ¼

X
t

∂At

∂le0
∂ϵt
∂le

����
flat
; ð5:4Þ

where e; e0 are either both bulk edges or one of them is a
bulk and the other a boundary edge (if both edges were
boundary edges, this relation would not hold). Hence,
(5.3) shows that this matrix is degenerate with the vector
fields Ye

vI , v ⊂ T °, defining the degenerate directions.
Furthermore, (5.4) entails that the derivatives appearing
in (5.3) commute if both e; e0 are edges in the bulk T ° of the
triangulation. In particular, the Hessian of the Regge action
is given by the matrix of second partial derivatives with
respect to the bulk length variables, i.e.

Hee0 ≔
∂2SR
∂le0∂le ¼

X
t

∂At

∂le0
∂ϵt
∂le

����
flat

e; e0 ⊂ T °; ð5:5Þ

such that (5.3) implies that the Hessian is degenerate,
Ye
vIHee0 ¼ 0, v ⊂ T °.
Next, in the linearized theory, the lengths le ¼ ð0Þle þ

εye þOðε2Þ are expanded to linear order in an expansion
parameter ε. The previous equations imply that the linear-
ized Regge equations of motion are, in fact, linearly
dependent with four relations per vertex v,

Ye
vI

X
t

∂At

∂le
∂ϵt
∂le0

����
flat
ye

0 ¼ 0: ð5:6Þ

These equations constitute the linearized Bianchi identities
and can be independently derived from a first order
expansion of the approximate Bianchi identities [15,57,58]

Ye
vI

X
t

∂At

∂le ϵt ≈ 0: ð5:7Þ

The linearized Bianchi identities (5.6) and the degeneracy
of the Hessian, Ye

vIHee0 ¼ 0, are equivalent.
In conclusion, as a consequence of the vertex displace-

ment gauge symmetry, in linearized Regge calculus four
length variables per vertex cannot be determined from the
equations of motion. This symmetry is directly inherited
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from the flat background where, per bulk vertex, one
obtains a four-parameter set of flat solutions so that the
extremum of the action corresponding to flat solutions is
not an isolated one, but admits four constant directions.

VI. DEGENERACIES OF THE HESSIAN AND
THE LAGRANGIAN TWO-FORM

In the sequel we shall frequently employ (effective)
Hessian matrices and Lagrangian two-forms of flat Regge
triangulations since these matrices of second partial deriv-
atives of the Regge action evaluated on a flat background
solution define the linearized dynamics. (In the linearized
theory one expands the Regge action to quadratic order
around a flat solution with the linear terms being zero on
account of the background solution.) Consequently, we
wish to examine the properties of these matrices for Regge
calculus evaluated on a flat solution and their relation with
the vectors YvI further.
To this end, consider again the global evolution 0 → k

from Sec. IV. Pick a vertex v ⊂ Σk and glue a piece T rest of
flat triangulation onto Σk such that this vertex v becomes
internal, i.e. such that the 4D star9 of v is completed and all
edges adjacent to v ⊂ Σk become bulk (see Fig. 7). We need
the contribution from this additional piece of triangulation,
in order to make use of the results of the previous Sec. V.
The particulars of T rest are not important; what matters is
that v becomes internal.
Using this and the results of Sec. V, we show in

Appendix A that for a Hessian null vector YvI at v,

Ωk
aeYe

vI þ Ωk
aiY

i
vI ¼ −Ye

vI
∂2Sk
∂lek∂la0 − Yi0

vI
∂2Sk
∂li0k∂la0

¼ 0;

ð6:1Þ

such that the relevant components of YvI also define a right
null vector of the Lagrangian two-form Ωk (4.2) at step k.
Furthermore, it is shown in Appendix A that the spatial
components of Ye

vI associated to the edges e ⊂ Σk define

also right null vectors of the effective Lagrangian two-form
~Ωk (4.4),

~Ωk
aeYe

vI ¼ −Ye
vI

∂2 ~Sk
∂lek∂la0 ¼ 0; ð6:2Þ

where (the TA are a maximal set of linearly independent

nondegenerate directions of ∂2Sk
∂li1k ∂li2k

which are necessary

in order to factor our the null direction of the latter
matrix)

~Ωk
ae ≔ −

∂2 ~Sk
∂lek∂la0 ¼ −

∂2Sk
∂lek∂la0 þ

∂2Sk
∂lek∂lik

× Ti
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1
Ti0
A0

∂2Sk
∂li0k∂la0

: ð6:3Þ

In identical manner one shows that YvI likewise
defines a left null vector of the Lagrangian two-form
Ωkþx at step k (and similarly of its ‘effective’ version),
where Ωkþx arises from the action contribution Sk−
associated to the piece of future triangulation correspond-
ing to the forward evolution from Σk to some Σkþx (see
also the discussion in [5]).
In Sec. V it was shown that the complete vectors YvI

(including the components associated to all bulk edges
adjacent to v) are null vectors of the bare Hessian. In
Appendix A it is demonstrated that, similarly, the spatial
components Ye

vI define degenerate directions of the effec-
tive Hessian ~Hee0 ,

Ye
vI
~Hee0 ¼ 0; ð6:4Þ

for which the lengths of all edges in the triangulation
between Σ0 and Σk and in T rest are integrated out except the
lengths lek of the spatial edges in Σk.
In the remainder of this article we shall work with the

effective Hessian and Lagrangian two-forms of the Regge
action. The remaining dynamical variables lek are associated
to the hypersurface Σk—defining time step k—and thus
the relevant variables for the canonical formulation. The
matrices of second derivatives of the effective action will
define the linearized canonical dynamics.

VII. CANONICAL VARIABLES AND
CONSTRAINTS OF THE
LINEARIZED THEORY

The linearized theory of canonical Regge calculus is
given by an expansion of the canonical variables
lek ¼ ð0Þlek þ εyek þOðε2Þ, pk

e ¼ ð0Þpk
e þ επke þOðε2Þ, to

linear order in some expansion parameter ε around a flat
background triangulation. ð0Þlek;

ð0Þpk
e denote the canonical

variables of the flat background solution.

FIG. 7. Evolution from Σ0 to Σk. Glue a piece of triangulation
T rest onto Σk in order to complete the 4D star of v ⊂ Σk.

9The star of a vertex is the collection of all subsimplices in the
triangulation which contain v as a subsimplex.
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Consider again the evolution 0 → k from an initial
triangulated hypersurface Σ0 to another hypersurface Σk.
Using this expansion, it follows from the expressions
in (4.1) that the equations for the linearized pre- and
postmomenta now read10

þπke ¼
∂2Sk
∂lek∂la0 y

a
0 þ

∂2Sk
∂lek∂lik y

i
k þ

∂2Sk
∂lek∂le0k

ye
0
k ;

þπki ¼
∂2Sk
∂lik∂la0 y

a
0 þ

∂2Sk
∂lik∂li0k

yi
0
k þ

∂2Sk
∂lik∂le0k

ye
0
k ¼ 0;

−π0a ¼ −
∂2Sk
∂la0∂la00

ya
0

0 −
∂2Sk
∂la0∂lik y

i
k −

∂2Sk
∂la0∂le0k

ye
0
k : ð7:1Þ

One can check that solving the equations of motion,
þπki ¼ 0, for the bulk linearizations yik and inserting the
solutions into the other two equations yields

þπke ¼ Nk
ee0y

e0
k − Ωk

aeya0;
−π0a ¼ −M0

aa0y
a0
0 þΩk

aeyek: ð7:2Þ

Ωk
ae denotes here and henceforth the effective Lagrangian

two-form (6.3) (for notational simplicity we drop the tilde
from now on) and the matrices Nk

ee0 ;M
0
aa0 are given by

Nk
ee0 ≔

∂2 ~Sk
∂lek∂le0k

¼ ∂2Sk
∂lek∂le0k

−
∂2Sk
∂lek∂lik T

i
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1

× Ti0
A0

∂2Sk
∂li0k∂le0k

;

M0
aa0 ≔

∂2 ~Sk
∂la0∂la00

¼ ∂2Sk
∂la0∂la00

−
∂2Sk
∂la0∂lik T

i
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1

× Ti0
A0

∂2Sk
∂li0k∂la0a

; ð7:3Þ

where, again, the TA define a maximal linearly independent

set of nondegenerate directions of ∂2Sk
∂li1k ∂li2k

(see also

Appendix A). We emphasize that Nk
ee0 is not the effective

Hessian ~Hk
ee0 (A6) of the action at step k, such that

generally Ye
vIN

k
ee0 ≠ 0. Instead, one would have

~Hk
ee0 ¼ Nk

ee0 þMk
ee0 .

Contracting (7.2) with the right and left null vectors
Rk; L0 of Ωk yields the post- and preconstraints

þCk ¼ ðRkÞeðþπke − Nk
ee0y

e0
k Þ;

−C0 ¼ ðL0Það−π0a þM0
aa0y

a0
0 Þ; ð7:4Þ

which must vanish and which only depend on the canonical
variables from one time step. In particular, in Sec. VI we
saw that the spatial components Ye

vI define (i) right null
vectors of the effective Lagrangian two-form Ωk at k,
(ii) left null vectors of the effective Lagrangian two-form
Ωkþx at k, and (iii) null vectors of the effective Hessian ~Hee0

at k. This is important because it was shown in [29] (see
also the discussion in [6]) that, in this case, the correspond-
ing constraints

Ck
vI ¼ ðYkÞevIðþπke − Nk

ee0y
e0
k Þ;

C0
vI ¼ ðY0ÞavIð−π0a þM0

aa0y
a0
0 Þ; ð7:5Þ

are, in fact, (1) simultaneously pre- and postconstraints
(accordingly we drop the � indices), (2) genuine gauge
symmetry generators, (3) Abelian first class,11 and (4) asso-
ciated to genuine gauge variables xvIk .

12 In Sec. XI, we shall
discuss these gauge degrees of freedom further and show
that these constraints are preserved by the linearized
dynamics.
The two sets of constraints (7.5), indeed, generate the

displacement of the vertices in Σ0 and Σk in flat directions
in the flat 4D embedding space: they lead precisely to the
corresponding infinitesimal lengths changes of the edges
e ⊂ Σk or a ⊂ Σ0 adjacent to the given vertex,

δlek ¼ fyek; Ck
vIg ¼ ðYkÞevI; δla0 ¼ fya0; C0

vIg ¼ ðY0ÞavI:
ð7:6Þ

The contraction with the vectors YvI associates these
constraints invariably to vertices rather than edges.
For later purposes, let us now count how many linearly

independent gauge generators Ck
vI we have at step k. As

seen in Sec. V, there are exactly four vectors YvI associated
to each vertex v in Σk describing displacements of v in four
linearly independent flat directions. Accordingly, if there
are V vertices in Σk there are 4V such constraintsCk

vI at step
k. However, these are not all independent: there are 10
independent global translations and SO(4) rotations which
move the entire 3D hypersurface (and the underlying 4D
triangulation) in the flat 4D embedding space without
affecting the triangulation. Let E be the number of edges
in Σk. That is, there exist AvI

n ≠ 0, m ¼ 1;…; 10 such that

fyek; AvI
mCk

vIg ¼ AvI
m Ye

vI ¼ 0; e ¼ 1;…; E: ð7:7Þ

These ten conditions imply that rankðYe
vIÞ ¼ 4V − 10 and,

therefore, that there rather exist 4V − 10 linearly indepen-
dent constraints Ck

vI which generate vertex displacements.

10If Σ0∩Σk ≠ 0, we count any edges contained in this overlap
simply to step k. That is, the corresponding linearized variables
are among the yek; π

k
e.

