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In this work, we consider the further degrees of freedom related to curvature invariants and scalar fields
in extended theories of gravity (ETG). These new degrees of freedom can be recast as “effective fluids” that
differ in nature with respect to the standard matter fluids generally adopted as sources of the field equations.
It is, thus, somewhat misleading to apply the standard general relativistic energy conditions to this effective
energy-momentum tensor, as the latter contains the matter content and a geometrical quantity, which arises
from the specific ETG considered. Here we explore this subtlety, extending our previous work, in
particular, to cases with the contracted Bianchi identities with diffeomorphism invariance and to cases with
generalized explicit curvature-matter couplings, which imply the nonconservation of the energy-
momentum tensor. Furthermore, we apply the analysis to specific ETGs, such as scalar-tensor gravity
and fðRÞ gravity. Thus, in the context of ETGs, interesting results appear such as matter that may exhibit
unusual thermodynamical features, for instance, gravity that retains its attractive character in the presence
of large negative pressures; or alternatively, we verify that repulsive gravity may occur for standard matter.
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I. INTRODUCTION

Modifications and extensions of general relativity (GR)
can be traced back to the early times of GR [1–6]. The first
extensions were aimed to unify gravity with electromag-
netism while recent interest in such modifications arises
from cosmology, astrophysics and quantum gravity [7–10].
In particular, cosmological observations lead to the intro-
duction of additional ad hoc concepts like dark energy and
dark matter if one restricts the dynamics to the standard
Einstein theory. On the other hand, the emergence of such
new ingredients of cosmic fluids could be interpreted as a
first signal of a breakdown of GR on large, infrared scales
[11,12]. In such a way, modifications and extensions of GR
become a natural alternative if such “dark” elements are not
found out. In particular, several recent works focused on the
cosmological implications of alternative gravity since such
models may lead to the explanation of the acceleration
effect observed in cosmology [13–18] and to the explan-
ation of the missing matter puzzle observed at astrophysical
scales [19–27].

While it is very natural to extend Einstein’s gravity to
theories with additional geometric degrees of freedom
[28–30], recent attempts focused on the idea of modifying
the gravitational Lagrangian leading to higher-order field
equations. Due to the increased complexity of the field
equations, a huge amount of work considered some
formally equivalent theories, in which a reduction of the
order of the field equations can be achieved by considering
the metric and the connection as independent objects
[31,32]. However, a concern which arises with generic
extended and modified gravity theories is linked to the
initial value problem and the definition of the energy
conditions. It is unclear if standard methods can be used
in order to tackle these problems in any theory. Hence, it is
doubtful that the full Cauchy problem can be properly
addressed if one takes into account the results already
obtained in GR. On the other hand, in alternative gravities,
such as gauge theories, the initial value formulation and the
energy conditions depend on suitable constraints and gauge
choices, precisely as in GR [33,34]. A different approach is
possible, showing that the Cauchy problem for alternative
gravities can be well formulated and well posed in vacuo,
while it can be, at least, well formulated for various forms
of matter fields like perfect fluids, Klein-Gordon and
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Yang-Mills fields [35]. A similar situation also holds for the
energy conditions which can strictly depend on the kind of
fluids adopted as sources in the field equations.
In fact, there are serious problems of deep and funda-

mental principle at the semiclassical level, and certain
classical systems exhibit seriously pathological behavior; in
particular, the classical energy conditions are typically
violated by semiclassical quantum effects [36]. In this
context, some effort has gone into finding possible semi-
classical replacements for the classical energy conditions
[37]. Recently, classical and quantum versions of a “flux
energy condition” (FEC and QFEC) were developed based
on the notion of constraining the possible fluxes measured
by timelike observers [38]. It was shown that the naive
classical FEC was satisfied in some situations, and even for
some quantum vacuum states, while its quantum analogue
(the QFEC) was satisfied under a rather wide range of
conditions. Furthermore, several nonlinear energy condi-
tions suitable for use in the semiclassical regime were
developed, and it was shown that these nonlinear energy
conditions behave much better than the classical linear
energy conditions in the presence of semiclassical quantum
effects [39].
However, in the context of alternative theories of gravity

that in a wide sense extend GR, the issue of the energy
conditions is extremely delicate. Note that the further
degrees of freedom carried by these extended theories of
gravity (ETGs) can be recast as generalized “effective
fluids” that differ in nature with respect to the standard
matter fluids generally adopted as sources of the field
equations [10]. This approach has been extensively
explored in the literature, namely, the energy conditions
have been used to constrain fðRÞ theories of gravity
[40–42] and extensions involving nonminimal curvature-
matter couplings [43–49]; bounds on modified Gauss-
Bonnet fðGÞ gravity from the energy conditions have also
been analyzed [50–52], and with a nonminimal coupling to
matter [53]; the recently proposed fðR; TÞ gravity models
[54], where T is the trace of the energy-momentum tensor
and R is the curvature scalar, have also been tested using the
energy conditions [55–57]; and constraints have also been
placed [58] on the fðR; T; RμνTμνÞ extension [59,60];
bounds have been placed on modified teleparralel gravity
[61–63]; and the null-energy condition violations have been
studied in bimetric gravity [64].
However, one should add a cautionary note of the results

obtained in the literature, such as the majority of those
considered above have recast the further degrees of free-
dom carried by these ETGs as generalized effective fluids
that differ in nature with respect to the standard matter
fluids generally adopted as sources of the field equations
[10]. Note that while standard fluids (e.g., perfect matter
fluids), generally obey standard equations of state (and then
one can define every thermodynamic quantity such as the
adiabatic index, temperature, etc.), these “fictitious” fluids

can be related to scalar fields or further gravitational
degrees of freedom. In these cases, the physical properties
can result ill-defined and the energy conditions could
rigorously work as in GR. The consequences of such a
situation can be dramatic since the causal and geodesic
structures of the theory could present serious shortcomings
as well as the energy-momentum tensor could not be
consistent with the Bianchi identities and the conservation
laws.
This paper is outlined in the following manner. In Sec. II,

we briefly review the energy conditions in GR and discuss
the geometrical implications of such conditions. Section III
is devoted to set the energy conditions in ETGs by
considering, in particular, the contracted Bianchi identities,
the nonconservation of the energy-momentum tensor, the
propagation equations and the role of conformal trans-
formations. In Sec. IV, we take into account some particular
theories, i.e., scalar-tensor theories and fðRÞ gravity, where
R is the Ricci scalar. Finally, we discuss our results and
draw some conclusions in Sec. V.

