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We explore whether a new method to solve the constraints of Einstein's equations can be applied to
provide initial data for black holes. We show that this method, which does not involve elliptic equations,
can be successfully applied to a nonlinear perturbation of a Schwarzschild black hole by establishing the
well-posedness of the resulting constraint problem. We discuss its possible generalization to the boosted,
spinning multiple black hole problem.
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I. INTRODUCTION

The prescription of physically realistic initial data for
black holes is a crucial ingredient to the simulation of the
inspiral and merger of binary black holes and the compu-
tation or the radiated gravitational waveform. Initialization
of the simulation is a challenging problem due to the
nonlinear constraint equations that the data must satisfy.
The traditional solution expresses the constraints in the
form of elliptic equations. Here we consider a radically new
method of solving the constraints which does not require
elliptic solvers [1]. We show, at least for nonlinear
perturbations of Schwarzschild black hole data, that the
Hamiltonian and momentum constraints lead to a well-
posed strongly hyperbolic problem whose solutions satisfy
the full constraint system. The possibility of extending this
approach to binary black holes offers a simple alternative
way to provide boundary conditions for the initialization
problem that might prove to be more physically realistic.
The inspiral and merger of a binary black hole is

expected to be the strongest possible source of gravitational
radiation for the emerging field of gravitational wave
astronomy. The details of the gravitational waveform
supplied by numerical simulation is a key tool to enhance
detection of the gravitational signal and interpret its
scientific content. It is thus important that the initial data
do not introduce spurious effects into the waveform. Such
“junk radiation” is common to all current methods for
supplying initial data and appears early in the simulation as
a high frequency component of the waveform. This can be a
troublesome feature with regard to matching the waveform
in the nonlinear regime spanned by the simulation to the
post-Newtonian chirp waveform provided by perturbation
theory. The initial parameters governing the black hole
spins, mass ratio, and ellipticity of the binary orbit have to
be adjusted to include the effect of this transitory period. As
a result, it becomes difficult to match exactly to the

parameters governing the post-Newtonian orbit. In addi-
tion, although the high frequency component of the junk
radiation appears to dissipate after some early transitory
period, there is no quantitative measure of its low frequency
component which might affect the ensuing waveform.
All initialization methods presently in use reduce the

constraint problem to a system of elliptic equations, which
require boundary conditions at inner boundaries in the
strong field region surrounding the singularities inside
the black holes, as well as at an outer boundary surrounding
the system. The new method we consider here only requires
data on the outer boundary, which is in the weak field
region where the choice of boundary data can be guided by
asymptotic flatness. The constraints are then satisfied by an
inward “evolution” of the hyperbolic system along radial
streamlines.
The initial data for solving Einstein’s equations consist

of a pair of symmetric tensor fields ðhij; KijÞ on a smooth
three-dimensional manifold Σ, where hij is a Riemannian
metric and Kij is interpreted as the extrinsic curvature of Σ
after its embedding in a 4-dimensional space-time. The
constraints on a vacuum solution (see, e.g., Refs. [2,3])
consist of

ð3ÞRþ ðKj
jÞ2 − KijKij ¼ 0; ð1:1Þ

DjKj
i −DiKj

j ¼ 0; ð1:2Þ

where ð3ÞR and Di denote the scalar curvature and
the covariant derivative operator associated with hij,
respectively.
The standard approach to solving the constraints is based

upon the conformal method, introduced by Lichnerowicz
[4] to recast the Hamiltonian constraint (1.1) as an elliptic
equation and later extended by York [5,6] to reduce the
momentum constraint (1.2) also to an elliptic system. For a
review of the historic implementation of this method in
numerical relativity, see [7].
A major obstacle in prescribing black hole initial data