11fCk
vI; C

k
v0I0 g ¼ 0 follows directly from Nk

ee0 ¼ Nk
e0e.12In the classification of [29], these vectors and the corre-

sponding symmetry generating constraints are of type (1)(A).
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The (vertex displacement) gauge orbit at step k is therefore
ð4V–10Þ-dimensional.
The explicit form of the constraints (7.5) in terms of

areas, angles and lengths is not relevant for this article
and will therefore not be exhibited here, however, has
been derived in [12] with the help of so-called “tent
moves.” It has also been shown in [12] that (a) the spatial
components Ye

vI are fully determined by the background
lengths of the edges in the 3D star of v in Σk,

13 and
(b) the contractions YvI · Nk and YvI ·M0 depend on
background variables from Σk only. Accordingly, the
constraints in the first (second) set in (7.5) contain
linearized as well as background variables from step k
(step 0) only.
Finally, a few comments are in order about the

symplectic form which we are working with in the
linearized theory. Using the above expansion of
the variables, it can be obtained from an expansion of
the symplectic form of the full theory ωk ¼ dlek∧dþpk

e

to order ε2 around a flat background solution, where the
þπke are given in (7.2). Noting that the background
variables are fixed, this yields

δωk ¼ dyek∧dþπke ð7:8Þ

as the symplectic form of the linearized theory. On
account of the postconstraints in (7.4), δωk is degenerate
when restricted to the postconstraint surface.
The effective Lagrangian two-form of the linearized

theory can be obtained from δωk by pull back under the
effective discrete Legendre transforms [6] and similarly
reads (the exterior derivative d does not affect the flat
background variables)

δΩk ≔ −
∂2 ~Sk
∂lek∂la0 dy

a
0∧dyek ¼ Ωk

aedya0∧dyek: ð7:9Þ

The degeneracies of the Lagrangian two-form δΩk (7.9) of
the linearized theory are, therefore, identical to the ones
from the background theory.

VIII. LATTICE GRAVITONS IN LINEARIZED
REGGE CALCULUS

After discussing the vertex displacement gauge sym-
metries of linearized Regge calculus, let us now identify
the propagating degrees of freedom. Presuming a close
link to the continuum and to simplify referring to them,
we wish to call the propagating lattice degrees of freedom
of linearized Regge calculus hereafter by the name
gravitons. However, we emphasize that their relation to
the continuum gravitons under a continuum limit is

unclear at this stage and we shall also not investigate
this relation here.14 Nevertheless, we shall see shortly that
the lattice gravitons correspond to curvature degrees of
freedom—just like their continuum analogues—and, in
fact, provide a linear basis of the propagating lattice
degrees of freedom. The dynamics of these gravitons is
generated by the evolution moves with respect to the
background discrete time because there are no constraints
generating the dynamics—in contrast to the continuum
where the graviton dynamics is generated by a quadratic
global Hamiltonian. In this article we shall discuss the
canonical Pachner move generated dynamics.15

In the present section we shall first discuss invariance
under vertex displacement gauge symmetries. Being propa-
gating observables, we expect the gravitons to be invariant
under the action of the constraints Ck

vI generating the vertex
displacement gauge symmetry and, furthermore, to be
associated to curvature. Indeed, by (5.2) we know that
the deficit angles are invariant under the vertex displace-
ments in flat directions. Additionally, Barrett’s fundamental
theorem of linearized Regge calculus [9] shows (for
topologically trivial triangulated manifolds) that the set
of linearized edge length perturbations ye around a flat
background, modulo the subset of linearized length defor-
mations corresponding to vertex displacements in flat
directions, is equivalent to the set of linearized deficit
angles (obviously, ð0Þϵt ¼ 0)

δϵt ¼ ε
∂ϵt
∂le

����
flat
ye þ oðε2Þ; ð8:1Þ

satisfying the Bianchi identities. In other words, the
physical (i.e. dynamical) content of linearized Regge
calculus is encoded in the space of linearized deficit angles.
Accordingly, the lattice gravitons must be closely related to
these curvature variables. However, notice that a priori ϵt
depends on the lengths of all edges in star4DðtÞ, the 4D star
of the bulk triangle t (i.e. the collection of simplices which
share t as a subsimplex).
We therefore wish to translate such deficit angles into

canonical variables at step k which are invariant under the
gauge generators Ck

vI . To this end, consider a hypersurface
Σk and a bulk triangle t such that ∂ðstar4DðtÞÞ∩Σk ≠ 0 and
the boundary of the 4D star of t touches Σk ‘tangentially’
(i.e., Σk does not cut star4DðtÞ into two disconnected
pieces). Next, we integrate out all edges which are bulk
between Σ0 and Σk. Employing the equations of motion for
the internal edges,

13The 3D star of v is the collection of all subsimplices in Σk of
dimension 3 or less that share the vertex v.

14This relation is clearly nontrivial because the continuum
limit might be achieved via some coarse graining procedure
[16–21,64]. This will generically change the dynamical content
of the system.

15For tent moves it was shown in [12] that the ‘gravitons’
satisfy discrete second order evolution equations which, in some
rough analogy, can be taken as a lattice wave equation.
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∂2Sk
∂lik∂li0k

yi
0
k þ

∂2Sk
∂lik∂lek y

e
k þ

∂2Sk
∂lik∂la0 y

a
0 ¼ 0; ð8:2Þ

and making use of (8.1), one finds the corresponding
linearized effective deficit angle

δ~ϵt ¼ ε

�∂ ~ϵt
∂lek y

e
k þ

∂ ~ϵt
∂la0 y

a
0

�
þ oðε2Þ; ð8:3Þ

where in analogy to (7.3),

∂ ~ϵt
∂lek ¼

∂ϵt
∂lek −

∂ϵt
∂lik T

i
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1
Ti0
A0

∂2Sk
∂li0k∂lek

;

∂ ~ϵt
∂la0 ¼

∂ϵt
∂la0 −

∂ϵt
∂lik T

i
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1
Ti0
A0

∂2Sk
∂li0k∂la0

:

ð8:4Þ

Starting from (5.2), and in precise analogy to (A4), it is
straightforward to convince oneself that also the effective
deficit angles are invariant under the spatial null vectors
Ye
vI; Y

a
vI:

Ye
vI
∂ ~ϵt
∂lek ¼ 0; Ya

vI
∂ ~ϵt
∂la0 ¼ 0: ð8:5Þ

Defining

ytk ≔
∂ ~ϵt
∂lek y

e
k; ð8:6Þ

it is clear that

fytk; Ck
vIg ¼ Ye

vI
∂ ~ϵt
∂lek ¼ 0 ∀ v; I: ð8:7Þ

Hence, those contributions ytk of the linearized effective
deficit angles (8.3) which depend on data in Σk con-
stitute nontrivial configuration variables at step k that
are invariant under the action of all gauge generators
Ck
vI . These ytk admit a geometric interpretation as

curvature degrees of freedom and are nonlocal quantities
in that they involve effective expressions obtained after
integrating out internal degrees of freedom. We shall see
in the sequel that these ytk are generally propagating
degrees of freedom. Accordingly, we wish to call the ytk
gravitons.

IX. COUNTING GRAVITONS VIA
PACHNER MOVES

Prior to constructing the momenta conjugate to the
gravitons and analysing their propagation under the
Pachner evolution moves, let us count and check whether
the ytk actually provide a complete set of propagating

degrees of freedom. We just verified in Sec. VII that there
are 4V − 10 linearly independent vertex displacement
gauge generators Ck

vI at step k. Hence, if there are E edges
in Σk, we should find E − 4V þ 10 independent such ytk
configuration gravitons, i.e. 2ðE − 4V þ 10Þ phase space
graviton degrees of freedom at k. We shall show momen-
tarily that this is, indeed, the case for closed Σk.
Before we do this, a few important comments are

necessary to prevent confusion: first of all, as explained
in [6,29] and summarized in Sec. IV, the notion of a
propagating degree of freedom in the discrete requires two
time steps, say, 0 and k, between which the degree of
freedom can propagate. In the case of evolving phase
spaces, as necessary for the discretization changing
Pachner move dynamics, this strongly depends on these
two time steps. The number of phase space degrees of
freedom propagating from Σ0 to Σk reads in the present
case [6,29]

N0→k ¼ 2E − 2#ðpreconstraints at 0Þ
¼ 2E − 2#ðpostconstraints at kÞ
¼ 2E − 2ð4V − 10Þ − 2#ðpostconstraints þCk

at k with þCk ≠ Ck
vIÞ:

On the other hand, the number 2ðE − 4V þ 10Þ at k is
clearly independent of Σ0. Consequently, the number of
2ðE − 4V þ 10Þ gravitons which we are counting at step k
does not necessarily coincide with the gravitons that
actually propagated from Σ0 to Σk or, likewise, that
propagate from Σk to some Σkþx. In particular, the number
of postconstraints (or preconstraints) at step k differing
from the gauge generators Ck

vI depends, in general, strongly
on Σ0 (or Σkþx) thanks to the coarse graining or refining
discussed in Sec. IV. Hence, the number of gravitons
among the 2ðE − 4V þ 10Þ independent ones at k that
actually propagated from Σ0 to Σk is generically smaller
than 2ðE − 4V þ 10Þ (and likewise for propagation from
Σk to Σkþx).
As a result, it is more appropriate to view these

2ðE − 4V þ 10Þ phase space graviton degrees of freedom
rather as gauge invariant potentially propagating degrees of
freedom; it depends strongly on initial and final hyper-
surfaces whether these gravitons from hypersurface Σk
actually propagate. But if there are propagating degrees
of freedom, they will be contained in this set of gravitons.
We shall come back to this below.
The appearance of nondynamical, yet gauge invariant

degrees of freedom in linearized Regge calculus has been
exhibited before [7,8]. Given that these variables are also
linearized deficit angles, they will be contained in the set of
nonpropagating gravitons discussed here. Their appearance
can be related to the fact that a generic vertex carries more
edges than the number of degrees of freedom contained in a
4D metric and is thus not related to coarse graining or

CANONICAL LINEARIZED REGGE CALCULUS: COUNTING … PHYSICAL REVIEW D 91, 124034 (2015)

124034-13



refining dynamics.16 On the other hand, the set of non-
propagating gravitons studied here can also contain linear-
ized deficit angles which do not propagate as a consequence
of the appearance of coarse graining or refining constraints,
as discussed in Sec. IV, and is therefore more general.
Let us now return to our attempt to count and show that

the gravitons ytk, indeed, form a complete set of gauge
invariant degrees of freedom. Viewing ð∂ ~ϵt∂lekÞ as an E × Nt

matrix, where Nt is the total number of bulk triangles t
whose ∂ðstar4DðtÞÞ touches Σk tangentially, the first con-
dition in (8.5) implies

rank

�∂ ~ϵt
∂lek

�
≤ E − 4V þ 10: ð9:1Þ

Let us show that Nt ≥ E − 4V þ 10 and subsequently that
the upper bound in (9.1) is saturated. From this it follows
that the ytk (8.6) constitute a complete set.
It is convenient to count the variables by means of the

Pachner evolution moves. To this end, we recall the proper-
ties of the four Pachner moves from Sec. III and, in
particular, that the deficit angle around the new bulk triangle
generated by means of a 2–3 Pachner move is an a priori free
variable. All deficit angles resulting from the 2–3 moves are
thus a priori independent. Denoting by E23 the number of
edges in Σk produced by 2–3 moves, it is, therefore,
sufficient to show E23 ≥ E − 4V þ 10, which we shall do
momentarily. The total number Nt is, of course, generically
much larger than E23 as a consequence of the 3–2 and 4–1
moves. However, the linearized deficit angles generated
during the latter two moves are generally linearly dependent
on the deficit angles from the 2–3 moves because there are
no new edges introduced in these two types of moves. We
will discuss this in more detail in Sec. XI below when
studying the linearized Pachner moves. For simplicity, let us
assume Σk∩Σ0 ¼ 0 and that the hypersurfaces are closed.
Proposition 9.1. For any closed triangulated 3D hyper-

surface Σk with Σk∩Σ0 ¼ 0 it holds

E23 ≥ E − 4V þ 10: ð9:2Þ

Proof. Let Σk be a closed connected hypersurface such that
Σ0∩Σk ¼ 0. Denote by E14 the number of edges in Σk
produced through 1–4 moves. It holds E ¼ E14 þ E23 (the
3–2 and 4–1 moves do not introduce new edges). Given that

Σk is closed and Σ0∩Σk ¼ 0, there must exist some closed
hypersurface Σaux (it could be Σ0), which does not intersect
Σk but whose vertices are connected to the vertices of Σk. A
sequence of Pachner moves can be glued onto Σaux to
produce Σk. Since the minimum number of vertices in a
closed 3D triangulation is five (the boundary of a 4-simplex),
we must glue at least five 1–4 Pachner moves in order to
introduce the vertices of Σk. The first of these 1–4 moves
must be glued to one tetrahedron with all four of its vertices
in Σaux since no other types of Pachner moves placed on Σaux
introduce new vertices. The second of the 1–4 moves must
be glued to a tetrahedron with at least three vertices in Σaux
(the fourth one could be the new one from the previous 1–4
move). Likewise, the third of the 1–4 moves must be glued to
a tetrahedron with at least two vertices in Σaux and the fourth
of the 1–4 moves must be glued on a tetrahedron with at
least one vertex in Σaux. Consequently, there are at least
4þ 3þ 2þ 1 ¼ 10 edges generated during 1–4 moves,
connecting the vertices of Σk with those of Σaux. But these
edges must be internal because Σaux does not intersect with
Σk. Hence, we conclude that necessarily