II. THE ENERGY CONDITIONS IN
GENERAL RELATIVITY

In GR, the Einstein field equation govern the interplay
between the geometry of the spacetime and the matter
content. More specifically, the field equation is given by

Gab ¼ 8πGTab; ð1Þ

where the energy-momentum tensor of the matter fields,
Tab is related to the Einstein tensor Gab ≡ Rab − 1

2
gabR,

with Rab the Ricci tensor, which is defined as the trace of
the Riemann curvature tensor Rd

adb ¼ Rab, and R ¼ Ra
a.

Thus, the imposition of specific conditions on Tab are
translated into corresponding conditions on the Einstein
tensorGab. Note that the Einstein equations can also be cast
as conditions on the Ricci tensor, that is

Rab ¼ 8πG

�
Tab −

1

2
Tgab

�
: ð2Þ

In this form, the role of energy-matter is more relevant.
In general, in considering the energy conditions, we take

into account a congruence of timelike curves whose tangent
4-vector is, for instance, Wa. The latter represents the
velocity vector of a family of observers. One may also
consider a field of null vectors, ka, so that gabkakb ¼ 0

implies that Gabkakb ¼ Rabkakb.
These choices enable us to identify the physical quan-

tities measured by the observers related to the timelike
vectorWa. Indeed, with respect to the latter vector fieldWa,
the energy-momentum tensor can then be decomposed as

Tab ¼ ρWaWb þ pðgab þWaWbÞ þΠab þ 2qðaWbÞ; ð3Þ
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where ρ and p are the energy density and the (isotropic)
pressure measured by the observers moving with velocity
Wa, Πab is the anisotropic stress tensor, and qa is the
current vector of the heat or energy flow. These quantities
are given by the following relations,

ρ ¼ TcdWcWd; ð4Þ

3p ¼ Tcdhcd; ð5Þ

Πab ¼
�
hachbd −

1

3
habhcd

�
Tcd; ð6Þ

qa ¼ WcTcdhad; ð7Þ

respectively, where hab ¼ gab þWaWb is the metric
induced on the spatial hypersurfaces orthogonal to Wa.
Throughout this work, we adopt the ð−þþþÞ signature
convention and the speed of light is c ¼ 1.

A. The classification of energy conditions

The energy conditions are defined by considering con-
tractions of timelike and null vectors with respect to the
Ricci, Einstein and energy-momentum tensors [65]. They
can be classified as follows:

(i) The weak-energy condition is defined as

TabWaWb ≥ 0; ð8Þ

where Wa is a timelike vector, i.e., WaWa ¼ −1.
From Eq. (3), we verify that this entails that ρ ≥ 0.
As presented by Hawking and Ellis [65], such a
condition is equivalent to establishing that the
energy density measured by any observer is non-
negative. It is straightforward to demonstrate that
any standard matter fluid is consistent with such a
condition. Through the Einstein field equations
where the curvature of spacetime is considered,
condition (8) translates into

GabWaWb ≥ 0 ð9Þ

which is equivalent to

RabWaWb ≥ −
R
2
: ð10Þ

and also to

RabWaWb ≥ −4πGðρ − 3pÞ: ð11Þ

Here we have used the fact that, from Eq. (3), we can
recast the Einstein equations as

Rab ¼ 8πG

�
ρþ 3p

2
WaWb þ Πab þ 2qðaWbÞ

þ ρ − p
2

ðgab þWaWbÞ
�
: ð12Þ

(ii) The dominant-energy condition states that, in addi-
tion to the condition (8), one also has that TabWb is a
nonspacelike vector, where as before Wa is a time-
like vector, so thatWaWa ¼ −1. This corresponds to
having a local energy flow vector which is non-
spacelike in addition to the non-negativity of the
energy density. In this sense, the causal structure of
the spacetime is determined.

(iii) The null-energy condition states that

Tabkakb ≥ 0; ð13Þ
where ka is a null vector, i.e., kaka ¼ 0. This implies
Rabkakb ≥ 0, through the Einstein field equation. A
very useful meaning of this condition is that it’s
violation implies that the Hamiltonian of the corre-
sponding system is necessarily unbounded from
below (we refer the reader to [66] for more details).

(iv) The strong-energy condition is given by

TabWaWb ≥
1

2
TWaWa; ð14Þ

where Wa is a timelike vector. Alternatively, in GR
and through the Einstein field equations, the above
inequality takes the form

RabWaWb ≥ 0 ð15Þ
which, as we will see in what follows through the
Raychaudhuri equation, states that gravity must be
attractive.

Summarizing, such conditions define the causal structure,
the geodesic structure and the nature of the gravitational
field in a spacetime filled by a standard fluid matter
endowed with a regular equation of state.

