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We present a new five-parameter class of Ricci-flat solutions in four dimensions with a Euclidean
signature. The solution is asymptotically locally flat (ALF) and contains a finite asymptotic Newman-Unti-
Tamburino (NUT) charge. When this charge is sent to infinity, the solution becomes asymptotically locally
Euclidean, and one in fact obtains the Ricci-flat Plebański-Demiański solution. The solution we have found
can thus be regarded as an ALF generalization of the latter solution. We also show that it can be interpreted
as a system consisting of two touching Kerr-NUTs: the south pole of one Kerr-NUT touches the north pole
of the other. The total NUT charge of such a system is then identified with the asymptotic NUT charge.
Setting the asymptotic NUT charge to zero gives a four-parameter asymptotically flat (AF) solution, and
contained within this subclass is the completely regular two-parameter AF instanton previously discovered
by the present authors. Various other limits are also discussed, including that of the triple-collinearly-
centered Gibbons-Hawking solution, and an ALF generalization of the C-metric.
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I. INTRODUCTION

Exact solutions have played an important role in the
development of Einstein’s general theory of relativity,
describing important predictions such as black holes.
The first known exact solution was discovered by
Schwarzschild in 1918, although it was only realized much
later that it describes a static black hole. The rotating
generalization of the Schwarzschild solution was discov-
ered by Kerr in 1963. It is a two-parameter class of
solutions, describing a rotating mass in general relativity.
The Schwarzschild solution has another well-known

generalization, the so-called Taub-NUT solution [1]. It
possesses some peculiar properties, such as the presence of
a so-called Misner string. Indeed, the Taub-NUT solution
was used by Misner as “a counterexample to almost
anything” [2]. When a rotational parameter is added, it
generalizes to the Kerr-NUT solution, which is contained
within the so-called Carter-Plebański solution [3,4]. The
latter solution is more general, containing electric and
magnetic charges, as well as a cosmological constant. But
in the present paper, we will only be interested in its
Ricci-flat limit, i.e., the Kerr-NUT solution.
A black hole can also accelerate in general relativity. The

solution that describes such a black hole is known as the
C-metric. The C-metric was found quite early on, but its
interpretation as an accelerating black hole was only made
clear after the work of Kinnersley and Walker [5] in 1970.
Kinnersley also found its generalization with rotation and
Newman-Unti-Tamburino (NUT) charge [6]. In 1976,
Plebański and Demiański obtained the most general black
hole solution and presented it in a remarkably compact
form [7]. It contains seven parameters: mass, rotation, NUT
charge, acceleration, cosmological constant, electric and
magnetic charges. Restricting to the Ricci-flat class, the

cosmological constant and electric and magnetic charges
are removed. We shall call such a class of solutions the
Ricci-flat Plebański-Demiański solution, although it is
perhaps more appropriate to call it the Kinnersley solution.
It is a four-parameter class of solutions.
In this paper, we focus on solutions with Euclidean

signature, i.e., those with all-plus signature. Interestingly,
all the above-mentioned black-hole solutions have
Euclidean sections. Many calculations in the black-hole
space-times, in particular those involving quantum fields,
are first done in their Euclidean sections and then analyti-
cally continued back to the Lorentzian signature. Euclidean
solutions are of interest in their own right as well. In the
Euclidean path integral approach to quantum gravity [8], all
the Euclidean metrics on a given manifold with fixed
boundary conditions are integrated over. Those metrics
satisfying the Einstein equations are thus the stationary
phase points of the path integral.
We should, however, point out that it is not guaranteed

that a Euclidean solution can be obtained from a Lorentzian
one by Wick rotation, or vice versa. For example, the self-
dual class of Euclidean solutions known as the multi-Taub-
NUT solution in the Gibbons-Hawking ansatz [9,10] has no
Lorentzian section. Nevertheless, as mentioned, large classes
of solutions do have Euclidean sections, and these will be
our main focus from now on. From this point, we will
implicitly refer to its Euclidean section when we talk about a
solution. For example, when we refer to the Kerr-NUT
solution, we really mean the Euclidean Kerr-NUT solution.
In the Euclidean section, the time-translational symmetry