is the presence of a singularity inside the black hole. The
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initial strategy for handling the singularity was the excision
of the singular region inside the black hole [8]. In this case,
an artificial inner boundary condition for the elliptic system
is posed on boundaries inside the apparent horizons sur-
rounding the individual black holes. Other strategies have
since been proposed. One is the puncture method in which
the initial hypersurface extends though a wormhole to an
internal asymptotically flat spatial infinity, which is then
treated by conformal compactification [9]. Here the freedom
in the choice of conformal factor governing the compacti-
fication enters as an effective boundary condition. In
addition, it is known that the puncture quickly changes its
nature. In fact, early attempts to simulate binary black holes
failed until it was realized that the puncturesmust be allowed
to move. Studies of this feature in the case of a single black
hole revealed that the puncture quickly transits from the
internal spatial infinity to an internal timelike infinity [10].
This realization has given rise to the trumpet version of
initial data, inwhich the initial Cauchy hypersurface extends
to an internal timelike infinity with asymptotically finite
surface area [10,11]. Trumpet data offer a promising alter-
native to puncture data but their merits have not yet been
extensively explored in binary black hole simulations [12].
Coupled to these techniques for avoiding singularities is

the choice of initial time slice. For example, there are many
ways to prescribe Schwarzschild initial data depending,
say, upon whether the initial Cauchy hypersurface is time
symmetric or horizon penetrating. Here we will focus on
initial data in Kerr-Schild form [13,14], which for the
Schwarzschild case corresponds to ingoing Eddington-
Finklestein coordinates, which extend from spatial infinity
to the singularity and penetrate the horizon. The new
approach to solving the constraints that we consider
becomes degenerate for a time symmetric initial slice,
whose extrinsic curvature vanishes. However, time sym-
metric space-times contain as much ingoing as outgoing
gravitational waves, so they are not the appropriate physical
models for studying binary waveforms. Although our focus
here is on data in Kerr-Schild form, we do not wish to imply
that this approach would not work for puncture or
trumpet data.
A very attractive feature of Kerr-Schild initial data is that

it provides a preferred Minkowski background to construct
boosted black holes by means of a Lorentz transformation.
Two independent ways of prescribing Kerr-Schild initial
data have been proposed. In one version, the 4-dimensional
aspect of the Kerr-Schild ansatz is preserved as much as
possible [15]. This leads to a workable scheme for super-
imposing nonspinning black holes but the generalization to
the spinning case remains problematic. In the other case,
the Kerr-Schild ansatz is loosened to a 3-dimensional
version that allows superposition of multiple spinning
black holes [16]. This has been implemented to provide
data for boosted, spinning binary black holes and plays an
important role in current simulations [17].

There are several variants to the new method of solving
the constraints proposed in [1,18–20], depending upon
which components of the initial data are assigned freely.
They all avoid elliptic equations. Here we apply the
simplest of these variants to the initial data problem for
black holes. In this variant, the Hamiltonian and momen-
tum constraints constitute a strongly hyperbolic system
which only requires data on a 2-surface surrounding the
black holes.
In Sec. II, we review this new approach. In Sec. III, we

show that the requirements for well-posedness of the
underlying algebraic-hyperbolic constraint problem are
satisfied by a Schwarzschild black hole described in
Kerr-Schild form. In Sec. IV, we present an explicit proof
that nonlinear perturbations of Schwarzschild black hole
data in Kerr-Schild form lead to a well-posed, strongly
hyperbolic problem.
In Sec. V, we concludewith a discussion of the possibility

of extending this approach to general data for a system of
boosted, spinning multiple black holes. We show how the
initial metric data for multiple black holes can be freely
prescribed in 4-dimensional superimposedKerr-Schild form
for the individual boosted, spinning black holes. Two pieces
of extrinsic curvature data, which represent the two gravi-
tational degrees of freedom, can also be freely prescribed by
superimposing the individual black hole data. The remain-
ing extrinsic curvature data are then determined by the
algebraic-hyperbolic constraint system. In a linear theory,
the superposition of such nonradiative data would lead to a
nonradiative solution. This suggests that this new method
may offer an alternative approach to suppressing junk
radiation and to controlling the effect of initial data on a
binary orbit. However, due to the nonlinearity of Einstein’s
equations, there is no guarantee that, in the strong field
region between the individual black holes, these super-
imposed free data do not introduce spurious radiation. A
completely analytic resolution of these issues does not seem
possible. A major motivation for this paper is to encourage
the numerical experimentation necessary to explore the
merit and feasibility of this new approach.

II. A NEW APPROACH TO THE CONSTRAINTS

Weassume that the topology ofΣ allows a smooth foliation
by a one-parameter family of homologous 2-surfaces. In the
application to blackhole initial data,we assume for simplicity
a foliation Sρ by topological spheres described by the level
surfaces ρ ¼ const of a smooth function.
Choose now a vector field ρi on Σ such that ρi∂iρ ¼ 1.

