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We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple
interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic
waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell’s
equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in
Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-
known time-delay formula for light generalizes trivially to massive particles. We also recover, by way
of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave
optics—rather than solving Maxwell’s equations directly for the fields, as in most previous approaches—
we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-
potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all
experience the same phase modulation. Applying such a phase modulation to a superposition of plane
waves corresponding to a Gaussian wave packet leads to time delays.
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I. INTRODUCTION

While the existence of gravitational waves is secure from
their indirect consequences—namely, the slow orbital infall
of binary pulsars [1,2]—their direct observation is none-
theless an eagerly awaited event.
Gravitational wave detectors seek to measure the

effect of light traveling through a “waving” space-time.
Interferometers with arms that are kilometers long have been
in operation for some time [3] and, with recent increases in
sensitivities [4–6], it seems likely that detection of waves
originating from binary coalescence of stellar-mass black
holes or neutron stars may be around the corner. Such
interferometers are commonly introduced [7–9] through a
picture of emitter and receiver as freely falling test particles
experiencing a time-dependent acceleration from the gravi-
tational wave, with an interferometric setup measuring the
resulting changes in optical paths. This simple picture is
applicable if the light path is much shorter than the wave-
length of the gravitational wave, a reasonable approximation
for ground-based interferometers. The situation may be very
different for a space-based interferometer [10–13], or an
experiment with spacecraft clocks [14–17], because these
could operate in the free spectral range, where optical path
lengths are comparable to the gravitational wavelength.
And for a pulsar timing array, consisting of a selection of
millisecond pulsars under near-continuous observation, the
pulses would have traveled through many gravitational
wavelengths before reaching the observer [18].

For a more general picture, it is necessary to consider
light propagation itself through a gravitational wave space-
time. There are two contrasting strategies for doing this,
which may be described as geometrical optics and wave
optics. In geometrical optics one considers null geodesics
in a waving space-time and hence calculates a light travel
time. The basic time-delay formula was first derived in the
1970s [14,19] and has been revisited more recently
[20–22]. Some other early derivations are now deprecated
[23] because they involve invalid shortcuts. The trans-
verse-traceless gauge is standard, but a gauge-invariant
approach, which expresses the time delay as an integral of
the Riemann curvature along the photon path, is also
possible [24].
The use of geometrical optics, even where one wants

to measure phase changes, is commonly justified as the
eikonal approximation to electromagnetic waves [20].
Nonetheless, it is also possible to solve Maxwell’s equa-
tions in a waving space-time [25–27].
This work attempts to synthesize the geometrical-optics

and wave-optics views, and to provide an intuitive descrip-
tion of what a gravitational wave does to an electromag-
netic wave. Such a comparison has previously been done
for the small-antenna regime, that is, when the gravitational
wave phase does not change while light is traveling through
the interferometer [28]. In space-based interferometers,
however, the antenna length (say L) may be comparable
to the gravitational wavelength 2π=k, and in pulsar timing
kL ≫ 1. It is thus interesting to consider the free spec-
tral range.
In Sec. III we consider photons moving on null geo-

desics. A four-dimensional Hamiltonian formulation, with*rangelil@physik.uzh.ch
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the affine parameter being the independent variable
and time being a coordinate, is well suited to this problem.
We derive geodesics using two different perturbative
approaches. In addition to the well-known time-delay
formula, two interesting results emerge from these calcu-
lations: (i) a generalization to massive particles and (ii) the
notion of a phase even in geometrical optics.

