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Quantum field theory in curved space-times is a well developed area in mathematical physics which has
had important phenomenological applications to the very early universe. However, it is not commonly
appreciated that on time-dependent space-times—including the simplest cosmological models—dynamics
of quantum fields is not unitary in the standard sense. This issue is first explained with an explicit example,
and it is then shown that a generalized notion of unitarity does hold. The generalized notion allows one to
correctly pass to the Schrödinger picture starting from the Heisenberg picture used in the textbook
treatments. Finally, we indicate how these considerations can be extended from simple cosmological
models to general globally hyperbolic space-times.

DOI: 10.1103/PhysRevD.91.124010 PACS numbers: 04.60.Kz, 04.60.Pp, 98.80.Qc

I. INTRODUCTION

Quantum field theory on cosmological space-times has
been studied extensively both at the mathematical level and
in the context of the phenomenology of the early universe
(see e.g. [1–8]). In the textbook formulation one generally
works with space-time field operators in the Heisenberg
picture. However, one can also recast the theory in a
canonical framework and ask if the field operators and their
conjugate momenta evolve via unitary transformations in
the standard sense. Unitary implementation of dynamics is
essential, in particular, to pass to the Schrödinger picture.
Rather surprisingly, the answer is in the negative even for
linear fields.1 Already in the late 1990s, this issue was
discussed in a general context by Helfer [9], and for
evolution between arbitrary Cauchy surfaces in flat
space-time by Torre and Varadarajan [10]. It was made
explicit in the cosmological context in a recent series of
interesting papers by Corichi, Cortez, Mena-Marugan,
Vehlinho, and others, first in the Gowdy models [11], then
in the de Sitter space-time [12], and finally in Friedmann,
Lemaître, Robertson, Walker (FLRW) models [13].
The purpose of this paper is to first explain the tension

between unitarity and the textbook description of quantum
fields on FLRW space-times, and then propose a resolution
through a natural generalization of the standard notion of
unitarity which does hold. Some aspects of the necessity of
a more general view of dynamics are present already in the
classical Hamiltonian theory on cosmological backgrounds
and in simpler quantum systems with time-dependent

Hamiltonians. However, we will find that there are also
some important features which are special to quantum
fields propagating on time-dependent space-times.
Let us begin by spelling out the conceptual tension in the

simplest setting: a scalar field ϕ satisfying □ϕ −m2ϕ ¼ 0
in a spatially flat FLRW space-time. (The case m ¼ 0 is of
direct interest to the analysis of tensor modes in the
cosmological perturbation theory.) To emphasize the fact
that the issue under consideration has its origin only in the
ultraviolet behavior of quantum fields—and not infrared—
let us further suppose that the spatial topology is that of a
3-torus, T3, rather than R3.
In the standard textbook treatment, one introduces the

conformal time η on space-time M, so that the metric
assumes the form

ds2 ¼ a2ðηÞð−dη2 þ d~x2Þ: ð1:1Þ

One then expands the field operators ϕ̂ð~x; ηÞ in terms of
spatial Fourier modes

ϕ̂ð~x; ηÞ ¼ 1

V0

X
~k

½ekðηÞÂ~k þ e⋆kðηÞÂ†
−~k
�ei~k·~x; ð1:2Þ

with k ¼ j~kj, and V0, the volume of the 3-torus in the
comoving coordinates ~x. Here, the “positive frequency”
basis ekðηÞ consists of functions that satisfy the equation of
motion

e00kðηÞ þ ð2a0=aÞðηÞe0kðηÞ þ ðk2 þm2a2ðηÞÞekðηÞ ¼ 0;

ð1:3Þ
and the normalization condition

a2ðηÞ½eke⋆0k − e0ke
⋆
k � ¼ i; ð1:4Þ
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1This is an ultraviolet problem in the full quantum field theory.

If one just restricts oneself to a finite number of modes, one does,
of course, have unitarity.
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with the prime denoting the derivative with respect to η, and
Â~k and Â†

~k
are the annihilation and creation operators

satisfying the standard commutation relations

½Â~k1
; Â†

~k2
� ¼ ℏV0δ~k1;~k2 : ð1:5Þ

One defines j0i as the state annihilated by all A~k and
generates the Hilbert space of quantum states by repeatedly
operating on it by creation operators. We will denote this
space by Hfekg to emphasize the fact that this construction
depends on the choice of a positive frequency basis fekg.
Finiteness of the expectation values of the stress-energy
tensor T̂abð~x; ηÞ on (a dense subspace of) Hfekg is guar-
anteed if the basis ekðηÞ is adiabatic of order 4 or higher
[14–17].2 From a physical perspective, then, it is natural to
assume adiabaticity of order 4, although for most of our
results adiabaticity only of order 2 will suffice. Of course,
there is no preferred choice of the required basis fekðηÞg,
and hence of a vacuum state j0i. Therefore notions such as
“particle number” have an intrinsic ambiguity. However,
one can unambiguously calculate expectation values of
physical observables, such as the power spectrum and
energy density, on (a dense subspace of) states in Hfekg.
Consequently, this textbook theory is deemed to be fully
adequate to investigate the physics of the early universe.
But one can also examine this theory from the canonical

perspective. Using the expression (1.2) of the space-time
field operator, we can introduce a pair of canonically
conjugate operators at any fixed time η:

φ̂ð~x; ηÞ ≔ ϕ̂ð~x; ηÞ and π̂ð~x; ηÞ ≔ a2ðηÞ½∂ϕ̂=∂η�ð~x; ηÞ:
ð1:6Þ

From their definition it is obvious how these operators
evolve in conformal time η. Is this evolution unitary? That
is, does there exist a 2-parameter family of unitary
operators Uη2;η1 on Hfekg that implement this dynamics
in the standard sense

φ̂ð~x; η2Þ ¼ U−1
η2;η1 φ̂ð~x; η1ÞUη2;η1

and π̂ð~x; η2Þ ¼ U−1
η2;η1 π̂ð~x; η1ÞUη2;η1? ð1:7Þ

The counterintuitive result is that the answer is in the
negative [13]. As we will see explicitly in Sec. II C,
unitarity fails even in the simplest, tame example which
Parker used in the first investigations of quantum fields in
cosmological space-times [14]: aðηÞ ¼ a−, a constant, in
the past until η ¼ η−, then increases monotonically in a

smooth fashion till η ¼ ηþ and becomes a constant
aðηÞ ¼ aþ to the future of ηþ. This means, the dynamics
cannot be transferred to states in the standard fashion; the
Schrödinger representation does not exist on Hfekg.
Thus, a basic premise of Minkowskian quantum field

theories seems to be violated. On the other hand, as we
noted above, the covariant approach is in itself complete in
the sense that: (i) one can describe the dynamics of any
observable of direct physical interest; and (ii) there is a
well-defined, unitary S-matrix in space-times that become
asymptotically static in the distant past and future. Our goal
is to resolve the apparent tension between the covariant and
the canonical descriptions. The analysis will bring out some
conceptual subtleties associated with quantum field theory
in dynamical space-times that distinguish it from more
familiar quantum systems, including quantum fields in
Minkowski space-time interacting with time -ependent
external potentials. Time dependence in space-time geom-
etry has subtle but important conceptual implications
that are not shared by field theories on static space-time
geometries.
This paper is organized as follows. Because nonunitarity

seems counterintuitive, in Sec. II we will systematically
introduce the canonical framework and explain the main
result in the context of the simplest time-dependent
geometry, that of a FLRW space-time. This discussion
serves to make the main issues explicit. In Sec. III, we
resolve this tension by proposing a generalization of the
notion of unitarity that is appropriate for time-dependent
geometries. In Sec. IV we show that the proposal is
compatible, and in fact fits in naturally, with the standard,
well-defined S-matrix description in situations in which
space-time geometry becomes time independent in the
distant past and future. In Sec. V we sketch a generalization
of our proposal to arbitrary globally hyperbolic space-times
with compact Cauchy surfaces. Section VI summarizes the
results and discusses conceptual differences between quan-
tum field theory in time-dependent space-times and other
physical systems.

II. THE CANONICAL FRAMEWORK

This section is divided into three parts. In the first we
briefly discuss the classical phase space and fix our
notation. In the second, we carry out canonical quantization
using the algebraic approach where dynamics on the
operator algebra ACan can be specified even before intro-
ducing the state space, i.e., without having to decompose
the fields into positive and negative frequency parts as in
(1.2). We then introduce the Hilbert space of states and
discuss the necessary and sufficient condition for the
dynamics defined on ACan to be unitarily implemented
on the Hilbert space. In the third part we show that the
condition is not satisfied even in the simplest example
mentioned above in Sec. I.

2For a succinct summary of the definition and properties of
adiabatic states, see Sec. VI of [18]. In this paper, we use the
notions and structures spelled out there.
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A. The canonical phase space

Fix a 3-manifoldM, topologically T3. For the linear field
under consideration, the canonical phase space ΓCan con-
sists of pairs ðφð~xÞ; πð~xÞÞ≡ γ of functions on M, equipped
with a symplectic structure Ω,

Ωðγ1; γ2Þ ¼
Z
M
d3xðφ1π2 − φ2π1Þ: ð2:1Þ

Using Ω, one can naturally define a set of linear observ-
ables Oγo labeled by points γo ≡ ðf; gÞ of Γ [19],

OγoðγÞ ≔ Ωðγo; γÞ ¼
Z
M
d3xðfπ − φgÞ: ð2:2Þ

The vector space they span, together with the one-
dimensional space of constant observables on ΓCan, is
closed under Poisson brackets,

fOγ1 ;Oγ2g ¼ Ωðγ1; γ2Þ: ð2:3Þ

These Oγo can be regarded as elementary classical observ-
ables because the full algebra of classical observables is
generated by taking linear combinations of their products.
The introduction of elementary observables Oγ is unnec-
essary in the classical theory but paves the way to
quantization from the algebraic perspective, sketched in
Sec. II B.
Let us now consider dynamics. Note thatM is an abstract

three-dimensional manifold, rather than a submanifold of
the 4-manifold M. However, in FLRW backgrounds, given
any value of the conformal time ηo, there is natural
embedding of M into M. This allows us to set an
isomorphism Iηo between the space ΓCov consisting of
solutions ϕð~x; ηÞ to the Klein Gordon equation on M and
the canonical phase space ΓCan,

Iηoϕð~x; ηÞ ¼ ðφð~xÞ; πð~xÞÞ ∈ ΓCan; where

φð~xÞ ¼ ϕð~x; ηoÞ; πð~xÞ ¼ a2ðηoÞð∂ϕ=∂ηÞð~x; ηoÞ:
ð2:4Þ

This isomorphism enables us to introduce the natural
evolution map Eη2;η1∶ΓCan → ΓCan as Eη2;η1 ¼ Iη2I

−1
η1 , such

that γ2 ≔ Eη2;η1γ1 is the evolution of the phase space point
γ1 at time η1, to time η2. This map Eη2;η1 in turn provides the
dynamical evolution Λη2;η1 of observables on ΓCan. Since
under time evolution we have Ωðγo; γÞ ↦ Ωðγo; Eη2;η1γÞ ¼
ΩðE−1

