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Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equation
and using the Levi-Cività solution for a seed, we construct a cylindrically symmetric single-soliton
solution. Although the Levi-Cività spacetime generally includes singularities on its axis of symmetry, it is
shown that for the obtained single-soliton solution, such singularities can be removed by choice of certain
special parameters. This single-soliton solution describes propagation of nonlinear cylindrical gravitational
shock wave pulses rather than solitonic waves. By analyzing wave amplitudes and time dependence of
polarization angles, we provide a physical description of the single-soliton solution.

DOI: 10.1103/PhysRevD.91.124008 PACS numbers: 04.20.Jb, 04.30.-w

I. INTRODUCTION

Time-dependent gravitational soliton solutions in gen-
eral relativity are interpreted as gravitational solitonic
waves propagating in background spacetimes. The so-
called inverse scattering method, which was established
by Belinski and Zakharov, has been used as one of the
powerful tools to construct such soliton solutions [1,2]. In
fact, many soliton solutions describing nonlinear gravita-
tional waves have been subsequently found by using such a
systematic method [3,4]. It is a noteworthy fact that, in a
stationary and axisymmetric case, the application of the
method to the four-dimensional vacuum Einstein equation
can generate exact solutions of black holes. However, the
simple generalization of the method to higher dimensions
generally leads to singular solutions. Under these circum-
stances, Pomeransky [5] modified the original inverse
scattering method so that it could generate regular black
hole solutions even in higher dimensions. Thereafter, this
improved method has played an important role in solution
generation for five-dimensional black holes [6,7].
Gravitational solitons with cylindrical symmetry are of

special interest to many relativists since they give us the
simplest treatment of gravitational waves in an exact form.
While Piran et al. [8] numerically studied nonlinear
interactions of cylindrical gravitational waves with two
polarization modes, Tomimatsu [9] first analytically studied
such nonlinear phenomenon as the gravitational Faraday
rotation for the cylindrical gravitational solitons generated
by the Belinski-Zakharav inverse scattering technique.
Moreover, the interactions of gravitational soliton waves
with a cosmic string were also discussed in Refs. [10–13].
Recently, one of the authors [14,15] analyzed one- and

two-soliton solutions constructed by the Pomeransky
improved inverse scattering method, and studied nonlinear
effects of gravitational waves such as the gravitational
Faraday rotation and time shift phenomenon.
Most soliton solutions generated by the inverse scatter-

ing method can be obtained by the soliton transformation
from seeds with a diagonal form. In particular, in a
cylindrically symmetric case, one example of a diagonal
metric is the Levi-Cività family, which describes the static
and cylindrically symmetric spacetime labeled by two
parameters. Therefore this solution can be regarded as
the exterior field of an infinite cylinder with uniform mass,
and in general it has naked singularities on its axis of
symmetry. However, within a certain parameter range,
these kinds of singularities can be considered as a line
source with infinite length that yields a cylindrically
symmetric gravitational field.
In this paper, applying the Pomeransky inverse scattering

method and using the Levi-Cività metric for a seed, we
generate a single-soliton solution that does not admit
staticity but cylindrical symmetry. It is a generalization
of the solution obtained from the Minkowski seed [14],
since the Levi-Cività spacetime includes the Minkowski
spacetime as a special case. Although the Levi-Cività
spacetime has singularities on the axis except for the
Minkowski spacetime, for the single-soliton solution,
such singularities disappear by a certain choice of param-
eters. It is shown that the solution we present in this paper
describes a shock wave pulse of nonlinear outgoing
gravitational waves.
This paper is organized as follows. In the following

section, we construct a single-soliton solution with a real
pole by using the Pomeransky inverse scattering method
from the Levi-Cività metric as a seed. In Sec. III, for the
single-soliton solution, we calculate the amplitudes and
polarization angles for ingoing and outgoing gravitational

*igata@rikkyo.ac.jp
†tomizawasny@stf.teu.ac.jp

PHYSICAL REVIEW D 91, 124008 (2015)

1550-7998=2015=91(12)=124008(8) 124008-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.124008
http://dx.doi.org/10.1103/PhysRevD.91.124008
http://dx.doi.org/10.1103/PhysRevD.91.124008
http://dx.doi.org/10.1103/PhysRevD.91.124008


waves. Moreover, we analyze asymptotic behaviors of the
nonlinear gravitational waves at the spacetime boundary
depending on each choice of parameters. In Sec. IV, we
devote ourselves to the summary and discussion on our
results. Furthermore, we consider the difference from the
single-soliton solution in Ref. [14], which was obtained
from the Minkowski seed. In the Appendix, we review
definitions of nonlinear cylindrical gravitational waves
such as amplitudes and polarization angles, which were
first introduced by Piran et al. [8] and Tomimatsu [9].

