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We consider the motion of classical spinning test particles in Schwarzschild and Kerr metrics and
investigate innermost stable circular orbits (ISCO). The main goal of this work is to find analytically the
small-spin corrections for the parameters of ISCO (radius, total angular momentum, energy, orbital angular
frequency) of spinning test particles in the case of vectors of black hole spin, particle spin and orbital
angular momentum being collinear to each other. We analytically derive the small-spin linear corrections
for arbitrary Kerr parameter a. The cases of Schwarzschild, slowly rotating and extreme Kerr black hole are
considered in detail. For a slowly rotating black hole, the ISCO parameters are obtained up to quadratic in a
and particle’s spin s terms. From the formulas obtained it is seen that the spin-orbital coupling has attractive
character when spin and angular momentum are parallel and repulsive when they are antiparallel. For the
case of the extreme Kerr black hole with co-rotating particle we succeed to find the exact analytical solution
for the limiting ISCO parameters for arbitrary spin. It has been shown that the limiting values of ISCO
radius and frequency do not depend on the particle’s spin while values of energy and total angular
momentum depend on it. We have also considered circular orbits of arbitrary radius and have found small-
spin linear corrections for the total angular momentum, energy and frequency at given radius. System of
equations for numerical calculation of ISCO parameters for arbitrary a and s is also explicitly written.
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I. INTRODUCTION

In general relativity the presence of a rotation (intrinsic
angular momentum, or spin) of the central body influences
motion of a particle orbiting it. Due to this reason the orbits
of test particles differ in the Schwarzschild and Kerr
backgrounds. When, in turn, a test particle has spin as
well, it will also influence the particle’s orbit. In particular,
the motion of a spinning particle will differ from the
nonspinning one even in the Schwarzschild background.
Let us consider amassive nonspinning test particle orbiting

a central black hole (BH). There exists a minimal radius at
which stable circular motion is still possible, it defines the so-
called innermost stable circular orbit (ISCO) in a given
background. For the Schwarzschild background the radius
of ISCO equals to 6M1 [1,2]. In the Kerr space-time circular
motion is possible only in the equatorial plane of BH and the
radius of ISCO depends on the direction of motion of the
particle in comparison with the direction of BH rotation,

whether they co-rotate or counter-rotate. Co-rotation and
counter-rotation cases correspond to parallel and antiparallel
orientation of vectors of the orbital angular momentum of the
particle and the BH angular momentum. For the case of the
extreme Kerr background the difference between these two
variants is quite considerable: we have 9M for the antiparallel
and M for the parallel orientation [2–4].
Values of the ISCO parameters (radius, total angular

momentum, energy, orbital angular frequency) are deter-
mined by the Kerr parameter a. The main subject of the
present paper is to investigate how the ISCO parameters (at
a given value of a) are changed if a test particle has spin
(Fig. 1). We consider motion of spinning test particles in the
Schwarzschild and Kerr metrics in the equatorial plane and
analytically derive the corrections for the parameters of
ISCO taking spin to be a small parameter. We restrict our
consideration by the case when vectors of black hole spin,
particle spin, and orbital angular momentum are collinear.
For nonspinning particles moving in the Schwarzschild

metric the ISCO parameters were found by Kaplan [1]. The
solution of Einstein field equations around a rotating black
hole was found by Kerr [5]. In the following works of Carter
[6] and de Felice [7] the geodesic motion of general type was
studied for the Kerr and Kerr-Newman (charged BH) geom-
etry. See alsoWilkins [8] for bound orbits in Kerr metric and
Dymnikova [9] for review. The parameters of ISCO in Kerr
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space-time for a nonspinning particle were obtained in the
works by Ruffini and Wheeler [3] and Bardeen [4].
The problem of the motion of a classical spinning test

body in general relativity was considered in papers of
Mathisson [10], Papapetrou [11] and Dixon [12–14], using
different techniques. The equations of motion of a spinning
test particle in a given gravitational field were derived in
different forms; they are now referred to as Mathisson-
Papapetrou-Dixon equations. From these equations it
follows that the motion of the center of mass and the
particle rotation are connected to each other, and when the
particle has spin the orbits will differ from geodesics of a
spinless massive particle. In this paper we use the equations
of motion in the form derived in Dixon’s papers.
Influence of spin on orbits in the Schwarzschild metric

was investigated in the paper of Corinaldesi and Papapetrou
[15], and in the paper of Micoulaut [16]. A motion of a
spinning test particle in Kerr metric was considered by
Rasband [17]. Using integrals of motion arising from the
symmetries in the Kerr space-time Rasband [17] derived
the equations of motion of the radial coordinate of a
spinning particle for the motion in the equatorial plane
of a BH. Also in that work the spin-induced corrections for
the radii of last stable orbits for Schwarzschild (a ¼ 0) and

extreme Kerr (a ¼ M) metric were illustrated through
numerical calculations. In the paper by Tod et al. [18]
the influence of test body’s spin on the radii of ISCO for
different values of Kerr parameter a including naked
singularities was numerically calculated, see also papers
of Abramowicz and Calvani [19] and Calvani [20]. More
general case of Kerr-Newman metric was analyzed by
Hojman and Hojman [21]. Subsequently the number of
works on this subject were published [22–43]. The detailed
derivation of the equations of motion using the integrals of
motion was presented in the work of Suzuki and Maeda
[22] for the Schwarzschild case and in the work of Saijo
et al. [24] for the Kerr background. Tanaka et al. [25]
suggested that the radius of the last stable orbit is
independent of the particle’s spin in the extreme Kerr
background (for co-rotating orbits).
Many authors used an effective radial potential for

investigation of spinning particle orbits [17,18,21–
24,39,41,42]. Method of calculation of ISCO parameters
of spinning particle moving in Kerr metric is presented in
detail in the paper [39]. The equations for the circular orbits
in the equatorial plane resulting from the Mathisson-
Papapetrou-Dixon equations appear to be irresolvable
analytically, and ISCO parameters for arbitrary value of
a are supposed to be found numerically. Linear corrections
in spin for the ISCO parameters in Schwarzschild metric
were found by Favata [39]. In this work we analytically
obtain the small spin corrections for the ISCO parameters
for the Kerr metric at arbitrary value of a.
For the extreme a ¼ M and almost extreme a ¼

ð1 − δÞM Kerr BH we succeed to find the exact analytical
solution for the ISCO parameters for arbitrary spin, with
only restrictions connected with applicability of Mathisson-
Papapetrou-Dixon equations. It has been shown that the
limiting values of ISCO radius and frequency for a ¼ M do
not depend on the particle’s spin while values of energy and
total angular momentum do depend on it.
The present paper is organized as follows. In Sec. II we

describe a motion of a test body without spin and introduce
the notion of the effective potential (EP). In Sec. III we
describe how to find ISCO parameters with the help of EPs,
in the Schwarzschild and Kerr metric. In Sec. IV we present
the basic equations for motion of a spinning test body. In
Sec. V we introduce EPs for spinning particles and write
explicitly equations for ISCO parameters for arbitrary Kerr
parameter and arbitrary spin. In Sec. VI we derive formulas
for calculation of the small-spin linear corrections to ISCO
parameters for arbitrary value of a. In Secs. VII, VIII, IX
we consider in details the cases of Schwarzschild metric,
Kerr metric with a ≪ M, and extreme Kerr metric. In
Sec. X we present an exact solution for extreme Kerr BH in
the case of co-rotation. In Sec. XI we consider circular
orbits of arbitrary radius. Section XII is conclusions.