η2;η1γo; γÞ, we have

Λη2;η1Oγ ¼ O~γ where ~γ ¼ E−1
η2;η1γ: ð2:5Þ

Λη2;η1 is an automorphism on the space of linear observ-
ables in the sense that it preserves their Poisson brackets. It

is labeled by two independent parameters η2, η1, rather than
just their difference η2-η1, because the space-time 4-metric
gab onM—and hence the Hamiltonian—is time dependent.
Since the elementary observables Oγ generate the full
algebra of classical observables, Λη2;η1 extends naturally
to the full algebra. In the algebraic approach, one regards
the (multiplicative and Poisson) algebra of classical observ-
ables as primary. The 2-parameter family of automorphisms
Λη2;η1 specifies dynamics on this algebra.
Now, in stationary space-times dynamics of states is

described by a symplectic flow on the phase space,
generated by a Hamiltonian vector field. Any such flow
naturally induces a 1-parameter family of automorphisms
on the algebra of observables (i.e., mappings that preserve
the associative and Poisson algebra structure). The space of
all automorphisms on the algebra of observables is much
larger. The 1-parameter families of automorphisms which
are induced from symplectic flows on states constitute a
preferred subclass and are called inner automorphisms.
But, as discussed in the previous paragraph, in FLRW
space-times we already have dynamical automorphisms
Λη2;η1 on the canonical algebra. Therefore we are led to ask:
Are these automorphisms Λη2;η1 inner? That is, do they
arise from a symplectic flow on ΓCan? The answer is in the
negative, simply because Λη2;η1 is a genuinely 2-parameter
family of automorphisms, while symplectic flows carry a
single parameter. This is of course the standard phenome-
non one encounters in any classical system that has a time-
dependent Hamiltonian. As is well known, to realize Λη1;η2
as an inner automorphism in these systems, we need
to extend the state space ΓCan to ΓExt by augmenting it
with time,

ΓExt ¼ ΓCan ×R; so that ðγ; ηÞ ∈ ΓExt: ð2:6Þ

Then, on each leaf Γηo
Can of ΓExt (with η ¼ ηo) we have

Hamiltonian vector field Xα
H ¼ Ωαβ∂βHðηoÞ, tangential to

that leaf, where, for simplicity, we have used Greek indices
to label tangent vectors to ΓExt. Dynamics is represented by
the flow of the vector field

Xα
Dyn ¼ Xα

H þ ηα ð2:7Þ

on ΓExt, where ηα is the vector that points in the “time”
direction of ΓExt with affine parameter η. The first term, Xα

H,
on the right side is tangential to each leaf—and hence
“horizontal”—while the second, ηα, points in the “vertical”
direction. This dynamical flow obviously preserves the
symplectic structure (whose indices are horizontal).
Because each leaf already carries a label η, the flow
generated by Xα

Dyn provides a well-defined map from the
space of observables at any time η1 to that at time η2. By
construction, it reproduces the action of the automorphism
Λη2;η1 for all η1; η2.
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To summarize, to make the dynamical map on the space
of observables an inner automorphism, we have to extend
the phase space from ΓCan to ΓExt. We have discussed this
well-known fact explicitly because, as we will see, the
failure of unitary implementability (1.7) of dynamics in
quantum theory is completely parallel to the impossibility
of making Λη2;η1 an inner automorphism on the standard
phase space ΓCan. In both cases, the dynamical automor-
phism can be made inner by extending the state space.

B. Canonical quantization

In the algebraic approach, one begins with operator
valued distributions φ̂ð~xÞ, π̂ð~xÞ on M, satisfying the
canonical commutation relations

½ϕ̂ð~xÞ; π̂ð~yÞ� ¼ iℏδð~x; ~yÞ: ð2:8Þ

To display the canonical algebraACan generated by them, it
is convenient to promote the elementary classical observ-
ables Oγo of (2.2) to quantum operators [19],

Ôγo ≔ Ωððf; gÞ; ðφ̂; π̂ÞÞ≡
Z
M
d3xðfð~xÞπ̂ð~xÞ − gð~xÞφ̂ð~xÞÞ:

ð2:9Þ

The canonical quantum algebra ACan is the free ⋆-algebra
generated by these Ôγ , subject to the obvious commutation
and ⋆ relations,

½Ôγ1 ; Ôγ2 � ¼ iℏΩðγ1; γ2Þ; and Ô⋆
γ ¼ Ôγ ð2:10Þ

for all γ1, γ2 and γ of the phase space ΓCan. The 2-parameter
family of dynamical automorphisms Λη2;η1 of the classical

theory naturally lifts to automorphisms Λ̂η2;η1 on ACan:

Λ̂η2;η1Ôγ ≔ Ô~γ where ~γ ¼ E−1
η2;η1γ; ð2:11Þ

for all γ ∈ ΓCan. It specifies dynamics on the canonical
algebra ACan. Since it is induced directly by the evolution
map Eη2;η1 on the classical phase space ΓCan, in contrast to
the covariant treatment summarized in Sec. I, this evolution
does not make any reference to “positive and negative
frequency” decomposition, or the Hilbert space of states.
New input—analogous to the choice of the basis ekðηÞ to

decompose fields into “positive and negative frequency
parts” in (1.2)—is required only in the next step, i.e., in the
construction of a concrete representation of ACan by
operators on a Hilbert space of states. This step is carried
out by first introducing a suitable complex structure J—i.e.,
a real linear map satisfying J2 ¼ −I on ΓCan—which is
compatible with the symplectic structure Ω in the sense
that ΩðJγ1; Jγ2Þ ≔ Ωðγ1; γ2Þ and Ωðγ; JγÞ > 0 for all
nonzero γ. Then,

hγ1; γ2i ¼
1

2ℏ
ðΩðγ1; Jγ2Þ þ iΩðγ1; γ2ÞÞ ð2:12Þ

is a Hermitian inner product on the complex vector space
ðΓCan; JÞ [19,20]. [Thus, ðΓCan;Ω; JÞ is a Kähler space.]
Then, the positive and negative frequency parts γ� of γ are
given by γ� ¼ ð1=2Þðγ∓iJγÞ. Thus, while γ ¼ ðφ; πÞ
represents a pair of real fields, each of γ� represents a
pair of complex fields with the property Jγ� ¼ �iγ�: on
the positive frequency part γþ, J has the same action as
multiplication by i, while on the negative frequency part γ−

it acts as multiplication by −i. The one-particle Hilbert
space hJ is then constructed as the Cauchy completion of
ðΓCan; J; h·; ·iÞ, and the Hilbert space HJ is the symmetric
Fock space constructed from hJ. One can now introduce
creation and annihilation operators on HJ in a standard
manner. By their definition, they satisfy the commutation
relations

½Âðγ1Þ; Â†ðγ2Þ� ¼ hγ1; γ2i; ð2:13Þ

and are complex-linear/antilinear in their dependence on γ,

A†ðJγÞ ¼ iA†ðγÞ and AðJγÞ ¼ −iAðγÞ: ð2:14Þ

Finally, the abstractly defined field operators Oγ are
represented in terms of these explicitly defined creation
and annihilation operators on HJ. The representation map
RJ is given by

RJðÔγÞ ¼ ℏðÂðγÞ þ Â†ðγÞÞ: ð2:15Þ

Equations (2.14) and (2.15) imply

ÂðγÞ ≔ 1

2ℏ
RJðÔγ þ iÔJγÞ;

and Â†ðγÞ ≔ 1

2ℏ
RJðÔγ − iÔJγÞ: ð2:16Þ

With this kinematic setup at hand, we can now discuss
dynamics. So far, it is encoded in a 2-parameter family
Λ̂η2;η1 of automorphisms on the abstract algebra ACan. Now
that we have a representationRJ ofACan, given any unitary
map U on HJ, we acquire a distinguished class of
automorphisms Λ̂ on ACan that satisfy

RJðΛ̂ðÔγÞÞ ¼ U−1RJðÔγÞU: ð2:17Þ

These are called inner automorphisms.3 Therefore, we can
now ask if the dynamical automorphisms Λη2;η1 is inner. If
so, dynamics would be unitarily implementable on the

3Thus, in both classical and quantum theories, inner auto-
morphisms on the observable algebra are induced by the
structure-preserving isomorphisms on the state space.
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Hilbert spaceHJ. This is the case if and only ifHJ admits a
2-parameter family of unitary maps Uη2;η1 such that

hχjRJðΛ̂η2;η1ðÔγÞÞjΨi ¼ hUη2;η1χjRJðÔγÞjUη2;η1Ψi;
ð2:18Þ

for all states χ, Ψ in HJ and γ ∈ ΓCan, or

RJðΛ̂η2;η1ðÔγÞÞ ¼ U−1
η2;η1RJðÔγÞUη2;η1 : ð2:19Þ

The operators Uη2;η1 then provide the evolution of states in
the Schrödinger picture.
Now, given any complex structure J compatible with the

symplectic structure Ω, the evolution map Eη2;η1 induces a
2-parameter family of complex structures Jη2;η1 on the
phase space ΓCan

Jη2;η1 ¼ Eη2;η1JE
−1
η2;η1 ; ð2:20Þ

each of which is also compatible with Ω. It is well known
(see, e.g., [19,21]) that the dynamical automorphism Λ̂η2;η1
is unitarily implementable if and only if, for all η1, η2 the
operator J − Jη2;η1 is Hilbert-Schmidt on the 1-particle
Hilbert space hJ

TrhJðJ − Jη2;η1Þ2 < ∞: ð2:21Þ
This condition can be restated in a more familiar language
as follows. Dynamics is unitarily implementable if and only
if the expectation value of the number operator N̂η2;η1 ,
defined by Jη2;η1 , in the vacuum state j0iJ inHJ is finite for
all η1, η2. This is the necessary and sufficient condition for
the operators Uη2;η1 in (2.19) to exist.
The counterintuitive fact is that this condition does not

hold for the FLRW space-times under consideration with a
generic scale factor aðηÞ, irrespective of the initial choice of
the complex structure J [13]. As we will see explicitly in
Sec. II C, this is so even in Parker’s tame example
mentioned in Sec. I. This means the dynamics cannot be
transferred to states; Schrödinger representation does not
exist in the standard sense.

C. Failure of unitarity: A simple example

Consider, then, a spatially flat FLRW space-time in which
the scale factor aðηÞ is constant aðηÞ ¼ a− in the past until
η ¼ η−, then varies smoothly till η ¼ ηþ, and becomes a
constant aðηÞ ¼ aþ to the future of ηþ. For our purposes, it
suffices to restrict oneself to evolutions from a time η1 to a
time η2, with η1 < η− to η2 > ηþ. We will show that, in the
generic case, i.e., when a− ≠ aþ, the dynamical automor-
phism Λ̂η2;η1 introduced in Sec. II B cannot be unitarily
implemented in any Fock representation. The obstruction
comes directly from the fact that the underlying space-time
geometry is now dynamicalmaking a− generically different
from aþ.

Note that the flat space-time regions in the past and the
future provide us with two natural quantum representations,
the in and the out, selected by the Poincaré symmetries in
the two regions. We will first prove the result using the in
representation, and then extend it to all representations.
The setting is provided by the canonical framework of

Sec. II B. Let j0iin be the in vacuum defined by Jin, and
N̂η2;η1 the number operator in the representation defined by
Jη2;η1 ¼ Eη2;η1JinE

−1
η2;η1 . Given any positive frequency basis

fγin~k ð~xÞg in the 1-particle Hilbert space hJin defined by the

complex structure Jin, the set fEη2;η1γ
in
~k
ð~xÞg is a complete

basis of the positive frequency subspace of hJη2 ;η1 .
Completeness of the in basis ensures that the two sets of
vectors are related by a Bogoliubov transformation

Eη2;η1γ
in
~k
ð~xÞ ¼ α~kγ

in
~k
ð~xÞ þ β~kγ

in⋆
~k
ð~xÞ; ð2:22Þ

for some coefficients α~k and β~k which we want to
determine. The normalization of the basis vectors implies
jα~kj2 − jβ~kj2 ¼ 1. The criterion for the existence of unitary
evolution operators Uη1η2 was given at the end of Sec. II B.
For the in representation, it translates to

inh0jN̂η2;η1 j0iin ¼
X
~k

jβ~kj2 < ∞: ð2:23Þ

Different choices of basis in hJin will change the coef-
ficients β~k at most by a phase factor. Therefore, the
summability of jβ~kj2 appearing in condition (2.23) does
not depend on the specific choice.
To check whether condition (2.23) is satisfied, it is

helpful to also consider the positive frequency basis γout~k
defined by the complex structure Jout. We will take
advantage of the following two results concerning the
relation between γout~k

and γin~k
.