II. SINGLE-SOLITON SOLUTION

In this section, starting from the Levi-Cività solution, we
derive a single-soliton solution by the Pomeransky inverse
scattering method. The Levi-Cività solution is a static and
cylindrically symmetric solution to the four-dimensional
vacuum Einstein equation. The metric is given in the
following form,

ds2 ¼ ρ1þddϕ2 þ ρ1−ddz2 þ b2ρðd2−1Þ=2ðdρ2 − dt2Þ; ð1Þ

where b and d are independent parameters, and both of
them are assumed to be positive without loss of generality.
For d ¼ 1, this metric recovers the Minkowski metric (with
a deficit angle related to b) written in the cylindrical
coordinates. In addition, the symmetry of the Levi-Cività
spacetime is enhanced due to the existence of an additional
Killing vector field ϕð∂=∂zÞ − zð∂=∂ϕÞ for d ¼ 0 and
ϕð∂=∂tÞ þ tð∂=∂ϕÞ for d ¼ 3 [16]. It should be noted that
this two-parameter family possesses naked curvature sin-
gularities on its axis of symmetry ρ ¼ 0 except for d ¼ 1.
For d > 1, these singularities can be interpreted as a
physical gravitational line source because a test particle
is subjected to an attractive force [16]. In particular, for
d≃ 1, it can be regarded as the exterior field of the
infinitely extended cylinder whose mass per unit length is

λ ¼ d − 1

2ðdþ 1Þ ; ð2Þ

in the Newtonian limit. Conversely, for 0 ≤ d < 1, the
singularities on the axis cannot be understood as such
a physical line source because a test particle near its
axis suffers from the repulsive force by the line source.
The obtained single-soliton solution, however, does not
necessarily have a source of repulsive force even if the
corresponding Levi-Cività seed includes an unphysical
source. Therefore, in what follows, we use the Levi-
Cività metric within the range 0 ≤ d < ∞ as a seed to
generate a single-soliton solution.
Now let us assume that a four-dimensional spacetime

admits cylindrical symmetry, namely, that there exist two
commuting Killing vector fields, an axisymmetric Killing
vector field ∂=∂ϕ and a spatially translational Killing
vector field ∂=∂z, where the polar angle coordinate ϕ

and the coordinate z have the ranges 0 ≤ ϕ < Δϕ and
−∞ < z < ∞, respectively. Under the symmetry
assumption, the most general metric that is the solution
to the four-dimensional vacuum Einstein equation can be
described in the Kompaneets-Jordan-Ehlers form:

ds2¼ e2ψðdzþωdϕÞ2þρ2e−2ψdϕ2þe2ðγ−ψÞðdρ2−dt2Þ;
ð3Þ

where the functions ψ , ω, and γ depend on the time
coordinate t and radial coordinate ρ only. Let us define a
2 × 2 metric g and a metric function f by

g ¼
�

e2ψ ωe2ψ

ωe2ψ ρ2e−2ψ þ ω2e2ψ

�
; ð4Þ

f ¼ e2ðγ−ψÞ; ð5Þ

respectively.
For the Levi-Cività metric, the 2 × 2 metric g0 and the

metric function f0 are written as

g0 ¼ diagðρ1−d; ρ1þdÞ; ð6Þ

f0 ¼ b2ρðd2−1Þ=2; ð7Þ

respectively. Following the Pomeransky method [5], let us
remove a trivial soliton at t ¼ t1 with a trivial BZ vector
(1,0), and then we have the metric

g00 ¼ diagðρ−1−dμ2; ρ1þdÞ ¼ diag

�
ρ3−d

~μ2
; ρ1þd

�
; ð8Þ

where the functions μ and ~μ are defined by

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t1Þ2 − ρ2

q
− ðt − t1Þ; ð9Þ

~μ ¼ ρ2

μ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t1Þ2 − ρ2

q
− ðt − t1Þ; ð10Þ

respectively.
Next, add back a nontrivial soliton with a BZ vector

m0 ¼ ð1; aÞ, and then we obtain a single-soliton solution as

gab ¼ g00ab −
g00acmcΓ−1mdg00db

μ2
; ð11Þ

f ¼ f0
Γ
Γ0

; ð12Þ

where

Γ ¼ mag00abmb

−ρ2 þ μ2
; ð13Þ
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ma ¼ m0b½Ψ−1
0 ðμ; ρ; tÞ�ba: ð14Þ