FIG. 1. The influence of BH and test-body’s spin on the radii of
ISCO. In case of Schwarzschild BH the ISCO radius for spinless
particles equals to 6M, see thick solid line. For a particle with
spin, ISCO radius splits in two cases, with different mutual
orientation of spin and orbital angular momentum (parallel or
antiparallel), see dashed lines. In the case of Kerr BH and spinless
particle, ISCO radius splits in two cases, with co- and counter-
rotation to BH (angular momentum is parallel or antiparallel to
BH spin), see thin solid lines. For a particle with spin each line
additionally splits in two dashed lines corresponding to different
spin orientation. The only exception is the case of extreme Kerr
BH with a co-rotating particle: in this case the ISCO radius is
equal to M and does not depend on magnitude and direction of
particle spin.
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II. MOTION OF A SPINLESS TEST BODY.
EFFECTIVE POTENTIAL

In the problems of motion of a test particle in a central
field it is convenient to express the equations of motion for
the radial coordinate in terms of a so-called “effective
potential” energy.
In the Newtonian dynamics these equations for a particle

moving in the gravitational field of a central body with
mass M can be written as (see, for example, [44–46])

1

2

�
dr
dt

�
2

þ UNðrÞ ¼ ε; ð1Þ

where ε is the total nonrelativistic energy per unit mass,UN
is the so-called effective potential (EP)

UN ¼ −
GM
r

þ L2

2r2
: ð2Þ

Here L is the angular momentum per unit mass, G is the
gravitational constant.
In the framework of general relativity, the Schwarzschild

space-time is given by the expression for the interval (in
spherical Schwarzschild coordinates ft; r; θ;φg) as:

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð3Þ

In this space-time the equation of motion for the radial
coordinate is [46]

�
dr
dτ

�
2

¼ E2 −
�
1 −

2M
r

��
1þ L2

r2

�
; ð4Þ

with the connection between dt and dτ as

dt
dτ

¼ E
1 − 2M=r

: ð5Þ

Here E is the total energy at infinity per unit particle rest
mass, L is the angular momentum per unit particle rest
mass, τ is the proper time. This equation can also be
presented in terms of an effective potential

�
dr
dτ

�
2

¼ E2 −U2
Schw: ð6Þ

Here we identify with the effective potential the following
expression:

USchw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2M
r

��
1þ L2

r2

�s
: ð7Þ

Comparing Eqs. (1) and (4) we should keep in mind that
nonrelativistic total energy ε is not an analogue of E, since
unlike the latter, it does not contain rest mass energy.
Newtonian nonrelativistic energy and effective potential
are obtained as ε ¼ ðE2 − 1Þ=2 and UN ¼ ðU2

Schw − 1Þ=2,
see [46].
Let us consider the effective potential in the

Schwarzschild space-time (7) as a function of radial
coordinate. Then, the angular momentum L plays a role
of a parameter defining the shape of USchwðrÞ curve. In the
case L > 2

ffiffiffi
3

p
M the effective potential has two extrema:

maximum and minimum, at the radii of which unstable and
stable circular motion are possible correspondingly. In the
case when L equals to the boundary value 2

ffiffiffi
3

p
M, two

extrema of EP merge into one inflection point. This
boundary value of L defines parameters of the last stable
orbit which is also called the innermost stable circular orbit
(ISCO), i.e., the boundary orbit on which the finite motion
is still possible. Further, when the angular momentum L of
a test body is less than 2

ffiffiffi
3

p
M, the EP does not have an

extremum. For these values of angular momentum neither
type of finite motion is possible and a test body will
inevitably fall in the black hole whatever values of E it
may have.
In Boyer-Lindquist coordinates the Kerr metric is given

by the expression [2,45]

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdφþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Mra2sin2θ

Σ

�
sin2θdφ2; ð8Þ

where a is the specific angular momentum of a black hole,
Σ≡ r2 þ a2 cos2 θ, Δ≡ r2 − 2Mrþ a2.
The equation of motion for the radial coordinate of a test

particle in the equatorial plane (θ ¼ π=2) of Kerr metric is
written as [45]

�
dr
dτ

�
2

¼ E2 −
�
1 −

2M
r

−
a2ðE2 − 1Þ − L2

r2

−
2MðL − aEÞ2

r3

�
; ð9Þ

with the connection between dt and dτ

dt
dτ

¼ −
2Ma
rΔ

Lþ E
Δ

�
r2 þ a2 þ 2Ma2

r

�
: ð10Þ

Here L≡ Lz is a z-component of the angular momentum
per unit rest mass, equal to the total angular momentum per
unit mass, when z-axis is parallel to the axis of the rotation
of BH. So L > 0 and L < 0 corresponds to the co-rotation
and the counter-rotation cases, respectively, and a is always
positive.
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We see at the right-hand side of Eq. (9) that the
expression in brackets is dependent on the energy E. For
this reason the effective potential in the Kerr space-time
cannot be defined in such a simple way as for the
Schwarzschild space-time.
Let us write the equation for the radial motion as

r4
�
dr
dτ

�
2

¼ ðr4 þ a2r2 þ 2Mra2ÞE2 − 4MrLaE

þ 2ML2r − a2r2 − L2r2 − r4 þ 2Mr3: ð11Þ

It is convenient to write this equation as [46]�
dr
dτ

�
2

¼ 1

r4
ðαE2 − 2βEþ γÞ; ð12Þ

where α, β, and γ are defined as:

α ¼ ðr2 þ a2Þ2 − Δa2 > 0;

β ¼ ½aðr2 þ a2Þ − Δa�L ¼ 2MraL;

γ ¼ a2L2 − Δðr2 þ L2Þ: ð13Þ

Let us rewrite (12) as

r4
�
dr
dτ

�
2

¼ α

�
E −

β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − αγ

p
α

�

×

�
E −

β −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − αγ

p
α

�
; ð14Þ

and define EP equal to

UKerrðr;LÞ ¼
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − αγ

p
α

: ð15Þ

The positive square root must be taken here, see [46]. This
definition keeps analogy with the EP in the Schwarzschild
space-time (and, therefore, with the Newtonian dynamics
as well).
In some other works, however, [4,45,47] the entire right-

hand side of Eq. (9) is used instead of the effective potential
UKerr, especially for the investigation of circular orbits and
the ISCO parameters. Despite that it contains energy, some
authors [4,45] keep calling it an “effective potential,”
because it has some features of the EP important for the
investigation of circular orbits (see next section).