Lemma 1: The complex Bogoliubov coefficients σð1Þ~k
and σð2Þ~k

, defined via

γout~k
ð~xÞ ¼ σð1Þ~k

γin~k
ð~xÞ þ σð2Þ~k

γin⋆~k ð~xÞ; ð2:24Þ

have the following large-momentum asymptotic behavior:

σð1Þ~k
¼ 1

2

�
a2− þ a2þ
aþa−

�
þO

�
m2

k2

�
;

σð2Þ~k
¼ 1

2

�
a2− − a2þ
aþa−

�
þO

�
m2

k2

�
; when k ¼ j~kj → ∞:

ð2:25Þ

Proof: Since Jin and Jout are the standard flat space
complex structure in the past and future, respectively,
natural bases of positive frequency modes are given by
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γin~k
ð~xÞ¼ ðein~k e

i~k·~x;fin~k e
i~k·~xÞ; γout~k

ð~xÞ¼ ðeout~k
ei~k·~x;fout~k

ei~k·~xÞ;
ð2:26Þ

where

ein~k ¼ 1

a−
ffiffiffiffiffiffiffiffiffi
2win

p ; fin~k ¼ a−

�
−iwinffiffiffiffiffiffiffiffiffi
2win

p
�
;

eout~k
¼ 1

aþ
ffiffiffiffiffiffiffiffiffiffiffi
2wout

p ; fout~k
¼ aþ

�
−iwoutffiffiffiffiffiffiffiffiffiffiffi
2wout

p
�

with win ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2−

p
, wout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2þ

p
. Note that

these modes provide Cauchy data for standard positive
frequency plane waves in flat space. Equations (2.24)

provide two algebraic relations for σð1Þ~k
and σð2Þ~k

, for which

the solutions are

σð1Þ~k
¼ 1

2

a2−win þ a2þwout

aþa−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
woutwin

p ; σð2Þ~k
¼ 1

2

a2−win − a2þwout

aþa−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
woutwin

p :

ð2:27Þ

Expanding for large k one obtains the asymptotic
expressions (2.25). □

Lemma 2: The complex functions λð1Þ~k
and λð2Þ~k

,
defined via

Eη2;η1γ
in
~k
¼ λð1Þ~k

γout~k
þ λð2Þ~k

γout⋆~k
ð2:28Þ

have the following asymptotic behavior:

λð1Þ~k
→ 1; and λð2Þ~k

→ 0 as k → ∞ ð2:29Þ

faster than any power of k−1.
This is a special case of a theorem due to Kulsrud [22].

(The proof relies on the use of adiabatic invariants for the
time-dependent harmonic oscillator; see also [2].) □

With these two results in hand, we are ready to proof the
following result.
Theorem 1 The dynamical automorphism Λ̂η2;η1 can be

unitarily implemented in the in-Fock representation if and
only if a− ¼ aþ.
Proof:We only need to compute the asymptotic behavior

of the coefficients β~k defined in Eq. (2.22). We have

Eη2;η1γ
in
~k
¼ðλð1Þ~k

γout~k
þλð2Þ~k

γout⋆~k
Þ

¼λð1Þ~k
ðσð1Þ~k

γin~k
þσð2Þ~k

γin⋆~k Þþλð2Þ~k
ðσð1Þ⋆~k

γin⋆~k þσð2Þ⋆~k
γin~k

Þ
¼ðλð1Þ~k

σð1Þ~k
þλð2Þ~k

σð2Þ⋆~k
Þγin~k þðλð1Þ~k

σð2Þ~k
þλð2Þ~k

σð1Þ⋆~k
Þγin⋆~k ;

ð2:30Þ

where Eq. (2.28) has been used in the first equality, and
Eq. (2.24) in the second one. Comparing this equation with
(2.22), we obtain

α~k ¼ λð1Þ~k
σð1Þ~k

þ λð2Þ~k
σð2Þ⋆~k

; β~k ¼ λð1Þ~k
σð2Þ~k

þ λð2Þ~k
σð1Þ⋆~k

:

ð2:31Þ

The asymptotic expressions (2.25) and (2.29) then imply

α~k ¼
1

2

�
a2− þ a2þ
aþa−

�
þO

�
m2

k2

�
;

β~k ¼
1

2

�
a2− − a2þ
aþa−

�
þO

�
m2

k2

�
; when k → ∞: ð2:32Þ

Clearly, the β~k coefficients are square summable, i.e.,P
~kjβ~kj2 < ∞, if and only if a− ¼ aþ.

4 We conclude that
the condition (2.23) is satisfied, and therefore the dynami-
cal automorphism can be unitarily implemented in the in-
Fock representation, only in the special situation
a− ¼ aþ. □

To summarize, on the canonical phase space ΓCan, one
can introduce three complex structures, Jin and Jout selected
by the past and future Poincaré symmetries and Jη2;η1 ¼
Eη2;η1JinE

−1
η2;η1 obtained by dynamically evolving Jin to the

future. Lemma 1 says that, if a− ≠ aþ, then ðJin − JoutÞ
fails to be Hilbert-Schmidt. Lemma 2 says that
ðJout − Jη2;η1Þ is Hilbert Schmidt. Therefore, ðJin − Jη2;η1Þ
fails to be Hilbert-Schmidt, whence Λ̂η2;η1 cannot be
unitarily implemented on HJin . Thus, of the three repre-
sentations of the canonical algebra ACan, only the ones
determined by Jη2;η1 and Jout are unitarily equivalent. We
will return to this interplay in Sec. IV.
A natural question now arises: Is there any other

representation, or equivalently any other complex structure
~J, in which dynamics is unitary for generic aðηÞ with our
asymptotic behavior? The answer is also in the negative, as
we now show. Let ~γ~kð~xÞ be the basis of the positive

frequency subspace h ~J associated with ~J. Using the same
argument as above, dynamics will be unitary ifP

~kj ~β~kj < ∞, where the Bogoliubov coefficients ~β~k are
defined by

Eη2;η1 ~γ~k ¼ ~α~k ~γ~k þ ~β~k ~γ
⋆
~k
: ð2:33Þ

It is useful to characterize the freedom in the choice of ~J
through the two real functions r~k and θ~k defined by

~γ~kð~xÞ ¼ ðr2~k þ 1Þ1=2eiθ~kγin~k ð~xÞ þ r~kγ
in⋆
~k
ð~xÞ; ð2:34Þ

4We assume that aðηÞ is a smooth function. In the case
a− ¼ aþ, for β~k to be square summable one only needs aðηÞ
to be C2.
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for all ~k. There is a one-to-one relation between families of

pairs fr~k; θ~kg for every ~k and complex structures ~J.
Therefore, the question we want to answer is if there exists
at least one family fr~k; θ~kg for which the coefficients ~β~k are
square summable. We will proceed by writing ~β~k in terms
of r~k, θ~k, α~k, and β~k, where α~k and β~k were defined in
(2.22). This can be done as follows:

Eη2;η1 ~γ~k ¼ ðr2~k þ 1Þ1=2eiθ~kðEη2;η1γ
in
~k
Þ þ r~kðEη2;η1γ

in⋆
~k
Þ

¼ ðr2~k þ 1Þ1=2eiθ~kðα~kγin~k þ β~kγ
in⋆
~k
Þ

þ r~kðα⋆~kγ
in⋆
~k

þ β⋆~kγ
in
~k
Þ

¼ ½ðr2~k þ 1Þ1=2eiθ~kα~k þ r~kβ
⋆
~k
�γin~k

þ ½ðr2~k þ 1Þ1=2eiθ~kβ~k þ r~kα
⋆
~k
�γin ⋆

~k
: ð2:35Þ

We have used (2.34) and the linearity of Eη1;η2 in the first
equality, and (2.22) in the second. Comparing with
Eqs. (2.33) and (2.34) we find

~β~k ¼ −r~k½ðr2~k þ 1Þ1=2eiθ~kα~k þ r~kβ
⋆
~k
�

þ ðr2~k þ 1Þ1=2eiθ~k ½ðr2~k þ 1Þ1=2eiθ~kβ~k þ r~kα
⋆
~k
�: ð2:36Þ

Now, the behavior of β~k for large k follows from the
asymptotic behavior of α~k and β~k given in Eq. (2.32)

~β~k ¼ ½r2~kð−1þ e−i2θ~kÞ þ e−i2θ~k �
�
1

2

a2− − a2þ
aþa−

�
þO

�
m2

k2

�
:

ð2:37Þ

There exist no positive real function r~k and angle θ~k such

that
P

~kj ~β~kj2 < ∞, unless a− ¼ aþ (in which case ~β~k ¼ 0

for all ~k). Thus, we have arrived at our final result.
Theorem 2 The time evolution from η1 < η− to η2 > ηþ

cannot be implemented by a unitary operator in any Fock
space HJ, irrespective of the choice of the complex
structure J on the canonical phase space ΓCan.

III. RESOLUTION OF THE TENSION

We now wish to resolve the tension between the self-
contained and complete description in the Heisenberg
picture used in the covariant formulation (summarized in
Sec. I), and the failure of unitarity in the canonical picture
(discussed in Sec. II). Therefore, we begin in Sec. III Awith
a statement of the relation between the structures used in
the two frameworks. In Sec. III B we resolve the apparent
tension by generalizing the standard formulation of unitary
dynamics in the canonical formulation and discuss several
conceptual issues related to this resolution. In Sec. III C we

make this resolution explicit through an example from the
cosmological perturbation theory.

A. Relation between the covariant
and canonical theories

Let us begin by reconstructing the covariant theory using
an algebraic approach similar to the one we used in the
canonical theory in Sec. II. Consider an abstractly defined
operator valued distribution ϕ̂ð~x; ηÞ on M, satisfying the
field equation, the ⋆-relations, and the commutation rela-
tions

ð□ −m2Þϕ̂ð~x; ηÞ ¼ 0; ϕ̂⋆ð~x; ηÞ ¼ ϕ̂ð~x; ηÞ; and

½ϕ̂ð~x1; η1Þ; ϕ̂ð~x2; η2Þ� ¼ iℏðGretð~x1; η1; ~x2; η2Þ
−Gadvð~x1; η1; ~x2; η2ÞÞ; ð3:1Þ

where Gret and Gadv are the retarded and advanced Green
functions. The covariant ⋆-algebra ACov is generated by
operators ϕ̂ðfÞ ≔ R

M d4Vϕ̂ð~x; ηÞfð~x; ηÞ obtained by smear-
ing ϕ̂ð~x; ηÞ with test fields fð~x; ηÞ on M. To find a
representation of this algebra, one normally introduces a
positive frequency basis ekðηÞ satisfying (1.3) and (1.4).
This basis defines a complex structure J on the covariant
phase space ΓCov consisting of real classical solutions
ϕð~x; ηÞ to the field equation on M as follows. Given the
expansion

ϕð~x; ηÞ ¼ 1

V0

X
~k

½ekðηÞA~k þ e⋆kðηÞA⋆
−~k
�ei~k·~x; ð3:2Þ

of ϕð~x; ηÞ in terms of these basis vectors (with complex
coefficients Ak), the real solution ðJϕÞð~x; ηÞ is given by5