B. Geometrical implications of the energy conditions

The geometrical implications of the energy conditions
can be put in evidence as soon as we consider the
decomposition [67]

∇bWa ¼ σab þ
θ

3
hab þ ωab − _uaWb; ð16Þ

with the following definitions,

hab ¼ gab þWaWb; ð17Þ

σab ¼ hcða∇cWdhdbÞ −
hab
3

hca∇cWdhad; ð18Þ
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θ ¼ hca∇cWdhad; ð19Þ

ωab ¼ hc½a∇cWdhdb�; ð20Þ

_Wa ¼ Wb∇bWa; ð21Þ

respectively, where we have considered all possible
combinations of the metric tensor and timelike vectors.
Here hab is the projection tensor, σab is the shear tensor,
θ is the expansion scalar, and ωab is the vorticity tensor.
Note that hab is orthogonal to Wa, Wahab ¼ 0 and,

hence, it is the metric induced on the 3-hypersurfaces
orthogonal to Wa, as mentioned before.
Equipped with the latter kinematical quantities whose

contractions give rise to the so-called optical scalars [68],
we derive, from the Ricci identities,1 the following
relations,

_θ þ θ2

3
þ 2ðσ2 − ω2Þ − _ua;a ¼ −RabWaWb; ð22Þ

and

hafhbg½ðσfgÞ_− _Wðf;gÞ� ¼ _Wa
_Wb − ωaωb − σafσ

f
b −

2

3
θσab − hab

�
−
1

3
ω2 −

2

3
σ2 −

1

3
_Wc

c

�

þ 1

2

�
hachbd −

1

3
habhcd

��
Rcd −

1

2
gcdR

�
ð23Þ

hab

�
exp

�
2

3

Z
θdt

�
ωb

�
_ ¼ σab

�
exp

�
2

3

Z
θdt

�
ωb

�
þ 1

2

�
exp

�
2

3

Z
θdt

��
ηabcdWb

_Wðc;dÞ; ð24Þ

where Eq. (22) is the so-called Raychaudhuri equation. It is
important to emphasize that Eqs. (22)–(24) only carry a
geometrical meaning, as they are directly derived from the
Ricci identities. It is only when we choose a particular
theory that we establish a relation between quantities that
appear in their right-hand sides, such as RabWaWb in
Eq. (22), and the energy-momentum tensor describing
matter fields.
For instance, let us consider a null congruence ka and

a vanishing vorticity ωab ¼ 0. The Raychaudhuri equa-
tion (22) reduces to

dθ
dv

¼ −
�
θ2

3
þ 2σ2 þ Rabkakb

�
; ð25Þ

where v is an affine parameter along the null geodesics.
This means that, in GR, it is possible to associate the null-
energy condition with the focusing (attracting) character-
istic of the spacetime geometry. Gravitational lensing
is a very important application of this feature as widely
discussed in [68].

III. THE PROBLEM OF ENERGY CONDITIONS
IN EXTENDED THEORIES OF GRAVITY

In the context of ETGs, consider the following gener-
alized gravitational field equations, which encapsulate a
large class of interesting cases

g1ðΨiÞðGab þHabÞ ¼ 8πGg2ðΨjÞTab; ð26Þ

where the factors g1ðΨiÞ modifies the coupling with the
matter fields in Tab and g2ðΨiÞ incorporates explicit curva-
ture-matter couplings of the gravitational theory considered
[18,25]; Ψj generically represents either curvature invariants
or other gravitational fields, such as scalar fields, contrib-
uting to the dynamics of the theory. The additional tensor
Hab represents an additional geometric term with regard to
GR that encapsulates the geometrical modifications intro-
duced by the extended theory under consideration.
Note, that GR is immediately recovered by imposing

Hab ¼ 0, g1ðΨiÞ ¼ g2ðΨiÞ ¼ 1. In this sense we are deal-
ing with extended theories of gravity, in that the underlying
hypothesis is that GR (and its positive results) can be
recovered as a particular case in any “extended” theory of
gravitation [69].

A. Contracted Bianchi identities and
diffeomorphism invariance

Consider the specific case of g1ðΨiÞ ¼ gðΨiÞ and
g2ðΨiÞ ¼ 1, so that the field equation (26) reduces to

gðΨiÞðGab þHabÞ ¼ 8πGTab: ð27Þ

Taking into account the contracted Bianchi identities
and the diffeomorphism invariance of the matter action,
which implies the covariant conservation of the energy-
momentum tensor, ∇bTab ¼ 0, one deduces the following
conservation law:

1The Ricci identities prescribe that ∇c∇dua −∇d∇cua ¼
Ra

bcdub for any vector field ua.
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∇bHab ¼ −
8πG
g2

Tab∇bg: ð28Þ

Note that from Eq. (27), in order to have an extended
Bianchi identity ∇bHab ¼ 0, for a nondiverging value of
the coupling g, we must have a vacuum and, there-
fore, Gab ¼ −Hab.
Now, an imposition of specific energy conditions on the

energy-momentum tensor Tab carries over the conditions to
the combination of Gab and Hab and not just for the
Einstein tensor. Thus, in the context of ETGs, it is not
possible to obtain a simple geometrical implication from
the conditions imposed. For instance, in GR, suppose that
the strong-energy condition holds. This would mean that
RabWaWb ≥ 0, and consequently through the Einstein field
equation we would have ρþ 3P ≥ 0. On the other hand,
this entails gravity with an attractive character, since given
Eq. (22), one verifies that the geodesics are focusing [65].
However, in the ETG case under consideration, this
condition just states that

gðΨiÞ
�
Rab þHab −

1

2
gabH

�
WaWb ≥ 0; ð29Þ

which does not necessarily entail RabWaWb ≥ 0, so that
one cannot conclude that the attractive nature of gravity is
equivalent to the satisfaction of the strong-energy con-
dition, in the particular ETG under consideration [70].
However, in the literature, it is common practice to

transport the term Hab to the right-hand side of the
gravitational field equation, and write the latter as a
modified Einstein field equation, namely,

