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We study the P-V criticality and phase transition in the extended phase space of charged anti–de Sitter
black holes in canonical ensemble of ghost-free massive gravity, where the cosmological constant is viewed
as a dynamical pressure of the black hole system. We give the generalized thermodynamic first law and the
Smarr relation with massive gravity correction. We find that not only when the horizon topology is
spherical but also in the Ricci flat or hyperbolic case, there appear the P-V criticality and phase transition
up to the combination kþ c20c2m

2 in the four-dimensional case, where k characterizes the horizon
curvature and c2m2 is the coefficient of the second term of massive potential associated with the graviton
mass. The positivity of such combination indicate the van der Waals–like phase transition. When the
spacetime dimension is larger then four, the Maxwell charge there seems unnecessary for the appearance of
critical behavior, but a infinite repulsion effect needed, which can also be realized through negative valued
c3m2 or c4m2, which is third or fourth term of massive potential. When c3m2 is positive, a Hawking-Page–
like black hole to vacuum phase transition is shown in the five-dimensional chargeless case. For the van der
Waals–like phase transition in four and five spacetime dimensions, we calculate the critical exponents near
the critical point and find they are the same as those in the van der Waals liquid-gas system.
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I. INTRODUCTION

Over the past decades, the thermodynamics of black
holes in asymptotically anti–de Sitter (AdS) space has been
widely explored in contrast with its counterpart in asymp-
totically flat or de Sitter space since the AdS black holes are
thermodynamically stable [1]. Another interesting reason
for the focus on AdS black holes is the advent of AdS/CFT
correspondence [2–4], which relates a gravity theory in the
bulk of an asymptotical AdS space to a conformal field
theory without gravity on the boundary of AdS space.
According to this holographic dictionary, a bulk AdS black
hole corresponds to a boundary finite temperature con-
formal field theory. At this stage, we can understand a
strongly coupled field theory by studying a weakly coupled
classical gravity theory. For example, AdS black holes can
undergo a so-called Hawking-Page phase transition to a
thermal AdS space under a certain Hawking temperature
[1]. This phenomenon in gravity theory can be explained as
the confinement or deconfinement phase transition in large-
N gauge theory [5]. More interesting phenomena show up
when we consider the charged AdS black holes [6,7]. There
exists a first-order phase transition between large black
holes and small black holes when the charge is below a

critical value. Such phase transitions and critical behaviors
of classically charged black holes in AdS space are very
similar to a van der Waals liquid-gas phase transition.
Although the thermodynamics of charged black holes in

AdS space is similar to the van der Waals system, it should
be noted that the corresponding critical behaviors appear in
theQ − Φ diagram, whereQ is the charge of the black hole
and Φ is the chemical potential conjugate to the charge [8].
No pressure P or volume V are defined in such a black hole
system, while we use the P-V diagram to characterize the
van der Waals liquid-gas phase transition. Thus, the
analogy is problematic since the charge Q is an extensive
quantity and Φ is an intensive one in the black hole
thermodynamics, while P is an intensive quantity and V
is an extensive one in the van der Waals system. The way to
solve this problem is by including the variation of the
cosmological constant Λ in the first law of black hole
thermodynamics [9–15]. Since the dimension of the cos-
mological constant over the Newtonian constant Λ=GN is
equal to the dimension of pressure, it is natural to identify
the cosmological constant as the thermodynamical pressure
of the system (GN ¼ ℏ ¼ c ¼ k ¼ 1),

P ¼ −
1

8π
Λ ¼ nðnþ 1Þ

16πl2
; ð1:1Þ

in nþ 2-dimensional spacetime. There are some physical
reasons for this identification [16]. First, one can imagine
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that there exist “more fundamental” theories, where the
physical constant, such as the Yukawa coupling, gauge
coupling constants, Newtonian constant, or the cosmologi-
cal constant arise as vacuum expectation values and, hence,
can vary. Second, the Smarr relation obtained by the scaling
method becomes inconstant with the first law of black hole
thermodynamics unless the variation of Λ is included [10].
In addition, once one views the cosmological constant as
the thermodynamical pressure, the black hole mass M
should be understood as enthalpy rather than the internal
energy of the system [10]. Keeping this in mind, we can use
the standard thermodynamic identity to get “thermody-
namic volume” which is conjugate to the pressure of black
holes [16–18]. In this way, people can investigate the P-V
critical behaviors of AdS black holes and find exactly the
same behaviors as in the van der Waals liquid-gas system.
The P-V criticality study of AdS black holes has now been
pushed even further to other gravities such as higher-
derivative gravities [19–22].
In the above discussion, the gravity theories are either