Then the unit normal n̂i to Sρ has the decomposition

n̂i ¼ N̂−1½ρi − N̂i�; ð2:1Þ
where the “lapse” N̂ and “shift” N̂i of the vector field ρi

are determined by n̂i ¼ N̂∂iρ and N̂i ¼ γ̂ijρ
j, with

γ̂ij ¼ δij − n̂in̂j.
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The 3-metric hij on Σ then has the 2þ 1 decomposition

hij ¼ γ̂ij þ n̂in̂j; ð2:2Þ

where γ̂ij is the metric induced on the surfaces Sρ. The
extrinsic curvature K̂ij of Sρ is given by

K̂ij ¼ γ̂liDln̂j ¼
1

2
Ln̂γ̂ij: ð2:3Þ

The extrinsic curvature Kij of Σ, which forms part of the
initial data, has the decomposition

Kij ¼ κ n̂in̂j þ ½n̂ikj þ n̂jki� þKij; ð2:4Þ

where κ ¼ n̂kn̂lKkl, ki ¼ γ̂kin̂lKkl, and Kij ¼ γ̂kiγ̂
l
jKkl.

Here we use boldfaced symbols to indicate tensor fields
tangent to Sρ. In addition, we shall denote the trace and
trace-free parts of K̂ij and Kij by K̂l

l ¼ γ̂klK̂kl,

Kl
l ¼ γ̂klKkl, K̂

∘
ij ¼ K̂ij − 1

2
γ̂ijK̂

l
l, and K

∘
ij ¼ Kij−

1
2
γ̂ijKl

l, respectively.
By replacing the initial data set ðhij; KijÞ by the seven

fields ðN̂; N̂i; γ̂ij;K
∘
ij; κ;ki;Kl

lÞ, the Hamiltonian and
momentum constraints (1.1) and (1.2) can be expressed
as [1] (see also [18–20])

Ln̂ðKl
lÞ − D̂lkl þ 2 _̂nlkl −

h
κ −

1

2
ðKl

lÞ
i
ðK̂l

lÞ

þK
∘
klK̂

∘ kl
¼ 0; ð2:5Þ

Ln̂ki þ ðKl
lÞ−1½κD̂iðKl

lÞ − 2klD̂ikl�
þ ð2Kl

lÞ−1D̂i½ð3ÞR −K
∘
klK

∘ kl�

þ ðK̂l
lÞki þ

h
κ −

1

2
ðKl

lÞ
i
_̂ni − _̂nlK

∘
li þ D̂lK

∘
li ¼ 0;

ð2:6Þ

where κ is determined by

κ ¼ ð2Kl
lÞ−1

h
K
∘
klK

∘ kl þ 2klkl −
1

2
ðKl

lÞ2 − ð3ÞR
i
; ð2:7Þ

D̂i and R̂ denote the covariant derivative operator and
scalar curvature associated with γ̂ij, respectively, and
_̂nk ¼ n̂lDln̂k ¼ −D̂kðln N̂Þ. Here (2.7) provides an alge-
braic solution to the Hamiltonian constraint (1.1) (for more
details see [1]). The four quantities ðκ;ki;Kl

lÞ are subject
to the constraints, whereas the remaining eight variables

ðN̂; N̂i; γ̂ij;K
∘
ijÞ are freely specifiable throughout Σ. Here

K
∘
ij encodes the two free gravitational degrees of freedom.

Given the free data ðN̂; N̂i; γ̂ij;K
∘
ijÞ, Eqs. (2.6)–(2.7)

were shown to comprise a first order strongly hyperbolic

system for the vector valued variable ðKl
l;kiÞ provided κ

and Kl
l are of opposite sign,

κKl
l ¼ −C2; C ≠ 0: ð2:8Þ

It was also verified in [1] that, given the values of ðki;Kl
lÞ

on some “initial” surface S0 satisfying (2.8), solutions to
the nonlinear system (2.5)–(2.7) exist (at least locally) in a
neighborhood of S0, and that the fields ðhij; KijÞ built up
from these solutions satisfy the full constraint system
(1.1)–(1.2).