Gab ¼ 8πGTeff
ab; ð30Þ

where Teff
ab is considered as an effective energy-momentum

tensor, defined by Teff
ab ¼ Tab=g − 8πGHab. Thus, the

meaning which is attributed to the energy conditions is
the satisfaction of some inequality by the combined
quantity Tab=g −Hab. It is, therefore, somewhat mislead-
ing to call these impositions as energy conditions since they
do not emerge only from Tab but from a combined quantity
where we are dealing with a geometrical Hab as an
additional stress-energy tensor. Indeed, we emphasize that
Hab is a geometrical quantity, in the sense that it can be
given by geometrical invariants as R or scalar fields
different from ordinary matter fields.
However, if the ETG under consideration allows an

equivalent description upon an appropriate conformal
transformation, it then becomes justified to associate the
transformed Hab to the redefined Tab in the conformally
transformed Einstein frame. This is, for instance, the case
for scalar-tensor gravity theories, and for instance in fðRÞ
gravity [10]. Indeed, conformal transformations play an
extremely relevant role in the discussion of the energy

conditions. In particular, they allow us to put in evidence
the further degrees of freedom coming from ETGs under
the form of curvature invariants and scalar fields. More
specifically, several generalized theories of gravity can be
redefined as GR plus a number of appropriate fields
coupled to matter by means of a conformal transformation
in the so-called Einstein frame.
In fact, in scalar-tensor gravity, in the so-called Jordan

frame one has a separation between the geometrical terms
and the standard matter terms that can be cast as in Eq. (27),
where Hab involves a mixture of both the scalar and tensor
gravitational fields. A main role in this analysis is played by
recasting the theory, by conformal transformations, in the
Einstein frame where matter and geometrical quantities can
be formally dealt exactly such as in GR. However, the
energy conditions can assume a completely different
meaning going back to the Jordan frame, and then they
could play a crucial role in identifying the physical frame as
first pointed out in [71]. Although, it is completely clear
that different “frames” just correspond to field redefini-
tions, all of which are equally physical.
Now, under a suitable conformal transformation the field

equations can be recast as

~Gab ¼ ~TM
ab þ ~Tφ

ab; ð31Þ

where ~TM
ab is the transformed energy momentum of matter,

and ~Tφ
ab is an energy-momentum tensor for the redefined

scalar field φ which is coupled to the matter. Thus, it makes
sense to consider the whole right-hand side of (31) as an
effective energy-momentum tensor. Then one finds results
where one draws conclusions about the properties of Gab
such whether it focuses geodesics directly from those
conditions holding on Teff

ab , where Teff
ab ¼ ~TM

ab þ ~Tφ
ab. This

ignores the fact that Hab originally possesses a geometrical
character, and, thus, the conclusions may be too hasty if not
supported by the physical analysis of sources. We refer the
reader to [70] for a detailed analysis on this issue.

B. Nonconservation of the energy-momentum tensor

A main role in the formulation of the correct energy
conditions for ETGs is played by the contracted Bianchi
identities that guarantee specific conservation laws. In fact,
being ∇bGab ¼ 0, the physical features of Hab can be
derived. On the other hand, the Bianchi identities guarantee
the self-consistency of the theory. However, an interesting
class of extended theories of gravity that exhibit an explicit
curvature-matter coupling have recently been proposed in
the literature [18,25]. The latter coupling imply a general
nonconservation of the energy-momentum tensor, and
consequently a trademark of these specific ETGs is non-
geodesic motion [18,25].
We will briefly analyze these theories in the formalism

outlined above. In order to incorporate the explicit curva-
ture-matter coupling, consider the field equation given by
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Eq. (26). Note that in ETGs of the form (26) in the presence
of the nonconservation of the energy-momentum tensor, the
contracted Bianchi identities yield

∇bHab ¼ ∇b

�
Tab

ḡ

�
; ð32Þ

where the factor ḡ ¼ g1=g2 is defined, and we have
considered that 8πG ¼ 1 for notational simplicity. Now,
Eq. (32) implies the following relationship:

∇bTab ¼ ḡ∇bHab þ
�∇bḡ

ḡ

�
Tab

¼ ∇bðḡHabÞ þ
�∇bḡ

ḡ

�
½Tab − ðḡHabÞ�: ð33Þ

Thus a trademark of these specific class of ETGs is that the
matter fields do not, in general, follow the geodesics of
spacetime [72].
Let us introduce the following useful definitions:

~ρ ¼ ðḡHcdÞWcWd; ð34Þ

3 ~p ¼ ðḡHcdÞhcd; ð35Þ

~Πab ¼
�
hachbd −

1

3
habhcd

�
ðḡHcdÞ; ð36Þ

~qa ¼ WcðḡHcdÞhad: ð37Þ

We derive

_ρþ ðρþ pÞ∇bWb þWa∇bΠab ¼ Wa∇bḡHab; ð38Þ
so that the departure from the usual conservation equations
depends on the term

Wa∇bðḡHab − ΠabÞ: ð39Þ
Therefore in what regards this balance equation, the
term ḡHab plays a role which is analogous to that of the
anistropic stress tensor Πab, given by Eq. (6). We can recast
the latter equations as

_ρþ ðρþ pÞθ þ Πabσab þ∇bqb þ _Waqa

¼ ½_~ρþ ð~ρþ ~pÞθ þ ~Πabσab þ∇b ~qb þ _Wa ~qa�

þ
�
_̄g
ḡ

�
ð~ρ − ρÞ þ

�∇bḡ
ḡ

�
ð ~qb − qbÞ; ð40Þ

or as

_ρ − _~ρþ ½ðρ − ~ρÞ þ ðp − ~pÞ�θ ¼ −ðΠab − ~ΠabÞσab −∇bðqb − ~qbÞ − _Waðqa − ~qbÞ þ
�
_̄g
ḡ

�
ð~ρ − ρÞ þ

�∇bḡ
ḡ

�
ð ~qb − qbÞ:

ð41Þ

Analogously, we derive an equation for the acceleration _Wa. We obtain the following relationships:

½ðρ − ~ρÞ þ ðp − ~pÞ� _Wa þ hba½∇bðp − ~pÞ� ¼ −hca∇bðΠb
c − ~Πb

cÞ − hcað _qc − _~qcÞ þ
�∇bḡ

ḡ

�

× fðp − ~pÞhba þ ½ðΠb
a − ~Πb

aÞ − ð ~qa − qaÞWb�g: ð42Þ

These equations show how the ḡHab term modifies the
standard energy-density conservation equation and the
generalized Navier-Stokes equation for the acceleration,
both derived from the contracted Bianchi identities. It is
important to emphasize that, although the contracted Bianchi
identities are geometrical relations in their essence and,
hence, do not depend on the specific gravitational theory
under consideration, when we translate them into equations
governing the behavior of the matter fields, the choice of the
theory intervenes. This happens in association with the ḡHab

terms, that is with the tilded quantities that we have defined
in the Einstein frame. In summary, the validity of the
contracted Bianchi identities selects suitable theories and
may allow the definition of self-consistent energy conditions.