Einstein’s general relativity (GR) which has been widely
accepted as a correct theory of gravity at low energies or the
other possible covariant gravity theories. The most impor-
tant principle of GR is that it is a theory of a nontrivially
interacting massless helicity-2 particle–massless graviton.
However, GR is not UV complete. It must be an effective
field theory valid at energy up to a cutoff at a certain energy
scale beyond which high-energy effects will take place
and the gravity theory should be modified [23]. Massive
gravity, where the graviton is endowed with mass, is one of
the most straightforward modifications of GR. The con-
struction of the linear theory of massive gravity was first
given by Fierz and Pauli in 1939 [24]. While at the
nonlinear level, the traditional constructions of massive
gravity are plagued by the Boulware-Deser ghost instability
[25,26], up to now, much progress has been made in
overcoming the ghost instability. The ghost-free massive
gravity was also proposed recently [27,28]. More recently,
a nontrivial black hole solution was found in ghost-free
massive gravity with a negative cosmological constant [29].
These black holes’ corresponding thermodynamical prop-
erties and phase structure have been studied by [30]. The
aim of this paper is to analyze the extended phase structure
and investigate the P-V critical behavior of charged AdS
black holes in canonical ensemble in that ghost-free
massive gravity.
This paper is organized as follows. In Sec. II, we present

the thermodynamics of massive gravity black holes. We
extend the phase space by viewing the cosmological
constant as the thermodynamical pressure of the black
hole system. In Sec. III, we study the P-V criticality in the
four-dimensional case. By properly defined thermodynam-
ical quantities, a van der Waals–like phase transition is
found and the corresponding critical exponents are calcu-
lated. In Sec. IV, We explore the five-dimensional case,

where we find that the coefficients of massive potential can
also play the role of a Maxwell charge. A Hawking-Page–
like phase transition is presented. In Sec. V, we try to
understand the physical origin of such van der Waals–like
phase transitions in a massive black hole system. The last
section is devoted to some conclusions and discussion.

II. THERMODYNAMICS OF BLACK HOLES
IN MASSIVE GRAVITY

We are considering the following action for an
(nþ 2)-dimensional massive gravity [30],

S ¼ 1

16π

Z
dnþ2x

ffiffiffiffiffiffi
−g

p �
Rþ nðnþ 1Þ

l2
−
1

4
F2

þm2
X4
i¼1

ciU iðg; fÞ
�
; ð2:1Þ

where the last four terms are the massive potential associate
with graviton mass, ci are the constants, f is a fixed
symmetric tensor called the reference metric, and U i are
symmetric polynomials of the eigenvalue of the ðnþ 2Þ ×
ðnþ 2Þ matrix Kμ

ν ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
:

U1 ¼ ½K�;
U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2�þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2þ 8½K3�½K� þ 3½K2�2− 6½K4�: ð2:2Þ

The square root in K is understood as the matrix square
root, i.e., ð ffiffiffiffi

A
p Þμνð

ffiffiffiffi
A

p Þνλ ¼ Aμ
ν, and the rectangular brack-

ets denote traces ½K� ¼ Kμ
μ.

The action admits a static black hole solution with the
spacetime metric and reference metric as

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2hijdxidxj; ð2:3Þ

fμν ¼ diagð0; 0; c20hijÞ; ð2:4Þ

where c0 is a positive constant, and hijdxidxj is the line
element for an Einstein space with constant curvature
nðn − 1Þk. Without loss of generality, one may take
k ¼ 1, 0, or −1, corresponding to a spherical, Ricci flat,
or hyperbolic topology of the black hole horizon, respec-
tively. According to the reference metric (2.4), we have

U1 ¼ nc0=r;