E14 ≤ 4V − 10:

In conjunction with E ¼ E14 þ E23, we thus obtain the
desired result. □

Notice that each of the E23 edges in Σk from a 2–3 move
is associated to a bulk triangle t with ∂ðstar4DðtÞÞ∩Σk ≠ 0.
That is, we indeed have Nt ≥ E − 4V þ 10.
This is sufficient to argue that the bound in (9.1) is

saturated for the following reason: if it was not saturated,
there must exist a number larger than 4V − 10 of nontrivial
vectors Ve such that Veð∂ ~ϵt∂lekÞ ¼ 0, t ¼ 1;…; Nt. Any such

Ve [by (8.3)] defines a transformation in a flat direction.
However, the displacements of the vertices in the triangu-
lation already account for all possible transformations in
flat directions. In conclusion, there exist precisely 4V − 10

nontrivial null vectors of the E × Nt matrix ð∂ ~ϵt∂lekÞ and since

Nt ≥ E − 4V þ 10, the bound in (9.1) must be saturated.
That is, among theNt gravitons ytk in (8.6) we can always

choose exactly E − 4V þ 10 linearly independent ones
which we henceforth denote by yαk, α ¼ 1;…; E−
4V þ 10. In general, the linearized effective deficit angles
therefore provide an over-complete set of gauge invariant
gravitons at step k.
There is a sequence of theorems by Walkup [65] con-

cerning characteristic lower bounds for numbers of sub-
simplices involved in triangulated 3-manifolds which, in our
case, ensures that the number of gravitons cannot be negative
and which can be summarized in the following form [66]:
Theorem 9.1. (Walkup [65]) For any combinatorial

3-manifold the inequality E − 4V þ 10 ≥ 0 holds with
equality if and only if it is a stacked sphere.

16In fact, the equations of motion of the redundant gravitons
studied in [7,8] are relations between only configuration variables
of a fixed time step [7,8] and thus holonomic constraints. Within
the classification of [29] these redundant gravitons are degrees of
freedom of type (1)(B), corresponding to vectors which define
null modes of the Lagrangian two-forms, however, not of the
Hessian matrix. Such a mode as type (1)(B) is nonpropagating
and associated to a pair of pre–and postconstraints which are not
symmetry generators and neither coarse graining nor refining
conditions.
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A “stacked 3-sphere” is a triangulation of the 3–sphere
which can be obtained by performing a sequence of 1–4
Pachner moves on the 3D boundary surface of a single
4-simplex. It is not surprising that in this case the total
number of gravitons must be zero, since the 1–4 moves
only generate further boundary data, but do not introduce
any internal triangles and thus also no curvature.
Note, however, that the configuration of a stacked sphere

can also be obtained as the 3D boundary surface of a 4D
triangulation involving internal triangles and edges.
Nevertheless, any triangulation whose boundary configu-
ration corresponds to a stacked sphere possesses flat
solutions independently of the existence of internal trian-
gles. The reason is that the boundary data of a stacked
sphere arising from a single simplex and only 1–4 Pachner
moves can be freely chosen (modulo generalized triangle
inequalities) without changing flatness. In particular, it
can be chosen to coincide with the boundary data of any
triangulation whose boundary corresponds to a stacked
sphere (of the same connectivity), yet which possesses
internal edges and triangles.17 Any stacked sphere con-
figuration (involving internal triangles or not) is fully
constrained in the canonical formalism with as many
constraints as edges in the boundary (see also [5]).
Example 9.1. Consider a single 4-simplex and perform
five 1–4 gluing moves on the five tetrahedra of the
boundary. Subsequently, carry out five further 4–1, ten
2–3 and ten 3–2 Pachner moves, in order to obtain a new
3D boundary which does not intersect with the boundary of
the original 4-simplex. This is always possible. Thus, the
10 edges connecting the five new vertices in this surface all
resulted from the ten 2–3 Pachner moves (the 3–2 and 4–1
moves do not introduce new edges). However, the new
boundary configuration is identical to the one of a single
4-simplex and is, therefore, a stacked sphere with
E − 4V þ 10 ¼ 0 gravitons, despite the fact that all edges
are associated to internal triangles. This is only possible if
all contributions from the linearized deficit angles around
the internal triangles vanish. Indeed, both ∂ ~ϵα

∂le and Ye
vI are

10 × 10 matrices, where the latter is nondegenerate due to
the presence of ten linearly independent directions for
displacing the five vertices in 4D flat space. Hence, (8.5)
implies ∂ ~ϵα

∂le ¼ 0 such that this configuration is devoid of
gravitons. Clearly, the present configuration is a fully
constrained one with 10 linearly independent vertex dis-
placement generators CvI and 10 edges in the boundary.
We stress that this example does not imply that

every spherical triangulation or every fully constrained

configuration is flat and devoid of gravitons. For instance,
the fact that the phase space at a given time step in the
evolution is fully constrained reflects the fact that no
degrees of freedom propagate through that time step but
it does not necessarily imply that no degrees of freedom
propagate away from this step in only either future or past
direction. This subtle issue has been thoroughly discussed
in [6,29]—also in the context of a discrete version of the
no-boundary proposal—and we shall not repeat it here. It
roots in the fact that in the discrete one always has to
specify two time steps in order to discuss propagation and
different pairs of time steps on a temporally varying
discretization may yield different numbers of propagating
degrees of freedom between them.
The example 9.1 of a stacked sphere (with internal

edges) shows that it is possible that E ¼ E23. Hence, in
combination with Walkup’s theorem 9.1, we have shown
the following:
Theorem 9.2. For any closed 3D hypersurface Σk with

Σk∩Σ0 ¼ 0 the sequence of inequalities

E ≥ E23 ≥ E − 4V þ 10 ≥ 0 ð9:3Þ

holds with equality in the last relation if and only if it is a
stacked sphere.
From the considerations thus far, we can already predict

the role played by each of the Pachner moves in the
generation and annihilation of gravitons and gauge degrees
of freedom on the (nonextended) evolving phase spaces. At
the configuration space level, the number of gravitons at k
is E − 4V þ 10, while it follows from the analysis in [6,29]
that to each of the 4V − 10 independent vectors YvI there is
associated one gauge degree of freedom (we shall exhibit
these gauge variables more explicitly below in Sec. X).
Denote the changes in the number of edges and vertices
when going from Σk to Σkþ1 by means of any of the
Pachner moves by ΔE and ΔV, respectively. Compute the
net changes in the numbers of ‘gravitons’ as ΔNp ¼ ΔE −
4ΔV and the net changes in the numbers of gauge variables
via ΔNg ¼ 4ΔV. Using the geometric properties of the
Pachner moves exhibited in Sec. III, we conclude the
following:
1–4 Pachner move: generates 4 new gauge modes:
ΔV ¼ þ1, ΔE ¼ þ4 ⇒ ΔNp ¼ 0 and ΔNg ¼ þ4

2–3 Pachner move: generates 1 new graviton: ΔV ¼ 0,
ΔE ¼ þ1 ⇒ ΔNp ¼ þ1 and ΔNg ¼ 0

3–2 Pachner move: annihilates 1 old graviton: ΔV ¼ 0,
ΔE ¼ −1 ⇒ ΔNp ¼ −1 and ΔNg ¼ 0

4–1 Pachner move: annihilates 4 old gauge modes:
ΔV ¼ −1, ΔE ¼ −4 ⇒ ΔNp ¼ 0 and ΔNg ¼ −4
We emphasize, again, that the gravitons at each step k are

invariant under the vertex displacement gauge symmetry
but only potentially propagate from or to Σk. For instance,
the fact that the

17In fact, there may exist special curved solutions as well for
boundary data otherwise admitting flatness. However, in contrast
to the flat solutions, these curved solutions are isolated in that
there exists no continuous symmetry of the solutions and rather
seem to constitute a discretization artifact [13]. We shall ignore
here such special isolated solutions.
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2–3 move evolving Σk to Σkþ1 generates a graviton is to be
understood in the following sense: the new graviton of the
2–3 move is an a priori free variable at kþ 1 that cannot be
predicted by the data at k. It, therefore, does not propagate
to Σkþ1. However, it may propagate from Σkþ1 onwards to
some Σkþx, x > 1, depending on the particulars of the
future triangulation.
3–2 move from Σk to Σkþ1 annihilates a graviton means that
the number of (configuration) degrees of freedom poten-
tially propagating to or from Σkþ1 is decreased by one as
compared to Σk. The removed graviton is a posteriori free
at k. Whether it actually propagated to Σk depends on the
past triangulation.
We shall discuss these linearized Pachner move dynamics
further in canonical language in Sec. XI.

X. DISENTANGLING GAUGE AND GRAVITON
PHASE SPACE VARIABLES

It is convenient to perform linear canonical transforma-
tions on the linearized pairs ðyk; πkÞ in order to disentangle
the gauge from the graviton degrees of freedom. We shall
follow here the more general procedure developed in [29]
for arbitrary quadratic discrete actions. While in the general
case one can distinguish among eight different types of
degrees of freedom, it suffices for our purposes to only
distinguish between the two broad types given by the
gravitons as defined above and the gauge variables con-
jugate to the constraints. (It is the gravitons for which
one could distinguish further cases, according to whether
they actually propagate to or from Σk or both or not at
all [29].)
We proceed as follows: choose 4V − 10 linearly inde-

pendent displacement vectors ðYkÞevI , vI ¼ 1;…; 4V − 10

(henceforth we include a time step label k) and E − 4V þ
10 linearly independent ∂ ~ϵα

∂lek , α ¼ 1;…; E − 4V þ 10. We

construct an invertible transformation matrix ðTkÞeΓ, where
the index set Γ runs over both vI and α, by first setting

ðTkÞevI ¼ ðYkÞevI ð10:1Þ

and

ðT−1
k Þαe ¼

∂ ~ϵα
∂lek : ð10:2Þ

Clearly, ðTkÞevIðT−1
k Þαe ¼ 0. Next, we choose E − 4V þ 10

linearly independent ðTkÞeα such that

ðTkÞeαðT−1
k Þβe ¼ δβα: ð10:3Þ

Certainly, these conditions do not uniquely determine the
matrix ðTkÞeΓ. However, any choice satisfying the above
conditions is sufficient for our purposes. Assume, therefore,
that such a choice has been made at step k.

Notice that each such ðTkÞα defines a variation of the
edge lengths in Σk such that only a single (independent)
‘effective’ deficit angle is changed, since by construction
ðTkÞeα ∂ ~ϵβ

∂lek ¼ δβα. That is, in contrast to the 4V − 10 ðYkÞvI
which leave the geometry invariant, the E − 4V þ 10 ðTkÞα
actually define geometry changing directions. As a conse-
quence, these ðTkÞα will generically not define degenerate
directions of (effective) Hessians such as (5.4).18 We,
therefore, choose to label the nondegenerate directions
of the Hessian by α. We shall see that the ðTkÞα may still
define degenerate directions of the Lagrangian two-forms.
Using this transformation matrix ðTkÞeΓ, we perform a

linear canonical transformation [29]

yΓk ¼ ðT−1
k ÞΓeyek; pk

Γ ¼ ðTkÞeΓπke; e ¼ 1;…; E:

ð10:4Þ
(For notational simplicity and assuming momentum match-
ing, we henceforth drop the þ; − at the momenta.) In
particular, we now have the E − 4V þ 10 gravitons,

yαk ¼ ðT−1
k Þαeyek ¼

∂ ~ϵα
∂lek y

e
k:

However, their conjugate momenta pk
α thus defined are

generally not invariant under the vertex displacement gauge
symmetry generated by (7.5) because

fpk
α; Ck

vIg ¼ −ðTkÞeαNk
ee0 ðYkÞe0vI ð10:5Þ

may generally not vanish. As in [29], it is thus useful to
perform a second linear canonical transformation.
Beforehand, let us simplify the notation for the sequel

and define the following transformed matrices

Ωk
αβ ≔ ðT0ÞeαΩk

aeðTkÞeβ;
Nk

αβ ≔ ðTkÞeαNk
ee0 ðTkÞe0β ;

Nk
αvI ≔ ðTkÞeαNk

ee0 ðYkÞe0vI;
Nk

vIwJ ≔ ðYkÞevINk
ee0 ðYkÞe0wJ; ð10:6Þ

where Ωk
ae; Nk

ee0 are given in (7.2), (7.3).
To cleanly disentangle the gauge from the graviton

variables, we carry out a second canonical transformation.
Obviously, there exist many possible choices for such
transformations. We choose one which leaves the configu-
ration data yvIk ; y