becomes either a translational or a rotational symmetry. The
Euclidean spaces now possess two commuting Killing
vectors, one corresponding to the Euclidean time flow,
and the other to the usual rotation. The black-hole horizons,
as well as the so-called acceleration horizons when the
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acceleration parameter is present, become axes of the space.
This means that some linear combination of the two Killing
vector fields vanishes at each of these horizons or axes. The
classification of Euclidean solutions based on the fixed-
point sets of the Killing vector fields was carried out by
Gibbons and Hawking [11], and more recently in terms of
the so-called rod structure by the present authors [12].
In the rod-structure formalism, the various axes of the

space are known as rods. Each rod has a direction, which is
defined to be the normalized Killing vector field which
vanishes along that rod. The points at which adjacent rods
meet are called turning points. The reader is referred to
[12], and references therein, for more details of the rod-
structure formalism, and for explicit examples of rod
structures of a number of Euclidean solutions.
Euclidean solutions can also be classified by their

behavior at asymptotic infinity as being asymptotically
flat (AF), asymptotically locally flat (ALF), asymptotically
Euclidean (AE) or asymptotically locally Euclidean (ALE)
[13]. A solution is said to be AF, if at infinity the metric
approaches the form

ds2AF≡dτ2þdr2þ r2ðdθ2þ sin2θdϕ2Þ ð1:1Þ

sufficiently fast. Solutions in this class include
Schwarzschild and Kerr. On the other hand, if the metric
approaches

ds2ALF ≡ ðdτ þ 2n cos θdϕÞ2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ
ð1:2Þ

sufficiently fast at infinity, it is said to be ALF. Here the
so-called NUT charge n manifests itself in the asymptotic
behavior of this class of metrics. Solutions of this type
include Taub-NUT and Kerr-NUT. If the metric at infinity
instead approaches

ds2ALE ≡ r2cos2θdτ2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1:3Þ

sufficiently fast, it is called AE or ALE, depending on
whether the asymptotic constant r-surface is identified. We
refer to these two classes as ALE collectively when global
geometry is of no concern; in fact, AE is just a special case
of ALE with a trivial identification group. Flat space is of
course AE. Awell-known example of an ALE space is the
double-centered Gibbons-Hawking space, with the Eguchi-
Hanson space as a special case.
If one is only interested in local geometry, AF metrics are

a special limit of ALF metrics with a vanishing NUT
charge. This is clear from the asymptotics (1.1) and (1.2).
On the other hand, AE and ALE metrics are a special limit
of ALF metrics with an infinite NUT charge. The latter
correspondence is not manifest in the asymptotics (1.2) and
(1.3) alone, but it is true for all explicitly known solutions
(cf. Table I). For example, the infinite NUT charge limit of
Taub-NUT gives flat space. In this sense, ALF metrics are
the most general class of solutions.

It turns out that the C-metric is ALE: the acceleration
horizon now becomes one of the asymptotic axes in the
Euclidean section. The more general Ricci-flat Plebański-
Demiański solution is alsoALE, as can be checked explicitly.
One is then naturally led to the question of whether the latter
metric admits an ALF generalization. Such a generalization,
if it exists, would contain an asymptotic NUT charge n, such
that when n is taken to infinity, the Ricci-flat Plebański-
Demiański solution is recovered.
The aim of this paper is to explicitly present this ALF

generalization of the Ricci-flat Plebański-Demiański solu-
tion, and to analyze its properties and various limits. Like the
Ricci-flat Plebański-Demiański solution, this new solution
has three turning points in its rod structure. It can be regarded
as the non-self-dual counterpart of the triple-collinearly-
centered Taub-NUT solution, just as the Kerr-NUT solution
is the non-self-dual counterpart of the double-centered Taub-
NUT solution in the two-turning-point case. In analogy with
the Kerr-NUT solution, we will see that this new solution in
fact contains the self-dual triple-collinearly-centered
Gibbons-Hawking solution as another ALE limit.
It should be emphasized that the asymptotic NUT charge