U2 ¼ nðn − 1Þc20=r2;
U3 ¼ nðn − 1Þðn − 2Þc30=r3;
U4 ¼ nðn − 1Þðn − 2Þðn − 3Þc40=r4: ð2:5Þ

The metric function fðrÞ is given by [30]
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fðrÞ ¼ kþ 16πP
ðnþ 1Þn r

2 −
16πM
nVnrn−1

þ ð16πQÞ2
2nðn − 1ÞV2

nr2ðn−1Þ

þ c0c1m2

n
rþ c20c2m

2 þ ðn − 1Þc30c3m2

r

þ ðn − 1Þðn − 2Þc40c4m2

r2
; ð2:6Þ

where Vn is the volume of space spanned by coordinates xi,
M is the black hole mass, Q is related to the charge of the

black hole, and P ¼ nðnþ1Þ
16πl2 is the pressure. The black hole

horizon is determined by fðrÞjr¼rh ¼ 0. Thus, the mass M
can be expressed in terms of rh as

M ¼ nVnrn−1h

16π

�
kþ 16πP

ðnþ 1Þn r
2
h þ

ð16πQÞ2
2nðn − 1ÞV2

nr
2ðn−1Þ
h

þ c0c1m2

n
rh þ c20c2m

2 þ ðn − 1Þc30c3m2

rh

þ ðn − 1Þðn − 2Þc40c4m2

r2h

�
: ð2:7Þ

The Hawking temperature of the black hole can be easily
obtained by requiring the absence of conical singularity at
the horizon in the Euclidean sector of the black hole
solution, which is given by

T ¼ 1

4π
f0ðrhÞ ¼

1

4πrh

�
ðn − 1Þkþ 16πP

n
r2h −

ð16πQÞ2
2nV2

nr
2ðn−1Þ
h

þ c0c1m2rh þ ðn − 1Þc20c2m2

þ ðn − 1Þðn − 2Þc30c3m2

rh

þ ðn − 1Þðn − 2Þðn − 3Þc40c4m2

r2h

�
: ð2:8Þ

We are now going to discuss the thermodynamics of black
holes in massive gravity in extended phase space by

introducing the pressure P ¼ nðnþ1Þ
16πl2 ; the black hole mass

M should be viewed as the enthalpy H ≡M rather than the
internal energy of the gravitational system [10]. The other
thermodynamic quantities can be obtained through thermo-
dynamic identities. The entropy S, thermodynamic volume
V, and electric potential Φ are given by

S ¼
Z

rh

0

T−1
�∂H
∂r

�
Q;P

dr ¼ Vn

4
rnh; ð2:9Þ

V ¼
�∂H
∂P

�
S;Q

¼ Vn

nþ 1
rnþ1
h ; ð2:10Þ

Φ ¼
�∂H
∂Q

�
S;P

¼ 16π

ðn − 1ÞVnrn−1h

Q: ð2:11Þ

It is easy to check that those thermodynamic quantities
obey the following differential equation,

dH ¼ TdSþ VdPþ ΦdQþ Vnc0m2rnh
16π

dc1

þ nVnc20m
2rn−1h

16π
dc2 þ

nðn − 1ÞVnc30m
2rn−2h

16π
dc3

þ nðn − 1Þðn − 2ÞVnc40m
2rn−3h

16π
dc4; ð2:12Þ

where we have viewed the coupling constants ci as
variables. Invoking the scaling method, we can get the
Smarr relation for the black hole with ci terms as

ðn − 1ÞH ¼ nTS − 2PV þ ðn − 1ÞΦQ −
Vnc0c1m2

16π
rnh

þ nðn − 1ÞVnc30c3m
2

16π
rn−2h

þ nðn − 1Þðn − 2ÞVnc40c4m
2

8π
rn−3h : ð2:13Þ

III. P-V CRITICALITY OF FOUR-DIMENSIONAL
BLACK HOLES

In the four-dimensional spacetime case, we can simply
set c3 ¼ c4 ¼ 0 since we have U3 ¼ U4 ¼ 0 according to
Eq. (2.5) when n ¼ 2. In this case, the enthalpy (2.7) is
reduced to

H ¼ V2rh
8π

�
kþ 8πP

3
r2h þ

ð8πQÞ2
V2
2r

2
h

þ c0c1m2

2
rh þ c20c2m

2

�
:

ð3:1Þ

And the equation of state of the black holes can be obtained
from theHawking temperature (2.8) in this four-dimensional
case as

P ¼
�
T
2
−
c0c1m2

8π

�
1

rh
−
�
k
8π

þ c20c2m
2

8π

�
1

r2h
þ 8πQ2

V2
2

1

r4h
:

ð3:2Þ

We are now going to study the phase structure of black holes
in the canonical ensemble with fixed charge in terms of the
P-V diagram. Note that the thermodynamic volumeV (2.10)
is a monotonic function of the horizon radius rh, so we can
use rh to specify the critical behavior instead of V. The
critical point is determined as the inflection point in the P-V
diagram, i.e.,

∂P
∂rh

����
rh¼rhc;T¼Tc

¼ ∂2P
∂r2h

����
rh¼rhc;T¼Tc

¼ 0: ð3:3Þ
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For further convenience, we would like to denote the
coefficients in the equation of state (3.2) as

w1 ¼
T
2
−
c0c1m2

8π

w2 ¼ −
�

k
8π

þ c20c2m
2

8π

�

w4 ¼
8πQ2

V2
2

: ð3:4Þ

From now on, we shall denote w1 as half of the effective
temperature, or shifted temperature, for short. Obviously,
such a temperature can be negative according to the value of
c1m2. Thus, the critical point determined by Eq. (3.3) with
critical quantities can be calculated as

rhc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
6w4

w2

s
; ð3:5Þ

w1c ¼ −
4

3
w2

ffiffiffiffiffiffiffiffiffiffiffiffi
−

w2

6w4

r
; ð3:6Þ

Pc ¼
w2
2

12w4

: ð3:7Þ

Note that the critical behavior occurs only whenw2 < 0. We
can easily find a universal relation among critical pressure
Pc, shifted temperature w1c, and horizon radius rhc,

Pcrhc
w1c

¼ 3

8
: ð3:8Þ

This is called the critical coefficient, which keeps the same
value as the van derWaals liquid-gas system. However, if we
use the real critical temperature Tc instead, we cannot get a
constant critical coefficient.

The P-VðrhÞ diagrams have been drawn in Fig. 1 with
different shifted temperature w1. The left plot shows exactly
the same behavior as the van der Waals system and has
the critical point, while the right plot shows the monotone
phase structure according to the different sign of w2. Thus,
changing the sign of w2 can dramatically change the phase
diagram. The van der Waals–like phase diagram indicates
that there must exist a phase transition when w2 < 0. To
clearly specify the phase transition, we shall introduce
the Gibbs free energy as a Legendre transformation of
enthalpy as

G ¼ H − TS: ð3:9Þ

By using Eq. (2.12), we can immediately get the exterior
derivative of Gibbs free energy as dG ¼ −SdTþ
VdPþ ΦdQ, which tell us that the Gibbs free energy will
take the minimal value in the equilibrium state when the
temperature, pressure, and charge of the system are all held
fixed. In Fig. 2, we have plotted the Gibbs free energy as a
function of the shifted temperature for various pressures. It
can be seen from the left diagram that when w2 < 0 and
P < Pc, there exists a “swallow tail”-type behavior and
indicate a first-order phase transition as expected. The “tail”
characterizes the unstable state, since the Gibbs-free energy
always takes the minimal value for constant temperature,
pressure, and electric charge. The “swallow tail” disappears
when P > Pc. The right diagram is monotonically decreas-
ing, and has no conflict with the P-VðrhÞ statement. There
exists no phase transition whenw2 > 0. We can see from the
G − w1 diagrams that the shifted temperature can take a
negative value for a stable black hole phase. However, if we
plot the P-VðrhÞ diagram with negative w1, we will find that
the stable black hole will have a maximal horizon radius
above which the pressure will become negative.
Now let us turn to calculate the critical exponents in the

massive gravity black hole system. In the usual thermo-
dynamic system, the critical exponents α, β, γ, and δ are
defined as follows,