Jϕð~x; ηÞ ¼ 1

V0

X
~k

½iekðηÞA~k − ie⋆kðηÞA⋆
−~k
�ei~k·~x: ð3:3Þ

In fact, the invariant content in the choice of the basis ekðηÞ
is captured precisely in the complex structure J it deter-
mines: two choices ekðηÞ and ~ekðηÞ lead to the same
vacuum j0i (and hence the same Fock representation of
ACov) if and only if they define the same J. Therefore, it is
more appropriate to denote the representation space byHJ

(rather thanHfekg). Thus, from the algebraic viewpoint, the
new input needed in the passage from the classical phase
space ΓCov to the quantum theory ðACov;HJÞ is, again, an
appropriate complex structure J.
Let us now relate the structures of the covariant

and canonical formulations. Fix a J on ΓCov and the

5Properties of basis functions ensure that the complex structure
is automatically compatible with the natural symplectic structure
Ωcov on ΓCov: Ωcovðϕ1;ϕ2Þ ¼

R ðϕ1∇aϕ2 − ϕ2∇aϕ1ÞdSa, where
the integral is performed on any Cauchy slice of M.
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corresponding representation of ACov on the Fock space
HJ it determines [through (1.2)]. Recall from Sec. II A that
for any given ηo, there is a natural isomorphism Iηo from
ΓCov to ΓCan. Therefore, the complex structure J on ΓCov
induces a 1-parameter family of complex structures Jη on
ΓCan via

Jη ≔ IηJI−1η : ð3:4Þ

By their definition, these complex structures on ΓCan are
related to one another by

Jη1 ¼ E−1
η2;η1Jη2Eη2;η1 ; ð3:5Þ

where, as before, Eη2;η1 ¼ Iη2I
−1
η1 is a map on ΓCan that

evolves states at time η1 to time η2. Each Jη is compatible
with the symplectic structure Ω on ΓCan. Therefore, the
construction discussed in Sec. II B now provides us with a
1-parameter family of representations RJη on Hilbert spaces
HJη of the canonical ⋆-algebra ACan.
To summarize, each choice of an adiabatic basis ekðηÞ

satisfying (1.3) and (1.4) provides us a representation of the
abstract operator algebra ACov of the covariant theory.
On the canonical phase space ΓCan, this basis induces a
1-parameter family of (adiabatically regular) complex
structures Jη, thereby providing us with a 1-parameter
family RJη of representations of the canonical algebra ACan

by operators on Fock spacesHJη . Put differently, there is no
1-1 relation between the textbook covariant quantum theory
summarized in Sec. I and the canonical quantum theory
discussed in Sec. II because the quantum theory based on
the covariant phase space ΓCov does not provide us with a
single Hilbert space H of states and a representation R of
the canonical algebra ACan. There is, however, a clear-cut
relation if we use the extended phase space ΓExt in place of
ΓCan, for the covariant theory provides us with a Hilbert
space HJη for each horizontal leaf Γη

Ext of ΓExt and a
representation RJη of the canonical algebra ACan by
operators onHJη . In this precise sense, the covariant theory
provides us with a specific quantization of the extended
phase space ΓExt rather than the canonical phase space ΓCan.
Remark: What would happen if we considered a static

space-time in place of FLRW? In the classical theory, one
would have a time-independent Hamiltonian selected by
the presence of the isometry, and hence dynamics is
represented by a Hamiltonian flow (inner automorphism)
on the canonical phase space ΓCan; we do not have to
construct ΓExt. In the quantum theory, the presence of the
isometry enables us to select a preferred complex structure
J on ΓCov (assuming the norm of the Killing field remains
strictly bounded away from zero) [20]. Furthermore, the
complex structures Jt on ΓCan, associated with the leaves
of the static foliation, all agree (under the kinematical
identification). Therefore, in this case, one has a single

representation of the canonical algebra ACan on a Fock
spaceHJ on which dynamics is unitarily represented. Thus,
the situations in the classical and quantum domains are
again parallel, but they differ from the corresponding
situations in the FLRW space-times where the space-time
geometry is dynamical.

B. Dynamics and generalized unitarity

This subsection is divided into two parts. In the first, we
extend the notion of unitarity and show that the Heisenberg
dynamics on ACan is in fact unitarily implemented in this
extended sense. In the second, we discuss a subtlety that
arises because of the time dependence of the underlying
geometry.

1. Schrödinger evolution on the extended state space

Let us now revisit the question of unitary implementation
of the 2-parameter family of automorphisms Λ̂η2;η1 onACan.
The relation between the covariant and canonical descrip-
tions spelled out in Sec. III A provides a more general
framework to formulate and analyze this issue. Now that
we have a 1-parameter family of representations ðRJη ;HJηÞ
ofACan, in place of (2.18), we are now led to ask: Given η2,
η1, does there exist a unitary map

Uη2;η1∶ HJ1⟶HJ2 ð3:6Þ

such that

hχ1jRJ1ðΛ̂η2;η1ðÔγÞÞjΨ1i ¼ hUη2;η1χ1jRJ2ðÔγÞjUη2;η1Ψ1i?
ð3:7Þ

Here and in what follows we have set J1 ¼ Jη1 and
J2 ¼ Jη2 for notational simplicity. The left side of (3.7)
provides us the evolution of the matrix element in the
Heisenberg picture in which the operator has evolved to
time η2 but states are frozen at the initial time η1, while on
the right side the states evolve via unitary mapsUη2;η1 while
the operator is frozen at the initial time η1. In terms of
operators, then, we are led to generalize (2.19) to seek
operators Uη2;η1 satisfying

RJ1ðΛ̂η2;η1ÔγÞ ¼ U−1
η2;η1ðRJ2ðÔγÞÞUη2;η1 ð3:8Þ

for all γ. In the extended framework introduced in
Sec. III A, this is the natural formulation of the problem.
Indeed, it is completely analogous to the formulation in the
classical theory, where we ask if there is a symplectic map
from the leaf Γη1

Ext of the extended phase space, to its leaf
Γη2
Ext, which implements the dynamical automorphism

Λη2;η1 . That is, in both cases, the question is whether the
dynamical automorphism on the observable algebra can be
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made inner via mappings on the extended state space from
states at time η1 to the states at time η2.
To answer this question, we use two facts. First, the

definition (2.5) of the dynamical automorphisms provides
an explicit expression of Λ̂η2;η1Ôγ that appears on the left
side of (3.8),

Λ̂η2;η1Ôγ ≔ Ô~γ where ~γ ¼ E−1
η2;η1γ: ð3:9Þ

Second, we use expressions (2.16) of the annihilation and
creation operators, ÂðγÞ, Â†ðγÞ,

ÂðγÞ ≔ 1

2ℏ
RJðÔγ þ iÔJγÞ;

and Â†ðγÞ ≔ 1

2ℏ
RJðÔγ − iÔJγÞ: ð3:10Þ

These two inputs enable us to extract from (3.8) the relation
between the annihilation operators Â2 on HJ2 and the
creation and annihilation operators Â†

1 and Â1 on HJ1 that
the desired unitary map Uη2;η1 must yield

−2iÂ1ðE−1
η2;η1γÞ ¼ U−1

η2;η1ðÂ2ð½Eη2;η1J1E
−1
η2;η1 þ J2�γÞ

þ Â†
2ð½Eη2;η1J1E

−1
η2;η1 − J2�γÞÞUη2;η1 ;

ð3:11Þ

where we have used the consequence, ÂðJγÞ ¼ −iÂðγÞ
and Â†ðJγÞ ¼ iÂ†ðJγÞ, of (3.10). Applying this equation
to the vacuum state j01i in HJ1 and setting Uη2;η1 j01i ¼
jΨ2i ∈ HJ2 , we find

0 ¼ ðÂ2ð½Eη2;η1J1E
−1
η2;η1 þ J2�γÞ

þ Â†
2ð½Eη2;η1J1Eη2;η1 − J2�γÞÞjΨ2i; ∀γ ∈ ΓCan:

ð3:12Þ

Now, the argument used in the standard analysis [19,21] of
the unitary equivalence of the two Fock representations of
ACan implies that the desired unitary maps Uη2;η1 exist if
and only if there is a normalizable state jΨ2i ∈ HJ2
satisfying (3.12). This in turn is the case if and only if

½Eη2;η1J1E
−1
η2;η1 − J2� is Hilbert-Schmidt ð3:13Þ

(on the 1-particle Hilbert space hJ2). But recall that, since
the complex structures Jη are induced on ΓCan by a single
(adiabatically regular) complex structure J on ΓCov, we
have J2 ¼ Eη2;η1J1E

−1
η2;η1 . Therefore the Hilbert-Schmidt

requirement is trivially satisfied and dynamics is unitarily
implemented in the precise sense spelled out in (3.8).
Remark: Because the Hilbert-Schmidt requirement is

trivially satisfied whenever the family Jη is induced by a
single complex structure J on ΓCov, one may think that the

resulting dynamics in the generalized Schrödinger picture
is also trivial in some sense. We want to emphasize that this
is not the case; in this Schrödinger picture, the time
evolution of states faithfully mirrors the Heisenberg
dynamics of operators as usual. This is simply because,
by construction, the unitary operators Uη;η0 satisfy (3.8),

hχ0jRJη0
ðΛ̂η;η0ðÔγÞÞjΨ0i ¼ hUη;η0χ0jRJηðÔγÞjUη;η0Ψ0i:

ð3:14Þ

The left side is manifestly η dependent and provides the
evolution of the matrix elements of the Heisenberg oper-
ators in the “initial”Hilbert spaceHJη0

. The right side refers

to the Schrödinger picture. The equality guarantees that the
evolution of states, jΨ0i → Uη;η0 jΨ0i and jχ0i → Uη;η0 jχ0i,
in this picture is both nontrivial and correct. In the next
subsection we will make these considerations explicit using
2-point functions.
To summarize, if we equip ΓCan with a single complex

structure J, then, as we saw in Sec. II C, the dynamical
automorphisms Λ̂η2;η1 on ACan cannot be made “inner”—
i.e., unitarily implemented—on the Fock space HJ for a
generic FLRW space-time. But in this case, already in the
classical theory, the dynamical automorphisms Λη2;η1 on
the classical observable algebra cannot be made inner on
the phase space ΓCan. To make them inner, one has to
extend ΓCan to ΓExt. Therefore, in the quantum theory, it is
natural to first assign a complex structure Jη to each leaf
Γη
Ext of ΓExt and construct the corresponding representations

ðHJη and RJηÞ of ACan. We then ask if the dynamical

automorphism Λ̂η2;η1 on ACan can be made inner on the
resulting extended state space HExt. We found that if
the family Jη is induced by a complex structure J on
ΓCov, the answer is in the affirmative. In this precise sense,
the apparent tension between the covariant and canonical
frameworks is resolved.