α
k invariant,

18We cannot preclude, in general, that there exist geometry
changing directions ðTkÞα which, nevertheless, are null vectors of
the Hessian, ðTkÞeαHee0 ¼ 0, and leave the Regge action (ex-
panded to second order around the flat background) invariant.
The accompanying transformation would need to generate
geometry changes that lead to variations of the action which
cancel each other; this could only occur in special situations.
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yvIk → yvIk ; pk
vI → πkvI ≔ ðYkÞevIπke − Nk

vIαy
α
k:

yαk → yαk; pk
α → πkα ≔ ðTkÞeαπke − Nk

αvIy
vI
k : ð10:7Þ

It is straightforward to check that this defines a canonical
transformation with new canonical pairs ðyvIk ; πkvIÞ and
ðyαk; πkαÞ. In particular, the vertex displacement generators
(7.5) now appear in a form devoid of graviton variables

Ck
vI ¼ πkvI − Nk

vIwJy
wJ
k : ð10:8Þ

The yvIk , therefore, constitute the 4V − 10 gauge variables
conjugate to the constraints. We may interpret them as
four linearized lapse and shift variables associated to each
vertex in Σk. Their conjugate momenta πkvI are constrained
by (10.8). Furthermore, we have

fyαk; Ck
vIg ¼ 0; fπkα; Ck

vIg ¼ 0;

such that ðyαk; πkαÞ form E − 4V þ 10 canonical graviton
pairs which are invariant under the vertex displacement
symmetry of linearized Regge calculus.
It is desirable to have a proper geometric interpretation

of the graviton momenta πkα. For example, in linearized
continuum general relativity, the gauge invariant momenta
conjugate to the graviton variables are related to the extrinsic
curvature. In the present discrete formulation it is a bit more
difficult to give a precise geometric interpretation in terms of
extrinsic geometry, in part because (1) clearly the πkα are not
unique once the gravitons yαk are chosen, and (2) the matrices
ðTkÞeα and Nk

αvI cloud the information about the background
geometry. For the time being, we leave the geometric
interpretation of the graviton momenta as an open problem
and content ourselves with the observation that the πkα are
generators of geometry (i.e. linearized deficit angle) chang-
ing transformations fyαk; πkβg ¼ δαβ .
Let us now study their dynamics as generated by the

Pachner moves.

XI. PACHNER MOVES IN 4D LINEARIZED
REGGE CALCULUS

The Pachner moves locally evolve the spatial hypersurface
Σ forward in discrete time. When integrating out any new
internal edges produced by these local evolution moves, the
sequence of Pachner moves k → kþ 1, kþ 1 → kþ 2;…
is equivalent to the sequence of global evolution moves
0 → k, 0 → kþ 1, 0 → kþ 2;… In other words, the
Pachner moves update the global evolution moves and
one implicitly considers the propagation of data from Σ0

onto the evolving hypersurface Σk. Since the number of
gravitons propagating from Σ0 to Σk cannot increase with
growing k, the rank of the symplectic form on the evolving
slice can only remain constant or decrease. Indeed, theorem
4.1 in [6] shows for full nonperturbative Regge calculus that

the 1–4 and 2–3 Pachner moves preserve the symplectic
form restricted to the postconstraint surfaces, whereas the
3–2 and 4–1 moves can reduce the rank of the symplectic
form restricted to the postconstraint surface (depending on
the specifics of the Regge triangulation).
In Sec. IX we have already revealed the general role

assumed by each of the Pachner moves in the evolution. We
shall study these roles now in detail. In particular, we shall
see that the 1–4 moves generate the vertex displacement
gauge generators (7.5) and gauge variables xvIk at each
vertex which then are preserved by all Pachner moves until
a 4–1 move renders the corresponding vertex internal and
trivializes the associated constraints. The preservation of
the four constraints per vertex in each hypersurface has to
be expected as we will always work on solutions which
inherit the gauge symmetry of the background. In fact, it
directly follows from the general theorem 4.1 in [6].
Nevertheless, we shall use it as an important consistency
check of the formalism. In addition, the 2–3 moves
generate gravitons, while the 3–2 moves annihilate them.
As the Pachner moves constitute an elementary and ergodic
set of evolution moves from which all other (topology
preserving) evolution moves can be constructed, the end
product of the present section will be a completely general
account of the linearized (canonical) dynamics of Regge
calculus in 4D. For better readability we shall move
technical details to Appendix B.
The decomposition of the canonical transformation

matrix ðTkÞeΓ of Sec. X changes on solutions to equations
of motion because, in particular, the coarse graining or
lattice shrinking evolution moves change the dynamical
content of the system [29]. After all, the classification of
degrees of freedom is spacetime region dependent for
temporally varying discretizations. It will therefore not
come as a great surprise that wewill not only have to extend
or reduce, but also transform this matrix along the way of
the Pachner evolution—after all, each Σk is equipped with a
different set of degrees of freedom. Specifically, a non-
trivial transformation of ðTkÞeΓ will happen during the 3–2
moves which provide the only nontrivial equations of
motion of the linearized theory.
Finally, as regards notation: we continue to label all

edges in Σk∩Σkþ1 by e, while, newly introduced edges are
indexed by n and old edges which are rendered internal are
labeled by o. The linearized Pachner moves involve second
derivatives of the action Sσ of the newly glued 4-simplex σ.
To simplify the notation in the sequel, we define:

Sσee0 ≔
∂2Sσ
∂lek∂le0k

;

Sσαβ ≔ ðTkÞeαSσee0 ðTkÞe0β ;
SσαvI ≔ ðTkÞeαSσee0 ðYkÞe0vI;
SσvIwJ ≔ ðYkÞevISσee0 ðYkÞe0wJ:
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A. The linearized 1–4 Pachner move

A 1–4 Pachner move performed on Σk yields four new
edges labeled by n, a new vertex v� ⊂ Σkþ1 and the
corresponding four new lapse and shift gauge variables
enumerated by v�I, but does not introduce new bulk
triangles (see Fig. 4). The momentum updating (4.7),
(4.8) reads in linearized form

yekþ1 ¼ yek; πkþ1
e ¼ πke þ Sσee0y

e0
kþ1 þ Sσenynkþ1;

πkn ¼ 0; πkþ1
n ¼ Sσnn0y

n0
kþ1 þ Sσneyekþ1: ð11:1Þ

There are no linearized equations of motion involved in this
move. Notice that the very last equation constitutes four
postconstraints, one for each edge n.
Since yekþ1 ¼ yek and clearly yαkþ1 ¼ yαk (the previous

deficit angles do not change under the addition of a new
boundary simplex), we would also like to maintain the
same linearized lapse and shift for the old vertices, yvIkþ1 ¼
yvIk (ynkþ1 are not needed in order to determine the embed-
ding of the old vertices).
In Appendix B 1, using a suitable extension at step kþ 1

of the transformation matrix ðTkÞeΓ, we show:
(i) The vertex displacement generators of all already

existing v ⊂ Σk∩Σkþ1 are preserved under (11.1) as

Ck
vI ¼ πkvI − Nk

vIwJy
wJ
k ¼ 0 ⇒

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vI ~vJy

~vJ
kþ1 ¼ 0;

where ~v now includes both v and the new v�.
(ii) Similarly, the four new postconstraints in the last

equation of (11.1) become, upon contraction with
the new Yv�I, the vertex displacement generators of
the new vertex v� ⊂ Σkþ1. The latter read

Ckþ1
v�I ≔ πkþ1

v�I − Sσv�I ~vJy
~vJ
kþ1 ð11:2Þ

and are conjugate to the four new lapse and shift
gauge degrees of freedom yv

�I
kþ1 associated to v�.

(iii) No new gravitons are produced. The momenta of the
existing gravitons evolve under (11.1) as

πkþ1
α ¼ πkα þ Sσαβy

β
k:

These are generally proper evolution equations and
will be called “graviton momentum updating.”

As before, the sets ðy~vIkþ1; π
kþ1
~vI Þ and ðyαkþ1; π

kþ1
α Þ are

canonically conjugate pairs of gauge variables and gauge
invariant graviton degrees of freedom, respectively.

B. The linearized 2–3 Pachner move

Performing a 2–3 Pachner move on Σk introduces one
new edge labeled by n and a new a priori free deficit angle
ϵα

�
(see Fig. 5). The linearized momentum updating (4.7),

(4.8) corresponding to the 2–3 move is in shape identical to
(11.1)—with the sole difference that n now labels only one
new edge. Accordingly, no linearized equation of motion
arises (no new internal edge is created) and there is now one
postconstraint labeled by n. Again, yekþ1 ¼ yek, y

α
kþ1 ¼ yαk

and we also choose to keep yvIkþ1 ¼ yvIk .
We show in Appendix B 2, using a suitable extension of

the transformation matrix ðTkÞeΓ, that
(i) The vertex displacement generators of all v ⊂

Σk∩Σkþ1 are preserved under the 2–3 Pachner move

Ck
vI ¼ πkvI − Nk

vIwJy
wJ
k ¼ 0 ⇒

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1 ¼ 0: ð11:3Þ

(ii) The momenta of the old gravitons evolve according
to the graviton momentum updating,

πkþ1
α ¼ πkα þ Sσ

α ~β
y
~β
k;

under the 2–3 move, where ~α now runs over the old
gravitons α and the new α�.

(iii) The momentum conjugate to the newly generated
graviton yα

�
kþ1 reads

πkþ1
α� ¼ Sσ

α� ~β
y
~β
kþ1: ð11:4Þ

This is the postconstraint of the 2–3 move of the
linearized theory and a consequence of the vector
ðTkþ1Þα� being a right null vector of the effective
Lagrangian two-form Ωkþ1 at step kþ 1.

In contrast to the four new postconstraints (11.2)
produced during the 1–4 Pachner move which are gen-
erators of the vertex displacement gauge symmetry and
only contain gauge variables and their conjugate momenta,
the single postconstraint (11.4) of the 2–3 move constrains
the momentum of the new graviton and generically does
not constitute a gauge generator. It manifests the fact that
the new graviton yα

�
kþ1 is an a priori free variable that cannot

be predicted by the data on Σk (or Σ0), i.e. that this graviton
yα

�
kþ1 did not propagate from Σk (or Σ0) to Σkþ1. However, if
yα

�
kþ1 does not turn out to be also a posteriori free, it may
propagate from Σkþ1 onwards in an evolution kþ 1 →
kþ x specified by initial data at kþ 1 (see also Sec. IX).
The postconstraint (11.4) can be interpreted as a refinement
consistency condition which ensures that the fewer data of
the coarser hypersurface Σk can be consistently embedded
in the larger phase space of the finer Σkþ1.
Finally, we note that ðyvIkþ1; π

kþ1
vI Þ, ðy ~αkþ1; π

kþ1
~α Þ, again,

define canonically conjugate pairs of gauge and graviton
variables, respectively; all ðy ~α

kþ1; π
kþ1
~α Þ, ~α ¼ α; α�, Poisson

commute with the vertex displacement gauge symmetry
generators (11.3).
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C. The linearized 3–2 Pachner move

A 3–2 Pachner move renders an old edge labeled by o
internal (see Fig. 5) and, as we shall see shortly, removes a
graviton which we label by α� (the 3–2 move does not
affect the number of vertices). This move causes quite a bit
more trouble. The momentum updating (4.9), (4.10) of the
3–2 move reads as follows in linearized form:

yekþ1 ¼ yek πke ¼ πkþ1
e − Sσee0y

e0
k − Sσeoyok;

πkþ1
o ¼ 0; πko ¼ −Sσoo0y

o0
k − Sσoeyek: ð11:5Þ

The very last equation constitutes the linearized precon-
straint of the 3–2 Pachner move. Using (7.2) and (7.3) for
πko, we can write it as the equation of motion of the new
internal edge labeled by o,

ðNk
oo þ SσooÞyok þ ðNk

oe þ SσoeÞyek −Ωk
aoya0 ¼ 0: ð11:6Þ

In Appendix B 3 it is shown that this equation of motion
can be written entirely in terms of gravitons

ðNk
oα� þ Sσoα� Þyα

�
k þ ðNk

oα þ SσoαÞyαk þΩk
γoy

γ
0 ¼ 0: ð11:7Þ

(yγ0 is a graviton onΣ0.) This preconstraint of the 3–2 Pachner
move yields the only nontrivial equation of motion for
linearized Regge calculus (the linearized equations of motion
of the 4–1 move below are automatically satisfied). Being a
preconstraint, it can lead to the following situations19:
(a) It is independent of the postconstraints at k and does not

fix any of the a priori free data at k. That is, it is first
class and restricts the space of solutions (space of initial
data) leading to Σk.