0 2 4 6 8 10 0 2 4 6 8 10
rh

P
w2 10, w4 1

1.7w1 c

1.2w1 c

w1 c

0.76w1 c

0.71w1 c

rh

5

10

15

20

25

30
P

w2 6, w4 1

w1 9.37

w1 7.46

w1 5.00

w1 3.57

w1 1.57

2

4

6

8

10

12

14

FIG. 1 (color online). The four-dimensional P-VðrhÞ diagrams for w2 ¼ −10 and w2 ¼ 6, where we have set w4 ¼ 1 for simplicity.
The left diagram shows the van der Waals–like critical behavior, while the right one does not according to the different sign of w2.
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Cv ∼
�
−
T − Tc

Tc

�
−α
;

vg − vl
vc

∼
�
−
T − Tc

Tc

�
β

;

κT ∼
�
−
T − Tc

Tc

�
−γ
;

P − Pc ∼ ðv − vcÞδ; ð3:10Þ

where Cv is the isopyknic heat capacity, v stands for
specific volume, and κT is isothermal compressibility. The
subscript c stands for the critical point.
For our massive gravity black hole system, the size is

determined by the horizon radius, and we shall use the
following expansion parameters to characterize the critical
behavior near the critical point:

τ ¼ w1

w1c
− 1; ϵ ¼ rh

rhc
− 1; p0 ¼ P

Pc
: ð3:11Þ

Then we can make the Taylor series expansion near the
critical point for the equation of state (3.2) as

p0 ¼ 1þ 8

3
τ −

8

3
τϵ −

4

3
ϵ3 þOðτϵ2; ϵ4Þ: ð3:12Þ

By usingMaxwell’s equal area law, we obtain the following
equation:

0 ¼
Z

ϵg

ϵl

ðϵþ 1Þ3 dp
0

dϵ
dϵ

¼
Z

ϵg

ϵl

ðϵþ 1Þ3
�
−
8

3
τ − 4ϵ2

�
dϵ

¼ −
8

3
τðϵg − ϵlÞ −

4

3
ðϵ3g − ϵ3l Þ − 4τðϵ2g − ϵ2l Þ

−
8

3
τðϵ3g − ϵ3l Þ þOðϵ4Þ: ð3:13Þ

On the other hand, the pressures of two phases keep the
same value when the phase transition happens:

p0jϵl ¼ p0jϵg ⇒ −
8

3
τðϵg − ϵlÞ −

4

3
ðϵ3g − ϵ3l Þ þOðϵ4Þ ¼ 0:

ð3:14Þ
The above two equations (3.13) and (3.14) have a unique
nontrivial solution ϵg > 0, ϵl < 0 when τ < 0. It is easy to
find that

ϵg − ϵl ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2τ þOðτ2Þ

q
; ð3:15Þ

which determines the critical exponent β ¼ 1=2. The
isothermal compressibility can be calculated as follows,

κT ¼ −
1

ðϵþ 1Þ3
�∂ðϵþ 1Þ3

∂P
�����

τ

∝
�∂p0

∂ϵ
�

−1
����
ϵ¼0

¼ −
3

8τ
;

ð3:16Þ

which indicates the critical exponent γ ¼ 1. The difference
between the pressure and its critical value near the critical
point ðp0 − 1Þjτ¼0 ¼ − 4

3
ϵ3 tells us that δ ¼ 3. The iso-

pyknic heat capacity vanishes since the entropy is also
determined by the horizon radius, and then we have α ¼ 0.
The critical exponents satisfy the following thermodynamic
scaling laws,

αþ 2β þ γ ¼ 2; αþ βð1þ δÞ ¼ 2

γð1þ δÞ ¼ ð2 − αÞðδ − 1Þ; γ ¼ βðδ − 1Þ; ð3:17Þ
which are the same as those in the van der Waals liquid-gas
system.