Here, Γ0 is Γ evaluated at a ¼ 0, and Ψ0ðλ; ρ; tÞ is the
generating matrix for the metric g00 in the following form,

Ψ0ðλ; ρ; tÞ

¼ diag

�ðρ2 þ 2tλþ λ2Þð3−dÞ=2
ð ~μ− λÞ2 ; ðρ2 þ 2tλþ λ2Þð1þdÞ=2

�
;

ð15Þ

where λ is the spectral parameter. Finally, we reparametrize
a as að−2t1Þ1−d → a, and shift the time coordinate t
as t → tþ t1.
Thus, from Eq. (11), we can read off the functions ψ , γ,

and ω for the single-soliton solution as

e2ψ ¼ 1þ a2Fw2

1þ a2F
ρ1−d; ð16Þ

ω ¼ aw1−d

ð1 − w2Þð1þ a2Fw2Þ ρ
d−1; ð17Þ

e2γ ¼ b2ð1þ a2Fw2Þρðd−1Þ2=2; ð18Þ

respectively, with

F ¼ w2ð2−dÞ

ρ2ð1 − w2Þ4 ; ð19Þ

w ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ρ2

p
− t

ρ
: ð20Þ

This single-soliton solution includes three parameters b, d,
and a, where b and d are assumed to be positive. There are
no physical restrictions on the parameter a. The parameter
a controls all physical behaviors of gravitational waves
such as the amplitudes and the polarizations. Note that for
a ¼ 0 this metric recovers the Levi-Cività metric. Except
for a ¼ 0 the metric depends on the time coordinate t as
well as the radial coordinate ρ. Furthermore, for b ¼ d ¼ 1,
it completely coincides with the single-soliton solution in
Ref. [14], which was generated from the Minkowski seed.

III. ANALYSIS FOR THE SINGLE-SOLITON
SOLUTION

In this section, we analyze physical properties of the
nonlinear cylindrically symmetric gravitational waves
described by the obtained single-soliton solution by seeing
wave amplitudes, polarization angles, andC-energy density
(see the Appendix for their definitions). In particular, we
investigate the dependence of their asymptotic behaviors on
d in the neighborhood of its spacetime boundaries.

From the definitions given in Eqs. (A1) and (A2), the amplitudes of ingoing and outgoing waves with the þ mode, Aþ
and Bþ, are calculated, respectively, as

Aþ ¼ 2a2F
ρ

ffiffiffi
u
v

r
1þ a2Fw2 − ð1 − wÞ2 þ ðd − 1Þð1 − w2Þ

ð1þ a2FÞð1þ a2Fw2Þ −
d − 1

ρ
; ð21Þ

Bþ ¼ −
2a2F
ρ

ffiffiffi
v
u

r
1þ a2Fw2 − ð1þ wÞ2 þ ðd − 1Þð1 − w2Þ

ð1þ a2FÞð1þ a2Fw2Þ þ d − 1

ρ
; ð22Þ

and, from Eqs. (A3)–(A4), the amplitudes of ingoing and outgoing waves with the × mode, A× and B×, are obtained as

A× ¼ 2a
ffiffiffiffi
F

p

ρ

ffiffiffi
u
v

r
wð1 − a2F þ 2a2FwÞ þ ðd − 1Þð1þ wÞð1þ a2FwÞ

ð1þ a2FÞð1þ a2Fw2Þ ; ð23Þ

B× ¼ −
2a

ffiffiffiffi
F

p

ρ

ffiffiffi
v
u

r
wð1 − a2F − 2a2FwÞ − ðd − 1Þð1 − wÞð1 − a2FwÞ

ð1þ a2FÞð1þ a2Fw2Þ ; ð24Þ

respectively. From Eqs. (A5) and (A6), the total amplitudes for ingoing and outgoing waves, A and B, are calculated,
respectively, as