20 The preconstraint prevents one
(configuration) graviton that propagated to Σk from
propagating further to Σkþ1. This can be seen from
(11.7) which cannot contain any a priori free ‘graviton’
in this case (otherwise it would become fixed) and thus
‘annihilates’ one independent propagating graviton at k
by linear dependence with the others.

(b) It is independent of the postconstraints but fixes one
a priori free datum via (11.7) which thus must be an
a priori free graviton. In this case, the preconstraint
will be second class21 and not prevent an actually
propagating ‘graviton’ from propagating further to
Σkþ1 because only an a priori free graviton that did not

propagate to Σk gets fixed. (Recall that the set of
E − 4V þ 10 potentially propagating ‘gravitons’ at
each step may contain a priori free modes.)

In both cases, the equation of motion (11.7) will require a
nontrivial transformation of the matrix when going from
ðTkÞ to ðTkþ1Þ as shown in Appendix B 3. We may choose
yα

�
k to be the graviton that either gets annihilated as in (a) or
fixed as in (b). This change of canonical transformation
matrix at kþ 1 entails a shift in the remaining lapse and
shift and graviton variables

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1 ≠ yvIk ; yαkþ1 ¼ ðT−1

kþ1Þαeyekþ1 ≠ yαk;

despite yekþ1 ¼ yek. From step kþ 1 onwards we will
employ yαkþ1 and yvIkþ1 as ‘graviton’ and gauge variables,
respectively. As mentioned earlier, this does not come as a
great surprise because the 3–2 move can be considered as a
coarse graining or lattice shrinking move which changes
the dynamical content of the system at a given time step.
The preconstraint (11.7) may be interpreted as a coarse
graining consistency condition, ensuring that the larger
amount of dynamical data on the finer Σk can be mapped to
the smaller phase space of the coarser Σkþ1, thereby
reducing the amount of dynamical data at kþ 1.
Ultimately, on each hypersurface Σk we consider a different
set of degrees of freedom: at step kþ 1 we now consider
the propagation 0 → kþ 1 and no longer 0 → k.
The necessity for the shift in the graviton modes may

also be directly seen from (8.3) which gives the linearized
effective deficit angles: the gravitons ytk were only those
contributions from these effective deficit angles that depend
on the data at step k. When some of these data, in this case
yok , becomes internal, the corresponding equation of motion
shifts part of the contribution to ytk from ∂ ~ϵt∂lok y

o
k to ∂ ~ϵt∂la

0

ya0

and ∂ ~ϵt∂lek y
e
k. That is, after yok has been integrated out, the

contribution from the data in Σkþ1 to the effective deficit
angles has shifted and, accordingly, the graviton modes
become shifted too. On the other hand, it is also clear that
the contributions of the various edges to the yvI , i.e. the
ðT−1ÞvIc , must be transferred to different edges in the course
of the Pachner move evolution since all edges which
initially determined the embedding of the vertex (e.g. after
a 1–4 move) may become internal before the vertex itself is
rendered internal. It is therefore neither surprising that also
the gauge modes—corresponding to the embedding coor-
dinates of the vertices—experience a shift.
Furthermore, using the transformed ðTkþ1Þ at kþ 1, it is

demonstrated in Appendix B 3 that
(i) The vertex displacement generators of all v ⊂

Σk∩Σkþ1 are preserved under the 3–2 Pachner move

Ck
vI ¼ πkvI − Nk

vIwJy
wJ
k ¼ 0 ⇒

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1 ¼ 0

19It is difficult to preclude that a third situation may occur in
which the preconstraint is dependent on the postconstraints and
thus automatically satisfied. However, in this case, the constraint
would be a gauge generator [29] despite only involving curvature
degrees of freedom. This case is not plausible and we shall
therefore assume it not to occur.

20In this case the 3–2 move reduces the rank of the symplectic
form restricted to the postconstraint surface by two in the
evolution from k to kþ 1 [6].

21Accordingly, it cannot further reduce the rank of the
symplectic form restricted to the postconstraint surface [6].
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(ii) The preconstraint of the 3–2 move trivializes into
the momentum conjugate to the annihilated or fixed
graviton

πkþ1
α� ¼ 0:

(iii) On account of the change in the transformation
matrix when going from k to kþ 1 one cannot write
the graviton momentum updating in the simple form
as for the 1–4 and 2–3 moves. The equations taking
its place are not illuminating and will not be
reproduced here. Instead, the remaining graviton
momenta can also be written as

πkþ1
α ¼ Nkþ1

αβ yβkþ1 −Ωkþ1
γα yγ0:

That is, through the nontrivial equations of motion
of the 3–2 move, the graviton momenta generally
depend on the initial data—in contrast to the
momenta conjugate to the gauge modes which are
just constrained.

Similarly to before, also the shifted variables
ðyvIkþ1; π

kþ1
vI Þ and ðyαkþ1; π

kþ1
α Þ yield a canonically conjugate

set of gauge and graviton degrees of freedom for step kþ 1.
Finally, one may wonder whether the three new bulk

triangles generated during the 3–2 move yield any new
gravitons. Indeed, these lead to new linearized effective
deficit angles (8.6) and therefore to gravitons. However,
these are linearly dependent on the ones already present at
step k: it follows from Sec. IX that the rank of the matrix
∂ ~ϵα
∂lekþ1

is ðE − 1Þ − 4V þ 10 after the 3–2 move because the

number of vertices did not change. Since we had E − 4V þ
10 independent such gravitons at step k and there is only
one nontrivial preconstraint (11.7) in the move, the old set
of gravitons is simply reduced to precisely a set of
ðE − 1Þ − 4V þ 10 independent ones at kþ 1.

D. The linearized 4–1 Pachner move

A 4–1 Pachner move pushes an old vertex, labeled by v�,
and four old edges adjacent to it, indexed by o, into the bulk
of the triangulation (see Fig. 4). The momentum updating
(4.9), (4.10) of the 4–1 move in linearized form coincides in
shape with (11.5) of the 3–2 move, with the sole difference
that o in this case actually labels four new internal edges
and that, accordingly, there are now four preconstraints. In
particular, rewritten as the four linearized equations of
motion of the new bulk edges, they read

ðNk
oo0 þ Sσoo0 Þyo

0
k þ ðNk

oe þ SσoeÞyek −Ωk
aoya0 ¼ 0;

o ¼ 1;…; 4: ð11:8Þ

As shown in Appendix B 4 all coefficients in (11.8) vanish
identically such that the equations of motion of the 4–1
move, in contrast to the one from the 3–2 move, are trivially

satisfied. The four preconstraints of the 4–1 move coincide
with the four postconstraints at the four-valent vertex v�.
This does not come as a great surprise because, as we
already anticipated in Sec. VII, the vertex displacement
generators are constraints which are simultaneously pre-
and postconstraints. As an aside, from the discussion in [6]
it then follows that, thanks to this property, the 4–1 Pachner
move of the linearized theory preserves and does not reduce
the rank of the symplectic form (7.8) restricted to the
postconstraint surface on the evolving slice—in agreement
with the fact that it leaves the number of gravitons invariant.
As a result, and in contrast to the 3–2 move, for the 4–1

move the reduction of the transformation matrix ðTkÞ to the
new ðTkþ1Þ turns out to be trivial. Specifically, this gives
yekþ1 ¼ yek, y

α
kþ1 ¼ yαk and yvIkþ1 ¼ yvIk . This implies that the

embedding of the remaining vertices v does not depend on
the edges adjacent to v� and that the gravitons do not
depend on the linearized lengths of the removed edges yok .
Employing the reduction of the transformation matrix, it

is further shown in Appendix B 4 that
(i) The vertex displacement generators of all surviving

v ⊂ Σk∩Σkþ1 are preserved under the 4–1 Pachner
move

Ck
vI ¼ πkvI − Nk

vI ~wJy
~wJ
k ¼ 0 ⇒

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1 ¼ 0;

where ~w runs over both v and v�. The annihilated
lapse and shift yv

�J
k drop out after the move.

(ii) The four vertex displacement generators of the
removed v� become trivialized

Ck
v�I ¼ πkv�I − Nk

v�I ~wJy
~wJ
k ¼ 0 ⇒ Ckþ1

v�I ¼ πkþ1
v�I ¼ 0:

(iii) The gravitons experience a graviton momentum
updating during the 4–1 move

πkþ1
α ¼ πkα þ Sσαβy

β
k:

(The new graviton momenta are determined entirely
with the new ðTkþ1Þ.)

As in the other moves, the remaining ðyvIkþ1; π
kþ1
vI Þ and

ðyαkþ1; π
kþ1
α Þ are canonically conjugate pairs of gauge and

graviton degrees of freedom, respectively; the ðyαkþ1; π
kþ1
α Þ

Poisson commute with the surviving Ckþ1
vI and are thus

invariant under the vertex displacement gauge symmetry.
Last, we note that, since the number of independent

gravitons is left invariant by the 4–1 move, the six new bulk
triangles produced during the move yield six new gravitons
that are linearly dependent on the already present ones.

XII. DISCUSSION

In this article we have given a comprehensive and
systematic account of the canonical dynamics of 4D
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linearized Regge calculus by means of the elementary and
ergodic Pachner evolution moves. The origin of the vertex
displacement gauge symmetry of the linearized sector was
clarified and the Abelian generators of this symmetry were
derived. We have identified lattice gravitons as gauge
invariant and potentially propagating curvature degrees
of freedom. The temporally varying number of linearly
independent such gravitons on the evolving phase spaces
can be systematically counted using the spatial triangula-
tion changing Pachner moves. We have elucidated the
distinct role of each of the four Pachner evolution moves in
the linearized theory and showed that the constraints
generating the vertex displacement symmetry are consistent
with the dynamics and preserved under all moves.
This stands in stark contrast to direct discretizations of

the continuum constraints generating the continuum diffeo-
morphism symmetry; these usually result in second class
constraints that are not automatically preserved by evolu-
tion [50–52]. The algebra of the discretized continuum
constraints typically closes only in the limit of vanishing
lattice spacing, while in the present work the consistency of
the algebra does not depend on the lattice spacing.
Furthermore, since the discretizations of the continuum
constraints are not derived from a discrete action their
action does not correspond to the dynamics or (broken)
symmetries of an action. By contrast, in the present work, if
the discrete action from which the constraints are derived
features a gauge symmetry this will be incarnated at the
canonical level by first class constraints (see also [6,29]).
One may wonder what happens to the dynamics at first

nonlinear order in the perturbation around flat Regge
solutions. At least for the so-called tent moves [67–69]
this has been analyzed in [12]: to second order in the
perturbation, the gauge symmetries of Regge calculus
become broken. Consistency conditions arise which can
be interpreted as the first (in terms of orders of expansion)
equations of motion of the background gauge modes which
must propagate once the symmetries get broken. As a
result, linearized solutions can generally not be extended to
higher order solutions—unless the consistency conditions
on the background can be solved. As shown in [19], this
may generally not be feasible such that perturbative
expansions can become inconsistent. This appears analo-
gous to the linearization instabilities in general relativity
[70–72]. The difference is, however, that in perturbative
general relativity consistency conditions arise on the first
order physical degrees of freedom, while in perturbative
Regge calculus the consistency conditions constrain the
background gauge modes. Furthermore, as shown in [12],
the vertex displacement generators at first nonlinear order
turn into pseudo constraints [22,50,51,73–75] with depend-
ence on background data from different time steps.
The Abelian Poisson algebra of the vertex displacement

generators may be interpreted as the discrete analogue
of Dirac’s hypersurface deformation algebra in Regge

calculus. These generate 4D symmetry deformations of
the hypersurfaces (i.e. 4D lattice diffeomorphisms), how-
ever, do not generate the dynamics. This is as good as it
gets in Regge calculus because the symmetries become
broken to higher order and the generators turn into pseudo
constraints such that a hypersurface deformation algebra
cannot exist in full 4D Regge calculus. A consistent
hypersurface deformation algebra can only exist in sim-
plicial gravity if the diffeomorphism symmetry is preserved
[55]. To this end, one may attempt to change the discre-
tization by coarse graining techniques in order to improve
the action order by order such that the symmetry is
preserved to higher orders [17–21,23,64].
The Regge action also emerges in the semiclassical limit