IV. P-V CRITICALITY OF FIVE-DIMENSIONAL
NEUTRAL BLACK HOLES

In the five-dimensional case, we have n ¼ 3 and U4 ¼ 0.
So we can set c4 ¼ 0 in the metric function. In this section,
we will show that the c3m2 term in five-dimensional neutral

FIG. 2 (color online). The four-dimensional Gibbs free energy as a function of shifted temperature for different pressures. The left
diagram shows the “swallow tail” behavior, while the right one does not according to the different sign of w2.
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black holes can play a similar role as the charge. We set
Q ¼ 0 for simplicity. The enthalpy (2.7) becomes

H¼ 3V3r2h
16π

�
kþ4πP

3
r2hþ

c0c1m2

3
rhþc20c2m

2þ2c30c3m
2

rh

�
:

ð4:1Þ
The equation of state is

P ¼
�
3

4
T −

3c0c1m2

16π

�
1

rh
−
�
3k
8π

þ 3c20c2m
2

8π

�
1

r2h

−
3c30c3m

2

8π

1

r3h
: ð4:2Þ

As in the four-dimensional case, it is convenient to denote

w3 ¼ −
c30c3m

2

8π
; ð4:3Þ

so the equation of state can be put in a neat form according to
the definition of w1 and w2 in Eq. (3.4):

P ¼ 3w1=2
rh

þ 3w2

r2h
þ 3w3

r3h
: ð4:4Þ

The critical point is determined by the vanishing of the first
and second derivative of P with respect to rh. The critical
value of rh, w1, and P can be calculated as follows:

rhc ¼ −
3w3

w2

; ð4:5Þ

w1c ¼
2w2

2

3w3

; ð4:6Þ

Pc ¼ −
w3
2

9w2
3

: ð4:7Þ

Similarly, we shall keepw2 < 0 andw3 > 0when the critical
behavior appears, and the critical coefficient in this case is

Pcrhc
w1c

¼ 1

2
: ð4:8Þ

By the same token, one can show that the critical
exponents in this five-dimensional case are kept the same
as those in four dimensions.
One can draw the phase diagram to see the phase

structure near the critical point. In Figs. 3 and 4, we give
the P − VðrhÞ and G − w1 diagrams according to the
different signs of w2 and w3 in this five-dimensional neutral
black hole case.
The positivity of w3 in equation of state (4.4) leads to a

divergence of pressure when rh → 0 which is very similar
to the charge effect in four dimensions. And the sign
of w2 determines whether there exists a first-order phase

0 2 4 6 8 10
rh

2

4

6
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10

12

14

P
w2 4, w3 1

0 2 4 6 8 10
rh

2

4

6

8

10

12

14

P
w2 4, w3 1

w1 17.1

w1

w1

w1

0 2 4 6 8 10
rh

P
w2 4, w3 1

0 2 4 6 8 10
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6

8

10
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14

P
w2 4, w3 1

w1

w1

w1

w1

w1

2

4

6

8

10

12

14

0.76w1 c

0.85w1 c

w1 c

1.1w1 c

1.6w1 c

w1 8.1

w1 9.0

w1 10.7

w1 11.7

w1 17.1

w1

17.1
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8.1

11.7
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8.1

FIG. 3 (color online). The five-dimensional P-VðrhÞ diagrams with different parametrization. The first diagram shows the van der
Waals–like critical behavior when w2 < 0 and w3 > 0.
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transition or not. For a van der Waals–like phase transition,
w2 must be negatively valued. Interestingly, when w3 is
negative, in spite of the value of w2, there always exists one
projection in the P-VðrhÞ diagram, and the pressure drops
to zero when the horizon radius decreases to a nonzero
value. A more reasonable and physical explanation will be
explored in the next section.
In this chargeless case, the vacuum solution should also

be taken into account. According to the Hamiltonian
approach, the vacuum solution must be the one with zero
energy (here is the enthalpy), entropy and, hence, the
horizon radius. The Gibbs-free energy of the vacuum
solution vanishes by the definition (3.9). The first diagram
of Fig. 4 shows a “swallow tail” behavior when the pressure
is below a critical point. Note that only the “tail” may
appear in the upper half plane with positive Gibbs-free
energy, the thermodynamic stable phase will always be the
black hole phase, and the phase space stays the same as the
one in four dimensions. This is true in the second diagram
as well. In the third and fourth diagram of Fig. 4 with
w3 ¼ −1, only the part in the lower half plane indicates a
stable black hole solution. The shifted temperature has a
minimal value below which no black hole solution exists.