A ¼ 1

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Fw2ð2 ffiffiffiffiffiffiffiffi

u=v
p þ 1 − dÞ2 þ ðd − 1Þ2

1þ a2Fw2

s
; ð25Þ
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B ¼ 1

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Fw2ð2 ffiffiffiffiffiffiffiffi

v=u
p þ 1 − dÞ2 þ ðd − 1Þ2

1þ a2Fw2

s
: ð26Þ

For a ¼ 0, namely, (static) Levi-Cività spacetime, Aþ and
Bþ do not vanish. However, this should not be surprising
because both amplitudes Aþ ¼ −Bþ ¼ ðd − 1Þ=ρ are

constant for rest observers staying on the world lines
ρ ¼ constant. Therefore, the nonvanishing amplitudes do
not necessarily mean usual propagation of gravitational
waves.
The polarization angles for ingoing and outgoing

waves, θA and θB, given in Eqs. (A7) and (A8) are
written as

sin 2θA ¼ 2a
ffiffiffiffi
F

p ffiffiffi
u
v

r
wð1 − a2F þ 2a2FwÞ þ ðd − 1Þð1þ wÞð1þ a2FwÞ

ð1þ a2FÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2Fw2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Fw2ð2 ffiffiffiffiffiffiffiffi

u=v
p þ 1 − dÞ2 þ ðd − 1Þ2

q ; ð27Þ

sin 2θB ¼ −2a
ffiffiffiffi
F

p ffiffiffi
v
u

r
wð1 − a2F − 2a2FwÞ − ðd − 1Þð1 − wÞð1 − a2FwÞ

ð1þ a2FÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2Fw2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Fw2ð2 ffiffiffiffiffiffiffiffi

v=u
p þ 1 − dÞ2 þ ðd − 1Þ2

q ; ð28Þ

respectively. The C-energy density is proportional to γ;ρ, which is related to the amplitudes as Eq. (A13), and is given by

γ;ρ ¼
ðd − 1Þ2

4ρ
þ a2Fw2

ρ

2ð1þ 3w2Þ − dð1 − w4Þ
ð1 − w2Þ2ð1þ a2Fw2Þ : ð29Þ

In what follows, we focus only on the portion t ≥ 0 in the
spacetime because our interest here is to understand how
shock wave pulses propagate throughout the spacetime as
time passes. In the following subsections, we analyze
the asymptotic behaviors of the above quantities near the
spacetime boundaries: the axis of symmetry ρ ¼ 0, the light
cone u ¼ 0, timelike infinity t → ∞, and null infinity
v → ∞.

A. Axis of symmetry

Let us see the asymptotic behaviors of wave amplitudes,
polarization angles, and C-energy density near the axis
ρ ¼ 0. In the limit ρ → 0 with the time coordinate fixed at
t ¼ t0, the C-energy density (29) behaves as

γ;ρ ¼ Oðρ−1Þ; ð30Þ

for all d except for d ¼ 1; 3. Hence, for d ≠ 1; 3, this
spacetime has a singular gravitational source on the axis.
As shown in Ref. [14], in contrast, for d ¼ 1, it behaves

as γ;ρ ¼ OðρÞ, which implies that there is no singular
source on the axis. This may not be surprising because the
corresponding seed (Minkowski spacetime) has no singular
source on the axis. However, it should be a surprising fact
that Eq. (29) for d ¼ 3 asymptotically behaves as

γ;ρ ≃ t20 þ a2

a2t20
ρ; ð31Þ

near ρ ¼ 0 since, as mentioned in the previous section, the
Levi-Cività spacetime with d ¼ 3 has singularities on the
axis. As a result, such singularities on the axis are

completely removed after the soliton transformation.
Therefore, for d ¼ 3, nonexistence of curvature singular-
ities on the axis allows us to evaluate a deficit angle as a
meaningful physical quantity. The deficit angle Δ on the
axis at arbitrary time is calculated as

Δ ¼ 2π − lim
ρ→0

RΔϕ
0

ffiffiffiffiffiffiffigϕϕ
p dϕR ρ

0

ffiffiffiffiffiffigρρ
p dρ

ð32Þ

¼ 2π −
Δϕ
bjaj : ð33Þ

Hence, the deficit angle can be adjusted to be zero by
choosing the periodicity of ϕ as Δϕ ¼ 2πbjaj.
Table I shows the asymptotic behaviors of the amplitudes

near the axis for each d. While for 0 ≤ d ≤ 3 except
d ¼ 1; 3, the wave amplitudes diverge on the axis, for
d ¼ 1; 3 all of the amplitudes take finite values there. Note
that, for d ¼ 0; 2, the wave amplitudes with the × mode
take finite values, and hence the þ mode dominates over
the × mode on the axis. For d > 3, the wave amplitudes
with the × mode vanish on the axis.