III. ISCO FOR NONSPINNING PARTICLES IN THE
SCHWARZSCHILD AND KERR SPACE-TIMES

Let us describe how to find ISCO parameters and first
consider the Schwarzschild metric.
For a circular motion we need two conditions to be

satisfied simultaneously:

(i) the radial velocity should be equal to zero:

dr
dτ

¼ 0; ð16Þ

what corresponds to the equality

E ¼ USchw: ð17Þ

(ii) the acceleration of the radial coordinate should be
absent:

d2r
dτ2

¼ 0: ð18Þ

Differentiating (6) with respect to τ and dividing by _r, we
obtain

2̈r ¼ d
dr

½E2 −U2
Schw�; ð19Þ

so the condition (18) corresponds to the relation

d
dr

½E2 −U2
Schw� ¼ 0: ð20Þ

For a given E we have

dU2
Schw

dr
¼ 0; USchw > 0: ð21Þ

Solving the system of equations (17) and (21), we obtain
the expressions for the radius of the circular orbit r and for
the particle energy E on it [1,2], as a function of L in the
form

r ¼ L2

2M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12M2

L2

r �
; ð22Þ

E ¼ L

ffiffiffiffiffiffiffi
1

Mr

r �
1 −

2M
r

�
: ð23Þ

In Eq. (22) the upper sign corresponds to the stable circular
orbits in the minimum of EP and the lower one stands for
the unstable circular orbits in its maximum. In Eq. (23)
radius r given by (22) should be substituted. From the
expression (22) we see that for L < 2

ffiffiffi
3

p
M the radius

becomes complex and we do not have a circular orbit at all.
Mathematically this means that the EP with such values of
L does not have extrema.
In order to find the last stable orbit (ISCO) we need to

find the last value of L at which the EP still has extremum.
The ISCO takes place when points of maximum and
minimum of EP merge. Therefore we need the third
condition:
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(iii) the inflection point of the EP satisfies relation:

d2U2
Schw

dr2
¼ 0: ð24Þ

So, in order to find the parameters of ISCO (r, E, L),
we need to solve three equations (17), (21), (24)
simultaneously.
From (22) it is evident that the points of maximum and

minimum of EP merge at the marginal angular momentum
L ¼ 2

ffiffiffi
3

p
M. Thus, the ISCO parameters in the

Schwarzschild space-time are [1]:

rISCO ¼ 6M;

LISCO ¼ 2
ffiffiffi
3

p
M;

EISCO ¼
ffiffiffi
8

9

r
: ð25Þ

In the Kerr space-time the finding of ISCO parameters is
more complicated. ISCO in the Kerr space-time were
considered in [3,4], where, in particular, parameters of
ISCO for the extreme Kerr BH were found. This problem is
described at length, for example, in the textbook by Hobson
et al. [45].
It is convenient to solve the problem by introducing a

function

Vðr;L;EÞ ¼ 1

r4
ðαE2 − 2βEþ γÞ: ð26Þ

The function Vðr;L;EÞ is the right-hand side of Eq. (12)
and has qualities which are important in our research. The
expression for acceleration is given by the first derivative
̈r ¼ ð1=2ÞdV=dr [compare with (19)], and stability of the
circular orbit is given by the sign of its second derivative
d2V=dr2. It is convenient to use variable u ¼ 1=r instead of
r and variable x ¼ L − aE instead of L.
For the circular motion we need the conditions for the

velocity (16) and the acceleration (18) to be satisfied
simultaneously. Therefore for the Kerr metric we have
from (26) the system of equations

(
V ¼ 0;
dV
dr ¼ 0:

ð27Þ

The usage of u instead of r does not change anything in the
form of the system: since dV=dr ¼ ðdV=duÞðdu=drÞ, the
condition dV=dr ¼ 0 is equivalent to dV=du ¼ 0.
The solution of the system (27) defines the set of

parameters x ¼ L − aE and E for stable and unstable
circular orbits as functions of u [45]. For the stable circular
orbit we have

xðuÞ ¼ −
a

ffiffiffi
u

p � ffiffiffiffiffi
M

p

½uð1 − 3Mu∓ 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ�1=2

;

EðuÞ ¼ 1 − 2Mu∓ a
ffiffiffiffiffiffiffiffiffi
Mu3

p

ð1 − 3Mu∓ 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ1=2

: ð28Þ

Using L ¼ xþ aE, we have:

LðuÞ ¼ ∓
ffiffiffiffiffi
M

p ð1þ a2u2 � 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ

½uð1 − 3Mu∓ 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ�1=2

: ð29Þ

The upper sign corresponds to the antiparallel orientation of
particle’s angular momentum L and BH spin a (counter-
rotation), the lower to the parallel one (corotation).
In order to find the parameters of ISCO, we need to add

the condition

d2V
dr2

¼ 0: ð30Þ

Written in terms of u the third condition transforms to [45]:

d2V
dr2

¼ d2V
du2

�
du
dr

�
2

þ dV
du

d2u
dr2

¼ u3
�
d2V
du2

uþ 2
dV
du

�
¼ 0:

ð31Þ

Since dV=du ¼ 0 for a circular orbit, the third condition
is d2V=du2 ¼ 0.
The three equations V ¼ 0, dV=du ¼ 0, d2V=du2 ¼ 0

form a closed system on three parameters of ISCO E, x and
u, which are then dependent only on M and the Kerr
parameter a.
Solving this system [45], we obtain the equation for the

inverse ISCO radii in the Kerr metrics:

1 − 3a2u2 − 6uM ∓ 8a
ffiffiffiffiffiffiffiffiffi
Mu3

p
¼ 0; ð32Þ

or

r2 − 6Mr − 3a2 ∓ 8a
ffiffiffiffiffiffiffi
Mr

p
¼ 0: ð33Þ

Analytic solution for the ISCO radius can be found in the
paper [4]. Solutions of (32) should be substituted into (28)
and (29) for finding E and L.
In the limit a ¼ 0, we have rISCO ¼ 6M in the

Schwarzschild case. In the extreme Kerr limit a ¼ M we
obtain

rISCO ¼ 9M; LISCO ¼ −
22

3
ffiffiffi
3

p M; EISCO ¼ 5

3
ffiffiffi
3

p

ð34Þ

for the counter-rotating orbit and
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rISCO ¼ M; LISCO ¼ 2ffiffiffi
3

p M; EISCO ¼ 1ffiffiffi
3

p

ð35Þ

for the co-rotating case [3,4].

IV. MOTION OF A SPINNING TEST BODY IN THE
EQUATORIAL PLANE OF A BH

For a description of the influence of a body’s spin on the
parameters of its circular orbits we use the Mathisson-
Papapetrou-Dixon (MPD) [10–12,24] equations of motion:

Dpμ

Dτ
¼ −

1

2
Rμ

νρσvνSρσ;

DSμν

Dτ
¼ pμvν − pνvμ: ð36Þ

Here D=Dτ is a covariant derivative along the particle
trajectory, τ is an affine parameter of the orbit [24], Rμ

νρσ is
the Riemannian tensor, pμ and vμ are 4-momentum and
4-velocity of a test body, Sρσ is its spin-tensor. The
equations were derived under the assumption that the
characteristic radius of the spinning particle is much
smaller than the curvature scale of a background space-
time [24] (see also [17,26]) and the mass of a spinning body
is much less than that of BH.
These equations are, however, incomplete, because they

do not define which point on the test body is used for spin
and trajectory measurements, so we need some extra
condition to do that [15]. We use the condition of
Tulczyjew [12,24,48] that fixes the center of mass of the
test body

pμSμν ¼ 0: ð37Þ

Let us consider the motion of a spinning particle in the
equatorial plane of Kerr BH. In this case the angular
momentum of a spinning particle is always perpendicular to
the equatorial plane [24]. Therefore we can describe the test
particle spin by only one constant s which is the specific
spin angular momentum of the particle. Value jsj indicates
the magnitude of the spin and s itself is its projection on the
z-axis. It is more evident to think of the spin in terms of the
particle’s spin angular momentum S1 ¼ smẑ which is
parallel to the BH spin angular momentum S2 ¼ aMẑ,
when s > 0, and antiparallel, when s < 0. Here ẑ is a unit
vector in the direction of the z-axis and m is a mass of the
particle [24,39].
Saijo et al. [24] have derived the equations of motion of a

spinning test particle for the equatorial plane of Kerr BH.
The equations of motion for the variables r, t, φ in this case
have the form [24]