of spin foam models for quantum gravity [37–39] for
which, moreover, proposals for a construction of a suitable
graviton propagator have been made [32,33]. The hope is
that the results of the present article, through offering a
detailed classical understanding of the lattice graviton
dynamics in linearized Regge calculus, can likewise con-
tribute to a better understanding of the graviton dynamics in
spin foam models. The hope is also that the present work
may provide novel insights into connecting the covariant
spin foam with the canonical LQG dynamics. For example,
a regularization of the LQG Hamiltonian constraint, moti-
vated from a spin foam perspective, has been put forward in
[43] and was shown to generate 1–4 Pachner moves in the
spin network, but the other moves were left open. This
article suggests that all four Pachner evolution moves
should, indeed, be considered in order to get a nontrivial
and complete dynamics—at least in Regge calculus and,
therefore, presumably also in spin foams and LQG. As
seen, starting from a single simplex, a pure 1–4 move
evolution generates stacked spheres with trivial dynamics.
The other moves are needed in order to get gravitons into
the picture.
Finally, we note that a consistent framework for a

quantization of linearized Regge calculus on a flat back-
ground already exists. The quantum formalism in [28] has
been designed precisely for a quantization of the Pachner
moves that directly yields an equivalence between the
canonical and covariant dynamics also in the quantum
theory. This quantization framework has thus far been
spelled out in detail for variational discrete systems with
flat Euclidean configuration spaces Q ¼ RN . But this is all
that is needed for linearized Regge calculus: while in the
full theory one hasQ ¼ RNþ (lengths cannot be negative), in
the linearized theory we can, in principle, have yek ∈ R (if
the expansion parameter ε is sufficiently small). In par-
ticular, a generalized form of local evolution moves has
been quantized and their distinct coarse graining and
refining roles on evolving Hilbert spaces has been studied
in [28] in close analogy to the present classical inves-
tigations. These results are directly applicable to the
linearized Pachner evolution moves. To end with a specific
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example, these results imply that the quantum linearized
4–1 move always produces divergences in a state sum
because of the vertex displacement symmetry.
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APPENDIX A: DEGENERACIES OF HESSIAN
AND LAGRANGIAN TWO-FORM

In this appendix we shall demonstrate the statements
made in Sec. VI according to which the spatial components
Ye
vI for v ⊂ Σk define degeneracies of effective Hessians

and Lagrangian two-forms on flat Regge triangulations.
Denote by S ¼ Sk þ Srest the action contribution of the

flat triangulation depicted in Fig. 7, where Srest denotes
the action contribution from T rest. We use the notation
explained in Sec. VI and, furthermore, label any edges
adjacent to v in T rest which do not lie in Σk by q with lqk
denoting their corresponding lengths.
Next, choose a vector YvI, for the specific v ⊂ Σk, whose

4D star has been completed. (5.3), (5.4) imply

Ye
vI

∂2S
∂lek∂lik þ Yi0

vI
∂2S

∂li0k∂lik
þ Yq

vI
∂2S

∂lqk∂lik ¼ Ye
vI

∂2Sk
∂lek∂lik

þ Yi0
vI

∂2Sk
∂li0k∂lik

¼ 0;

Ye
vI

∂2S
∂lek∂la0 þ Yi0

vI
∂2S

∂li0k∂la0
þ Yq

vI
∂2S

∂lqk∂la0 ¼ Ye
vI

∂2Sk
∂lek∂la0

þ Yi0
vI

∂2Sk
∂li0k∂la0

¼ 0:

ðA1Þ

Let us explain the first equalities. The last terms on the left-
hand sides of (A1) vanish since the edges labeled by q will
not share any 4-simplex with any of the edges labeled by
a; i and, hence, second derivatives of S with respect to a

pair of length variables associated to such a pair of edges
must vanish. Additionally, since the only simplices which
contain pairs of edges from the set labeled by a; i or pairs of
edges from both the set labeled by a; i and e already occur
in the triangulation at step k, we can restrict the second
partial derivatives of S in the remaining terms to the second
partial derivatives of Sk and the expressions on the right-
hand sides of (A1) are obtained.
Using (4.2), the second line directly implies (see also

Appendix A of [6] for Ωk)

Ωk
aeYe

vI þ Ωk
aiY

i
vI ¼ −Ye

vI
∂2Sk
∂lek∂la0 − Yi0

vI
∂2Sk
∂li0k∂la0

¼ 0: ðA2Þ

Let us now show that the spatial components of Ye
vI

associated to the edges e ⊂ Σk define also right null vectors
of the effective Lagrangian two-form ~Ωk, corresponding to
the effective action ~Sk with the bulk lengths lik integrated
out. It is straightforward to check (e.g., see Appendix A of
[6]) that the effective Lagrangian two-form (4.4) reads

∂2 ~Sk
∂lek∂la0 ¼

∂2Sk
∂lek∂la0 −

∂2Sk
∂lek∂lik T

i
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1

× Ti0
A0

∂2Sk
∂li0k∂la0

; ðA3Þ

where Ti
A are linearly independent nondegenerate directions

of the Hessian ∂2Sk
∂lik∂li0k

of the bulk between Σ0 and Σk. We need

to project the latter matrix with these Ti
A in order to factor out

the degenerate directions and render the resulting matrix
invertible (see also [29] for a related discussion). We note
that Yi

vI for v ⊂ Σk will generally not define a null vector of
∂2Sk
∂lik∂li0k

because the degenerate directions of the latter will

correspond to displacements in flat directions of vertices in
the bulk of the triangulation between Σ0 and Σk and not
in the boundary surface Σk. Otherwise, the first equation

in (A1) would imply Ye
vI

∂2Sk∂lek∂lik ¼ 0 which is generally not

possible. Accordingly, we may choose the four vectors Yi
vI

to be contained in the set Ti
A.

Using the right-hand sides of both equations in (A1),
one finds

~Ωk
aeYe

vI ¼ −Ye
vI

∂2 ~Sk
∂lek∂la0 ¼ −Ye

vI
∂2Sk
∂lek∂la0 − Yi0

vI
∂2Sk
∂li0k∂lik

Ti
A

�
Ti1
A

∂2Sk
∂li1k ∂li2k

Ti2
A0

�−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼δA

0
vI

Tj
A0

∂2Sk
∂ljk∂la0

¼ −Ye
vI

∂2Sk
∂lek∂la0 − Yi0

vI
∂2Sk
∂li0k∂la0

¼ 0: ðA4Þ

PHILIPP A. HÖHN PHYSICAL REVIEW D 91, 124034 (2015)

124034-22



Finally, we shall briefly demonstrate that the Ye
vI con-

stitute degenerate directions of the ‘effective Hessian’ with
edges labeled by both i and q integrated out. Namely,
consider the completed 4D star of the vertex v ⊂ Σk as
given above with T rest glued onto Σk. Given that YvI is a
null vector of the (noneffective) Hessian and in analogy to
(A1), we must have

Ye
vI

∂2S
∂lek∂lik þ Yi0

vI
∂2S

∂li0k∂lik
¼ 0;

Ye
vI

∂2S

∂lek∂le0k
þ Yi

vI
∂2S

∂lik∂le0k
¼ 0; ðA5Þ

where for notational simplicity we have here combined the
two indices i and q into the single index i. Analogously to
(A3), the effective Hessian of the effective action ~S with
lik; l

q
k integrated out reads

~Hee0 ≔
∂2 ~S

∂lek∂le0k
¼ ∂2S

∂lek∂le0k
−

∂2S
∂lek∂lik T

i
A

�
Ti1
A

∂2S

∂li1k ∂li2k
Ti2
A0

�−1

× Ti0
A0

∂2S

∂li0k∂le0k
: ðA6Þ

In conjunction with (A5), and in analogy to (A4), one finds
the desired result

Ye
vI
~Hee0 ¼ 0:

APPENDIX B: LINEARIZED
PACHNER MOVES

In this appendix we shall confirm the claims of Sec. XI
concerning the linearized canonical Pachner move dynam-
ics. As regards notation, sometimes we shall use an index c
to label both e; n or e; o.

1. The linearized 1–4 Pachner move

We shall now demonstrate the statements of Sec. XI A.
Consider a hypersurface Σk and assume the transforma-

tion matrix ðTkÞeΓ has been chosen according to the
prescription in Sec. X; that is, at step k we have

yek ¼ ðTkÞevIyvIk þ ðTkÞeαyαk; yvIk ¼ ðT−1
k ÞvIe yek;

yαk ¼ ðT−1
k Þαeyek: ðB1Þ

Perform a 1–4 Pachner move on Σk yielding a new vertex
v� (see Fig. 4). Since we now have four new edges labeled
by n and four new gauge variables enumerated by v�I (the
1–4 move does not introduce new bulk triangles) we must
extend the transformation matrix at step kþ 1 suitably.
This extended matrix must be in agreement with the
prescription in Sec. X and should yield the new decom-
position:

yekþ1 ¼ ðTkþ1ÞevIyvIkþ1 þ ðTkþ1Þeαyαkþ1 þ ðTkþ1Þev�Iyv
�I

kþ1;

ynkþ1 ¼ ðTkþ1ÞnvIyvIkþ1 þ ðTkþ1Þnαyαkþ1 þ ðTkþ1Þnv�Iyv
�I

kþ1;

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1 þ ðT−1

kþ1ÞvIn ynkþ1;

yαkþ1 ¼ ðT−1
kþ1Þαeyekþ1 þ ðT−1

kþ1Þαnynkþ1;

yv
�I

kþ1 ¼ ðT−1
kþ1Þv

�I
e yekþ1 þ ðT−1

kþ1Þv
�I

n ynkþ1: ðB2Þ

In order to maintain the same linearized configuration
coordinates for the old vertices, yvIkþ1 ¼ yvIk (yekþ1 ¼ yek and
ynkþ1 are not needed in order to determine the embedding of
the old vertices), we set

ðTkþ1ÞeΓ ¼ ðTkÞeΓ; ðT−1
kþ1ÞΓe ¼ ðT−1

k ÞΓe ; ðB3Þ

where Γ runs over the old vI and α (but does not include the
v�I). Include both Γ and the four v�I in a new index Λ, and
e and n in the index c. Using

ðTkþ1ÞcΛðT−1
kþ1ÞΛc0 ¼ δcc0 ; ðT−1

kþ1ÞΛc ðTkþ1ÞcΛ0 ¼ δΛΛ0 ;

it is straightforward to convince oneself that the new
components of the transformation matrix at kþ 1 can
accordingly be chosen as (note that ynkþ1 do not contribute
to any gravitons),

ðTkþ1ÞnvI ¼ ðYkþ1ÞnvI; ðTkþ1Þnv�I ¼ ðYkþ1Þnv�I ¼ δnI ;

ðTkþ1Þnα ¼ 0; ðTkþ1Þev�I ¼ ðYkþ1Þev�I ¼ 0; ðB4Þ

with inverse22

ðT−1
kþ1ÞvIn ¼ 0; ðT−1

kþ1Þv
�I

n ¼ δIn;

ðT−1
kþ1Þv

�I
e ≠ 0; ðTkþ1Þαn ¼ 0:

Given this choice of the new matrix ðTkþ1ÞcΛ, we
may study the behavior of the gauge variables and
‘gravitons’ under the linearized momentum updating
equations (11.1) of the 1–4 move. Let us begin by
considering the momenta conjugate to the old gauge
degrees of freedom. Using (B3), (B4), (11.1), we find
(recall that c runs over both e and n)

ðYkþ1ÞcvIπkþ1
c ¼ ðYkþ1ÞcvIðπkc þ Sσcc0y

c0
kþ1Þ

¼
πkn¼0

πkvI þ Nk
vIαy

α
k þ SσvIαy

α
kþ1

þ SσvIwJy
wJ
kþ1 þ SσvIv�Jy

v�J
kþ1; ðB5Þ

22The precise form of ðT−1
kþ1Þv

�I
e is not relevant for us. Notice,

however, that it cannot vanish, since, apart from the ynkþ1, some of
the yekþ1 are necessary in order to specify the embedding of the
new vertex [the position of a vertex v also depends on edges in the
boundary of star4DðvÞ].
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where in the last equation we have made use of (10.7) and
(B2). As a consequence of the absence of equations of
motion for the 1–4 move, one finds in the present case
Nkþ1

cc0 ¼ Nk
cc0 þ Sσcc0 where N

k
ee0 is defined in (7.3).23 As in

(10.7), the new momenta conjugate to the gauge modes
yvIkþ1 are then (recall yαkþ1 ¼ yαk)

πkþ1
vI ≔ ðYkþ1ÞcvIπkþ1

c − Nkþ1
vIα y

α
kþ1

¼ πkvI þ SσvI ~vJy
~vJ
kþ1; ðB6Þ

where ~v now includes both v and v�. Solving (10.8) for πkvI,
inserting this into (B6) and noting that yvIk ¼ yvIkþ1, the
previous apparent evolution equations rather transform into
the new constraints at kþ 1 generating the vertex displace-
ment of v in Σkþ1,

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vI ~vJy

~vJ
kþ1; ðB7Þ

which are, thus, preserved. Proceeding similarly with the
new gauge modes yv

�I
kþ1, one finds the four new constraints

introduced by the 1–4 move which generate the displace-
ment of the new vertex v� in Σkþ1 as

πkþ1
v�I ≔ ðYkþ1Þcv�Iπkþ1

c − Sσv�Iαy
α
kþ1

¼ Sσv�I ~vJy
~vJ
kþ1; ðB8Þ

where (B4) and πkv�I ¼ ðYkþ1Þnv�Iπkn ¼ 0 was used (recall
that πkn ¼ 0).
Finally, let us examine the evolution of the graviton

momenta. In analogy to (B5),

ðTkþ1Þcαπkþ1
c ¼ ðTkþ1Þcαðπkc þ Sσcc0y

c0
kþ1Þ

¼ πkα þ Nk
αvIy

vI
k þ Sσαβy

β
kþ1 þ SσαvIy

vI
kþ1

þ Sσαv�Iy
v�I
kþ1;

such that, using (10.7) at kþ 1 and noting that yαk ¼ yαkþ1,

πkþ1
α ≔ ðTkþ1Þcαπkþ1

c − Nkþ1
α ~vI y

~vI
kþ1

¼ πkα þ Sσαβy
β
k: ðB9Þ

In contrast to (B6), these are generally not constraints.