B. Light cone

We turn our attention to the asymptotic behaviors of the
gravitational waves near the light cone t ¼ ρðu ¼ 0Þ or,
equivalently, w ¼ 1. Regardless of d, the C-energy density
(29) diverges there as

γ;ρ ≃ 2

ρð1 − wÞ2 : ð34Þ
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The divergence of the C-energy density leads to curvature
singularities, whose appearance is commonly unavoidable
for the single-soliton solutions. Hence, the spacetime
region cannot be analytically extended to the exterior
region over w ¼ 1. We can interpret the (curvature)
singularities on the light cone as the gravitational shock
wave propagating at the light velocity from the axis ρ ¼ 0
at the moment of t ¼ 0 to null infinity v → ∞.
As shown in Table II, since the amplitudes of the × mode

waves asymptotically approach zero on the light cone, the ×
mode does not contribute to the shock waves. The main
ingredient of the shockwaves ismade fromtheoutgoingwave
with theþmode, whose amplitude diverges there. While for
d ¼ 1, no ingoing wave crosses the light cone, for d ≠ 1, the
ingoing waves with the þ mode exist on the light cone.

C. Timelike infinity

Let us consider the asymptotic behaviors of the gravi-
tational waves at timelike infinity. Table III shows the
asymptotic behaviors of the amplitudes (21)–(26) at time-
like infinity t → ∞ with the radial coordinate ρ kept
constant as ρ ¼ ρ0 > 0. As shown in Ref. [14], for
d ¼ 1, the spacetime is asymptotically flat at t → ∞,
and hence both amplitudes A and B vanish. Since the
polarization angles θA and θB behave as θA ¼ −θB ≃ π=4,

the × mode for the ingoing and outgoing waves becomes
dominant at late time. For d ¼ 2, both amplitudes A and B
asymptotically approach a nonzero constant at t → ∞, and
the angles θA and θB behave as

sin 2θA ≃ sin 2θB ≃ 2aρ0
ρ20 þ a2

: ð35Þ

For d ¼ 3, both amplitudes A and B become constant at
t → ∞, and the polarization angles behave as

sin 2θA ≃ − sin 2θB ≃ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ a2

p : ð36Þ

For d ≠ 1; 2; 3, the amplitudes A and B also become
constant at t → ∞, and the polarization angles θA and
θB vanish. This means that the þ mode for ingoing and
outgoing waves dominates over the × mode at late time,
whose asymptotic behaviors are considerably similar to
those that the Tomimatsu solution [9] shows.

D. Null infinity

Let us focus on the asymptotic behaviors of the gravi-
tational waves at null infinity. Table IV shows the asymp-
totic behaviors of Eqs. (21)–(26) at null infinity v → ∞ as
u ¼ u0 (u0 is a positive constant). As discussed in
Ref. [14], for d ¼ 1, because the spacetime is asymptoti-
cally flat at v → ∞, both amplitudes A and B vanish. Then
the polarization angles approach constant values.1For

TABLE I. Asymptotic behaviors of the amplitudes near the axis of symmetry ρ ¼ 0.