2. The subtlety

While the situation in the quantum theory parallels that
in the classical theory in FLRW space-times, there is also
an important difference. Leafs Γη

Ext of the classical phase
space are all naturally isomorphic at the kinematic level:
ΓExt ¼ ΓCan ×R. This isomorphism is distinct from that
provided by the symplectic flow which makes the dynami-
cal automorphism Λη2;η1 inner. In the quantum theory, on
the other hand, because the complex structures Jη are all
distinct and Jη1 − Jη2 fails to be Hilbert-Schmidt for generic
FLRW metrics, there is no kinematical identification
between the Hilbert spaces Hη. We only have the dynami-
cal maps Uη2;η1 that provide a correspondence between
quantum states at different times. That is, HExt does not
have the simple product structure HExt ¼ H ×R, which
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would have enabled one to kinematically identify states at
different times. Rather, the total state space HExt is now a
genuine bundle, where the base space is the real line R
corresponding to time η and the fibers are the Fock spaces
HJη which (being separable Hilbert spaces) are all iso-
morphic but not naturally isomorphic at the kinematic level.
We have the maps

HExt⟶R; and η ∈ R⟶HJη ⊂ HExt; ð3:15Þ

but kinematics does not endow the total bundle HExt with
natural horizontal subspaces. As we discuss below, it is
important to keep this distinction in mind while interpreting
dynamics on HExt.
From this discussion, it may appear that the contrast is

tied with the transition from classical to quantum descrip-
tions. This is not correct: the subtlety is specific to quantum
field theory on time-dependent background space-times6

and not shared by other quantum systems which also have
time-dependent Hamiltonians but live in time-independent
space-times, or have a finite number of degrees of freedom.
Consider for example nonrelativistic systems with time-
dependent Hamiltonians. Then, in the classical description,
to make the dynamical automorphism on the algebra of
observables inner, we again have to work with the extended
phase space ΓExt. In the quantum theory, states are now
represented by wave functions Ψð~x; tÞ ∈ HExt which are
square integrable in ~x for each t. Dynamics is unitarily
implemented in the same sense as in our discussion of
quantum fields on FLRW space-times:

Ut2;t1∶ Ht1⟶Ht2 ; Ut2;t1Ψ1ð~x; t1Þ ¼ Ψ2ð~x; t2Þ;
ð3:16Þ

where Ut2;t1 is the time-ordered exponential, Ut2;t1 ¼
T exp½ð1=iℏÞ R t2

t1 HðtÞdt�.7 But now the leaves Ht of
HExt are all naturally isomorphic kinematically:
Ht ¼ L2ðR; d3xÞ for all t. Therefore, the total state space
HExt has a direct product structure just as that of the total
phase space ΓExt,

HExt ¼ H ×R; with H ¼ L2ðR; d3xÞ: ð3:17Þ

The situation is completely analogous if we consider
linear, massive quantum fields with external, time-
dependent potentials, say of compact support on flat
space-time with topology T 3 ×R. Then, in the classical
theory, to make the dynamical automorphism inner, we are
again led to construct ΓExt. But now we can adopt the
following strategy in the quantum theory. We can just fix a
complex structure J on ΓCan (e.g., J ¼ Jin), construct the
corresponding representation ðHJ; RJÞ of ACan, set the
extended state space to be just

HExt ¼ HJ ×R; ð3:18Þ

and make the dynamical automorphism Λ̂η2;η1 inner via a
family of unitary maps Uη2;η1 from states jΨ1; t1i to
jΨ2; t2i. This is possible because J − Eη2;η1JE

−1
η2;η1 is now

Hilbert-Schmidt. (This follows from the arguments used in
Lemmas 1 and 2 because now the volume of the 3-torus—
or the scale-factor a—is time independent.) Because the
total state spaceHExt can be taken to be a trivial bundle, we
now have a kinematical identification between states at
different times, in addition to the dynamical map Uη2;η1
which evolves states on the leaf Hη1

J to those on the leaf
Hη2

J . Thanks to the kinematical isomorphism, it is mean-
ingful to say that the state jΨ2; η2i ¼ Uη2;η1 jΨ1; η1i at time
η2 is different from the state jΨ1; η1i at time η1.
On generic FLRW backgrounds, on the other hand,

because the geometry is time dependent, the complex
structure Jη1 is inequivalent to Jη2 , whence the state space
is a nontrivial bundle: there is no kinematical identification
between states at different times. As a result, now we only
have the dynamical relation between the states at two
different times given by Uη2;η1. In the case when Jη are
determined by a complex structure J on ΓCov through
Jη ¼ IηJI−1η , the operator Uη2;η1 maps the vacuum state in
HJη1

to that inHJη2
. However, since there is no kinematical

identification between HJη1
and HJη2

, this does not imply
that the dynamics is “trivial.” The nontrivial time evolution
of states in the Schrödinger picture can be made more
explicit by writing the evolution of the two-point function
of field operator (-valued distributions). In the case
under consideration in which J1 and J2 are induced by a
single covariant complex structure J, the representation
of the field operators can be made explicit using a
positive frequency basis of solutions corresponding
to J: on HJη1

we have RJ1ðφ̂ð~xÞÞ ¼
P

~kðÂ~kekðη1Þ þ
Â†
−~k
e⋆k ðη1ÞÞei~k·~x, and on HJη2

, we have RJ2ðφ̂ð~xÞÞ ¼P
~kðÂ~kekðη2Þ þ Â†

−~k
e⋆kðη2ÞÞei~k·~x. Then, at time η1, the

2-point function is given by

h01jRJ1ðφ̂ð~xÞφ̂ð~x0ÞÞj01i ¼
X
~k

jekðη1Þj2ei~k·ð~x−~x0Þ: ð3:19Þ

6More precisely, the subtlety arises if there is no timelike
Killing field whose flow preserves the chosen foliation by
Cauchy surfaces. If ðM; gabÞ does not admit a timelike isometry,
then this subtlety arises for any choice of foliation. But it also
arises in stationary—even flat—space-times if the foliation used
to describe dynamics is not preserved by any timelike Killing
field [10].

7After this paper was posted on the arXiv, we learned of an
elegant formulation of quantum dynamics of nonrelativistic
particles with time-dependent Hamiltonians, in the language of
bundles discussed here [23]. It provides new geometrical insights,
especially in the case when the particle is interacting with a time-
dependent gauge field.
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Evolution in the Schrödinger picture maps it to

hUη1;η201jRJ2ðφ̂ð~xÞφ̂ð~x0ÞÞjUη1;η201i
¼ h02jRJ2ðφ̂ð~xÞφ̂ð~x0ÞÞj02i≡

X
~k

jekðη2Þj2ei~k·ð~x−~x0Þ:

ð3:20Þ

This evolution is nontrivial, since ekðη1Þ are different
from ekðη2Þ, and it agrees with the familiar evolution for
the two-point function in the textbook covariant approach.
In this section we were primarily interested in resolving

the apparent tension between the covariant and canonical
descriptions. But we can also look at the problem purely
from a canonical perspective. Then, to pass to the quantum
theory starting from the extended phase space ΓExt we need
to equip each leaf Γη

Ext with a suitable complex structure Jη.
Any given (adiabatically regular) complex structure J on
ΓCov provides a suitable family Jη on ΓCan. But we can also
choose another family Jη, without any reference to a
complex structure J on ΓCov, where Jη2 does not equal
Eη2;η1Jη1E

−1
η2;η1 . So long as ðJη2 − Eη2;η1Jη1E

−1
η2;η1Þ is Hilbert-

Schmidt for all η1, η2, we will again be led to a natural
unitary implementation of the dynamical automorphisms
Λ̂η2;η1 . Now, the operators Uη1;η2 will generically map the
vacuum in HJη1

to an excited state in HJη2
. An example of

this situation is provided by the S-matrix description
discussed in Sec. IV.
Remark: In the classical theory, the total state space

ΓExt ¼ Γ ×R is not a symplectic space. Rather, each of its
leaves Γη

Ext is a symplectic space. Similarly in the quantum
theory the total state space HExt does not have a Hilbert
space structure. Rather, each of its fibers,HJη , has a natural
Hilbert space structure. These features are common to all
three cases discussed above: nonrelativistic quantum
mechanics with time-dependent potentials, quantum field
theory in flat space-time with time-dependent external
potentials of compact support, and quantum field theory
in FLRW space-times discussed in this paper.

C. Trading time dependence from
space-time geometry to a potential

In this subsection, we will discuss an interesting exam-
ple, of direct interest to the cosmological perturbation
theory, in which a field redefinition lets us regard a test
quantum field in FLRW space-time as propagating in flat
space-time, but interacting with a time-dependent potential.
The example creates an apparent puzzle because, while in
the original version the dynamical automorphism can be
unitarily implemented only in the generalized sense of
Sec. III B, in the second version, dynamics can be unitarily
implemented in the standard sense, i.e., within a single
representation of the canonical algebra. This issue is
explained and resolved in the first part of this subsection.

In the second part, we use the example to bring out the
interplay between space-time geometry and the ultraviolet
properties of test quantum fields in that space-time.

1. The issue of unitarity

Consider a massless8 scalar field ϕ on a FLRW space-
time ðM; gabÞ where, as before, the metric is given by

gabdxadxb ≡ a2ðηÞg∘abdxadxb ¼ a2ðηÞð−dη2 þ d~x2Þ;
ð3:21Þ

where g∘ab is a flat metric on T 3 ×R. As discussed in the
last two subsections, a complex structure J on ΓCov
naturally induces a 1-parameter family of complex struc-
tures Jη on ΓCan, any two of which are (Hilbert-Schmidt)
inequivalent. As a result, the dynamical automorphism
Λ̂η2;η1 fails to be unitarily implemented in any one repre-
sentation RJη of the canonical observable algebra ACan.
However, because FLRW space-times are conformally

flat, one can adopt another strategy, as is often done in the
cosmological perturbation theory. Recall first that because
of the conformal transformation properties of the
□-operator and the scalar curvature R of gab, one has

□ϕ −
R
6
ϕ ¼ a−3□

∘
ϕ
∘ ð3:22Þ

because R
∘
vanishes, where we have set ϕ

∘ ¼ aϕ. (In the

cosmological literature, ϕ
∘
is generally denoted by χ.) Using

the fact that R is given by R ¼ 6ða00=a3Þ, where a prime
denotes the derivative with respect to η, it follows that ϕ

satisfies □ϕ ¼ 0 whenever ϕ
∘
is a solution of the equation

□
∘
ϕ
∘ þ a00

a
ϕ
∘ ¼ 0: ð3:23Þ

Therefore, although the physical field of interest ϕ prop-
agates on the FLRW space-time, mathematically we can

reduce the problem to that of a field ϕ
∘
propagating on a flat

space-time, ðM; g∘ abÞ, in the presence of a time-dependent
potential ða00=aÞ.
Let us explore the quantum field theory of

ˆ
ϕ
∘
. By

repeating the constructions introduced in Sec. II, one
arrives at the covariant and canonical descriptions for this
field. However, because this field “lives” in flat space-time,
as discussed in Sec. III B, a key difference arises. The

1-parameter family of complex structures J
∘
η induced on

Γ
∘
Can by any one complex structure J

∘
on Γ

∘
Cov are now

8The results of this subsection hold also in the massive case.
We focus on the massless case because of its direct relevance to
the cosmological perturbation theory.
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(Hilbert-Schmidt) equivalent. Therefore, there is now a
natural kinematical identification between the Hilbert
spaces H

J
∘
η
; the bundle HExt has a product structure

HExt ¼ H
J
∘ ×R, where J

∘
is any one of the complex

structures in the family J
∘
η. A more interesting consequence

is that the dynamical automorphisms Λ
∘
η2;η1 onA

∘
can are now

unitarily implementable in the standard sense.9 For con-

creteness, let us fix a J
∘
and work with the representation

ðR
J
∘ ;H

J
∘ Þ. Then, we can state this result as follows: Given

any η1; η2, there exists a unitary map U
∘
η2;η1 onHJ

∘ such that

R
J
∘ ð ˆΛ∘ η2;η1ðOγ

∘ÞÞ ¼ U
∘ −1
η2;η1RJ

∘ ðOγ
∘ÞU∘ η2;η1 ; ð3:24Þ

for all γ∘ ∈ Γ
∘
Can. Given that the relation between the two

fields is very simple—
ˆ
ϕ
∘ ð~x; ηÞ ¼ aðηÞϕ̂ð~x; ηÞ—at first sight

(3.24) may seem to contradict the fact that the dynamical
automorphism is not unitarily implementable for the
physical field ϕ̂ in the standard sense but requires a
generalized notion of unitarity, introduced in Sec. III B.
However, this is not the case. In fact we will now show that
(3.24) directly leads us to the generalized unitarity (3.8) for
the physical field ϕ̂ and vice versa.
Since this issue is rather confusing at first, we will spell

out the arguments in detail. A systematic analysis, starting

from the Lagrangian description of the field ϕ
∘ ð~x; ηÞ, shows

that the map ϕ
∘ ð~x; ηÞ → ϕð~x; ηÞ ¼ ðϕ∘ ð~x; ηÞ=aðηÞÞ induces a

natural 1-parameter family of symplectomorphisms

Sη∶ Γ
∘
Can → ΓCan between the two canonical phase spaces:

Sηðφ∘ ð~xÞ; π∘ ð~xÞÞ ¼ ðφð~xÞ; πð~xÞÞ ≔ ða−1ðηÞφ∘ ð~xÞ; aðηÞπ∘ ð~xÞÞ;
ð3:25Þ

where the dependence on the parameter η in Sη is a direct
consequence of the fact that the scale factor aðηÞ is η

dependent. More succinctly: for all γ
∘ ∈ Γ

∘
Can, we have

Sηðγ∘Þ ¼ γη ∈ Γη
Ext, the leaf of ΓExt corresponding to time η.