In Sec. IV we consider the electromagnetic wave
equation through a Minkowskian space-time perturbed
by a gravitational plane wave, and we write down a simple
perturbed wave equation for the four-potential. The per-
turbation terms, coupling the gravitational wave to the
electromagnetic field, cause a modulation of the phase
velocity along the light path.
We show that the net effect of the gravitational wave on

light is remarkably simple: the phase of the electromagnetic
(EM) wave gets modulated like

Φ ¼ ϵ
ω

2k
cos 2ϕð1þ cos θÞ sin½kðt − r cos θÞ�; ð1Þ

where we have chosen geometric units c ¼ 1, and θ and ϕ
give the propagation and polarization directions of the
gravitational wave (GW) with respect to the EM wave
(EMW). Figures 1 and 2 show the qualitative behavior of
Eq (1). The phase modulation can be thought of as
redistributing the energy of the EM wave, but no net work
is done at order ϵ. A light pulse sent from an emitter to an
observer can be expressed as a superposition of plane
waves. Phase modulation alters the pulse shape, but the
main effect is to move the pulse, thus changing the arrival
time. For simplicity, the above expression considers a
gravitational plane wave with a single wavelength, one
polarization state, and a particular phase. A real detector
has to contend with a superposition of such contributions.
Later in this paper, we will relate Eq. (1) to expressions in
the literature on space-based interferometers and pulsar
timing.

II. THE METRIC

As in most work on gravitational waves, we will work
in the transverse-traceless gauge, with the mostly pluses
signature convention, in which the metric

gμν ¼ ημν þ ϵ

0
BBB@

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCA cos ½kðz − tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hμν

ð2Þ

is a weak-field solution to the vacuum gravitational field
equations, with a gravitational wave with amplitude ϵ and
wave vector k traveling through it. For convenience, we
have chosen the gravitational wave to approach from the −z
direction, crest at the z ¼ 0 plane, and bear only ⊕-type
polarization. With these choices we retain full generality
because, at any point in the calculation, we are free to apply
a spatial rotation or a time shift.
For the contravariant components of the metric, one

needs to note that numerically hμν ¼ −hμν. For future
reference, we note the determinant of gμν:

FIG. 1 (color online). This polar plot shows the angular
dependence, θ, between the gravitational- and electromagnetic
wave directions—the normalized form of Eq. (1). The radial
direction is normalized. When the detector is short compared to
the gravitational wave period, the phase shift’s directional
dependence reduces to sin2 θ. When the detector is long (or
the gravitational wave short), a more parallel alignment is
favored, and an antiparallel disfavored. The maxima of the
amplitudes are shown in Fig. 2.

FIG. 2 (color online). Following from Eq. (1), the red curve
shows the maximum signal possible over all inclinations, θ.
One does not gain by increasing the detector length beyond the
gravitational wave’s wavelength. The blue curve shows the
inclination at which this maximum occurs.
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ffiffiffiffiffiffi
−g

p ¼ 1 −
ϵ2

2
cos2 ðkz − ktÞ ¼ 1þOðϵ2Þ: ð3Þ

We further note that the nonzero Christoffel symbols, up to
Oðϵ1Þ, are all the same:

Γx
tx ¼ Γy

ty ¼ Γt
xx ¼ Γt

yy ¼
kϵ
2
sin ðkz − ktÞ: ð4Þ

III. GEOMETRICAL OPTICS

In this section we consider light to be a freely falling
trajectory, i.e., one which parallel transports its tangent
vector. The gravitational wave will affect a photon’s
momentum as it travels and thereby alter the time at which
the receiver records its arrival. A convenient formulation
is in terms of a Hamiltonian system [29]. The relevant
Hamiltonian is

H ¼ 1

2
pμpνgμν ð5Þ

or

H ¼ 1

2
ð−p2

t þ pipiÞ þ 1

2
ϵðp2

y − p2
xÞ cosðkz − ktÞ ð6Þ

when we substitute the metric (2). The independent variable
is the affine parameter, say λ, and t is simply a coordinate,
and pμ is the four-momentum. If H ¼ 0, the trajectory
corresponds to photons, whereas H < 0 describes timelike
geodesics.