C. Propagation equations and extended
theories of gravity

In the present subsection, we consider the specific
case of ḡ ¼ g, i.e., g2 ¼ 1, and consequently the covar-
iant conservation of the energy-momentum tensor. The
role of propagation equations deserve a particular
discussion in this context. We have already written
the propagation equations for the expansion θ, for the
shear σab and for the vorticity ωab, that is Eqs. (22)–
(24), and have pointed out that these equations do not
reflect the particular gravitational theory under consid-
eration since they are derived directly from the 3þ 1

decomposition of the Ricci identities that come from the
Riemann tensor.
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The prescription for a given gravitational theory enters
into play when we replace quantities such as RabWaWb into
the Raychaudhuri Eq. (22). For the theories under consid-
eration here, the latter geometrical quantity is replaced by
the inequality (29), which, according to the definition (34)
(recall that in the present context we have ḡ ¼ g, i.e.,
g2 ¼ 1, and the covariant conservation of the energy-
momentum tensor), only involves the energy density of
matter and that given by the latter equation. However,
when we consider the shear propagation equation, the
role of the particular ETG comes out by replacing
1
2
ðhachbd − 1

3
habhcdÞðRcd − 1

2
gcdRÞ. We, thus, have

1

2

�
hachbd −

1

3
habhcd

��
Rcd −

1

2
gcdR

�

¼ 1

2

�
hachbd −

1

3
habhcd

��
−Hab þ

Tab

g

�

¼ 1

g
ð− ~Πab þ ΠabÞ: ð43Þ

In general, the discussion of the energy conditions in
ETGs is made in relation to the spatially homogeneous and
isotropic FLRW universes, which implies that σab ¼ 0 and
ωab ¼ 0.2 One question which is then of interest is to assess
the possible role of the ETG theories in perturbing the
universe away from its Friedmann state. Clearly this
depends on the term ~Πab being nonvanishing. The inter-
esting result that we want to put forward is that in theories
like fðRÞ gravity and scalar-tensor gravity, the quantity ~Πab

is vanishing and so they do not introduce any modification
with respect to GR in the shear propagation equation. If the
shear starts vanishing, it remains so. Indeed, theories where
~Πab ≠ 0 exist (e.g. inhomogeneous cosmologies [73]) but
we do not consider them in the present context.

IV. EXAMPLES OF EXTENDED THEORIES
OF GRAVITY

Taking into account the above discussion, the correct
identification of the function giðΨjÞ (i ¼ 1, 2), and the
tensor Hab defined in Sec. III enables one to formulate the
energy conditions for any ETG. Recall that the functions
giðΨjÞ are related to the gravitational coupling that can be
nonminimal, and the tensor Hab is the contribution to the
effective energy-momentum tensor containing the further
degrees of freedom of the ETG. Below, we give some
specific examples of theories that fit well in the context of
the above discussion.

A. Scalar-tensor gravity

In this subsection, we extend and complement the
analysis outlined in [70]. The scalar-tensor gravity [74],
to which Brans-Dicke is the archetype, can be based on the
action

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x

�
ϕR −

ωðϕÞ
ϕ

ϕ;μϕ
;μ þ 2ϕλðϕÞ

�
þ SM;

ð44Þ

where the gravitational coupling is assumed variable and a
self-interaction potential is present; SM is the standard
matter part. Varying this action with respect to the metric
gab and the scalar field ϕ yields the field equations

Rab −
1

2
gabR − λðϕÞgab

¼ ωðϕÞ
ϕ2

�
ϕ;aϕ;b −

1

2
gabϕ;cϕ

;c

�

þ 1

ϕ
½ϕ;ab − gabϕ;c

;c� þ 8πG
Tab

ϕ
; ð45Þ

and

□ϕþ 2ϕ2λ0ðϕÞ − 2ϕλðϕÞ
2ωðϕÞ þ 3

¼ 1

2ωðϕÞ þ 3
½8πGT − ω0ðϕÞϕ;cϕ

;c�; ð46Þ

where T ≡ Ta
a is the trace of the matter energy-momentum

tensor and G≡ ð2ωþ 4Þ=ð2ωþ 3Þ is the gravitational
constant normalized to the Newton value. Additional to
these equations, one also requires diffeomorphism invari-
ance and consequently the conservation of the matter
content ∇bTab ¼ 0. The latter also preserves the equiv-
alence principle. Brans-Dicke theory is characterized by the
restriction of ωðϕÞ being a constant, and of λ ¼ λ0 ¼ 0.
According to the discussion in the previous section, for

the general class of scalar-tensor theories, the tensor term
Hab is defined by

Hab ¼ −
ωðϕÞ
ϕ2

�
ϕ;aϕ;b −

1

2
gabϕ;cϕ

;c

�

−
1

ϕ
½ϕ;ab − gabϕ;c

;c� − λðϕÞgab; ð47Þ

and the coupling functions are given by g1ðΨiÞ ¼ ϕ, which
we shall assume positive, and g2ðΨiÞ ¼ 1. The above
considerations on the energy conditions straightforwardly
apply. In particular Eq. (29) is easily recovered like the
other energy conditions. Taking into account the
assumption ϕ > 0, the condition RabWaWb ≥ 0, that yields
the focusing of the timelike congruence becomes