It follows immediately that the evolution maps E
∘
η2;η1 and

Eη2;η1 on Γ
∘
Can and ΓExt are related by

Eη2;η1 ¼ Sη2E
∘
η2;η1S

−1
η1 : ð3:26Þ

Next, given any complex structure J
∘
on Γ

∘
Can (compatible

with the symplectic structure thereon), we naturally obtain
a 1-parameter family of complex structures Jη on ΓCan

(compatible with the symplectic structure thereon),

Jη ¼ SηJ
∘
S−1
η : ð3:27Þ

The 1-particle Hilbert space hJo [obtained from ðΓ∘ Can; J
∘ Þ] is

therefore naturally isomorphic with the 1-particle Hilbert
space hJη [obtained from ðΓCan; JηÞ]. Denote the resulting
isomorphism from the Fock space H

J
∘ to the Fock space

HJη by Vη. Then the representation maps R
J
∘ and RJη are

related by

RJηðÔγηÞ ¼ VηRJ
∘ ðOγ

∘ ÞV−1
η ð3:28Þ

for all η where γη ¼ Sηγ
∘ . Finally, Eqs (3.26)–(3.28) and the

definitions of the dynamical automorphisms on A
∘
can and

ACan imply

R
J
∘ ð ˆΛ∘ η2;η1ðOγ

∘ÞÞ ¼ V−1
η1 ðRJη1

ðΛ̂η2;η1ðÔγη2
ÞÞÞVη1 : ð3:29Þ

With these preliminaries out of the way, we can reexpress

the
ˆ
ϕ
∘
unitarity condition (3.24) in terms of the quantum

theory of ϕ̂. For the left side of (3.24), we will use (3.29).
The right side can be reexpressed as

U
∘ −1
η2;η1RJ

∘ ðOγ
∘ ÞU∘ η2;η1 ¼ U

∘ −1
η2;η1ðV−1

η2 RJ2ðOγη2
ÞVη2ÞU

∘
η2;η1 :

ð3:30Þ

Let us set

Uη2;η1 ¼ Vη2U
∘
η2;η1V

−1
η1 : ð3:31Þ

Then, (3.29) and (3.30) imply that the unitarity result (3.24)

for the mathematical
ˆ
ϕ
∘
field propagating in the flat space-

time metric g∘ab is equivalent to:

RJη1
ðΛ̂η2;η1ðÔγ1ÞÞ ¼ U−1

η2;η1RJη2
Uη2;η1 ð3:32Þ

for the physical ϕ̂ field propagating in the FLRW space-
time gab of Eq. (3.21). But (3.32) is precisely the expression
of generalized unitarity (3.8) introduced in Sec. III B.
To summarize, the standard notion of unitarity for

ˆ
ϕ
∘

translates directly to the generalized notion of unitarity for
the physical field ϕ̂ and vice versa. Consequently, the
standard quantum dynamics on the Hilbert space H

J
∘ , is

equivalent to the generalized dynamics on HExt. The
underlying “mechanism” behind this equivalence is suc-

cinctly captured in the expression (3.31) relating U
∘
η2;η1 to

Uη2;η1 . On the right hand side of this relation, U
∘
η2;η1 is

multiplied on the left by the kinematic map V−1
η2 determined

by the value of the scale factor aðηÞ at η ¼ η2 while on the

9This follows from our results of Sec. III C and the fact that
aðηÞ ¼ 1 on ðM; g∘ abÞ. For an alternative proof, see [13].
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right side it is multiplied by Vη1 determined by the value of
the scale factor at η ¼ η1.

2. The issue of ultraviolet regularity

The discussion of Sec. III C 1 shows that fields
ˆ
ϕ
∘
and ϕ̂

are equivalent from dynamical considerations in a natural
sense. The goal of this subsection is to bring out the fact
that the issue of ultraviolet regularity of operator products
goes beyond unitarity of dynamics. To keep this discussion
brief, we will work in the covariant description of both
fields (although results can be readily translated to the
canonical picture).
Because the quantum field

ˆ
ϕ
∘
propagates in flat space-

time, it is tempting to construct the quantum theory using
structures that are familiar from flat space quantum field
theory. Recall that, for a free massless field in ðM; g∘ abÞ, the
mode functions e0kðηÞ ¼ e−ikη=

ffiffiffiffiffi
2k

p
provide the standard

positive frequency basis. In the presence of the time-
dependent potential a00=a, of course, they do not satisfy
the field equation

e∘ 00kðηÞ þ ðk2 − ða00=aÞðηÞÞe∘ kðηÞ ¼ 0 ð3:33Þ

implied by (3.23). Nonetheless, one can fix a convenient
time η ¼ η0 and define a positive frequency basis e∘ kðηÞ for
the field ϕ

∘
by asking that it satisfy (3.33) and have the

initial data corresponding to the flat space basis func-
tions at time η0, namely, e∘ kðηoÞ ¼ e−ikη0=

ffiffiffiffiffi
2k

p
and

e∘ 0k ¼ −i
ffiffiffiffiffiffiffiffi
k=2

p
e−ikη0 . Indeed, this strategy is commonly

adopted in cosmology (see, e.g., [13,24]). Let us denote

the complex structure on Γ
∘
Cov determined by this basis by

J
∘
. It leads one to a Fock representation ðR

J
∘ ;H

J
∘ Þ of the

algebra A
∘
cov generated by

ˆ
ϕ
∘ ð~x; ηÞ.

However, the field of physical interest is ϕ̂. In particular,
for the backreaction calculations, we need the expectation
values of the renormalized stress-energy tensor of ϕ̂ð~x; ηÞ,
and not of the rescaled field

ˆ
ϕ
∘ ¼ aðηÞϕ̂ð~x; ηÞ which was

introduced for mathematical convenience. A natural strat-
egy would be to induce a representation of ACov generated

by ϕ̂ starting from the representation ðR
J
∘ ;H

J
∘ Þ of A∘ cov. To

this goal, let us begin by noting that there is a natural

isomorphism I between the covariant phase spaces Γ
∘
Cov

and ΓCov of ϕ
∘
and ϕ,

Iðϕ∘ ð~x; ηÞÞ ¼ ϕð~x; ηÞ ≔ ϕ
∘ ð~x; ηÞ=aðηÞ: ð3:34Þ

Note that, in spite of the η dependence of the scale factor,
we have a single isomorphism—rather than a 1-parameter

family of them—because both ϕ
∘
and ϕ are functions of η.

Clearly ϕð~x; ηÞ, so defined, satisfies the desired field
equation □ϕ ¼ 0, and it is easy to verify that I preserves
the symplectic product. Therefore, we can now use the

complex structure J
∘

on Γ
∘
Cov to introduce a specific

complex structure J on Γ∶ J ≔ IJ
∘
I−1. In terms of basis

functions, a positive frequency basis ekðηÞ corresponding to
J can be directly specified as solutions of

e00kðηÞ þ ð2a0=aÞðηÞekðηÞ þ k2ekðηÞ ¼ 0; ð3:35Þ

with initial data at η ¼ η0 given by

ekðη0Þ ¼
e−ikη0

aðη0Þ
ffiffiffiffiffi
2k

p ; and

e0kðη0Þ ¼ −i
ffiffiffi
k
2

r
e−ikη0

aðη0Þ
−
e−ikη0a0ðη0Þffiffiffiffiffi
2k

p
a2ðη0Þ

ð3:36Þ

[so that ekðηÞ ¼ e∘ kðηÞ=aðηÞ]. A natural question is whether
this basis ekðηÞ is regular to fourth adiabatic order so that
the renormalized stress energy tensor of the ϕ̂ field is well
defined in the representation ðRJ;HJÞ ofACov. This can be
readily checked by comparing the large k behavior of these
basis functions with the one needed for adiabatic regularity,
given, e.g., in [25].
Unfortunately, the basis fails to be regular even at second

order. Thus, if we were to induce a Fock representation of ϕ̂

from any of the seemingly natural bases e∘ kðηÞ for ϕ
∘
, one

would not be able to renormalize dimension 2 operators
such as ϕ̂2ð~x; ηÞ in that representation (let alone dimension
4 operators such as the stress energy tensor). This result
brings out the more general fact that considerations of
ultraviolet regularity impose much more stringent require-
ments on the quantization procedure than the unitarity
considerations.

IV. THE S-MATRIX DESCRIPTION

In this section we will show that in FLRW space-times
which become time independent in the distant future and
past, the generalized dynamics in the canonical theory
between the in and out representations is unitary and
reproduces the physics of the well-known S-matrix of
the covariant theory.
Let us again consider scale factors aðηÞ as in Parker’s

example discussed in Sec. II C, where the scale factor is
constant in the past of the surface η ¼ η− and to the future
of another surface η ¼ ηþ (although our S-matrix consid-
erations will go through in a more general context, where
aðηÞ becomes constant only asymptotically in the distant
past and the distant future at a suitable rate). In this case, in
the covariant picture, one has an S-matrix description that
involves two distinct natural complex structures J∓ on
ΓCov, inherited from the flat space-time metrics in the
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distant past and the distant future which provide the in and
out Fock representations for the S-matrix. Since the scale
factor aðηÞ is time independent outside a finite interval
ðη1; η2Þ (with η1 < η− and η2 > ηþ), it follows that
ðJþ −J−Þ is Hilbert-Schmidt (on the 1-particle Hilbert
spaces hJ− or hJþ). This immediately implies that there is a
well-defined S-matrix, providing a unitary map from the
past Fock spaceHJ− to the future FockHJþ (see, e.g., [8]).
As is well known, this map contains all the information
about dynamics, in particular about particle creation and
scattering amplitudes between early and late times. This
situation is somewhat different from that considered in
Sec. III where ΓCov was equipped with a single complex
structure J. Nonetheless, as we will now show, this
S-matrix description fits in naturally with our extended
notion of unitary implementation of dynamics.
The existence of past and future flat regions provides two

natural complex structures J1 and J2 also on ΓCan, directly
induced by the covariant complex structures Jþ and J−,

J1 ¼ Iη1J
−I−1η1 and J2 ¼ Iη2J

þI−1η2 ; ð4:1Þ

where Iη1 and Iη2 are the past and future isomorphisms
between ΓCov and ΓCan. Each of these complex structures
on ΓCan provides a representation (RJ1 and RJ2 , respec-
tively) of the canonical algebra ACan. The question is if the
dynamical automorphism Λ̂η2;η1 on ACan induced by the
classical S-matrix Eη2;η1 is unitarily implementable. More
precisely, does there exist a unitary map Uη2;η1 from the
Fock space HJ1 to HJ2 such that