n present in the new ALF solution that we have found is
different from the NUT-charge parameter that the
Plebański-Demiański solution is known to possess. In
particular, in the limit when n is taken to infinity, the
latter parameter is still present in the solution and remains
finite. The difference between these two types of NUT
charges can be understood in terms of the rod structure of
the solution. It turns out that the asymptotic NUT charge is
a property relating the two asymptotic rods (the first and
fourth rods of the rod structure), while the traditional NUT
charge is an analogous property relating the first and
third rods.1

TABLE I. Known examples of ALE metrics as special limits of
ALF metrics with infinite NUT charge. The last column refers to
the number of turning points in the rod structures of the
corresponding ALF and ALE metrics.

ALF metric ALE limit Number of turning points

Taub-NUT Flat space 1
Double-centered

Kerr-NUT Gibbons-Hawking 2
n-centered n-centered
Taub-NUT Gibbons-Hawking n

1The NUT-charge parameter in the Plebański-Demiański sol-
ution is so called because it reduces to the NUT-charge parameter
in the Kerr-NUT solution when the zero-acceleration limit is taken.
In this limit, the fourth rod disappears from the rod structure, and
the first and third rods become the asymptotic rods. Thus, it is only
in this limit that the NUT-charge parameter in the Plebański-
Demiański solution has its usual interpretation as in (1.2).
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The paper is organized as follows. We begin in Sec. II by
presenting the general metric together with an analysis of
its symmetries. We also briefly discuss the construction of
the solution. The main geometrical properties of the
solution are analyzed in Sec. III. This includes the con-
ditions necessary to ensure the correct metric signature and
absence of curvature singularities, as well as its asymptotic
structure and rod structure. In Sec. IV, we show how four
important limits of the solution can be obtained. They all
share the property that the number of turning points in the
rod structure remains fixed at three. In Sec. V, we provide
an alternative interpretation of the solution as a system

consisting of two touching Kerr-NUTs, while in Sec. VI,
we discuss the interpretation of this solution in Kaluza-
Klein theory as a system of three collinearly centered
monopoles. The paper ends with a discussion of possible
generalizations and future problems. There is also an
appendix, which contains details of how the two- and
one-turning-point limits of the solution are taken.

II. THE METRIC

The solution we have found can be compactly written in
the following form:

ds2 ¼ ðFdτ þGdϕÞ2
ðx − yÞHF

þ kH
ðx − yÞ3

�
dx2

X
−
dy2

Y
−
XY
kF

dϕ2

�
;

H ¼ ðνxþ yÞ½ðνx − yÞða1 − a3xyÞ − 2ð1 − νÞða0 − a4x2y2Þ�; F ¼ y2X − x2Y;

G ¼ ðν2a0 þ 2νa3y3 þ 2νa4y4 − a4y4ÞX þ ða0 − 2νa0 − 2νa1x − ν2a4x4ÞY;
X ¼ a0 þ a1xþ a2x2 þ a3x3 þ a4x4; Y ¼ a0 þ a1yþ a2y2 þ a3y3 þ a4y4; ð2:1Þ

in the coordinate system ðτ;ϕ; x; yÞ. There are seven
apparent parameters in this solution: an overall scale factor
k, a parameter ν, and five arbitrary coefficients a0;…;4 for
the quartic polynomial X (or Y).

A. Symmetries

It can be checked that the solution (2.1) has the following
two continuous symmetries:

(i) Scaling symmetry:

ai→ai=ci; x→cx; y→cy; ϕ→c2ϕ; ð2:2Þ

(ii) Parameter symmetry:

ai → cai; ϕ → ϕ=c; ð2:3Þ

for an arbitrary nonzero constant c, and
i ¼ 0;…; 4.