A. Null and timelike geodesics

Since we are looking for the time delay, the Hamilton
equations we need to solve are

_t ¼ ∂H
∂pt

¼ −pt _pt ¼ −
∂H
∂t ¼ −

kϵ
2
ðp2

y − p2
xÞ sin ðkz − ktÞ:

ð7Þ
Let ðT; X; Y; Z; Pt; Px; Py; PzÞ be a solution with no gravi-
tational wave. We have

Pt ¼ const; T ¼ −λPt; ð8Þ
and so on. For convenience, we set Pt ¼ −1, in effect
choosing the scale of λ. Substituting the unperturbed
solution in the OðϵÞ terms in (7) and integrating, we obtain

pt ¼ −
ϵ

2

P2
y − P2

x

Pz þ Pt
cos ðkZ − kTÞ − 1: ð9Þ

Integrating once again, we arrive at

tðλÞ ¼ ϵ

2

P2
y − P2

x

Pz þ Pt

1

kPt
sin ðkZ − kZÞ þ λ: ð10Þ

The time delay Δt ¼ t − T ¼ t − λ, which we may
express as

Δt ¼ ϵ

2k

p2
y − p2

x

ðpz þ ptÞpt
sin ðkz − ktÞ; ð11Þ

with the understanding that the unperturbed values can be
used on the right.
Although at the beginning of this section we referred to

this trajectory as a model for light, the above derivation
does not actually require the lightlike, null stipulation
pμpμ ¼ 0. In fact, the delay is valid for null and massive
trajectories alike. Hence, the time delay (11) applies also to
massive particles. For the latter, we have

z ¼ r cos θ

pz ¼ −vpt cos θ

p2
x − p2

y ¼ v2p2
t sin2θ sin 2ϕ; ð12Þ

where v is the speed. The time delay (11) can be written as

ϵ

2k
v2 sin2 θ
1 − v cos θ

sin ðkr cos θ − ktÞ: ð13Þ

Taking the limit v → 1 and multiplying it by the ω of
the light gives the phase change (1). For nonrelativistic
particles, the effect of gravitational waves on trajectories
would be reduced by Oðv2Þ. It is tempting to contemplate
experiments with neutrinos shot through the Earth, with
their exit times measured, but we cannot think of any
plausible scenarios for detecting gravitational waves using
timelike geodesics.
Returning now to light paths, we can also rewrite the

time delay in a form similar to well-known expressions in
recent literature. Let r̂i be the unit vector along which a
light ray travels, and let k̂i be the corresponding unit vector
for the gravitational wave. Making a comparison with the
metric (2), we see that the time delay (11) is nothing but

Δt ¼ 1

2

r̂ir̂j

1 − k̂lr̂l

Z
hijdr; ð14Þ

with the particular choice of a gravitational wave propa-
gating in the positive-z direction in one polarization and
initial phase. The expression may be compared with
Eq. (11) of Ref. [10] for space interferometers, and with
Eqs. (6) and (7) of Ref. [18] for pulsar timing.

B. A Hamilton-Jacobi formulation

An alternative perturbation method for Hamiltonian
systems is to seek a transformation from

ðxμ; pμÞ≡ ðt; xk; pt; pkÞ ð15Þ
to a new set of canonical variables

GEOMETRICAL VERSUS WAVE OPTICS UNDER … PHYSICAL REVIEW D 91, 124007 (2015)

124007-3



ðXμ; PμÞ≡ ðT; Xk; Pt; PkÞ; ð16Þ

such that the transformed Hamiltonian (say K) becomes
trivially integrable. Thus

Hðpμ; xμÞ ¼ KðPμÞ ¼ −P2
t þ PkPk: ð17Þ

We allow ourselves the expression PkPk since the trans-
formed space is Euclidean. The geodesics in that space are

T ¼ −λPt Xk ¼ λPk: ð18Þ

As before, we take the origin as the start of the geodesics.
The canonical transformation can be specified from a
generating function SðPμ; xμÞ, such that

pμ ¼ Pμ −
∂S
∂xμ X

μ ¼ xμ −
∂S
∂Pμ

; ð19Þ

which is not one of the textbook forms but is easy to derive,
by considering

pνdxν −Hdλ ¼ PνdXν − Kdλ

− dSðPμ; xμÞ þ dðPνxνÞ − dðPνXνÞ: ð20Þ

The relation between the Hamiltonians is then

K

�
pμ þ

∂S
∂xμ

�
¼ Hðpμ; xμÞ: ð21Þ

This is a form of the Hamilton-Jacobi equation, and it has
the perturbative solution