2One also has the vanishing of the electric and magnetic
parts of the Weyl tensor Cabcd, Eab ¼ CacbdWcWd and
H�

ab ¼ 1
2
ηac

ghCghbdWcWd, respectively, where ηabcd is the
totally-skew symmetric pseudotensor.
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�
Tab −

1

2
gabT

�
WaWb ≥ ϕ

�
Hab −

1

2
gabH

�
WaWb: ð48Þ

Notice that even in the presence of a mild violation of the
energy condition, the satisfaction of the above condition
allows for the focusing of the timelike paths. This is an
interesting result since matter may exhibit unusual ther-
modynamical features, for instance, the presence of
negative pressures, and yet gravity retains its attractive
character. Alternatively, we see that repulsive gravity may
occur for common matter, i.e., for matter that satisfies all
the energy conditions. This happens when Hab has the
reverse sign in (48). The energy conditions in the Jordan
frame was considered in [75], where the null-energy
condition, in its usual form, can appear to be violated by
transformations in the conformal frame of the metric.
The decomposition (34)–(37) of the tensor Hab into

components parallel to the timelike vector flow Wa and
orthogonal to it, is given by the following relationship,

Hab ¼ H∥WaWb þH⊥hab þ 2Hða
⊥WbÞ þHhabi

⊥

¼ 1

ϕ
½~ρWaWb þ ~phab þ 2~qðaWbÞ þ ~πab�; ð49Þ

where H∥ and H⊥ are scalars, Ha⊥ is a vector and Hhabi
⊥ is a

projected trace-free symmetric tensor (PSTF). This decom-
position permits to translate the condition (48) into

1

ϕ
ðρþ 3pÞ − ðH∥ þ 3H⊥Þ ≥ 0: ð50Þ

In the latter expression we have used

H∥ ¼ −
ωðϕÞ
2ϕ2

ð3 _ϕ2 − hcd∇cϕ∇cϕÞ

−
1

ϕ
hcd∇c∇dϕþ λðϕÞ; ð51Þ

H⊥ ¼ −
ωðϕÞ
3ϕ2

�
_ϕ2

2
−
1

2
hcd∇cϕ∇cϕ

�

−
1

2ϕ

�
WaWb∇c∇dϕ −

1

3
hcd∇c∇dϕ

�
− λðϕÞ: ð52Þ

Clearly, gravity is repulsive or attractive depending on
the functions ωðϕÞ and λðϕÞ. Indeed, Eq. (29) reads

WaWbRab −
ωðϕÞ
ϕ2

�
ϕ;aϕ;b −

1

2
gabϕ;cϕ

;c

�
−
1

ϕ
ðϕ;ab − gabϕ;c

;cÞ − λðϕÞgab ¼ WaWb 8π

ϕ

�
Tab −

1

2
gabT

�
≥ 0; ð53Þ

which amounts to

WaWb

�
8π

ϕ

�
Tab −

ωþ 1

2ωþ 3
gabT

�
þ ω

ϕ2
∇aϕ∇bϕþ∇a∇bϕ

ϕ
−

1

2ϕ

ω0

2ωþ 3
gab∇c∇cϕþ gab

ϕλ0 − ðωþ 1Þλ
2ωþ 3

�
≥ 0: ð54Þ

Considering a Friedmann-Lemaître-Robertson-Walker
(FLRW) universe, we derive the following inequality:

8πG
ϕ

ðωþ 3Þρþ 3ωp
2ωþ 3

þ λ

3
þ ω

3

_ϕ2

ϕ2
þ _ω

2ð2ωþ 3Þ
_ϕ

ϕ

þH
_ϕ

ϕ
≥ 0: ð55Þ

This result shows how the functions ωðϕÞ and λðϕÞ define
whether gravity is attractive or repulsive in the scalar-tensor
cosmological models.
Furthermore, upon a conformal transformation of the

theory into the so-called Einstein frame, using gab → ḡab ¼
ðϕ=ϕ�Þgab, the condition for gravity to be attractive with
the redefined Ricci tensor becomes

~Rabuaub ¼
4π

ϕ�
ðρ̄þ 3p̄Þ þ 8π

ϕ�
½ _φ2 − ~VðφÞ� ≥ 0: ð56Þ

Here φ ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þ=2p
d lnϕ is the redefined scalar

field, VðφÞ ¼ λðϕðφÞÞ=ϕðφÞ is the rescaled potential,
ρ̄ ¼ ρ=ϕ2, p̄ ¼ p=ϕ2, and ϕ� is an arbitrary value of ϕ
that guarantees, on the one hand, that the conformal factor
is dimensionless, and, on the other hand, that it might be
related to Newton’s gravitational constant GN by setting
ϕ� ¼ G−1

N . Despite the fact that the inequality (56) adopts
the familiar form found in general relativistic models
endowed with a combination of matter and a scalar field,
the role of the functions ωðϕÞ and λðϕÞ underlies the result
because the definitions of φ and VðφÞ depend on them.
Another interesting feature, in the Einstein frame, is that the
matter and the scalar field are interacting with each other as
revealed by the scalar field equation

φ̈þ θ̄ _φ ¼ −
∂VðφÞ
∂φ −

∂ρ̄ðφ; āÞ
∂φ : ð57Þ

So the dependence on the parameters that underlie, on the
one, the shape of the self-interacting potential VðφÞ, and on
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the other hand, the coupling ∂φρ̄ ∝ αðφÞa−3γ , where
α ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωþ 3
p Þ, when considering a perfect fluid with

p̄ ¼ ðγ − 1Þρ̄.
In a cosmological setting, gravity may exhibit a tran-

sition from being attractive into becoming repulsive when
the interplay between the intervening components is such
that those which violate the strong-energy condition
become dominating. The typical case is provided when
VðφÞ has a nonvanishing minimum [69].