In fact, when the temperature drops to a certain value larger
than the minimal one, the Gibbs-free energy will become
larger than zero and a more stable vacuum will take place.
This is a Hawking-Page–like phase transition.
On the other hand, the thermodynamic instability can

also be implied by negatively valued heat capacity. The heat
capacity of the black hole system with fixed pressure and
charge can be calculated as

CP;Q¼
�∂H
∂T

�
P;Q

¼T

�∂S
∂T

�
P;Q

¼T
dS
drh

�∂T
∂rh

�
−1

P;Q
: ð4:9Þ

We can see that the sign of CP;Q is determined by the sign
of ð∂T∂rhÞ−1P;Q and, hence, by the sign of ð∂w1∂rh Þ

−1
P;Q

. In Fig. 5, we

plot the w1-rh diagrams with fixed pressures in this neutral
black hole case. We keep the same values of w2 and w3 as
in G-w1 diagrams. The negative slope of the w1-rh curve
indicates a negative heat capacity and, hence, instability.
The first diagram of Fig. 5 shows the instability with
negative slope when the pressure is below the critical one,
which is consistent with the G-w1 analysis. The second
diagram of Fig. 5 with w2 ¼ 4 and w3 ¼ 1 tells us that there
is only one stable black hole phase. The last two diagrams

FIG. 4 (color online). The five-dimensional Gibbs free energy as a function of shifted temperature with different parametrization. The
“swallow tail” behavior appears when w2 < 0 and w3 > 0.
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of Fig. 5 are also consistent with the G-w1 analysis that
there exist unstable black hole phases with CP;Q < 0.

V. P-V CRITICALITY OF GENERAL
HIGHER-DIMENSIONAL BLACK HOLES

In this section, we will analyze the P-V criticality of
charged black holes in general spacetime dimensions based
on the previous analysis of special cases. According to the
Hawking temperature, i.e., Eq. (2.8), the equation of state
for such charged black holes with general spacetime
dimensions is

P¼
�
nT
4
−
nc0c1m2

16π

�
1

rh
−
nðn− 1Þðkþ c20c2m

2Þ
16π

1

r2h

−
nðn− 1Þðn− 2Þc30c3m2

16π

1

r3h

−
nðn− 1Þðn− 2Þðn− 3Þc40c4m2

16π

1

r4h
þ 8πQ2

V2
n

1

r2nh
: ð5:1Þ

Obviously, we can see that the power of rh of the ci terms is
independent of spacetime dimensions, while the charge
term is not. This ensure that the contributions of every ci
term in different spacetime dimensions are qualitatively the

same. The things that matter for the diversity of the phase
structure or P-V diagram are the value of cim2s. For
example, the rh dependence of the c4m2 term is r−4h when
c4m2 is negatively valued and n > 3; it gives a chargelike
contribution as in four spacetime dimensions. In any
spacetime dimension, the charge term plays a dominant
role as rh → 0 since it has the lowest power of rh. Note that
the charge term has a positive sign, and the pressure will
tend to infinity when rh → 0 as long as the black hole is
charged.
Physically, an infinite pressure implies the existence of

repulsion interaction. Let us take the van der Waals liquid-
gas system as an example. The equation of state is the van
der Waals equation

P ¼ T
v − b

−
a
v2

; ð5:2Þ

where v is the so-called specific volume, and a and b are
positive constants determined by experiments. In contrast
to the ideal gas with a ¼ b ¼ 0, constants a and b reflect
the attraction and repulsion force between molecules,
respectively. When b=v is not very large, the van der
Waals equation can be written as an Annes equation with
series expansion

FIG. 5 (color online). The five-dimensional w1-rh diagrams with different parametrization. The negative slope indicates the negative
heat capacity and, hence, the thermodynamic instability.
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P ¼ T
v
þ bT

v2
−

a
v2

þ 2b2T
v3

þ 6b3T
v4

þOðv−5Þ: ð5:3Þ

In the above equation (5.3), the pressure is expressed as a
polynomial of v, the positive coefficient reflects the
repulsion interactions, and the negative coefficient is
related to the attraction interactions. As to our state
equation of charged black holes in general spacetime
dimensions, i.e., Eq. (5.1), if we identify the horizon radius
rh as the specific volume, it has a very similar structure as
the Annes equation (5.3). The positive sign of the charge
term implies a repulsion interaction which could be under-
stood. The value of cim2s cannot be determined by the
theory itself. This leaves many possibilities which lead to a
plentiful phase structure. For example, if c4m2 is negatively
valued, then the fourth term in Eq. (5.1) reflects a repulsion
interaction and vice versa. Similar properties can be applied
to c3m2. The sign of the second term of Eq. (5.1) is
determined by kþ c20c2m