d Aþ Bþ A× B× A B

d ¼ 0 1
ρ − 1

ρ
− a

2t2
0

− a
2t2

0

1
ρ

1
ρ

0 < d < 1 1−d
ρ − 1−d

ρ − 2að1−dÞ
ð2t0Þ2−dρd − 2að1−dÞ

ð2t0Þ2−dρd
1−d
ρ

1−d
ρ

d ¼ 1 2a2

t0ð4t20þa2Þ
2a2

t0ð4t20þa2Þ a
2t2

0

4t2
0
−a2

4t2
0
þa2 − a

2t2
0

4t2
0
−a2

4t2
0
þa2

jaj
2t2

0

jaj
2t2

0

1 < d < 3
2

d−1
ρ − d−1

ρ
2ðd−1Þð2t0Þ2−d

aρ2−d
2ðd−1Þð2t0Þ2−d

aρ2−d
d−1
ρ

d−1
ρ

d ¼ 3
2

1
2ρ − 1

2ρ
4t2

0
−a2

2
ffiffi
2

p
at3=2

0

ffiffi
ρ

p
4t2

0
þa2

2
ffiffi
2

p
at3=2

0

ffiffi
ρ

p
1
2ρ

1
2ρ

3
2
< d < 2 d−1

ρ − d−1
ρ − 2að2−dÞ

ð2t0Þ3−dρd−1
2að2−dÞ

ð2t0Þ3−dρd−1
d−1
ρ

d−1
ρ

d ¼ 2 1
ρ − 1

ρ
2
a þ 4a

4t2
0
þa2

2
a þ 4a

4t2
0
þa2

1
ρ

1
ρ

2 < dðd ≠ 3Þ 3−d
ρ − 3−d

ρ
2ðd−2Þð2t0Þ3−d

aρ3−d
− 2ðd−2Þð2t0Þ3−d

aρ3−d
j3−dj
ρ

j3−dj
ρ

d ¼ 3 − 2
t0

− 2
t0

2
a − 2

a
2
jaj

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

t2
0

q
2
jaj

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

t2
0

q

TABLE II. Asymptotic behaviors of the amplitudes near the
light cone u ¼ 0.

d Aþ Bþ A× B× A B

d ≠ 1; 1
2

1−d
v0

− 2ffiffiffiffiffiffi
v0u

p 32ð2d−1Þu3=2
av3=2

0

96
a

ffiffiffiffi
u
v0

q j1−dj
v0

2ffiffiffiffiffiffi
v0u

p

d ¼ 1
2

1
2v0

− 2ffiffiffiffiffiffi
v0u

p − 96u2

av2
0

96
a

ffiffiffiffi
u
v0

q
1
2v0

2ffiffiffiffiffiffi
v0u

p

d ¼ 1 2
ffiffi
u

p
v3=2
0

− 2ffiffiffiffiffiffi
v0u

p 32u3=2

av3=2
0

96
a

ffiffiffiffi
u
v0

q
2
ffiffi
u

p
v3=2
0

2ffiffiffiffiffiffi
v0u

p

1For d ¼ 1, the polarization angles at null infinity behave as

sin 2θA ≃ sgnðaÞ 16u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 162u20

p ; ð37Þ

sin 2θB ≃ sgnðaÞ 16u0ð3a
2 − 162u20Þ

ða2 þ 162u20Þ3=2
: ð38Þ
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d ¼ 1=2, the amplitudes A and B go to zero as v → ∞
as shown in Table IV, and then the polarization angles
behave as

sin 2θA ≃ −
64au20ð3a2 þ 162u20Þ

ða2 þ 162u20Þ2v
; ð39Þ

sin 2θB ≃ sgnðaÞ 16u0ð3a
2 − 162u20Þ

ða2 þ 162u20Þ3=2
: ð40Þ

While for ingoing waves, theþmode dominates over the ×
mode at null infinity since θA → 0, for outgoing waves, the
polarization angle θB approaches constant as v → ∞. For
u0 ¼

ffiffiffi
3

p jaj=16, in particular, θB asymptotically vanishes.
For d ≠ 1; 1=2, both amplitudes A and B also vanish at

null infinity (see Table IV). From Eqs. (27) and (28), we
obtain the asymptotic form of the polarization angles as

sin 2θA ≃ 32ð2d − 1Þau3=20

jd − 1jða2 þ 162u20Þ3=2
ffiffiffi
v

p ; ð41Þ

sin 2θB ≃ sgnðaÞ 16u0ð3a
2 − 162u0Þ

ða2 þ 162u20Þ3=2
: ð42Þ

Similarly to the case of d ¼ 1=2, the polarization angle θA
vanishes at null infinity while θB approaches a constant
value.
Thus we find that independently of d, tan θB

asymptotically approaches

tan 2θB ≃ −
16u0ð3a2 − 162u20Þ
a2 − 3 × 162u20

: ð43Þ

Therefore, for v → ∞ with u0 ¼
ffiffiffi
3

p jaj=16, there only
exist þ mode outgoing waves, while for v → ∞ with
u0 ¼ jaj=ð16 ffiffiffi

3
p Þ, there only exist × mode outgoing waves.