ðΣsΛs _rÞ2 ¼ Rs;

ΣsΛs_t ¼ a

�
1þ 3Ms2

rΣs

�
½J − ðaþ sÞE� þ r2 þ a2

Δ
Ps;

ΣsΛs _φ ¼
�
1þ 3Ms2

rΣs

�
½J − ðaþ sÞE� þ a

Δ
Ps: ð38Þ

where

Σs ¼ r2
�
1 −

Ms2

r3

�
;

Λs ¼ 1 −
3Ms2r½−ðaþ sÞEþ J�2

Σ3
s

;

Rs ¼ P2
s − Δ

�
Σ2
s

r2
þ ½−ðaþ sÞEþ J�2

�
;

Ps ¼
�
r2 þ a2 þ asðrþMÞ

r

�
E −

�
aþMs

r

�
J: ð39Þ

Here _x≡ dx=dτ and the affine parameter τ is normalized as
pνvν ¼ −m [24]; E is the conserved energy per unit particle
rest mass, and J ¼ Jz is the conserved total angular
momentum per unit particle rest mass which is collinear
to the spin of a BH.
The equation for radial motion can be rewritten as

ðΣsΛs _rÞ2 ¼ αsE2 − 2βsEþ γs; ð40Þ

where

αs ¼
�
r2 þ a2 þ asðrþMÞ

r

�
2

− Δðaþ sÞ2;

βs ¼
��

aþMs
r

��
r2 þ a2 þ asðrþMÞ

r

�
− Δðaþ sÞ

�
J;

γs ¼
�
aþMs

r

�
2

J2 − Δ
�
r2
�
1 −

Ms2

r3

�
2

þ J2
�
: ð41Þ

This form is used by Favata [39]. Coefficients αs, βs, γs
agree with Rasband [17] results.

V. THE EFFECTIVE POTENTIAL AND CIRCULAR
ORBITS FOR SPINNING TEST PARTICLES

The question of what we should consider as the EP in the
case when a particle has spin does not differ from the
“spinless case” in the Kerr space-time. If we want to keep
analogy with the EP in the Schwarzschild background, we
should define it as the solution of equation αsE2 − 2βsEþ
γs ¼ 0 with αs, βs, γs from (41).
EP in this form can be found in the paper [24]:

Uskðr; J; sÞ ¼
βs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2s − αsγs

p
αs

: ð42Þ
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with αs, βs, γs from (41), see also Favata [39], Rasband
[17], Suzuki and Maeda [22,23], Steinhoff and Puetzfeld
[41]. For a review of misprints and comparison of effective
potentials presented in different works see appendices of
the paper [41].
Using this EP for finding the ISCO parameters is

presented, for example, in the paper of Favata [39]. It is
shown that conditions for a circular orbit (the vanishing of _r
and ̈r) are equivalent to

E ¼ Usk;
dUsk

dr
¼ 0: ð43Þ

For the ISCO the third condition is added:

d2Usk

dr2
¼ 0: ð44Þ

A general solution of these three equations for the ISCO of
a spinning particle is supposed to be found numerically. In
the small-spin limit, Favata [39] analytically had found
parameters of ISCO in the Schwarzschild metric.
Since our purpose is to obtain the analytical expressions

for circular orbits in the Kerr metric, it is more convenient
to define the “effective potential” similar to (26), by
analogy with the work [4]. We rewrite Eq. (40) as:

_r2 ¼ 1

Σ2
sΛ2

s
ðαsE2 − 2βsEþ γsÞ; ð45Þ

and define the effective potential as its right-hand side:

Vsðr; J; EÞ ¼
1

Σ2
sΛ2

s
ðαsE2 − 2βsEþ γsÞ: ð46Þ

It can be easily shown that solution of system of equations
determining circular orbits is not changed if the effective
potential is multiplied by some function which is not equal
to zero (with its first and second derivatives) for physically

relevant parameter values. Therefore it is more convenient
for analytical calculations to define effective potential as

Vsðr; J; EÞ ¼
1

r4
ðαsE2 − 2βsEþ γsÞ; ð47Þ

with αs, βs, γs from (41). Notice that in the case of a
spinning particle we use the total angular momentum J
instead of the orbital angular momentum L.2 Further, for
the sake of convenience, we shall change variables and
work not with r and J but with u ¼ 1=r and x ¼ J − aE, so
the function Vsðu; x; EÞ will be used.
In order to find the circular orbits we need to solve the

system of equations

�
Vs ¼ 0;
dVs
du ¼ 0: ð48Þ

The explicit form of these equations is given in the first two
equations in the system (50). The solution of this system
defines the set of parameters x and E for stable and unstable
circular orbits as functions of s and u. In Fig. 2 we present
the numerically calculated dependence of r on total angular
momentum J and the influence of spin on it for the
Schwarzschild background, see also [17].
The point at which upper and lower branches on Fig. 2

meet defines the ISCO for the given value of spin. In order
to find the dependence of the radius of the ISCO on spin,
we need to add the condition d2Vs=dr2 ¼ 0, which is
equivalent to

d2Vs

du2
¼ 0; ð49Þ

to the system (48). The resulting system for finding the
ISCO parameters, thus, consists of three equations (48) and
(49) and has the explicit form

8>>>>>>>>><
>>>>>>>>>:

ð1þ 2asu2 − s2u2 þ 2Ms2u3ÞE2 þ ð−2au2xþ 2su2x − 6Msu3x − 2aMs2u5xÞE − 1þ 2Mu − a2u2 þ 2Ms2u3

−4M2s2u4 þ 2a2Ms2u5 −M2s4u6 þ 2M3s4u7 − a2M2s4u8 − u2x2 þ 2Mu3x2 þ 2aMsu5x2 þM2s2u6x2 ¼ 0;

ð4asu − 2s2uþ 6Ms2u2ÞE2 þ ð−4auxþ 4sux − 18Msu2x − 10aMs2u4xÞEþ 2M − 2a2uþ 6Ms2u2 − 16M2s2u3

þ10a2Ms2u4 − 6M2s4u5 þ 14M3s4u6 − 8a2M2s4u7 − 2ux2 þ 6Mu2x2 þ 10aMsu4x2 þ 6M2s2u5x2 ¼ 0;

ð4as − 2s2 þ 12Ms2uÞE2 þ ð−4axþ 4sx − 36Msux − 40aMs2u3xÞE − 2ða2 − 6Ms2uþ 24M2s2u2 − 20a2Ms2u3

þ15M2s4u4 − 42M3s4u5 þ 28a2M2s4u6 þ x2 − 6Mux2 − 20aMsu3x2 − 15M2s2u4x2Þ ¼ 0:

ð50Þ

2For a spinless particle the conserved quantity is the orbital angular momentum Lz, whereas in the case of a spinning particle the
conserved quantity is the total angular momentum Jz, which includes spin terms [24]. In this case “orbital angular momentum” at
infinity Lz can also be introduced as Lz ¼ Jz − s, see [24]. Further we can say that in both cases total angular momentum is conserved
with a note that in the spinless case it consists of the orbital angular momentum part only.
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These three equations form a closed system on three
parameters of ISCO E, x and u, which are then dependent
only on the Kerr parameter a and particle’s spin s. This
system can be used for numerical calculation of r, E, J of
ISCO at given a and s.
Using EP in the form Uskðr; JÞ (42) permits of splitting

that system of three equations into two parts: equations
dUsk=dr ¼ 0 and d2Usk=dr2 ¼ 0 contain only r and J, and
can be solved independently from equation E ¼ Usk. So
actually the problem is reduced to solving of the system of
two equations. It is clearly seen in the case of the
Schwarzschild metric for a spinless particle, see Sec. III.
In the case of using EP in the form Vsðu; x; EÞ (47) the
equations dVs=du ¼ 0 and d2Vs=du2 ¼ 0 contain not only
u and x, but also E, so that in order to find these three
parameters it is necessary to solve simultaneously three
equations. Disadvantage of Uskðr; JÞ is that it contains
radicals, and each differentiation increases complexity of
expressions. EP in the form Vsðu; x; EÞ, on the contrary, has
polynomial form with respect to u, and each differentiation
makes the expressions simpler. All these properties are
present in the spinless case also, and it is convenient to look
for the ISCO parameters for the Schwarzschild case using
USchwðr;LÞ and the ISCO parameters for the Kerr case
using Vsðu; x; EÞ.
Another important characteristics of the particle circular

motion is its angular velocity. We calculate the spin
corrections for the orbital angular frequency of the particle
at the ISCO, as seen from an observer at infinity. This
angular frequency is defined as

Ω≡ dφ=dτ
dt=dτ

: ð51Þ

The values dφ=dτ and dt=dτ are found from the second and
the third equations in (38), where we should substitute
values of r, E, and J at a given orbit. To find the ISCO
frequency ΩISCO we need to use the ISCO values of r, E,
and J, see [39].

VI. SMALL-SPIN LINEAR CORRECTIONS FOR
ISCO PARAMETERS AT ARBITRARY KERR

PARAMETER

The system (50) does not admit an analytical solution for
arbitrary values of a and s. Using s ≪ M, we can expand
the equations of the system (50) into series of powers of s.
In this section we find analytical solution for ISCO

parameters with small-spin linear corrections, for an
arbitrary value of a.
To perform analytical calculations and get analytical

results for small-spin corrections, it is more convenient to
use the following equivalent system of equations instead of
the system (48) and (49):

8>>><
>>>:

1
2
dVs
du ¼ 0;

1
2
dVs
du u − Vs ¼ 0;

1
2
d2Vs
du2 ¼ 0:

ð52Þ

A similar approach for spinless case is used in [45].
We shall seek for solution of the system (52) in the form

x ¼ x0 þ sx1;

E ¼ E0 þ sE1;

u ¼ u0 þ su1: ð53Þ

Here x0, E0, u0 are the values of x, E, u in the spinless case,
and x1, E1, u1 are the linear corrections associated with
spin. The dimensionalities are ½x� ¼ ½x0� ¼ ½M�, ½x1� ¼ 1,
½E� ¼ ½E0� ¼ 1, ½E1� ¼ ½M−1�, ½u� ¼ ½u0� ¼ ½M−1�, ½u1� ¼
½M−2�, ½s� ¼ ½M�. Further we introduce these expressions
into (52) and linearize it in spin. Since the equations of
the system are to be satisfied for arbitrary values of spin, we
obtain the system of six equations for six unknowns
x0; E0; u0; x1; E1; u1.
First, there are three equations for three unknowns x0,

E0, u0, at given a:

8><
>:

M − a2u0 − x20u0 − 2aE0x0u0 þ 3Mx20u
2
0 ¼ 0;

1 − E2
0 −Mu0 þMx20u

3
0 ¼ 0;

−a2 − x20 − 2aE0x0 þ 6Mx20u0 ¼ 0:

ð54Þ

These equations describe the parameters of ISCO for the
spinless case. Solution of the first two equations in this
system gives us the values of x0 and E0 for an arbitrary
circular orbit of given inverse radius, see (28). Solving three
equations simultaneously, we can obtain the equation for
u0, see (32).
The solution of equation (32) for u0 has a complicated

form. Therefore it is more convenient to express the six
unknowns not as explicit functions of a but as the explicit
functions of a and u0, keeping in mind that u0 can be found

3.0 3.5 4.0 4.5
J

5

10

15

20

25

30

r

s 1

s 0.5

s 0

s 0.5

s 1

FIG. 2 (color online). Dependence of the radii of the stable
(upper branches) and unstable (lower branches) circular orbits on
the total angular momentum, for different values of spin s. All
parameters are given in units of M, see also [17].
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from Eq. (32) at arbitrary a. Before we proceed we need to
notice that representation of all unknowns via u0 given
below could be rewritten in a different form using (32).
To get x0 and E0 for ISCO we can substitute u ¼ u0 into

the expressions for an arbitrary circular orbit (28). But it is
more convenient to obtain directly the connections between
parameters x0, E0, u0 for ISCO from three equations (54). It
is easy to obtain that:

x20 ¼
1

3u20
; E2

0 ¼ 1 −
2

3
Mu0: ð55Þ

Whereas E0 has positive value and we can write

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3
Mu0

r
; ð56Þ

the value of x0 can have both signs. From expression for x0
in (28), we see that the second term in the numerator is
always bigger (or equal) than the first term, which means
that the sign of x0 is determined by the sign in front of the
second term in numerator. Therefore x0 > 0 stands for co-
rotating orbits and x0 < 0 for counter-rotating orbits. We
can write:

x0 ¼ ∓ 1ffiffiffi
3

p
u0

: ð57Þ

For E0 we can also write:

E0 ¼
6Mu0 − 3u20a

2 − 1

6au20x0
¼ ∓ ð6Mu0 − 3u20a

2 − 1Þ ffiffiffi
3

p

6au0
:

ð58Þ

Three equations for small-spin corrections x1, E1, u1,
partially simplified with using the third equation in (54) and
relation x20u

2
0 ¼ 1=3, are

8>>>>>>><
>>>>>>>:

ð−6x0 − 6aE0 þ 18Mx0u0Þx1 − 6ax0E1

þ6aE2
0 þ 6E0x0 − 27E0Mx0u0 þ 5aMu0 ¼ 0;

2Mx0u30x1 − 2E0E1 þMau30 − 3E0Mx0u30 ¼ 0;

ð−3x0 − 3aE0 þ 18Mx0u0Þx1 − 3ax0E1 þ 9Mx20u1
þ3aE2

0 þ 3E0x0 − 27E0Mx0u0 þ 10aMu0 ¼ 0:

ð59Þ

After significant simplifications with using expressions
(55), (57), (58) we succeed to obtain the corrections in a
simple form:

E1 ¼ −x0Mu30 ¼ � 1ffiffiffi
3

p Mu20;

x1 ¼ −
ð1 − 6Mu0 þ 9a2u20Þx0

4a
¼ � 1 − 6Mu0 þ 9a2u20

4
ffiffiffi
3

p
au0

;

u1 ¼ −
u0ð1 − 6Mu0 þ 5a2u20Þ

2a
: ð60Þ

To avoid singularity in the Schwarzschild case (a ¼ 0,
u0 ¼ 1=6M), we can also rewrite (60) as

E1 ¼ −x0Mu30 ¼ � 1ffiffiffi
3

p Mu20;

x1 ¼ � 1ffiffiffi
3

p ð3au0 � 2
ffiffiffiffiffiffiffiffiffi
Mu0

p
Þ ¼ 1ffiffiffi

3
p ð2

ffiffiffiffiffiffiffiffiffi
Mu0

p
� 3au0Þ;

u1 ¼ −4u20ðau0 �
ffiffiffiffiffiffiffiffiffi
Mu0

p
Þ: ð61Þ

Let us summarize the results of this section. To obtain
ISCO parameters for given a in the form (53) one should
find u0 from equation