KðpμÞ þ
∂K
∂pν

∂S
∂xν ≈Hðpμ; xνÞ: ð22Þ

Substituting in the Hamiltonian (6), it is easy to solve for

S ¼ ϵ

2k

p2
y − p2

x

pz þ pt
sinðkz − ktÞ: ð23Þ

Since photons have pμ ¼ ℏωμ, this S=ℏ equals the wave-
optics phase modulation (40), which is the eikonal
approximation.
To calculate the time delay, we take the geodesics (18)

and apply the canonical change of variable (19). Then

t ¼ −λPt þ
∂S
∂pt

xk ¼ λPk þ
∂S
∂pk

ð24Þ

are geodesics in the original variables. Again, we allow
ourselves to mix up and down indices here, because Pμ is
Minkowskian. Now, using the null condition

P2
t ¼ PkPk; ð25Þ

we have

−λPt ¼
����xk − ∂S

∂pk

���� ð26Þ

and with r ¼ jxkj we can simplify the above expression to

−λPt ¼ r −
xk

r
∂S
∂pk

ð27Þ

to first order. We can now write down the difference in light
travel time compared to the unperturbed case

Δt≡ t − r ¼ ∂S
∂pt

−
xk

r
∂S
∂pk

; ð28Þ

which reduces to the result (11) derived from the direct
method.

IV. WAVE OPTICS

An alternative to treating light as a geodesic path is to
consider it as an electromagnetic field excitation. We will
proceed to write down Maxwell’s equations in the metric
(2) and then find a solution for a plane electromagnetic
wave perturbed by the gravitational wave.

A. Maxwell’s equations

In freely falling coordinates, Maxwell’s equations are

∇νFμν ¼ 4πJμ; ð29Þ
where the field tensor is related to a four-potential by

Fμν ≡ ∂μAν − ∂νAμ: ð30Þ
It is understood that fields and potentials are functions of
xμ. To obtain the general, global form of the equations, the
partial derivatives are promoted to covariant. This results in

∇ν∇μAν −∇ν∇νAμ ¼ 4πJμ: ð31Þ
We can commute the covariant derivatives through the
introduction of the Riemann tensor: for an arbitrary vector
field Vμ,

½∇ν;∇γ�Vμ ¼ VαRα
μνγ: ð32Þ

Using this to commute the derivatives in the first term of
(31) gives

∇μ∇νAν|fflfflfflffl{zfflfflfflffl}þ Rμ
αAα|fflffl{zfflffl} −∇ν∇νAμ ¼ 4πJμ|ffl{zffl}: ð33Þ

The labeled terms vanish, for the following reasons.
Adopting the Lorentz gauge ∇νAν ¼ 0 makes this term
fall away.
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We make the approximation that our detector’s cavity is
a vacuum. There are no charges in a vacuum, so Jμ ¼ 0;
We also assume there are no sources of stress, energy, or
momentum, and hence the Ricci tensor components
Rμν ¼ 0. The electromagnetic wave itself contains some
energy-momentum, of course, and the resulting metric
perturbations can be expected to be of the same order as
the laser power in dimensionless terms. The latter quantity
is G=c5 × ½laser power�, and will be far smaller than even
the already minuscule gravitational waves of interest.
In other words, electromagnetic excitations do not induce
significant gravitational ones.
The electromagnetic field equations reduce to

□gAμ ¼ 0; ð34Þ

where□g ≡∇ν∇ν is the covariant d’Alembertian operator,
a global generalization of ∂ν∂ν, and can be written

□g ¼ 1ffiffiffiffiffiffi−gp ∂
∂xμ ð

ffiffiffiffiffiffi
−g

p
gμν∂νÞ: ð35Þ

Equation (34) represents the equations of motion for the
electromagnetic potentials in an arbitrary gravitational
background, in the vacuum approximation. The next step
is to let the gravitational wave provide the background.