IV. SUMMARY AND DISCUSSION

In this paper, applying the Pomeransky inverse scattering
method to the four-dimensional vacuum Einstein equation,
we have constructed the cylindrically symmetric single-
soliton solution with a real pole from the Levi-Cività seed
metric. The solution obtained in this work has three
independent parameters, where two of them, b and d,
are originated from the seed and the remaining one a is the
BZ-parameter appearing in the soliton transformation, and
the Levi-Cività metric is recovered by setting a ¼ 0. The
single-soliton spacetime is interpreted as propagation of
nonlinear gravitational shock waves with cylindrical

TABLE III. Asymptotic behaviors of the amplitudes at timelike infinity t → ∞.

d Aþ Bþ A× B× A B

0 ≤ d < 1 1−d
ρ0

− 1−d
ρ0 − 2að1−dÞ

ρd
0
ð2tÞ2−d − 2að1−dÞ

ρd
0
ð2tÞ2−d

1−d
ρ0

1−d
ρ0

d ¼ 1 a2

2t3
a2

2t3
a
2t2 − a

2t2
jaj
2t2

jaj
2t2

1 < d < 2 1−d
ρ0

− 1−d
ρ0

2aðd−1Þ
ρd
0
ð2tÞ2−d

2aðd−1Þ
ρd
0
ð2tÞ2−d

d−1
ρ0

d−1
ρ0

d ¼ 2 1
ρ0
− 2ρ0

ρ2
0
þa2 − 1

ρ0
þ 2ρ0

ρ2
0
þa2

2a
ρ2
0
þa2

2a
ρ2
0
þa2

1
ρ0

1
ρ0

2 < d < 5=2 d−1
ρ0

− d−1
ρ0

2ðd−1Þ
aρ2−d

0
ð2tÞd−2

2ðd−1Þ
aρ2−d

0
ð2tÞd−2

d−1
ρ0

d−1
ρ0

d ¼ 5=2 3
2ρ0

− 3
2ρ0

3ρ2
0
þa2

aρ3=2
0

ffiffiffi
2t

p 3ρ2
0
−a2

aρ3=2
0

ffiffiffi
2t

p 3
2ρ0

3
2ρ0

5
2
< d < 3 d−1

ρ0
− d−1

ρ0
2aðd−2Þ

ρd−1
0

ð2tÞ3−d − 2aðd−2Þ
ρd−1
0

ð2tÞ3−d
d−1
ρ0

d−1
ρ0

d ¼ 3 2ρ0
ρ2
0
þa2 − 2ρ0

ρ2
0
þa2

2a
ρ2
0
þa2

− 2a
ρ2
0
þa2

2ffiffiffiffiffiffiffiffiffi
ρ2
0
þa2

p 2ffiffiffiffiffiffiffiffiffi
ρ2
0
þa2

p

3 < d − d−3
ρ0

d−3
ρ0

2ðd−2Þρd−3
0

að2tÞd−3 − 2ðd−2Þρd−3
0

að2tÞd−3
d−3
ρ0

d−3
ρ0

TABLE IV. Asymptotic behaviors of the amplitudes at null infinity v → ∞.

d Aþ Bþ A× B× A B

d ≠ 1; 1
2

1−d
v − 2a2ða2−3×162u2

0
Þ

ða2þ162u2
0
Þ2 ffiffiffiffiffiffi

u0v
p 32að2d−1Þu3=2

0

ða2þ162u2
0
Þv3=2

32að3a2−162u2
0
Þ

ða2þ162u2
0
Þ2

ffiffiffiffi
u0
v

q jd−1j
v

2jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þ162u2

0
Þu0v

p

d ¼ 1
2

1
2v − 2a2ða2−3×162u2

0
Þ

ða2þ162u2
0
Þ2 ffiffiffiffiffiffi

u0v
p − 32au2

0
ð3a2þ162u2

0
Þ

ða2þ162u2
0
Þ2v2

32að3a2−162u2
0
Þ

ða2þ162u2
0
Þ2

ffiffiffiffi
u0
v

q
1
2v

2jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þ162u2

0
Þu0v

p
d ¼ 1 2a2

ffiffiffiffi
u0

p
ða2þ162u2

0
Þv3=2 − 2a2ða2−3×162u2

0
Þ

ða2þ162u2
0
Þ2 ffiffiffiffiffiffi

u0v
p 32au3=2

0

ða2þ162u2
0
Þv3=2

32að3a2−162u2
0
Þ

ða2þ162u2
0
Þ2

ffiffiffiffi
u0
v

q
2jaj ffiffiffiffi

u0
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ162u2
0

p
v3=2

2jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þ162u2

0
Þu0v

p
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symmetry. In order to understand physical properties of
these gravitational waves, we have classified and analyzed
the wave amplitudes and polarization angles for each value
of d ≥ 0.
We summarize the behaviors of gravitational waves near

the spacetime boundaries:
(i) Axis of symmetry (ρ ¼ 0):

Except for the Minkowski spacetime correspond-
ing to d ¼ 1, the Levi-Cività seed metric has
singularities on the axis of symmetry ρ ¼ 0. In
the same way, for the single-soliton solution with
d ≠ 1; 3, the C-energy density diverges on the axis
due to the existence of such singularities, and then
the wave amplitudes A and B become infinitely
large. For d ¼ 1; 3, however, the singularities dis-
appear so long as a ≠ 0. For d ¼ 3, the polarization
angles of ingoing and outgoing waves have finite
and nonzero values on the axis, and approach π=4 as
time passes.