B. f ðRÞ gravity
The action in this case is

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ SM; ð58Þ

where R is the Ricci scalar (we refer the reader to [76] for
further details). The Hab term includes nonlinear combi-
nations of the curvature invariants built from the Riemann
and Ricci tensors as well as from derivatives of these
tensors, and the couplings g1ðΨiÞ ¼ FðRÞ ¼ f0ðRÞ and
g2ðΨiÞ ¼ 1, where the prime is the derivative with respect
to R. In fact, the gravitational field equation is given by

FðRÞGab þ
1

2
½RFðRÞ − fðRÞ�gab −∇a∇bFðRÞ

þ gab□FðRÞ ¼ 8πGTab; ð59Þ

which can be recast as

Gab ¼ 8πG

�
Tab

FðRÞ
�
−

1

FðRÞ
�
1

2
ðRFðRÞ − fðRÞÞgab

−∇a∇bFðRÞ þ gab□FðRÞ
�
; ð60Þ

so that we identify

Hab ¼
1

FðRÞ
�
1

2
½RFðRÞ − fðRÞ�gab −∇a∇bFðRÞ

þ gab□FðRÞ
�
: ð61Þ

Note that, as before, ∇a is the covariant derivative operator
associated with gab, □≡ gab∇a∇b is the covariant
d’Alembertian, and TM

ab is the contribution to the stress-
energy tensor from ordinary matter. Clearly, the above
considerations hold completely, and gravity is attractive or
repulsive depending on the form of fðRÞ.
In the present case we have

H∥ ¼ −
1

F

�
1

2
ðRF − fÞ − hcd∇c∇dF

�
; ð62Þ

H⊥ ¼ 1

F

�
1

2
ðRF − fÞ − 1

3
hcd∇c∇cF þ□F

�
; ð63Þ

so that gravity is attractive when

8πGðρþ 3pÞ ≥ ½ðRF − fÞ − 2hcd∇c∇dF þ 3□F�: ð64Þ

Note, however, that this latter condition is still not a
condition on any initial data or on matter Tμν. Indeed,
the higher derivatives may still be eliminated using the
equations of motion; thus, it is not an energy condition.
This condition reduces to the usual ðρþ 3pÞ ≥ 0 when

f ∝ R and, hence, GR is recovered. More importantly, it
reveals how the nonlinear terms in the action induce
attractive or repulsive effects. If there were no matter,
i.e., in a vacuum setting, gravity would become repulsive if

ðRF − fÞ − 2hcd∇c∇dF þ 3□F ≤ 0: ð65Þ
We refer the reader to [77,78] for considerations on the
nonattractive character of gravity in fðRÞ theories.
If instead of the strong-energy condition we evaluate the

null-energy condition Rabkakb ≥ 0, there is once again a
considerable simplification of the equations, and we obtain
focusing of light bundles when

Tabkakb þ kakb
∇a∇bF
FðRÞ ≥ 0: ð66Þ

This is a kind of Poisson-like inequality which effectively
yields the lensing effect.
We emphasize that in a cosmological setting, the above

considerations are particularly important, as in GR the
presence of dark energy implies the violation of specific
energy conditions. However, in the generalized approach
outlined above, there is no violation but just a reinterpre-
tation of the further degrees of freedom emerging from
dynamics.
For instance, consider a flat FRW metric given by ds2 ¼

−dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�, so that Eq. (60)
immediately yields the following the field equations:

�
_a
a

�
2

−
1

3FðRÞ
�
1

2
½fðRÞ − RFðRÞ� − 3

�
_a
a

�
_RF0ðRÞ

�

¼ κ

3
ρ; ð67Þ

�
ä
a

�
þ 1

2FðRÞ
�
_a
a
_RF0ðRÞ þ R̈F0ðRÞ þ _R2F00ðRÞ

−
1

3
½fðRÞ − RFðRÞ�

�
¼ −

κ

6
ðρþ 3pÞ: ð68Þ

Indeed, in the literature, these field equations are usually
written as effective Friedman equations, in the following
form,

GENERALIZED ENERGY CONDITIONS IN EXTENDED … PHYSICAL REVIEW D 91, 124019 (2015)

124019-9



�
_a
a

�
2

¼ κ

3
ρtot; ð69Þ

�
ä
a

�
¼ −

κ

6
ðρtot þ 3ptotÞ; ð70Þ

where ρtot ¼ ρþ ρðcÞ and ptot ¼ pþ pðcÞ, and the quantities
ρðcÞ and pðcÞ, are defined as

ρðcÞ ¼
1

κFðRÞ
�
1

2
½fðRÞ − RFðRÞ� − 3

�
_a
a

�
_RF0ðRÞ

�
;

pðcÞ ¼
1

κFðRÞ
�
2

�
_a
a

�
_RF0ðRÞ þ R̈F0ðRÞ þ _R2F00ðRÞ

−
1

2
½fðRÞ − RFðRÞ�

�
;

respectively. However, one should always bear in mind that
these quantities have a geometrical origin and should not be
interpreted as a fluid.
Now, from Eq. (70), it is transparent that an accelerated

expansion can be obtained by imposing the condition
ρtot þ 3ptot < 0. Note that, in principle, one may impose
that normal matter obeys all of the energy conditions, and
the acceleration ä ≥ 0 is attained by considering an
appropriate functional form for fðRÞ. For simplicity,
consider a vacuum, ρ ¼ p ¼ 0, so that the energy con-
ditions are borderline satisfied. Now appropriately
defining a parameter ωeff ¼ pðcÞ=ρðcÞ, one may impose a
function fðRÞ. For instance, consider the model fðRÞ ¼
R − μ2ðnþ1Þ=Rn analyzed in [79]. By choosing a generic
power law for the scale factor, the parameter can be
written as

ωeff ¼ −1þ 2ðnþ 2Þ
3ð2nþ 1Þðnþ 1Þ ; ð71Þ

and the desired value of ωeff < −1=3 may be attained, by
appropriately choosing the value of the parameter n.
We emphasize that the message that one obtains from

this analysis is precisely that in the generalized approach
outlined in this work, there are no violation of the GR
energy conditions, but just a reinterpretation of the further
degrees of freedom emerging from the dynamics.