III. THE FREE AND CONSTRAINED
SCHWARZSCHILD DATA

The successful application of this new approach to the
constraint problem depends upon a judicious choice of
gauge, determined by the lapse of the initial Cauchy
hypersurface Σ, and a judicious choice of foliation Sρ.
We begin by considering data in Kerr-Schild form, in which
the space-time metric has the form

gab ¼ ηab þ 2Hlalb;

gab ¼ ηab − 2Hlalb; ð3:1Þ
where H is a smooth function (except at singularities) on
R4 and la is null with respect to both gab and an implicit
background Minkowski metric ηab. In inertial coordinates
ðt; xiÞ adapted to ηab,

gabdxadxb ¼ ð−1þ 2Hlt
2Þdt2 þ 4Hltlidtdxi

þ ðδij þ 2HliljÞdxidxj; ð3:2Þ

where la ¼ gablb ¼ ηablb and gablalb ¼ ηablalb ¼
−ðltÞ2 þ lili ¼ 0. The Kerr-Schild metrics also satisfy
the background geodesic condition

ηbclc∂bla ¼ 0 ð3:3Þ
and wave equation

ηab∂a∂bH ¼ 0: ð3:4Þ
We can relate the Kerr-Schild metric to the 3þ 1

decomposition of the space-time metric

gab ¼ hab − nanb; ð3:5Þ
where na is the future directed unit normal to the t ¼ const
hypersurfaces. Choose a time evolution field ta satisfying
ta∂at ¼ 1. Then na has the decomposition

na ¼ N−1ðta − NaÞ; ð3:6Þ
where N and Na denote the space-time lapse and shift,
determined by
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N ¼ −ðteneÞ; na ¼ −N∂at; and Na ¼ haete; ð3:7Þ

respectively.
In the Kerr-Schild space-time coordinates ðt; xiÞ, the

metric has components

gαβ ¼
�−N2 þ NiNi Ni

Nj hij

�
: ð3:8Þ

It follows that

hij ¼ δij þ 2Hlilj;

hij ¼ δij −
2Hlilj

1þ 2Hl2
t
; ð3:9Þ

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Hl2

t

p ; ð3:10Þ

Ni ¼ 2Hltli; Ni ¼ 2HN2ltli: ð3:11Þ

A direct calculation of the extrinsic curvature

Kij¼
1

2
Lnhij¼ð2NÞ−1½∂thij−ðDiNjþDjNiÞ� ð3:12Þ

gives

N−1Kij ¼ − lt½∂iðHljÞ þ ∂jðHliÞ� þ N−2∂tðHliljÞ
þ 2Hltlk∂kðHliljÞ −Hðli∂jlt þ lj∂iltÞ:

ð3:13Þ

For a Kerr space-time

H ¼ rM
r2 þ a2cos2θ

; ð3:14Þ

where the Boyer-Lindquist radial coordinate r is related to
the Cartesian inertial spatial coordinates xi ¼ ðx1; x2; x3Þ
according to

r2 ¼ 1

2
½ðρ2 − a2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 − a2Þ2 þ 4a2x23

q
�; ð3:15Þ

with

ρ2 ¼ x21 þ x22 þ x23 ð3:16Þ

and

la ¼
�
1;
rx1 þ ax2
r2 þ a2

;
rx2 − ax1
r2 þ a2

;
x3
r

�
: ð3:17Þ

As H and la are t-independent and lt ¼ 1, the extrinsic
curvature (3.13) simplifies to

Kij ¼ −ltN½∂iðHljÞ þ ∂jðHliÞ þ 2Hliljlk∂kH�:

Formally, for the purpose of applying the approach in
Sec. II to a generic inspiral and merger, it would be
sufficient to show that the required sign condition (2.8)
holds for a boosted Kerr black hole. Here we restrict our
investigation to the Schwarzschild case, where the choice
of foliation Sρ is guided by spherical symmetry and the
algebraic simplicity allows a clear exposition of the
approach.
For a Schwarzschild black hole, the spin parameter

a ¼ 0 and the Kerr-Schild form of the metric simplifies to

H ¼ M
r
; li ¼

xi
r
¼ ∂ir; r2 ¼ δijx1xj; ð3:18Þ

with lapse

N ¼ ð1þ 2HÞ−1=2 ð3:19Þ

and 3-metric

hij ¼ δij þ 2Hlilj: ð3:20Þ

(Here −la is a future directed ingoing null vector, which
corresponds to the convention for ingoing Eddington-
Finklestein coordinates.) Thus