(ii) Light cone (u ¼ 0):
Regardless of d, the outgoing wave amplitude

becomes infinitely large on the null surface u ¼ 0.
The spacetime has null curvature singularities, and
the C-energy diverges there. This itself is not special
but common to all known single-soliton solutions
with cylindrical symmetry. The polarization angles
for ingoing and outgoing waves vanish on the
surface. Thus, we can find that an outgoing shock
wave pulse with theþmode is initially emitted from
the origin of the spacetime.

(iii) Timelike infinity (t → ∞):
At t → ∞ (with ρ constant), the spacetime de-

scribed by the obtained single-soliton solution does
not asymptotically approach the Minkowski space-
time except for d ¼ 1 [14], in which case simulta-
neously both ingoing and outgoing gravitational
waves decay. While for d ¼ 1 the × mode for the
ingoing and outgoing waves becomes dominant at
late time, for d ¼ 2; 3 the þ and × modes of the
ingoing and outgoing waves have a comparable
order, and for d ≠ 1; 2; 3 theþ mode for both waves
comes to be dominant at late time.

(iv) Null infinity (v → ∞ with u ¼ u0 > 0):
Regardless of d, the amplitudes for ingoing and

outgoing waves decay at null infinity v → ∞ with
u ¼ u0 (u0 is a positive constant). The polarization
angle for ingoing waves takes a constant value,
which depends on d at null infinity. In contrast, the
one for outgoing waves commonly approaches a
constant value, independently of d.

It is well known that although the appearance of
singularities on the light cone is commonly unavoidable
for the single-soliton solutions with a real pole, such a
problem can be resolved for two-soliton solutions with two
complex conjugate poles (for instance, see Refs. [9,15]).

Therefore, for d ¼ 3, it may be interesting to construct such
a two-soliton solution with complex conjugate poles
because it is expected to be entirely regular everywhere.
This issue deserves further study.
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APPENDIX: FORMULAS

In this section, we give definitions of amplitudes and
polarization angles of nonlinear cylindrically symmetric
gravitational waves. Following Refs. [8,9], we introduce
their amplitudes as

Aþ ¼ 2ψ ;v; ðA1Þ

Bþ ¼ 2ψ ;u; ðA2Þ

A× ¼ e2ψω;v

ρ
; ðA3Þ

B× ¼ e2ψω;u

ρ
; ðA4Þ

where Aþ and Bþ describe ingoing and outgoing waves in
the þ mode, respectively, and A× and B× denote ingoing
and outgoing waves in the × mode, respectively. Now the
advanced ingoing and outgoing null coordinates u and v
are defined by u ¼ ðt − ρÞ=2 and v ¼ ðtþ ρÞ=2, respec-
tively. Total amplitudes of ingoing and outgoing waves are
defined by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ þ A2

×

q
; ðA5Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ þ B2

×

q
; ðA6Þ

respectively, and polarization angles θA and θB for the
respective wave amplitudes are given by

sin 2θA ¼ A×

A
; ðA7Þ

sin 2θB ¼ B×

B
: ðA8Þ

Thus, the vacuum Einstein equation can be written in
terms of these quantities. Actually, the nonlinear differ-
ential equations for the functions ψ and ω are replaced by
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Aþ;u ¼
Aþ − Bþ

2ρ
þ A×B×; ðA9Þ

Bþ;v ¼
Aþ − Bþ

2ρ
þ A×B×; ðA10Þ

A×;u ¼
A× þ B×

2ρ
− AþB×; ðA11Þ

B×;v ¼ −
A× þ B×

2ρ
− A×Bþ; ðA12Þ

and the function γ is determined by

γ;ρ ¼
ρ

8
ðA2 þ B2Þ; ðA13Þ

γ;t ¼
ρ

8
ðA2 − B2Þ: ðA14Þ
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