B. Electromagnetic wave equation in a gravitational-
wave space-time

Recalling that
ffiffiffiffiffiffi−gp ¼ 1 to leading orderOðϵ1Þ [Eq. (3)],

the d’Alembertian (35) reduces to

□gAλ ¼ ∂μ½ðημν − hμνÞ∂νAλ�

¼
�
ημν∂ν∂μ|fflfflfflffl{zfflfflfflffl}

∼1

− ∂μhμν∂ν|fflfflfflffl{zfflfflfflffl}
¼0

− hμν∂μ∂ν|fflfflfflffl{zfflfflfflffl}
∼ϵ

�
Aλ: ð36Þ

The first term is the flat space-time wave equation. The
second term is actually zero, because when μ; ν ¼ x; y, the

derivative is zero, and when μ; ν ¼ t; z, the metric pertur-
bation hμν ¼ 0. This leaves us with the third term as the
only gravitational perturbation to the flat space-time result.
The wave equation to solve, then, is

�
□η þ ϵ cos ðkz − ktÞ

� ∂2

∂x2 −
∂2

∂y2
��

Aμ ¼ 0: ð37Þ

The first-term box is the Minkowskian d’Alembertian.

C. Electromagnetic plane waves

In flat space-time, an electromagnetic plane wave can be
expressed as

Aλ ¼ Aλ
0 exp ðiωμxνημνÞ; ð38Þ

where the wave vector ωλ satisfies the null condition
ημνωμων ¼ 0. The complex constant vector Aλ

0 encodes
the amplitude and polarization of the wave.
It is straightforward to verify that the perturbed plane

wave, that is, the real part of

Aλ ¼ Aλ
0 exp ðiωμxνημν þ iΦÞ ð39Þ

where

Φ ¼ ϵ

2k

ω2
x − ω2

y

ωt − ωz
sinðkz − ktÞ; ð40Þ

satisfies the wave equation (37) to leading order Oðϵ1Þ.
This is an electromagnetic plane wave with a phase
modulation Φ coming from the gravitational wave. It is
also equivalent to the geometrical optics result (11).
To compute the components of the electric and magnetic

fields, we must evaluate the covariant derivatives. For the
electric field, we have

Ei ≡ Fti ¼ ½∇tAi −∇iAt�
¼ ½∂tAi − ∂iAt þ ðημt þ hμtÞΓi

μλAλ − ðημi þ hμiÞΓt
μλAλ�

¼ ½∂tAi − ∂iAt − ðΓi
tx þ Γt

ixÞAx − ðΓi
ty þ Γt

iyÞAy�: ð41Þ

In the last line, the hμt and hμi terms have been dropped,
because they are ∼ϵ2. The nonzero Christoffel symbols are
given in (4). Similarly complicated expressions give the
magnetic field.
Fortunately, there is no need to work out the covariant

derivatives in full. One just needs to consider the different
combinations of ω; ϵ; k that would appear in the covariant
derivatives. At zero order, there will of course be terms ∝ ω
as in flat-space plane waves. Further terms will be like

(1) Oðϵω2=kÞ, from the phase modulation of the flat-
space part,

(2) OðϵωÞ from derivatives of the phase term, and
(3) OðϵkÞ from the Christoffel symbols.

We assume that the light has a much shorter wavelength
than the gravitational wave (that is, ω ≫ k), which is surely
valid for any real or contemplated detector. We further
assume that the net phase shift from Eq. (40) is small,
meaning ϵω=k ≪ 1. Accordingly, we have

GEOMETRICAL VERSUS WAVE OPTICS UNDER … PHYSICAL REVIEW D 91, 124007 (2015)

124007-5



ω ≫ ϵω2=k ≫ ϵω ≫ ϵk: ð42Þ

Hence, to leading order, the electric and magnetic field will
receive the same phase modulation as the four-potential. In
fact, all covariant first derivatives of the potential receive
the same modulation as the potential. This also means that
our solution respects the Lorentz gauge condition.
In other words, the phase modulation (40) is the leading-

order effect of the gravitational wave on the electromag-
netic field. If we now write

ω2
x − ω2

y ¼ ω2sin2θ cos 2ϕ; ωz ¼ ω cos θ;

z ¼ r cos θ; ð43Þ

we obtain the expression (1) for the phase. The angular
dependence we find is confirmed by gravitational wave
antenna theory [see Maggiore (2008); cf. Eq. (9.136) [30]].