∂iH ¼ −
M
r3

xi; ∂jðHliÞ ¼
M
r4

½r2δij − 2xixj� ð3:21Þ

and (3.18) reduces to

Kij ¼ −
2M

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ðδij − ½2þH�liljÞ: ð3:22Þ

We choose the foliation Sρ by setting ρ ¼ r, with
ρi ¼ li, corresponding to the “spatial” lapse and shift

N̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
; N̂i ¼ 0; ð3:23Þ

unit normal

n̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
li; n̂i ¼ hijn̂j ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p li; ð3:24Þ

and intrinsic 2-metric

γ̂ij ¼ hij − n̂in̂j ¼ δij − lilj; γ̂ij ¼ δij − lilj:

ð3:25Þ

A straightforward calculation gives the extrinsic curva-
ture components of Σ,

κ ¼ n̂kn̂lKkl ¼
2Mð1þHÞ

r2ð1þ 2HÞ3=2 ; ð3:26Þ
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ki ¼ γ̂kin̂lKkl ¼ 0; ð3:27Þ

Kij ¼ γ̂kiγ̂
l
jKkl ¼ −

2M

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p γ̂ij; ð3:28Þ

Kl
l ¼ γ̂klKkl ¼ −

4M

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ; ð3:29Þ

and

K
∘
ij ¼ Kij −

1

2
γ̂ijKl

l ¼ 0: ð3:30Þ

Note that κ and Kl
l are globally nonvanishing and have

opposite sign, in agreement with the condition (2.8) for
strong hyperbolicity.
From (2.3) along with

Ln̂γ̂ij ¼ n̂k∂kγ̂ij þ γ̂kjð∂in̂kÞ þ γ̂ikð∂jn̂kÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p xk

r
∂k

�
−
xixj
r2

�

þ
�
δkj −

xkxj
r2

�
∂i

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p xk

r

�

þ
�
δik −

xixk
r2

�
∂j

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p xk

r

�

¼ 2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

r

q
�
δkj −

xkxj
r2

�
; ð3:31Þ

the extrinsic curvature of the ρ ¼ r ¼ const foliated sur-
faces is given by

K̂ij ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p γ̂ij; ð3:32Þ

so it follows that

K̂l
l ¼ γ̂klK̂kl ¼

2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ð3:33Þ

and

K̂
∘
ij ¼ K̂ij −

1

2
γ̂ijK̂

l
l ¼ 0: ð3:34Þ

IV. NONLINEAR PERTURBATIONS OF A
SCHWARZSCHILD BLACK HOLE

Here we investigate nonlinear perturbations of the Kerr-
Schild initial data for a Schwarzschild black hole. In doing
so, we simplify the discussion by assigning Schwarzschild

values to the freely specifiable variables ðN̂; N̂i; γ̂ij;K
∘
ijÞ.

As a result, the initial 3-metric hij retains its Schwarzschild

value and, in particular, K
∘
ij ¼ 0 and N̂ and ð3ÞR have no

angular dependence. For a more general perturbation,

ðN̂; N̂i; γ̂ij;K
∘
ijÞ would enter as explicit terms in the

resulting system for ðκ;Kl
l;ki; Þ.

In this setting, (2.5)–(2.6) reduce to

Ln̂ðKl
lÞ − D̂lkl −

�
κ −

1

2
ðKl

lÞ
�
ðK̂l

lÞ ¼ 0; ð4:1Þ

Ln̂ki þ ðKl
lÞ−1½κD̂iðKl

lÞ − 2klD̂ikl� þ ðK̂l
lÞki ¼ 0;

ð4:2Þ

where κ, determined by (2.7), reduces to

κ ¼ ð2Kl
lÞ−1

�
2klkl −

1

2
ðKl

lÞ2 − ð3ÞR
�
: ð4:3Þ

It is easy to check that these equations hold for a
Schwarzschild solution, for which ð3ÞR ¼ 8M2

r4ð1þ2HÞ2,
n̂i∂i ¼ 1ffiffiffiffiffiffiffiffiffi

1þ2H
p ∂r, ki ¼ 0, and neither Kl

l nor κ have
angular dependence.
In spherical coordinates xi ¼ ðr; xAÞ, xA ¼ ðθ;ϕÞ,