1 − 3a2u20 − 6Mu0 ∓ 8a
ffiffiffiffiffiffiffiffiffi
Mu30

q
¼ 0; ð62Þ

and then calculate x0 with using (57), E0 with using (56),
x1, E1, u1 with using (60) or (61). The value J can be found
by using J ¼ xþ aE:

J ¼ J0 þ sJ1 ¼ ðx0 þ aE0Þ þ sðx1 þ aE1Þ: ð63Þ

The ISCO radius r can be found by using r ¼ 1=u:

r ¼ r0 þ sr1 ¼
1

u0
− s

u1
u20

: ð64Þ

We calculate also the ISCO frequency for arbitrary value
of a, as described at the end of Sec. V. Using (57), (58), and
(60) in (51) we obtain Ω as

Ω ¼ Ω0 þ sΩ1; ð65Þ

Ω0 ¼
ffiffiffiffiffi
M

p
u3=20

a
ffiffiffiffiffi
M

p
u3=20 ∓ 1

; Ω1 ¼
9

ffiffiffiffiffi
M

p
u30ð

ffiffiffiffiffi
M

p � a
ffiffiffiffiffi
u0

p Þ
2ð1∓ a

ffiffiffiffiffi
M

p
u3=20 Þ2

;

ð66Þ

or, in terms of r0 as

Ω0 ¼
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p ∓ r3=20

; Ω1 ¼
9

ffiffiffiffiffi
M

p ð ffiffiffiffiffiffiffiffiffi
r0M

p � aÞ
2

ffiffiffiffiffi
r0

p ðr3=20 ∓ a
ffiffiffiffiffi
M

p Þ2
:

ð67Þ

In all the formulas the upper sign corresponds to the
antiparallel orientation of a particle’s angular momentum J
and BH spin a (counter-rotation, J < 0), the lower—to the
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parallel one (corotation, J > 0); s is the projection of spin
on the z-axis and can be positive (spins of particle and BH
are parallel) or negative (antiparallel); a is positive or equal
to zero; the z-axis is chosen to be parallel to BH spin a.

VII. SMALL-SPIN CORRECTIONS FOR ISCO
PARAMETERS IN SCHWARZSCHILD METRIC

In order to illustrate the obtained results, let us consider
some important limit cases: Schwarzschild metric and Kerr
metric, when the BH rotation is slow (a ≪ M) and
extremely fast (a → M). The latter case is called “extreme
Kerr BH,” for at the values of a exceeding M the BH
disappears and we have a naked singularity [47] without an
event horizon.
In the Schwarzschild case there is no preferential

direction associated with BH spin (a ¼ 0), so z-direction
can be chosen arbitrarily. Choosing z-axis along J vector,
and taking u0 ¼ 1=6M, we obtain:

JISCO ¼ 2
ffiffiffi
3

p
M þ

ffiffiffi
2

p

3
sJ;

EISCO ¼ 2
ffiffiffi
2

p

3
−

1

36
ffiffiffi
3

p sJ
M

;

rISCO ¼ 6M − 2

ffiffiffi
2

3

r
sJ;

ΩISCO ¼ 1

6
ffiffiffi
6

p
M

þ sJ
48M2

: ð68Þ

Here instead of s, which is the projection on the z-axis that
does not unambiguously correspond to any physical
direction in Schwarzschild case, we use sJ which is the
projection of particle’s spin upon the direction of J and is
positivewhen the particle’s spin is parallel to it and negative
when it is antiparallel. Value J is considered as positive in
this case.
Small-spin corrections for Schwarzschild metric were

derived by Favata [39].

VIII. CORRECTIONS FOR ISCO PARAMETERS
FOR SLOWLY ROTATING BH

The case of slowly rotating Kerr BH (a ≪ M) allows us
to separate corrections that arise from different types of
angular momentum coupling.
Our general formulas, presented in Sec. VI, allow us to

obtain correction terms proportional to a, s, and as.
Considering a ≪ M in Eq. (62), we get u0:

u0 ¼
1

6M
∓ 1

9M

ffiffiffi
2

3

r
a
M

þ 13

216M
a2

M2
: ð69Þ

Using the first two terms from (69) in (56), (57), (61), we
obtain x0, E0, x1, E1, and u1. Note that when using
formulas (60) for calculation of corrections E1 and u1,

the quadratic terms from (69) should be also taken into
account. Corrections a, s, as for ISCO parameters can also
be obtained directly by solving the system (50), with
keeping terms linear in a and s.
If we do not assume any ratio between values a and s, a

full description of the problem requires us also to obtain
quadratic terms s2 and a2 in ISCO parameters. The scheme
for obtaining the squared corrections is analogous to the
linearization procedure, only we need to express the
parameters in the form

x ¼ x0 þ sx1 þ s2x2;

E ¼ E0 þ sE1 þ s2E2;

u ¼ u0 þ su1 þ s2u2; ð70Þ

and retain the squared in spin terms in the system (50).
For our purposes we can use a more simple way:

corrections s2 can be found from the solution of the system
(50) for Schwarzschild case, and a2-corrections can be
found from consideration of the spinless case.
Finally, we obtain:

JISCO ¼ ∓2
ffiffiffi
3

p
M −

2
ffiffiffi
2

p

3
aþ

ffiffiffi
2

p

3
s� 11

36
ffiffiffi
3

p a
M

s

� 4
ffiffiffi
3

p
M

27

�
a
M

�
2

� 1

4M
ffiffiffi
3

p s2;

EISCO ¼ 2
ffiffiffi
2

p

3
� 1

18
ffiffiffi
3

p a
M

� 1

36
ffiffiffi
3

p s
M

−
ffiffiffi
2

p

81

a
M

s
M

−
5

162
ffiffiffi
2

p
�
a
M

�
2

−
5

432
ffiffiffi
2

p
M2

s2;

rISCO ¼ 6M � 4

ffiffiffi
2

3

r
a� 2

ffiffiffi
2

3

r
sþ 2

9

a
M

s

−
7M
18

�
a
M

�
2

−
29

72M
s2: ð71Þ

Different situations of mutual orientation of BH and
particle spin are presented on Fig. 3, where the case
a ≪ M is drawn on the basis of the first three terms in
formula (71) for rISCO. For example, for particle C0 we
should use the upper sign and s > 0, for particle D0 we
should use the lower sign and s < 0.
This result allows us to understand the character of the

spin-orbital coupling in GR. From the terms�4
ffiffiffiffiffiffiffiffi
2=3

p
a and

�2
ffiffiffiffiffiffiffiffi
2=3

p
s, we see that the spin-orbital coupling depends

on mutual orientation of the spin and angular momentum
vectors: it is attractive and the radius decreases, when they
are parallel, and repulsive, if they are antiparallel.
The terms with as, a2, s2 in formulas (71) are of second

infinitesimal order and include information about inter-
actions of particle spin, BH spin, and orbital momentum.
Considering the formula for the radius it is easy to show
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that the trinomial containing these three terms is negative
for all possible values of a and s. Therefore, quadratic
corrections always lead to decrease of the ISCO radius.
Substituting values of JISCO, EISCO, and rISCO from (71)

into (51), we obtain the ISCO frequency as

ΩISCO ¼ ∓ 1

6
ffiffiffi
6

p
M

þ 11

216M
a
M

þ 1

48M2
s

∓
�

1

18
ffiffiffi
6

p
M

as
M2

þ 59

648
ffiffiffi
6

p
M

a2

M2

þ 97

3456
ffiffiffi
6

p
M

s2

M2

�
: ð72Þ

IX. SMALL-SPIN LINEAR CORRECTIONS
FOR EXTREME KERR BH

In the extreme Kerr background (a → M) for a spinless
particle the ISCO radius is 9M in the antiparallel case
(counter-rotation), and M in the parallel case (co-rotation).
Numerical solution of the system (50) for a close to M
shows that ISCO radius has very different behavior for
co-rotating (J > 0) and counter-rotating (J < 0) particles,
see Figs. 4 and 5. We will therefore consider these cases
separately.
In the antiparallel case we get, using (56), (57), (60), (66):