RJ1ðΛ̂η2;η1ÔγÞ ¼ U−1
η2;η1ðRJ2ÔγÞUη2;η1 ð4:2Þ

for all Ôγ in ACan? If so, Uη2;η1 would be the unitary
S-matrix in the canonical theory.
But we already examined this mathematical question in a

general context in Sec. III B. Our answer was that this is the
case if and only if ½Eη2;η1J1E

−1
η2;η1 − J2� is Hilbert-Schmidt

on the 1-particle Hilbert space hJ1 [see (3.13)]. Let us
recast this condition in terms of J− and Jþ. Using (4.1)
and the fact that the evolution map Eη2;η1 is given by
Eη2;η1 ¼ Iη2I

−1
η1 , we have

Eη2;η1J1E
−1
η2;η1 − J2 ¼ ðIη2I−1η1 ÞðIη1J−I−1η1 ÞðIη1I−1η2 Þ

− Iη2J
þI−1η2 ¼ Iη2ðJ− −JþÞI−1η2 :

ð4:3Þ

Now, since Iη1 is a symplectomorphism from ΓCov to ΓCan,
from the relation (4.1) between J1 and J− it follows
that it extends to an isomorphism between the 1-particle
Hilbert spaces hJ− and hJ1 . Therefore, (4.3) implies that
Eη2;η1J1E

−1
η2;η1 − J2 is Hilbert-Schmidt on hJ2 if and only if

ðJ− −JþÞ is Hilbert-Schmidt on HJ− . But we already

know this to be the case; indeed, this is the reason why the
S-matrix is well defined in the covariant theory. Thus the
fact that the S-matrix is unitary in the covariant theory
directly implies that Uη2;η1 , the S-matrix of the (extended)
canonical theory, exists and is unitary.
Remark: Note that, as in the extension of the canonical

picture developed in Sec. III, the criterion for the existence
of a unitary S-matrix is not whether ðJ2 − J1Þ is Hilbert-
Schmidt as one might first think, but rather, whether
ðJ2 − Eη2;η1J1E

−1
η2;η1Þ is Hilbert-Schmidt. The meaning of

this condition is rather simple: One has to apply J1 and J2
to the initial data at times η1 and η2 of the same solution
ϕð~x; ηÞ [rather than to the same ðφð~xÞ; πð~xÞÞ in ΓCan].

V. GENERAL GLOBALLY HYPERBOLIC
SPACE-TIMES

The goal of this section is to point out that the results of
previous sections admit a straightforward extension to
arbitrary globally hyperbolic space-times. Specifically,
while in generic situations the dynamical evolution of
the field operator and its conjugate momentum is not
unitary in any fixed Fock representation, we will show
that unitarity does hold in the generalized sense of III B.
Consider then a scalar field ϕ satisfying □ϕ −m2ϕ ¼ 0

on a globally hyperbolic space-time ðM ¼ M; gabÞ. To
construct the Hamiltonian description in the canonical
framework, one has to introduce a time function t, defining
a foliation of M by Cauchy surfaces Mt and an evolution
vector field ta satisfying ta∇at ¼ 1, whose integral curves
identify points on different leaves Mt. In what follows, we
will work with a fixed pair ðt; taÞ. The covariant phase
space ΓCov again consists of the space of solutions ϕð~x; tÞ to
the field equation, and the canonical phase space ΓCan is the
space of pairs ðφð~xÞ; πð~xÞÞ on the 3-manifoldM of integral
curves of ta. As before, we can define isomorphisms It for
each value of t, between ΓCov and ΓCan,

Itϕð~x; tÞ ¼ ðφð~xÞ; πð~xÞÞ ∈ ΓCan; where; now

φð~xÞ ¼ ϕð~x; tÞ; πð~xÞ ¼ ffiffiffi
q

p
na∇aϕð~x; tÞ: ð5:1Þ

Here na is the future-directed, timelike unit vector field
orthogonal to Mt, qab ¼ gab þ nanb is the positive
definite metric tensor on Mt induced by gab, and q is its
determinant. These isomorphisms It naturally define the
2-parameter family of dynamical maps Et2;t1 on ΓCan:
Et2;t1 ¼ It2I

−1
t1 . The dynamical maps, in turn define a

2-parameter family of automorphisms Λt2;t1 on the algebra
of observables on the canonical phase space ΓCan.
We can now construct the quantum theory following the

steps laid out in Sec. II B. Let us begin with the abstract
algebra ACan of quantum operators, generated by the
(smeared versions of the) canonically conjugate pairs
ðφ̂ð~xÞ; π̂ð~xÞÞ onM. The classical dynamical automorphisms
Λt2;t1 naturally induce a 2-parameter family of dynamical
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automorphisms Λ̂t2;t1 on ACan. The question now is if these
are unitarily implemented in the quantum theory.
To answer this question, we need to represent the

abstractly defined operators—smeared versions of ϕ̂ð~x; tÞ
in the covariant theory, and of ðφ̂ð~xÞ; π̂ð~xÞÞ in the canonical
theory—by concrete operators on Hilbert spaces. In the
FLRW models we constructed the necessary representa-
tions using adiabatically regular complex structures.
However, since the notion of adiabatic regularity is tied
to spatially homogeneous space-times, we need a more
general strategy. We will replace it by the Hadamard
regularity which again leads to a natural procedure to
renormalize products of operator valued distributions, such
as the stress-energy tensor. Let us begin with the covariant
phase space. LetJ, then, be a Hadamard complex structure
on ΓCov, i.e., one that leads to a Fock representation ofACov
in which the n-point functions have the Hadamard behav-
ior. Then, the isomorphisms Iη of (5.1) again provide us
with a 1-parameter family of complex structures Jη on ΓCan,
Jη ¼ IηJI−1η , which are automatically compatible with the
canonical symplectic structure. These are the regular
complex structures we want to consider on ΓCan.
Now, given any complex structure J in this family, the

analysis of Sec. II B tells us that dynamics is unitarily
implementable in the Fock space HJ if and only if
the operator ðEt2;t1JE

−1
t2;t1 − JÞ is Hilbert-Schmidt on the

1-particle Hilbert space hJ. It is obvious that this condition
fails on generic space-times since it already fails for the
FLRW backgrounds.
By replacing the foliationMη used in FLRW space-times

with the fixed foliation Mt we now have, we can directly
adopt the strategy presented in Sec. III B to define a
generalized notion of dynamics which is unitary. Let ΓExt ¼
ΓCan ×R denote, as before, the extended phase space,
where R represents time. The complex structure Jt is
naturally associated with the leaf Γt

Ext of ΓExt. Each Jt again
provides us with a Fock representation ðRJt ;HJtÞ of ACan,
and we are led to an extended space HExt of quantum
states just as in the classical theory. HExt is a bundle as in
Sec. III B, with the real line R representing time as the base
space and the Fock spacesHJt serving as fibers. It provides
us the natural arena to phrase the question of unitary
implementation of the dynamical automorphism. In the
extended framework, we are led to ask: Does there exist a
2-parameter family of unitary maps, Ut2;t1∶ HJt1

→ HJt2
,

that implement the dynamical automorphisms Λt2;t1 on
ACan? The analysis presented in Sec. III B provides the
answer: if the family Jt is induced by a single covariant
complex structure J on ΓCov as specified above, then
Et2;t1Jt1E

−1
t2;t1 − Jt2 is Hilbert-Schmidt and the required

family of unitary operators Ut2;t1 exists.
Because the family Jt on ΓCan is obtained by a single

complex structureJ on ΓCov, the unitary operatorUt2;t1 has
the property that it sends the vacuum state inHJt1

to that in

HJt2
: Ut2;t1 j0t1i ¼ j0t2i. However, this does not mean that

dynamics is trivial because j0t1i and j0t2i are distinct
positive linear (or expectation value) functionals on the
algebra ACan. In particular, by repeating the argument
presented in Sec. III C, one can show that Ut2;t1 correctly
evolves the 2-point functions. More generally, if the
complex structures Jt are selected by other physical
considerations and do not descend from a single J on
ΓCov, then Ut2t1 j0t1i ≠ j0t2i. An interesting example is
provided by a metric gab which becomes asymptotically
stationary in the distant past or distant future as in Sec. V. In
that case, the covariant phase space ΓCov is naturally
equipped with distinct two complex structures J�, and
they induce two complex structures J� on ΓCan. If Mt1 and
Mt2 lie in the stationary regions in the asymptotic past
and future, respectively, the map Ut2;t1 constructed above
provides us with a nontrivial S-matrix in the canonical
theory.
To summarize, the main results presented in Secs. III A,

III B, and IV for FLRW space-times naturally extend to
quantum fields on globally hyperbolic space-times for any
given choice of the foliation Mt by Cauchy surfaces and a
dynamical vector field ta providing an identification
between them.
Remark: Already in Minkowski space, one can introduce

a foliation that is not preserved by any timelike Killing field.
An early insightful analysis due to Torre and Varadarajan
[10] showed that the corresponding dynamical automor-
phisms fail to be unitarily implemented in the standard Fock
representation of linear fields (if the space-time dimension is
greater than 2); thus the Schrödinger picture does not exist
for the “bubble-time evolution.” However, it follows from
our discussion that these automorphisms are in fact unitarily
implemented on the extended space state HExt induced by
the standard Fock representation of ACov. Thus the
Schrödinger representation does exist in the generalized
sense and correctly captures the dynamical evolution of
fields.

VI. DISCUSSION

Recall that the textbook quantization of linear fields ϕ on
a globally hyperbolic space-time requires an external input:
a positive and negative frequency decomposition of
classical fields that enables one to decompose the field
operator ϕ̂ into creation and annihilation operators as in
(1.2). More succinctly, the necessary input is a complex
structure J on the space of classical solutions, i.e., the
covariant phase space ΓCov, which is compatible with the
symplectic structure thereon. Now, if the space-time is
static, the time-translation isometry flow in space-time
provides a natural, dynamical automorphism Λ̂η2;η1 on
the canonical algebra ACan generated by the pairs
ðφ̂ð~xÞ; π̂ð~xÞÞ. It turns out that one can single out the
required complex structure J uniquely by demanding that
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Λ̂η2;η1 be unitarily represented in the resulting Fock repre-
sentation [20].10 Thus, the presence of the time-translation
isometry provides us with a natural Fock quantization of ϕ
in which dynamics is satisfactorily represented. But physi-
cal considerations also lead to another, independent
requirement on the viability of the quantum theory: the
ultraviolet regularity that is necessary to renormalize
products of operators such as the stress-energy tensor. In
static space-times, this requirement is automatically sat-
isfied on the Fock representation selected by the isometry.
Thus we have the happy situation that there exists a unique
Fock representation of the quantum field on which the two
independent requirements are met.
In time-dependent space-times, the situation is more

subtle. Let us begin with the FLRW space-times that are
widely used in cosmology. The mainstream strategy is to
focus on ultraviolet regularity. Thus, one chooses any
complex structureJ on ΓCov that has regularity of sufficient
adiabatic order, so that the expectation values of products of
operators of interest are well defined on (a dense subspace
of) the resulting Fock space. For concreteness, let us focus
on order 4 regularity needed for renormalization of the
stress-energy tensor (which is a dimension 4 operator).
Then each regular complex structure J on ΓCov leads to a
representation of the field algebra on a Fock space HJ.
Since there is an infinite family of such representations,
there is no preferred vacuum state or particle number
operator. However, all these representations are unitarily
equivalent and, in cosmological applications, the power
spectrum and expectation values of the renormalized stress-
energy tensor are well defined in all of them. Therefore,
mathematically the theory is deemed to be complete.
What about the unitarity of dynamics? Can one, as in the