γ̂ijdxidxj ¼ r2qABdxAdxB; ð4:4Þ

where qAB is the unit sphere metric. Then (4.1)–(4.2)
become

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2H

p ∂rKl
l−D̂BkB−

�
κ−

1

2
ðKl

lÞ
�
ðK̂l

lÞ¼0; ð4:5Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ∂rkA þ ðKl
lÞ−1½κ∂AðKl

lÞ − 2kBD̂AkB�

þ ðK̂l
lÞkA ¼ 0: ð4:6Þ

Now consider nonlinear perturbations of Schwarzschild.
We denote by δV ¼ V − VS the deviation of a variable V
from its Schwarzschild value VS. Then (4.5)–(4.6) take the
form

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ∂rδKl
l −

qBC

r2
∂CδkB ¼ F1; ð4:7Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ∂rδkA þ κ

Kl
l
∂AδKl

l −
2qBDkD

r2Kl
l
∂AδkB ¼ FA;

ð4:8Þ

where F1 and FA represent lower differential order terms.
This is a coupled quasilinear system for the vector valued
variable Uα ¼ ðu1; uAÞ ¼ ðδKl

l; δkAÞ. The system
(4.7)–(4.8) has matrix form

∂τUα ¼ Lα
βC∂CUβ þ Fα; ð4:9Þ
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where ∂τ ¼ ð1þ 2HÞ−1=2∂r, Fα ¼ ðF1; FAÞ, and

L1
1C ¼ 0; L1

BC ¼ 1

r2
qBC; ð4:10Þ

LA
1C ¼ −

κ

Kl
l
δCA; LA

BC ¼ 2

r2Kl
l
qBDkDδ

C
A: ð4:11Þ

The requirement that (4.9) be a strongly hyperbolic
system [21,22] is that there exists a positive bilinear form
Hβγ such that LðωÞβα ¼ HβγLα

γCωC is symmetric for each
choice of ωC. It is straightforward to check that such a
symmetrizer is given by

H11 ¼ −
Kl

l

κ
; H1A ¼ 0; ð4:12Þ

HA1 ¼
2kA

κ
; HAB ¼ r2qAB: ð4:13Þ

The positivity of the symmetrizer for perturbations of
Schwarzschild,

Hαβvαvβ ¼ −
Kl

l

κ
ðv1Þ2 þ 2

κ
kAv1vA þ r2qABvAvB > 0;

vα ≠ 0; ð4:14Þ

follows from the near Schwarzschild approximations

−
Kl

l

κ
≈
2ð1þ 2HÞ
1þH

;
kA

κ
≈ 0: ð4:15Þ

Furthermore, the ωA independence of Hαβ implies that
the system is symmetric hyperbolic as well as strongly
hyperbolic.
Given near Schwarzschild data for ðKl

l;kAÞ on a surface
SR surrounding a Schwarzschild black hole, strong hyper-
bolicity is a sufficient condition for the system (4.5))–(4.6)
to produce a unique solution of the constraint problem in
some neighborhood of SR. Furthermore, the problem is
well posed so that the solution depends continuously on the
data. For linearized perturbations the solution extends
globally to r ¼ 0.

V. FUTURE PROSPECTS

We have shown that the new treatment of the constraints
proposed in [1] leads to a well-posed constraint problem for
nonlinear perturbations of a Schwarzschild black hole in
Kerr-Schild form. As is generally the case for nonlinear
problems, the solution is only guaranteed locally in a
neighborhood of the outer surface SR on which the data are
prescribed. The issue of a global solution to the nonlinear
problem is best explored by numerical techniques
for integrating the hyperbolic system inward along the
ρ-streamlines emanating from SR.