JISCO ¼ −
22

ffiffiffi
3

p

9
M þ 82

ffiffiffi
3

p

243
s;

EISCO ¼ 5
ffiffiffi
3

p

9
þ

ffiffiffi
3

p

243

s
M

;

rISCO ¼ 9M þ 16

9
s;

ΩISCO ¼ −
1

26M
þ 3s
338M2

: ð73Þ

For the parallel case we search for ISCO parameters at
values of a ¼ ð1 − δÞM, δ ≪ 1, because divergences may
appear at a ¼ 1 at some ways of calculations. Using (56),
(57), (60), (66), we get:

FIG. 3. Radii of ISCO for different directions of motion and
spin of test particles. Six particles, A, B, C,D, E, F, with different
directions of spin and orbital motion are presented, for different
Kerr parameter a. For a ¼ 0 we use just letters (e.g., A), for
a ≪ M we use primes (e.g., A0), for a ¼ M we use double primes
(e.g., A00). Direction of particle’s spin is shown by an arrow on a
circle: clockwise arrow (C and F) indicates particles co-rotating
with black hole, anticlockwise arrow (D and E) indicates counter-
rotating particles, for spinless particles (A and B) we use circles
without arrow. Direction of orbital motion around BH is shown
by straight arrow outside circles. Size of BH is shown for the case
of the extreme Kerr space-time. The ISCO radii for a ≪ M are
drawn on basis of only the first three terms in formula (71), with
s ≪ a ≪ M. In the case of a Schwarzschild BH (a ¼ 0) the ISCO
radius for spinless particles equals to 6M, independently of
direction of orbital motion, see A and B. In the case of a Kerr BH
the ISCO radius depends on direction of orbital motion. For
slowly rotating BH, a ≪ M: counter-rotating particle A0 has orbit
with rISCO > 6M, co-rotating particle B0 has orbit with
rISCO < 6M. For the extreme Kerr BH, a ¼ M, a counter-rotating
particle A00 has orbit with rISCO ¼ 9M, a co-rotating particle B00
has orbit with rISCO ¼ M. Presence of spin increases or decreases
ISCO radius in comparison with spinless case, see particles C,D,
E, F (also C0, C00 and so on). We recall that the z-axis is directed
along the axis of rotation of BH, so a > 0. Total angular
momentum J ¼ Jz: J > 0 corresponds to co-rotating of orbit,
J < 0 corresponds to counter-rotating orbit. Spin s > 0 corre-
sponds to spin vector parallel to a (corotation with BH), spin
s < 0 is antiparallel to it. The ISCO radius of a spinning particle
in the Schwarzschild case depends on sJ, projection of spin
vector on total angular momentum vector. Therefore, particles C
and D (also E and F), which have different ISCO radii in the
Kerr metric, have the same ISCO radius in Schwarzschild case.
For the extreme Kerr BH particles B00, D00, F00 have the same
ISCO radii.

(a)

(b)

(c)

(d)

(e)

FIG. 4. The ISCO radius as a function of a particle’s spin for
different values of a close to M: a=M ¼ 0.9 (a), 0.99 (b), 0.999
(c), 0.9999 (d), 0.99999 (e), in the case of co-rotation. In limit
a → M curves tend to the horizontal asymptote rISCO ¼ 1.
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JISCO ¼
�

2ffiffiffi
3

p þ 2 × 22=3δ1=3ffiffiffi
3

p
�
M

þ
�
−

2ffiffiffi
3

p þ 4 × 22=3δ1=3ffiffiffi
3

p
�
s;

EISCO ¼
�

1ffiffiffi
3

p þ 22=3δ1=3ffiffiffi
3

p
�
þ
�
−

1ffiffiffi
3

p þ 2 × 22=3δ1=3ffiffiffi
3

p
�

s
M

;

rISCO ¼ ð1þ 22=3δ1=3ÞM − 2 × 22=3δ1=3s;

ΩISCO ¼ 1

2M
−
3 × 22=3δ1=3

8M
þ 9 × 22=3δ1=3

16M2
s: ð74Þ

We see that in the case of a ¼ M (δ ¼ 0) the corrections,
linear in spin, are absent in formulas for ISCO radius and
frequency. This was also demonstrated in [19]. In the next
section we discuss this feature in detail and find the exact in
spin expressions for the ISCO parameters.
The radius of the horizon of the Kerr BH,

rhor ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð75Þ

in the case a ¼ ð1 − δÞM will have the form [2,4]

rhor ¼ Mð1þ
ffiffiffiffiffi
2δ

p
Þ: ð76Þ

As s ≪ M and δ1=2 < δ1=3 for δ ≪ 1, it will always be
that rISCO > rhor.

X. EXACT SOLUTION FOR EXTREME KERR BH
IN THE CASE OF CO-ROTATION

In the work [25] on the basis of the numerical calcu-
lation, it was noticed that in the extreme Kerr background
for the parallel case the magnitude of the test-body’s spin
does not influence the radius of the last stable orbit and it
always remains equal toM. Solving numerically Eqs. (50),
we plot Fig. 4 where this conclusion is distinctly visible.
We also succeeded in proving this analytically.
On the basis of results of the numerical solution we have

substituted u ¼ 1=M into the system (50) and have
obtained the expressions for x and E, which is the analytical
proof of the existence of such solution of the system. The
exact solution is then

JISCO ¼ 2
M2 − s2

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6s=M

p ;

EISCO ¼ M2 − s2

M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6s=M

p ;

rISCO ¼ M: ð77Þ

Using (77) in (51), we obtain the ISCO frequency as

ΩISCO ¼ 1

2M
: ð78Þ

Developing (77) in series in s, we get the linear in spin
terms which are in agreement with (74) at δ ¼ 0. This result
allows us to obtain the full in spin correction to the nearly
extreme black hole, with a ¼ ð1 − δÞM, considered in
Sec. IX. For this purpose after substituting this value for
a we develop the system (50) in series in δ and seek for the
solution in the form y ¼ y0ðsÞ þ y1ðsÞδ1=3, where y stands
for x; E; r. After some algebraic calculation we obtain for
the nearly extreme Kerr metric the expressions:

JISCO ¼ 2MEISCO;

EISCO ¼ M2 − s2

M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6s=M

p þ ðM2 − s2Þ1=3ð2M þ sÞ2=3ZðM; sÞ2=3ffiffiffi
3

p
M5=2ðM þ 2sÞ3=2 δ1=3;

rISCO ¼ M þMðM2 − s2Þ1=3ð2M þ sÞ2=3
ZðM; sÞ1=3 δ1=3;