static case, narrow down the choice of Fock representations
using unitarity considerations? Because of spatial homo-
geneity, FLRW space-times have a preferred foliation
which provides a natural notion of time evolution.
Dynamics is most transparent in the canonical picture,
especially because, now, the space-time geometry is itself
time dependent. As discussed in Sec. II, there is again a
well-defined dynamical automorphism Λ̂η2;η1 on the algebra
ACan generated by the canonically conjugate pairs
ðφ̂ð~xÞ; π̂ð~xÞÞ. Thus, we are led to ask: Is there a complex
structure J on the canonical phase space such that Λ̂η2;η1 is
unitarily implemented on the resulting Fock space HJ.
More concretely, is there a Fock representation of ACan
admitting a family of unitary operators Uη2;η1 on HJ

such that

RJðΛ̂η2;η1ðÔÞÞ ¼ U−1
η2;η1RJðÔÞUη2;η1 ð6:1Þ

for all O ∈ ACan? [Here RJðÔÞ is the concrete represen-
tation on Fock space HJ of the element O ∈ ACan.] If so,
Λ̂η2;η1 will be realized as an inner automorphism in the
representation ðRJ;HJÞ. As we explicitly showed in Sec. II
C, surprisingly, the answer is in the negative: the dynamical
automorphism on ACan cannot be made unitary for any J
[13]. Thus, the natural seeming strategy to narrow down
the choice of a Fock representation using unitarity of
dynamics fails.
To summarize, then, in the Heisenberg picture, dynamics

is well defined via automorphism Λ̂η2;η1 on the observable
algebra, and we can construct Fock representations which
are ultraviolet regular. However, the standard notion of
unitary dynamics fails in all these representations; in none
of them can we pass to the Schrödinger picture in which
dynamics is transferred to states. Thus, a fundamental tenet
of quantum field theory in flat (or, more generally, sta-
tionary) space-times is violated in quantum field theory on
FLRW backgrounds.
To resolve this tension, in Sec. II A we reexamined the

situation in the classical theory. There is again a well-
defined dynamical automorphism Λη2;η1 on the algebra of
classical observables. To make it inner, one needs a
Hamiltonian flow on the phase space—the analog of the
unitary maps in (6.1)—which evolves states and induces
this automorphism on observables. As is well known, such
a flow does not exist on ΓCan; the situation is completely
parallel to that in the quantum theory. But it is also well
known that the required flow does exist on the extended
phase space ΓExt ¼ ΓCan ×R. This suggests that the unitary
implementation of the dynamical automorphism Λ̂η2;η1 in
the quantum theory may be possible if one appropriately
extends the state space.
In Sec. III, we showed that this is indeed the case.

Furthermore the required extension naturally descends
from the standard covariant theory. A regular complex
structure J on ΓCov does not naturally induce a complex
structure J on the canonical phase space. Rather, it induces
a complex structure Jη on each leaf Γη

Ext of the extended
phase space ΓExt. Therefore, the Fock representationHJ of
ACov naturally induces a 1-parameter family of represen-
tations of ACan on Hilbert spaces HJη . As in the classical
theory, then, we are led to formulate the question of
unitarity on an extended state space HExt: Do there exist
unitary operators Uη2;η1∶ Hη1 → Hη2 such that

RJ1ðΛ̂η2;η1ÔÞ ¼ U−1
η2;η1ðRJ2ðÔÞÞUη2;η1 ð6:2Þ

for allO ∈ ACan? In Sec. III B 1 we showed that the answer
is in the affirmative. To summarize, in both classical and
quantum theories the dynamical automorphisms fail to be

10We assume that the norm of the static Killing field is
bounded below by some ϵ > 0. These considerations generalize
to stationary space-times if the canonically conjugate operators
and the dynamical automorphism refer to a foliation that is
preserved by the flow of the Killing field.

IVAN AGULLO AND ABHAY ASHTEKAR PHYSICAL REVIEW D 91, 124010 (2015)

124010-16



inner on the “traditional” state spaces ΓCan and HJ. To
make them inner one simply needs to extend the state
spaces to ΓExt andHExt and formulate the question in terms
of them. Once the extension is done, the tension disappears
and we can use any complex structure J on ΓCov that is
ultraviolet regular; dynamics in the canonical picture is
guaranteed to be unitary in the naturally extended sense
specified in (6.2).
However, as we discussed in Sec. III B 2, there is a subtle

but important difference between the classical and quantum
theories: while there is an obvious kinematical isomor-
phism between the leaves Γη

Ext of ΓExt, there is no such map
between the leaves Hη of HExt. The extended state space
HExt is not a product space of the type HExt ¼ H ×R. It is
a nontrivial bundle,R → HExt, whose base space is the real
line coordinated by η (and representing the time axis), with
fibersHη.HExt does not admit natural horizontal subspaces
while ΓExt does. On ΓExt, the natural horizontal subspaces
provide a kinematical identification between states at
different times, so one can readily tell if the dynamical
evolution is trivial or nontrivial. In quantum theory, the
absence of a kinematical identification makes the non-
triviality of dynamics much more subtle in the Schrödinger
picture, as discussed below. This important feature is
specific to situations in which space-time geometry is time
dependent in the sense that the chosen constant time slices
are not related by an isometry.
From a purely canonical perspective, the complex

structures Jη on the leaves Γη
Ext do not have to descend

from a complex structure J; unitarity holds as long as the
family Jη is compatible in the sense of (3.13). But
when they do descend from a single J on ΓCov, the unitary
map Uη2;η1 has the counterintuitive property that it maps
the vacuum state in Hη1 to the vacuum state in Hη2 :
Uη2;η1 j0η1i ¼ j0η2i. However, because there is no kinemati-
cal isomorphism between the two Hilbert spaces, the state
j0η1i is not the same as the state j0η2i: they define distinct
positive linear (or expectation value) functionals on the
algebra ACan. To make this point explicit, we calculated
expectation values of the operator φ̂ð~xÞφ̂ð~x0Þ in the two
states and showed that this 2-point function does evolve
nontrivially from time η1 to time η2, and the evolution is
exactly what it should be, from the Heisenberg picture,
which is well defined a priori.
In Sec. III C, we considered an interesting interplay in

the FLRW space-times that shows that our extension of the
notion of unitarity is inevitable. Because FLRW space-
times are conformally flat, the field ϕ satisfies□ϕ ¼ 0with

respect to the FLRW metric gab if and only if ϕ
∘
≔ aðηÞϕ

satisfies ð□∘ þ VðηÞÞϕ∘ ¼ 0 with respect to the flat metric
g∘ab ¼ a−2ðηÞgab, where VðηÞ ¼ ða00=aÞ is a time-
dependent external potential. Thus, in place of a field ϕ
living in the time-dependent FLRW space-time, we can

study the field ϕ
∘
that lives in flat space-time, but interacts

with VðηÞ. Now, in the flat metric g∘ ab, the η ¼ const
surfaces are related by a time-translation isometry.
Therefore, a key simplification occurs: One can introduce

a single complex structure J
∘
on Γ

∘
Can, construct the Fock

representation of A
∘
can, and show that the dynamical auto-

morphism on A
∘
can is made inner by a family of unitary

operators U
∘
η2;η1 on H

J
∘ [13]. Thus, for the ϕ

∘
field, one does

not have to construct an extended state space or extend the

notion of unitarity. Because the relation ϕ
∘ ð~x; ηÞ ¼

aðηÞϕð~x; ηÞ is so simple, we can translate the result to
the dynamics of the ϕ̂ field. We showed that the translation
to the ϕ̂ field is precisely the notion of extended unitarity of
(6.2). Because of this complete equivalence, in the quan-
tization procedure one can work with either field. However,
since the physical field is ϕ, it is important to ensure that the
Fock representation one constructs is sufficiently regular in
the ultraviolet so that the expectation values of the stress-
energy tensor operator of ϕ̂ are well defined. As we showed
in Sec. III C 2, natural seeming quantization procedures

starting with ϕ
∘
can fail to capture this physical require-

ment. This problem can be readily alleviated by working
directly with ϕ.
In Sec. IV we discussed the S-matrix theory in the case

when the scale factor becomes time independent in the
distant past and the distant future. In the covariant, textbook
picture it is well-known that there exist in and out Hilbert
spaces HJ∓ of asymptotic states, determined by the past
and future complex structures J∓ on ΓCov, and a well-
defined unitary S-matrix which maps HJ− to HJþ . This
situation is different from that considered in Sec. III
because we now have two different complex structures
on ΓCov—i.e., two distinct decompositions of field oper-
ators into creation and annihilation parts—rather than just
one. Nonetheless, considerations of Sec. III naturally apply
also to this case and provide us with a unitary S-matrix in
the extended canonical description.
In Sec. V we sketched a generalization of our con-

structions to globally hyperbolic space-times equipped with
a foliation Mt by Cauchy surfaces and an evolution vector
field ta. Again, there is no tension between the covariant
framework and the extended canonical framework. The
central lesson can be summarized as follows. In globally
hyperbolic space-times, one can always introduce regular
Fock representations of the algebra of observables of linear
quantum fields in which dynamics is well defined in the
Heisenberg picture. However, if the chosen foliation by
Cauchy surfaces is not left invariant by a time-translation
isometry—as is always the case in nonstationary space-
times—then the passage to the Schrödinger picture is more
subtle. One has to construct a 1-parameter family of
representations ðRt;HtÞ of the canonical quantum algebra
ACan, one for each leaf of the t ¼ const foliation. Typically,
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these representations are unitarily inequivalent. Still, the
dynamical automorphisms Λ̂t2;t1 are implemented by uni-
tary maps Ut2;t1 from Ht1 to Ht2 such that the evolution of
expectation values obtained by evolving states in this
(extended) Schrödinger picture is the same as that in the
Heisenberg picture which was well defined from the
beginning.
We will conclude with a remark that suggests a direction

for future investigations.
In the case when the geometry is asymptotically sta-

tionary in the distant past and distant future, one can
introduce two natural representations ðRJ∓ ; HJ�Þ of the
covariant observable algebra ACov which then naturally
descend to the representations of the canonical algebra
ACan. As we saw in Sec. IV, this makes the dynamics
encoded in the S-matrix transparent. What about more
general contexts where one does not have static asymptotic
regions? Given a foliated globally hyperbolic space-time,
can one perhaps naturally associate a representation
ðRJt

; HJt
Þ with each leaf t ¼ const of the foliation? In

specific geometries, physical considerations could provide
the required family Jt of complex structures on ΓCov.
Consider, for instance, an idealized but instructive example
in which the space-time geometry is flat in a small time
interval of length ϵ, then becomes dynamical in an interval
of length δ, and repeats this behavior. Then for each t in the
ϵ interval in which the space-time metric is flat, there would
be a natural complex structure. If we restrict ourselves to
points tn, each lying in such an ϵ interval, then the
dynamical automorphims Λ̂tn;tm will be unitarily imple-
mentable on the corresponding HExt. In the most com-
monly used FLRW space-times, one can generalize this
procedure and associate a preferred “instantaneous”

complex structureJη on ΓCov [26].
11 In this case, dynamics

is again unitary in the extended canonical picture even
though now Jη ≠ Eη;η0Jη0E−1

η;η0 (because Jη ≠ Jη0 ). Thus,
the Schrödinger picture exists in the extended setting and
there is complete harmony between the covariant and
canonical descriptions. Is there perhaps a way to extend
such constructions to general space-times? While this is
unnecessary from the perspective of a purely algebraic
approach to quantum field theory in curved space-times,
such constructions are often useful for an intuitive under-
standing of the physical processes that occur because of the
interaction of the quantum field with the curved space-time
geometry.
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