D. Pulses

The solution (39) corresponds to a single plane wave.
Just like in Minkowski space, the linearity of the electro-
magnetic field equations in a curved space-time (34) means
we may stack solutions corresponding to whatever the light
source does. We may replace (39) with its Fourier trans-
formation—i.e., an integral over all frequency amplitudes.
Consider, for example, an experiment in which a beam is
pulsed at regular intervals. This may be modeled as an
isolated portion of light, emitted at a definite time from the
emitter, which travels down the cavity to arrive at the
observer and, depending on the phase, will be observed to
arrive either before or after a Minkowski photon. If we let

the pulse take on the Gaussian wave-packet form at the
emitter, in light-frequency space it is

AðwÞ ¼ exp ½−αðω − ω0Þ2�; ð44Þ

and in real space

AðxμÞ ∼ cos ½ω0ðr − tþ ΦÞ� exp
�
1

4α
ðr − tþ ΦÞ2

�
; ð45Þ

with Φ given by (40). This traveling wave packet’s motion
is modulated by the gravitational wave, affecting its arrival
time at the observer. Because each frequency component
interacts with the gravitational wave differently (1), the
pulse shape changes as it travels.

V. DISCUSSION

Figure 3 summarizes, in mind-map style, the relationship
between concepts and their progression as explored in this
paper. The essential results are Eq. (1) or (23) for the phase
modulation, and Eq. (11) or (45) for time delays. The well-
known schematic picture of a gravitational wave detector in
terms of a ring of freely falling test particles is avoided, and
the conundrums associated with that picture [31,32] do not
appear.
As an alternative picture, we imagine listening to a bird

song at a rock concert: the bass thump produces local
changes in the sound speed, inducing a pseudo-Doppler
shift in the bird song. Or, in our case, the gravitational wave
modulates the space-time’s refractive index.

FIG. 3 (color online). A mind map showing the relationships between some of the concepts discussed in this paper. There are two
routes each to the two observables: time delay and phase modulation.
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Another correspondence is possible with Alcubierre’s
warp drive [33] space-time, consisting of a time-dependent
metric for a kind of cavity which skims atop a Minkowski
background. The respective local contraction and expan-
sion of space-time in front of and behind the moving cavity
permit the special relativity-abiding passengers of the
bubble to experience arbitrarily short travel times [34].
The Alcubierre approach to faster-than-light travel is not
unlike the scenario we have described in this paper. The
waving space-time provides regions of time-dependent
contraction and expansion. From the wave-optics perspec-
tive, the phase velocity (39) modulates about c. A light
pulse shot down a waving space-time at just the right time
can arrive at its destination earlier than if the space-time
were Minkowski—i.e., if no wave were present. An
interesting outcome of the geometric optics approach
(11) is that the expression for the time delay holds even
when the trajectory is not null, i.e., it generalizes trivially to
massive bodies. In other words, gravitational waves allow
for travel times very slightly shorter than what is permitted
by special relativity, even for spaceships.

The simple form of the solutions we present mean that
they are suitable for illustrations as animations [35].
Solving the EMW equation under GW modulation (37)

under more exotic boundary conditions would be in-
triguing: for example, examining how a waveguide’s
propagation modes are altered by the gravitational wave.
It would be interesting to apply the phase-modulation
picture to extend time-delay interferometry, with unequal
interferometer arms, moving sources and all [37], to the
free spectral range. It is possible that phase locking of the
detector cavity gives rise to resonances, which future
instruments could exploit.
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