The well-posedness of this problem extends to pertur-
bations representing a Kerr black hole with small spin and
boost. The question of whether it extends further to a Kerr
black hole with maximal spin and arbitrary boost is more
complicated. Its resolution would depend, among other
things, upon a judicious choice of the foliation Sρ and the
ρ-streamlines along which the evolution proceeds. This is
akin to choosing the lapse and shift for a timelike Cauchy
evolution.
The ultimate utility of this new approach rests upon its

extension to multiple black holes. Formally, it can be
applied to the multiple black hole problem using a
modification of the superimposed Kerr-Schild data
proposed in [16,17], which is based upon the ansatz that
the initial 3-metric for a binary black hole is given by

hij ¼ δij þ 2H½1�li
½1�lj

½1� þ 2H½2�li
½2�lj

½2�; ð5:1Þ

where H½n� and li
½n� correspond to the Kerr-Schild data for

individual boosted, spinning black holes. In [16,17], the
actual 3-metric data are only conformal to (5.1), with the
conformal factor chosen to satisfy the Hamiltonian
constraint.
In our new approach to the constraints, it is possible to

retain the superimposed Kerr-Schild initial data in their
strict 4-dimensional form

gab ¼ ηab þ 2H½1�la
½1�lb

½1� þ 2H½2�la
½2�lb

½2�; ð5:2Þ

where la
½n� are null with respect to the background

Minkowski metric. This determines the initial lapse and
shift as well as the initial 3-metric (5.1) for an evolution
along the ρ-streamlines. It is an attractive strategy because
it retains much of the algebraic simplicity of the Kerr-
Schild metric; e.g., la

½1� and la
½2� satisfy the background

geodesic equation (3.1), H½1� and H½2� satisfy the back-
ground wave equation (3.3), and the metric can be
explicitly inverted, although in a more complicated form
than (3.4).
Given the background metric (5.2), the Hamiltonian

constraint can be imposed to express the extrinsic curvature
component κ algebraically in terms of Kl

l and explicitly
known terms via (2.7). The extrinsic curvature components
K
∘
ij ¼ Kij − 1

2
γ̂ijKl

l can be freely prescribed, say, by
superposition of their individual Kerr-Schild values.
Given a suitable foliation of the initial hypersurface Sρ

and vector field ρi, the remaining components of the
extrinsic curvature data, Kl

l and ki, could then be
determined from the hyperbolic system (2.5)–(2.6)
obtained from the momentum constraint. The only data
necessary are the values ofKl

l and ki on a large surface SR
surrounding the system. The surface data for Kl

l and ki
could be prescribed (again tentatively) by the superposition
of their individual Kerr-Schild values.
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A major concern in such a scheme is the effect of
caustics, where the ingoing ρ-streamlines focus, or a
crossover surface SX where these streamlines from oppos-
ing points of SR meet. For a single black hole, the
streamlines can be chosen so that the caustics and cross-
overs are inside the apparent horizon, where the interior can
be excised. However, for binary black hole data, although
the caustics can be arranged to lie inside the black holes, the
crossover surface SX will in general span the region
between them. In that case, unless SX can be chosen to
be a surface of reflection symmetry, as in the case of data
for an axisymmetric head-on collision, the inward evolu-
tion from SR may produce a discontinuity on SX; i.e., the
data induced on SX may not be single-valued.
Considerable numerical experimentation might be nec-

essary to deal with this issue. The following strategy, which
puts the flexibility of symmetric hyperbolic systems to use,
is only schematic. Unlike the iterative global nature of
elliptic solvers, hyperbolic evolution proceeds locally along
the ρ-streamlines and can be stopped freely. This can be
utilized to adjust the crossover surface, by numerical
experimentation, so that it minimizes the discontinuity
on SX along each pair of intersecting ρ-streamlines.
Then any discontinuity of the solution on SX might be
removed by averaging. Since the hyperbolic evolution of
the constraint system can also proceed in the outward

ρ-direction, a smooth solution, using this averaged data on
SX, can then be extended outward to SR.
The simplicity of such a scheme for binary black hole

initial data is extremely attractive. Whether it can be
successfully implemented is again a matter for numerical
study. If such studies were indeed successful they would
lead to questions of the utmost physical importance: Does
the resulting binary black hole initial data suppress junk
radiation? Does it give better control over the orbital and
spin parameters of a binary system? The only data needed
on a single large surface in the asymptotic region surround-
ing the system distinguishes this approach from other
solutions to the constraint problem which rely on elliptic
equations. Whether this feature improves the physical
content and control of the initial data is again a matter
for numerical investigation.
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