2, which is a joint effect of the
horizon topology and c2m2. In other words, at least in the
thermodynamic sense, the appearance of c2m2 must be
the contribution of horizon topology. This can also been
seen from the metric function (2.6) where the constant term
is kþ c20c2m

2. Thus, unlike with the charged AdS black
hole in GR, a hyperbolic or spherical horizon topology does
not necessarily imply a repulsion or attraction interaction.
It depends on the sign of kþ c20c2m

2. The appearance of
c1m2 seems exotic since no such term appears in the usual
Annes equation (5.3). At present, we can only understand it
as a correction to the Hawking temperature.
Now we can conclude that the appearance of the critical

behaviors or the first-order phase transitions is the result of
the competition of repulsion and attraction interactions
between some unknown degree of freedom. For such phase
transitions, an infinite repulsion interaction is necessary
when the horizon radius tends to zero.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have found that in the context of
massive gravity, there also exists the van der Waals–like
phase transition in the extended phase space of charged
AdS black holes when the cosmological constant is
identified as the thermodynamical pressure. For such
identification, the black hole mass must be viewed as
thermal enthalpy rather than the internal energy of the
gravitational system. Then we use the standard thermody-
namic identities to obtain the entropy, volume, and electric
potential. The entropy keeps the one quarter of the horizon
area law as in GR. In contrast with black holes in GR, the
phase structure becomes richer due to the appearance of the
massive potential associated with the graviton mass. There
are four terms in the massive potential. As to the spatial
reference of metric black holes, the contribution of these
four terms in some thermodynamic quantities like enthalpy

or temperature is dimensional dependent. The Smarr
relation is modified by this massive potential.
In the four-dimensional case, only the first and second

terms appear in the thermal enthalpy as well as the equation
of state. In the canonical ensemble, the van der Waals–like
phase transition happens when kþ c20c2m

2 > 0. In this first-
order phase transition,we calculate the critical exponents and
find that these are the same as in the van derWaals liquid-gas
phase transition. It is worth mentioning that we have used
the shifted temperature rather than the real one to characterize
the critical point. In this sense, we find the same critical
coefficient as in the liquid-gas phase transition. The figure of
Gibbs-free energy as a function of shifted temperature for
constant pressure shows the “swallow tail” behavior when
kþ c20c2m

2 > 0. The “tail” characterizes the unstable state
with larger values of Gibbs-free energy for constant temper-
ature, pressure, and electric charge.
In the five-dimensional case, the third term in the massive

potential contributes. In order to see the effect of the term
c3m2, we simply setQ ¼ 0. There also can undergo a van der
Waals–like phase transition if, and only if, kþ c20c2m

2 > 0

and c3m2 < 0. Qualitatively, there are four possible shapes in
the P-V diagram according to the different sign of kþ
c20c2m

2 and c3m2. When c3m2 > 0, there always exists a
Hawking-Page–like phase transition at a certain temperature
from the black hole state to the vacuum state.
Generally, we can express the thermodynamical pressure

as polynomial in terms of horizon radius. By contrastingwith
the Annes equation, we find that it is natural to identify the
horizon radius as the specific volume. As a polynomial,
the positive coefficient reflects the repulsion interactions and
the negative coefficient is related to the attraction inter-
actions. The appearance of the critical behaviors or the first-
order phase transitions are the result of the competition of
repulsion and attraction interactions between some unknown
degree of freedom. In particular, the c2m2 term will mix the
contribution of horizon topology and the c1m2 term can be
viewed as a correction to the Hawking temperature.
Finally, we would like to mention that the black hole

solution in massive gravity is tightly related to the choice of
the reference metric. Whether the thermodynamic proper-
ties depend on the choice of the reference metric is another
interesting topic that deserves future study.
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