2. The linearized 2–3 Pachner move

Next, we establish the statements of Sec. XI B.
As before, take a hypersurface Σk and assume ðTkÞeΓ has

been chosen in accordance with the prescription of Sec. X
such that (B1) holds. Now perform a 2–3 Pachner move
on Σk which introduces one new edge labeled by n and
a new a priori free deficit angle ϵα

�
(see Fig. 5). The

transformation matrix must be extended in a suitable way in
order to incorporate the new degrees of freedom in the
splitting between graviton and gauge variables, such that
after the 2–3 move,

yekþ1 ¼ ðTkþ1ÞevIyvIkþ1 þ ðTkþ1Þeαyαkþ1 þ ðTkþ1Þeα�yα
�

kþ1;

ynkþ1 ¼ ðTkþ1ÞnvIyvIkþ1 þ ðTkþ1Þnαyαkþ1 þ ðTkþ1Þnα�yα
�

kþ1;

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1 þ ðT−1

kþ1ÞvIn ynkþ1;

yαkþ1 ¼ ðT−1
kþ1Þαeyekþ1 þ ðT−1

kþ1Þαnynkþ1;

yα
�

kþ1 ¼ ðT−1
kþ1Þα

�
e yekþ1 þ ðT−1

kþ1Þα
�

n ynkþ1: ðB10Þ

Again, yekþ1 ¼ yek, y
α
kþ1 ¼ yαk and we also choose to keep

yvIkþ1 ¼ yvIk . The extension of ðTkÞeΓ at step kþ 1 can
therefore be performed in complete analogy to the exten-
sion of the transformation matrix in the course of the 1–4
move in Appendix B 1—just replacing v�I by α� in the
equations and noting that n now labels a single edge. In
particular, we again keep (B3) and, in analogy to (B4), find

ðTkþ1ÞnvI ¼ ðYkþ1ÞnvI; ðTkþ1Þnα� ¼
1

ðT−1
kþ1Þα

�
n
;

ðTkþ1Þeα� ¼ 0; ðTkþ1Þnα ¼ −
ðT−1

kþ1Þα
�

e

ðT−1
kþ1Þα

�
n
ðTkþ1Þeα ≠ 0;

ðB11Þ

with inverse (ynkþ1 does not contribute to the deficit angles
inherited from step k)

ðT−1
kþ1Þα

�
n ¼ ∂ ~ϵα�

∂lnkþ1

; ðT−1
kþ1ÞvIn ¼ 0;

ðT−1
kþ1Þα

�
e ¼ ∂ ~ϵα�

∂lekþ1

; ðT−1
kþ1Þαn ¼ 0:

We emphasise that, because the length lnkþ1 of the new edge
introduced in the 2–3 move determines the new deficit

angle, we generically have ∂ ~ϵα�
∂lnkþ1

≠ 0 and so the components

on the right-hand side of (B11) are well defined. At this
stage, the new matrix of step kþ 1 is chosen in agreement
with Sec. X. It should be noted that the only nonvanishing
component of the vector ðTkþ1Þα� is ðTkþ1Þnα� correspond-
ing to the new a priori free edge of the 2–3 move. As can be
easily checked, this vector is therefore a right null vector at
step kþ 1, i.e. Ωkþ1

ac ðTkþ1Þcα� ¼ 0, where c labels both e; n,
in agreement with the fact that the new ‘graviton’ yα

�
kþ1 is an

a priori free variable.
Using the new transformation matrix, let us now study

the time evolution equations. The momentum updating of
the 2–3 move in linearized form is in shape identical to
(11.1) except that n now labels a single new edge. For the
momenta conjugate to the gauge modes we find, in analogy
to (B5),23Notice that Nk

en ¼ 0.
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ðYkþ1ÞcvIπkþ1
c ¼ ðYkþ1ÞcvIðπkc þ Sσcc0y

c0
kþ1Þ

¼ πkvI þ Nk
vIαy

α
k þ SσvIαy

α
kþ1 þ SσvIwJy

wJ
kþ1

þ SσvIα�y
α�
kþ1;

such that (again, Nkþ1
cc0 ¼ Nk

cc0 þ Sσcc0 because there is no
new equation of motion)

πkþ1
vI ≔ ðYkþ1ÞcvIπkþ1

c − Nkþ1
vI ~α y

~α
kþ1

¼ πkvI þ SσvIwJy
wJ
kþ1; ðB12Þ

where ~α runs over both α and α�. Solving (10.8) for πkvI,
(B12) again transforms into the new constraints, generating
the displacement of vertices of Σkþ1 in flat directions,

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1; ðB13Þ

which are thus preserved under the 2–3 move.
Likewise, for the momenta conjugate to the old gravitons

one finds

ðTkþ1Þcαπkþ1
c ¼ ðTkþ1Þcαðπkc þ Sσcc0y

c0
kþ1Þ

¼ πkα þ Nk
αvIy

vI
k þ Sσαβy

β
kþ1 þ SσαvIy

vI
kþ1

þ Sσαα�y
α�
kþ1;

which yields as in (B9),

πkþ1
α ≔ ðTkþ1Þcαπkþ1

c − Nkþ1
αvI y

vI
kþ1

¼ πkα þ Sσ
α ~β
y
~β
k:

Similarly, using (B11), πkn ¼ 0 and the fact that the old
gravitons satisfy yβk ¼ yβkþ1, the momentum conjugate to
the newly generated graviton yα

�
kþ1 reads

πkþ1
α� ≔ ðTkþ1Þnα�πkþ1

n − Sσα�vIy
vI
kþ1 ¼ ðTkþ1Þnα�πkn þ Sσ

α� ~β
y
~β
kþ1

¼ πkα� þ Sσ
α� ~β

y
~β
kþ1

¼ Sσ
α� ~β

y
~β
kþ1:

3. The linearized 3–2 Pachner move

Here we shall support the claims made in Sec. XI C.
Consider a hypersurface Σk on which we shall perform a

3–2 Pachner move which renders an old edge labeled by o
internal (see Fig. 5). Assume the transformation matrix
ðTkÞcΓ, where c runs over both e and o and Γ runs over
vI; α; α�, is chosen according to the prescription of Sec. X
such that

yek ¼ ðTkÞevIyvIk þ ðTkÞeαyαk þ ðTkÞeα�yα
�

k ;

yok ¼ ðTkÞovIyvIk þ ðTkÞoαyαk þ ðTkÞoα�yα
�

k ;

yvIk ¼ ðT−1
k ÞvIe yek þ ðT−1

k ÞvIo yok;
yαk ¼ ðT−1

k Þαeyek þ ðT−1
k Þαoyok;

yα
�

k ¼ ðT−1
k Þα�e yek þ ðT−1

k Þα�o yok; ðB14Þ

where yα
�

k is such that the old edge has a nonvanishing
contribution, i.e. ðT−1Þα�o ≠ 0 (such yα

�
k generically exists).

This will be the annihilated graviton.
Let E be the number of edges in Σk. The task is to

appropriately reduce the E × E transformation matrix of
step k to a new ðE − 1Þ × ðE − 1Þ matrix at step kþ 1
which likewise disentangles the 4V − 10 gauges modes
yvIkþ1 from the ðE − 1Þ − 4V þ 10 ‘gravitons’ yαkþ1 in Σkþ1

and agrees with the prescription of Sec. X. After the move it
should yield

yekþ1 ¼ ðTkþ1ÞevIyvIkþ1 þ ðTkþ1Þeαyαkþ1;

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1

yαkþ1 ¼ ðT−1
kþ1Þαeyekþ1: ðB15Þ

To this end, we must make use of the equation of motion
(11.6) or, equivalently, the preconstraint of the 3–2 move.
Thanks to the results of Sec. VI, one may convince oneself
that

ðYkÞcvIðNk
co þ SσcoÞ ¼ 0: ðB16Þ

In conjunction with the decomposition (B14), this implies
that (11.6) can be written as

ðNk
oα� þ Sσoα� Þyα

�
k þ ðNk

oα þ SσoαÞyαk þΩk
γoy

γ
0 ¼ 0 ðB17Þ

(use of Ωk
aoðY0ÞavI ¼ 0 and a similar decomposition for Σ0

has been made).
We can employ this equation to produce the new ðTkþ1Þ

from ðTkÞ. This will require some work. First, we choose
yα

�
k to be the graviton that either gets annihilated or fixed by
(B17) (it was chosen to depend on yok). For this graviton we
may keep the old decomposition and set

ðT−1
kþ1Þα

�
c ≔ ðT−1

k Þα�c ;

such that yα
�

k ¼ yα
�

kþ1.
Next, we solve the preconstraint in the form (11.6) for

yokðyek; ya0Þ (generically, Nk
oo þ Sσoo ≠ 0) and insert the

solution into (B14), in order to rewrite the expressions
for yvIk ; y

α
k. It gives

yvIk ¼ ðT−1
kþ1ÞvIe yek þ ðT−1

kþ1ÞvIa ya0 ≕ yvIkþ1 þ δyvI0 ;

yαk ¼ ðT−1
kþ1Þαeyek þ ðT−1

kþ1Þαaya0 ≕ yαkþ1 þ δyα0; ðB18Þ
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where it can be easily checked that the coefficients of the
new (effective) inverse transformation matrix (with yok
integrated out) read

ðT−1
kþ1ÞvIe ≔ ðT−1

k ÞvIe − ðT−1
k ÞvIo ðNk

oo þ SσooÞ−1ðNk
oe þ SσoeÞ;

ðT−1
kþ1ÞvIo ≔ 0;

ðT−1
kþ1ÞvIa ≔ ðT−1

k ÞvIo ðNk
oo þ SσooÞ−1Ωk

ao;

ðT−1
kþ1Þαe ≔ ðT−1

k Þαe − ðT−1
k ÞαoðNk

oo þ SσooÞ−1ðNk
oe þ SσoeÞ;

ðT−1
kþ1Þαo ≔ 0;

ðT−1
kþ1Þαa ≔ ðT−1

k ÞαoðNk
oo þ SσooÞ−1Ωk

ao:

Hence, using that by (11.5) yekþ1 ¼ yek and dropping the
terms δyvI0 ; δy

α
0 depending on the initial data,

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1 ≠ yvIk ; yαkþ1 ¼ ðT−1

kþ1Þαeyekþ1 ≠ yαk:

From step kþ 1 onwards we will employ these shifted yαkþ1

and yvIkþ1 as graviton and gauge variables, respectively.
We proceed by using (B17) to solve for yα

�
k as a function

of yαk and yγ0, and rewrite the first equation in (B14),

yek ¼ ðTkþ1Þeαyαk þ ðTkþ1ÞevIyvIk þ ðTkþ1Þeγyγ0; ðB19Þ

which gives the components of the new (effective) ðTkþ1Þ
as follows:

ðTkþ1Þeα ≔ ðTkÞeα − ðTkÞeα�ðNk
oα� þ Sσoα� Þ−1ðNk

oα þ SσoαÞ;
ðTkþ1Þeα� ≔ 0;

ðTkþ1ÞevI ≔ ðYkÞevI;
ðTkþ1Þeγ ≔ ðTkÞeα� ðNk

oα� þ Sσoα� Þ−1Ωk
γo:

Further using the new splitting (B18) and noting that by
(11.5) yekþ1 ¼ yek, (B19) may be conveniently written solely
in terms of the new graviton and gauge modes (one may
convince oneself that the contributions from the initial data
drop out),

yekþ1 ¼ ðTkþ1Þeαyαkþ1 þ ðYkþ1ÞevIyvIkþ1:

Finally, making the ansatz

yokþ1 ¼ ðTkþ1Þoαyαkþ1 þ ðTkþ1Þoα�yα
�

kþ1 þ ðTkþ1ÞovIyvIkþ1;

one finds that

ðTkþ1Þoα ¼ ðTkÞoα −
�
ðTkÞoα� −

1

ðT−1
k Þα�o

�

× ðNk
oα� þ Sσoα�Þ−1ðNk

oα þ SσoαÞ;

ðTkþ1Þoα� ¼
1

ðT−1
k Þα�o

;

ðTkþ1ÞovI ¼ ðYkÞovI;

yields the remaining components of the new (effective)
ðTkþ1Þ which provides the new decomposition (B15), as
desired. It is straightforward to check that the new
transformation matrix follows the prescription of
Sec. X and is an invertible matrix that defines a canonical
transformation (provided the old one did). In fact, the
new matrix is now in shape analogous to the extended
transformation matrix of the 2–3 Pachner move (B11)
(with n replaced by o).
With the transformed matrix in hand, we are in a position

to determine the momenta conjugate to the new gauge and
graviton variables via (10.7). Noting that

Nkþ1
ee0 ¼ ðNk

ee0 þ Sσee0 Þ
− ðNk

eo þ SσeoÞðNk
oo þ SσooÞ−1ðNk

oe0 þ Sσoe0 Þ;

(B16) implies

ðYkþ1ÞevINkþ1
ee0 ¼ ðYkÞcvIðNk

ce0 þ Sσce0 Þ; ðB20Þ

which allows us to define (recall ðTkþ1Þeα� ¼ 0)

Nkþ1
vIα ≔ ðYkþ1ÞevINkþ1

ee0 ðTkþ1Þe0α
¼ ðYkþ1ÞcvIðNk

ce0 þ Sσce0 ÞðTkþ1Þe0α ;
Nkþ1

vIα� ≔ ðYkþ1ÞevINkþ1
ee0 ðTkþ1Þe0α�

¼ ðYkþ1ÞcvIðNk
ce0 þ Sσce0 ÞðTkþ1Þe0α� ¼ 0;

Nkþ1
vIwJ ≔ ðYkþ1ÞevINkþ1

ee0 ðYkþ1Þe0wJ
¼ ðYkþ1ÞcvIðNk

ce0 þ Sσce0 ÞðYkþ1Þe0wJ:

As a result of πkþ1
o ¼ 0, this leads via (10.7) to the new

momenta at step kþ 1,

πkþ1
vI ≔ ðYkþ1ÞevIπkþ1

e − Nkþ1
vIα y

α
kþ1;

πkþ1
α ≔ ðTkþ1Þeαπkþ1

e − Nkþ1
αvI y

vI
kþ1;

(Both new sets of momenta are computed entirely from
variables and matrix components associated to Σkþ1.) It is
not difficult to verify that the shifted variables ðyvIkþ1; π

kþ1
vI Þ

and ðyαkþ1; π
kþ1
α Þ yield a canonically conjugate set of

gauge and graviton modes. In particular, using that
ðYkþ1ÞevI ¼ ðYkÞevI , (B20) and πkþ1

o ¼ 0, one easily checks
that the vertex displacement generators (10.8) are preserved
under the 3–2 Pachner moves (11.5), yielding
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Ckþ1
vI ¼ ðYkþ1ÞevIðπkþ1

e − Nkþ1
ee0 y

e0
kþ1Þ ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1:

Furthermore, noting that Nkþ1
vIα� ¼ 0 and ðTkþ1Þeα� ¼ 0, the

preconstraint of the 3–2 move (last equation in (11.5))
trivializes into the momentum conjugate to the annihilated
or fixed graviton,

πkþ1
α� ¼ 0:

For completeness, we mention that thanks to

πkþ1
e ¼ πke þ Sσecyck ¼ ðNk

ec þ SσecÞyck −Ωk
eaya0 ¼

ð11.6Þ
Nkþ1

ee0 y
e0
kþ1

−Ωkþ1
ea ya0;

the remaining graviton momenta can also be written as

πkþ1
α ¼ Nkþ1

αβ yβkþ1 − Ωkþ1
γα yγ0:

4. The linearized 4–1 Pachner move

Finally, we back up the claims made in Sec. XI D
concerning the linearized 4–1 move.
Assume that a 4–1 Pachner move can be performed on a

hypersurface Σk and that ðTkÞcΓ has been chosen in
conformity with the prescription in Sec. X. The 4–1 move
will move an old vertex, which we label by v� and four old
edges adjacent to it, which we index by o, into the bulk of
the triangulation (see Fig. 4). Accordingly, the index c runs
over both e; o and at step k we have

yek ¼ ðTkÞevIyvIk þ ðTkÞeαyαk þ ðTkÞev�Iyv
�I

k ;

yok ¼ ðTkÞovIyvIk þ ðTkÞoαyαk þ ðTkÞov�Iyv
�I

k ;

yvIk ¼ ðT−1
k ÞvIe yek þ ðT−1

k ÞvIo yok;
yαk ¼ ðT−1

k Þαeyek þ ðT−1
k Þαoyok;

yv
�I

k ¼ ðT−1
k Þv�Ie yek þ ðT−1

k Þv�Io yok: ðB21Þ

In analogy to the 3–2 move, we must appropriately reduce
the old E × E canonical transformation matrix to a new
ðE − 4Þ × ðE − 4Þ matrix at kþ 1 which disentangles the
surviving gauge and graviton variables

yekþ1 ¼ ðTkþ1ÞevIyvIkþ1 þ ðTkþ1Þeαyαkþ1;

yvIkþ1 ¼ ðT−1
kþ1ÞvIe yekþ1; yαkþ1 ¼ ðT−1

kþ1Þαeyekþ1:

Fortunately, and in contrast to the 3–2 move, for the 4–1
move the reduction of ðTkÞ to ðTkþ1Þ turns out to be
trivial—just like the linearized equations of motion of
this move.
Clearly, at step k we must have ðTkÞev�I ¼ ðYkÞev�I ¼ 0

(components of the ðYkÞvI corresponding to edges not
adjacent to the vertex in question vanish). One easily
checks that the condition of invertibility of the T–matrix

then leads to the following two conditions that must be
satisfied:

δvIv�J ¼ ðT−1
k ÞvIo ðTkÞov�J¼! 0; δαv�I ¼ ðT−1

k ÞαoðTkÞov�I¼! 0:

ðTkÞov�I ¼ ðYkÞov�I is a nondegenerate 4 × 4 matrix (there
are four linearly independent gauge directions and four
edges adjacent to v�). Hence, ðT−1

k ÞvIo ¼ 0 and ðT−1
k Þαo ¼ 0.

The conjunction of these results, as one may convince
oneself, implies that already the restriction of ðTkÞ at k to
the ðE − 4Þ × ðE − 4Þ submatrix

ðTkþ1ÞeΛ ¼ ðTkÞeΛ; ðT−1
kþ1ÞΛe ¼ ðT−1

k ÞΛe ;

where Λ only runs over vI and α (but not v�I) yields the
desired invertible ðTkþ1Þ of step kþ 1. The matrix reduc-
tion of the 4–1 move is just the time reverse of the matrix
extension of the 1–4 move. Specifically, this gives
yekþ1 ¼ yek, y

α
kþ1 ¼ yαk and yvIkþ1 ¼ yvIk .

Let us now study the time evolution equations. First, the
equations of motion read

ðNk
oo0 þ Sσoo0 Þyo

0
k þ ðNk

oe þ SσoeÞyek −Ωk
aoya0 ¼ 0: ðB22Þ

However, for the 4–1 move these are trivial because the
results in Sec. VI entail that

ðYkÞov�IðNk
oc þ SσocÞ ¼ 0

and, as a consequence of ðYkÞov�I being a nondegenerate
4 × 4 matrix, Nk

oc þ Sσoc ¼ 0. Similarly, one finds Ωk
ao ¼ 0

such that all coefficients in (B22) vanish.
Next, we shall examine the consequences of the linear-

ized momentum updating for the gauge and graviton
variables. We recall that the linearized momentum updating
for the 4–1 move is in shape identical to (11.5) from the 3–2
move, except that o now labels four edges. We begin by the
momenta conjugate to the gauge variables that survive the
move. Noting that πkþ1

o ¼ 0 and using (10.7),

ðYkþ1ÞevIπkþ1
e ¼ ðYkþ1ÞcvIπkþ1

c ¼ ðYkþ1ÞcvIðπkc þ Sσcc0y
c0
k Þ

¼ πkvI þ Nk
vIαy

α
k þ SσvIαy

α
k þ SσvI ~wJy

~wJ
k ;

where ~w runs over both v and v�. As a consequence of
Nk

oc þ Sσoc ¼ 0 and despite new internal edges, Nkþ1
ee0 ¼

Nk
ee0 þ Sσee0 . Since yαkþ1 ¼ yαk , this gives

πkþ1
vI ≔ ðYkþ1ÞcvIπkþ1

c − Nkþ1
vIα y

α
kþ1 ¼ ðYkþ1ÞevIπkþ1

e

− ðYkþ1ÞevINkþ1
ee0 ðTkþ1Þe0α yαkþ1

¼ πkvI þ SσvI ~wJy
~wJ
k :

The second equation in the first line shows that, as desired,
the new momenta can be computed from the reduced
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ðTkþ1Þ. Again, solving (10.8) for πkvI converts this apparent
evolution equation into the vertex displacement generators
of step kþ 1,

Ckþ1
vI ¼ πkþ1

vI − Nkþ1
vIwJy

wJ
kþ1;

where, by ðYkþ1Þev�I ¼ 0, Nkþ1
vIv�J ¼ 0 and the annihilated

gauge modes yv
�J

k thus drop out. The vertex displacement
generators (at neighboring vertices) are therefore preserved
under 4–1 moves as well.
On the other hand, for the momenta conjugate to the

four gauge modes associated to v� one finds (recall that
ðYkþ1Þev�I ¼ 0),

ðYkþ1Þcv�Iπkþ1
c ¼ ðYkþ1Þov�Iπkþ1

o ¼ 0 ¼ ðYkÞov�Iðπko þ SσocyckÞ
¼ πkv�I þ ðYkÞov�IððNk

oα þ SσoαÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

yαk þ Sσo ~vJy
~vJ
k Þ:

Using (10.7), this trivializes the four preconstraints of the
4–1 move by transforming them into the new momenta
conjugate to the annihilated gauge modes,

πkþ1
v�I ¼ 0 ¼ πkv�I þ Sσv�I ~vJy

~vJ
k :

Finally, let us address the evolution of the graviton
momenta. We have

ðTkþ1Þeαπkþ1
e ¼ ðTkþ1Þcαπkþ1

c ¼ ðTkÞcαðπkc þ Sσcc0y
c0
k Þ

¼ πkα þ Nk
α ~vIy

~vI
k þ Sσαβy

β
k þ Sσα ~vIy

~vI
k :

Making use of Nk
oc þ Sσoc ¼ 0 and ðYkþ1Þev�I ¼ 0, one

discovers that the annihilated gauge modes yv
�I

k drop out
so that (recall yvIkþ1 ¼ yvIk )

πkþ1
α ≔ ðTkþ1Þcαπkþ1

c − Nkþ1
αvI y

vI
kþ1 ¼ ðTkþ1Þeαπkþ1

e

− ðTkþ1ÞeαNkþ1
ee0 Y

e0
vIy

vI
kþ1

¼ πkα þ Sσαβy
β
k:

The second equality in the first line demonstrates that the
new graviton momenta can be determined entirely via
ðTkþ1Þ, while the last equality constitutes the usual graviton
momentum updating.
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