V. SUMMARY AND DISCUSSION

In this work, we have considered the further degrees of
freedom related to curvature invariants and scalar fields in
extended theories of gravity (ETG). These new degrees of
freedom can be recast as effective fluids that carry different
meanings with respect to the standard matter fluids gen-
erally adopted as sources of the field equations. It is,
thus, somewhat misleading to apply the standard general
relativistic energy conditions to this effective energy

momentum, as the latter contains the matter content and
geometrical quantities which arise from the particular ETG
considered. It can be shown, as in Sec. III, that the further
dynamical content of ETG can be summed up into two
coupling functions g1 and g2 and an additional tensor Hab
where all the geometrical modifications are present.
Clearly, GR is immediately recovered as soon as g1 ¼
g2 ¼ 1 and Hab ¼ 0. Here we explored these features in
cases with the contracted Bianchi identities with diffeo-
morphism invariance and in cases with generalized explicit
curvature-matter couplings, which imply the nonconserva-
tion of the energy-momentum tensor. Furthermore, we
applied the analysis to specific ETGs, such as scalar-tensor
gravity and fðRÞ gravity. The main outcomes are that
matter can exhibit further thermodynamical features and
gravity can retain its attractive character in the presence of
large negative pressures. On the other hand, repulsive
gravity may occur for standard matter.
As a general result, the fact that further degrees of

freedom, related to ETG, can be handled under the standard
of effective fluids allows us, in principle, to set consistent
energy conditions for large classes of theories. In this sense,
the formulation of the Cauchy problem can be considered a
standard feature for several theories of gravity. From a
cosmological point of view, these considerations are
crucial. For example, the presence of dark energy can be
considered a straightforward violation of energy conditions
in the standard sense of GR. In our generalized approach,
there is no violation but just a reinterpretation of the further
degrees of freedom emerging from dynamics.
Furthermore, a few considerations in the context of

scalar-tensor theories are in order. Note that in the
Einstein frame one verifies that the energy conditions
are satisfied but may be violated in the Jordan frame
[71,80,81]. This fact does not eliminate the presence of
singularities when both frames are considered equivalent
(see below for a discussion on the latter issue) [82]. Thus, in
order to avoid these ambiguities, one may wonder that due
to the fact that the energy conditions essentially hold in
relativity, why not restrict oneself to the Einstein frame
formulation (31) and not bother with the geometrical or
matter nature of the appropriate quantities? However, it is
important to mention that in some specific situations it is
also possible that the weak-energy condition is satisfied in
the Jordan frame [80] and, thus, evades the problems
mentioned above. In addition to this, there are situations
where it is useful to work in the Jordan frame. For instance,
if one uses the equivalence principle (EP) as a guide in
constructing one’s theory, then it is useful to work in the
Jordan frame, as here the EP is satisfied, and the latter is
violated in the Einstein due to the fifth force arising as a
result of the anomalous coupling of the scalar field to
matter. Nevertheless, one may argue that this may be
misleading as the EP could indeed be violated in nature,
provided that the violations are extremely small in order to
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evade detection from current measurements and, thus, serve
to place stringent constraints on theories that imply the
nonconservation of the energy-momentum tensor and that
consequently manifest nongeodesic motion. One may also
mention that if one only restricts attention to the Einstein
frame, one may also lose sight of the original motivations
and modifications of gravity in the geometrical sector.
Indeed, the conformal transformation mixes the geometric
and matter degrees of freedom, which results in many
interpretational ambiguities [83]. Furthermore, note that
Dicke’s argument is purely classical and, in this respect, at
the quantum level the equivalence of both frames is not
proven. In fact, when the metric is quantized, one can find
inequivalent quantum theories [84]. In addition to this,
considering the semiclassical regime, in which gravity is
classical and the matter fields are quantized, one would also
expect that the conformal frames are inequivalent, and we
refer the reader to [82] (and references therein) for more
details.
The viewpoint that the Einstein and Jordan frames are

physically equivalent is correct and consistent and can be
traced back to Dicke’s original paper [85], where the
conformal transformation technique was introduced.
Indeed, in the spirit of Dicke’s paper, both conformal
frames are equivalent provided that in the Einstein frame
the units of mass, time and space scale as appropriate
powers of the scalar field and are, thus, varying. More
specifically, physics must be conformally invariant and the
symmetry group of gravity should be enlarged to incor-
porate conformal conformations, in addition to the group of
diffeomorphisms [80]. However, it is common practice in
the literature to consider that in the Einstein frame,
measurements are referred to in a rigid system of units,
instead of units varying with the conformal factor and,
consequently, resulting in the nonequivalence of the Jordan

and the Einstein frames [80]. Although this approach is
perfectly legitimate from a mathematical point of view, one
should keep in mind that both theories are physically
inequivalent, for instance, when one considers cosmologi-
cal or black hole solutions. The question then becomes,
“which of the two conformal frames is physical?” In the
context of the energy conditions, these are satisfied in the
Einstein frame and violated in the Jordan frame. For
instance, in this context, the violations of the weak-energy
condition in the Jordan frame are also responsible for the
violation of the second law of black hole thermodynamics
[80] (and references therein). In fact, if the weak-energy
condition is violated, the Hawking-Penrose singularity
theorems [65] also do not apply in the original Jordan
frame. In order to circumvent this difficulty, one may
consider the approach outlined in [75], in that the second
law of black hole thermodynamics is taken as fundamental,
and then one modifies the null-energy condition in a given
theory of gravity to ensure that the classical black hole
solution has an entropy that increases with time. This
approach seems appealing as the null-energy condition
does not seem to rest on any fundamental principle of
physics, unlike the second law of black hole
thermodynamics.
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