ΩISCO ¼ 1

2M
−

3ðM − sÞ1=3ðM þ 2sÞ
4ð2M þ sÞ1=3ðM þ sÞ2=3ZðM; sÞ1=3 δ

1=3;

where ZðM; sÞ≡M4 þ 7M3sþ 9M2s2 þ 11Ms3 − s4: ð79Þ

(a)

(b)

(c)

FIG. 5. The ISCO radii as a function of a particle’s spin for
different values of a close to M: a=M ¼ 0.9 (a), 0.99 (b), 0.999
(c), in the case of counter-rotation. In limit a → M the ISCO
radius at s ¼ 0 tends to the 9M.
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Developing this result in series in s, one obtains all terms in
expressions (74).
Note that derivation of MPD equations was performed

under condition s ≪ M, so always we have JISCO > 0,
EISCO > 0 in (77) and (79). Indeed, equations of motion of
a spinning particle were derived under the assumption that
its characteristic size is very small compared with the

characteristic length of the background field (e.g., the
distance from the central body) [11,24]. Møller [49] had
shown in the context of special relativity that the classical
spinning body must have a certain minimum characteristic
size connected with its specific spin, see also Wald [50].
For particles at ISCO, in our system of units the above
conditions reduce to s ≪ M, see also [17,24,26].

XI. SPIN CORRECTIONS FOR ARBITRARY CIRCULAR ORBITS

In previous parts of the present paper we have discussed ISCO, and investigated how the presence of spin influences
parameters of ISCO for different given a. Let us now discuss not innermost stable but arbitrary circular orbits. We will
investigate how the presence of spin influences orbit of given radius—namely, how E, J,Ω of a circular orbit of given radius
are changed if a test particle has spin.
Let us suppose that inverse radius u of circular orbit is known and consider the system (48). We shall seek for its solution

in the form

x ¼ x0 þ sx1; E ¼ E0 þ sE1: ð80Þ

Here x0 and E0 are the values of x and E in the “spinless” case, see (28), x1 and E1 are the linear corrections associated with
spin. We obtain for the linear corrections:

x1ðuÞ ¼
2E2

0x0 − 9ME2
0x0u − 3a2Mx30u

5 þ 2aE3
0 þ 8aME0x20u

3

2ðaE2
0 þ E0x0 − 3ME0x0uþ aMx20u

3Þ ;

E1ðuÞ ¼
Mu3x0ð−E0x0 þ 3a2E0x0u2 − aE2

0 − 4aMx20u
3 þ 3ax20u

2Þ
2ðaE2

0 þ E0x0 − 3ME0x0uþ aMx20u
3Þ : ð81Þ

These expressions are valid for both stable and unstable circular orbits with the zero order parameters given by (28). Value
of total angular momentum J ¼ J0 þ sJ1 can be obtained using J ¼ xþ aE.
The expressions (81) can be simplified further. Using (28) we obtain:

E1 ¼
Mu5=2ða ffiffiffi

u
p � ffiffiffiffiffi

M
p Þð1þ 3a2u2 � 4a

ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ

2ð1 − 3Mu∓ 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ3=2

ð82Þ

J1 ¼
3Ma4u5 � 7a3M3=2u9=2 þ 4M2u4a2 ∓ 3

ffiffiffiffiffi
M

p
u7=2a3 þ 2Mu3a2 � 21M3=2u5=2aþ 18M2u2 ∓ 9a

ffiffiffiffiffiffiffiffiffi
Mu3

p
− 13Muþ 2

2ð1− 3Mu∓ 2a
ffiffiffiffiffiffiffiffiffi
Mu3

p
Þ3=2

ð83Þ
Written as functions of r, the resulting formulas are

E0 ¼
r3=2 − 2Mr1=2 ∓ aM1=2

r3=4ðr3=2 − 3Mr1=2 ∓ 2aM1=2Þ1=2 ; J0 ¼
∓M1=2ðr2 � 2aM1=2r1=2 þ a2Þ
r3=4ðr3=2 − 3Mr1=2 ∓ 2aM1=2Þ1=2 : ð84Þ

E1 ¼
Mða� ffiffiffiffiffiffiffi

Mr
p Þðr2 þ 3a2 � 4a

ffiffiffiffiffiffiffi
Mr

p Þ
2r11=4ðr3=2 − 3M

ffiffiffi
r

p ∓ 2a
ffiffiffiffiffi
M

p Þ3=2 ;

J1 ¼
2r5 − 13Mr4 ∓ 9aM1=2r7=2 þ 18M2r3 � 21aM3=2r5=2 þ 2a2Mr2 ∓ 3a3M1=2r3=2 þ 4a2M2r� 7a3M3=2r1=2 þ 3a4M

2r11=4ðr3=2 − 3M
ffiffiffi
r

p ∓ 2a
ffiffiffiffiffi
M

p Þ3=2 :

ð85Þ
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Substituting (82) and (83) into (51), we obtain angular
frequency Ω ¼ Ω0 þ sΩ1 at the circular orbit with a given
inverse radius u as

Ω0 ¼
ffiffiffiffiffiffiffiffiffi
Mu3

p

a
ffiffiffiffiffiffiffiffiffi
Mu3

p ∓ 1
;

Ω1 ¼ −
3u3

ffiffiffiffiffi
M

p ð ffiffiffiffiffi
M

p � a
ffiffiffi
u

p Þ
2ða

ffiffiffiffiffiffiffiffiffi
Mu3

p ∓ 1Þ2
; ð86Þ

or, as function of radial coordinate r, as

Ω0 ¼
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p ∓ r3=2
;

Ω1 ¼ −
3

ffiffiffiffiffi
M

p ð ffiffiffiffiffiffiffi
Mr

p � aÞ
2

ffiffiffi
r

p ða ffiffiffiffiffi
M

p ∓ r3=2Þ2 : ð87Þ

The linear corrections for the energy, angular momentum
and frequency at a given radius for the circular orbits are
given also in [19,20] in another presentation, see also
Appendices A and B in [41] where comparison of spin
orientation in different papers is discussed.

XII. CONCLUSIONS

(i) The linear in spin corrections for the ISCO param-
eters: radius, total angular momentum, energy, orbital
angular frequency for arbitrary Kerr parameter a, are found
analytically, see Sec. VI.
(ii) Small-spin linear corrections for Schwarzschild

metric (first obtained by Favata [39]) were derived, see
formulas (68).
(iii) Expressions for the ISCO parameters of a slowly-

rotating Kerr BH up to second order in spin and Kerr
parameter are obtained, see (71) and (72). The case of a
slowly rotating Kerr BH gives the idea of spin-orbital

coupling’s influence on the parameters of ISCO. It is found
that spin-orbital coupling has an attractive character when
the total angular momentum J and spin of either BH or a
test-body are parallel and repulsive when they are
antiparallel.
(iv) Linear in spin corrections to the ISCO parameters for

extreme Kerr BH both for counter- and co-rotating cases
are obtained, see (73) and (74).
(v) The exact parameters of ISCO for a spinning test-

body in the extreme Kerr background in corotation case are
found, see (77), (78) and (79). It is proved analytically that
radius and angular frequency of such orbits are independent
of the particle’s spin while the values of energy and total
angular momentum depend on it.
(vi) Figures 1 and 3 illustrate the number of possible

configurations for rotating BH and a spinning test particle
with parameters calculated in the present work.
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