This implies that two out of the five coefficients a0;…;4 are
actually redundant. So (2.1) is in fact a five-parameter
solution. There are also two discrete symmetries present:

(i) Swapping symmetry:

ν→ 1=ν; x↔y; ðτ;ϕÞ→ iðτ=ν−2a2ϕ;−νϕÞ;
k→−kν2; ð2:4Þ

where i is the imaginary unit;
(ii) Inversion-swapping symmetry:

x→
1

y
; y→

1

x
; a0↔a4; a1↔a3: ð2:5Þ

One can use these symmetries to narrow the ranges of the
coordinates and parameters of the solution. For example,
the swapping symmetry can be used to restrict the range of
ν to −1 ≤ ν ≤ 1 without any loss of generality. This will be
used in our discussion below.

B. Alternative parametrization

It is often convenient to reparametrize the solution in
terms of the roots of the polynomial X as

X ¼ a4ðx − x1Þðx − x2Þðx − x3Þðx − x4Þ; ð2:6Þ

by defining

a0 ¼ a4x1x2x3x4; a2 ¼ a4ðx1x2 þ x1x3 þ x1x4 þ x2x3 þ x2x4 þ x3x4Þ;
a1 ¼ −a4ðx1x2x3 þ x1x2x4 þ x1x3x4 þ x2x3x4Þ; a3 ¼ −a4ðx1 þ x2 þ x3 þ x4Þ: ð2:7Þ

Then the scaling symmetry implies that the following substitutions:

a4 → a4=c4; xi → cxi; x → cx; y → cy; ϕ → c2ϕ; ð2:8Þ
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is a symmetry, so the relevant parameters are the relative
ratios, rather than the definite values, of the roots of X. The
parameter symmetry implies that the quartic coefficient a4
of X can be set to an arbitrary nonzero value.

C. ISM construction

The solution was constructed using the inverse-scattering
method (ISM) [14,15]. It was originally obtained by
applying a three-soliton transformation on the Euclidean
triple-collinearly-centered Schwarzschild solution. The
three so-called Belinski-Zakharov (BZ) parameters were
then fixed to eliminate the three corresponding turning
points where the soliton-transformation was performed.
One possible choice of these BZ parameters then led
to the above solution (the other choice leads to the triple-
collinearly-centered Taub-NUT solution). It was sub-
sequently realized that this solution can also be generated
by applying a three-soliton transformation on the Euclidean
double-Schwarzschild solution, and then eliminating one
turning point by fixing the corresponding BZ parameter.
The latter construction was in fact previously carried out in
[16], from which the new AF gravitational instanton was
extracted as a special case.
The remaining major challenge was to then cast the

solution in a compact form. We eventually succeeded by
using the C-metric-like coordinates ðx; yÞ. The basic idea
was to absorb as many parameters as possible into the
structure function X. A Möbius transformation can be
performed on ðx; yÞ, and using this freedom we fixed one
factor of H as νxþ y.
The details of the above ISM constructions and

simplifications will be presented elsewhere.

III. ANALYSIS OF THE GEOMETRY

A. Ranges of coordinates and parameters

To simplify our analysis, we need to narrow the ranges
and remove certain redundancies of the parameters. We use
the swapping symmetry to restrict the range of ν, and
choose a negative x2 using the scaling symmetry:

−1 ≤ ν ≤ 1; x2 < 0: ð3:1Þ

These ranges shall be assumed throughout the paper. x2 can
be further gauge fixed to be −1 due to the scaling
symmetry, and a4 can be fixed to be 1 due to the parameter
symmetry:

x2 ¼ −1; a4 ¼ 1: ð3:2Þ

We shall use these gauge-fixed values whenever it is
convenient.
We now deduce the appropriate ranges of the coordinates

ðx; yÞ. To ensure that the signature of the space does not
change in the region of interest, we note that x must lie

between a pair of adjacent roots of X, and similarly for y.
Furthermore, these two pairs of adjacent roots must be such
that X has the opposite sign to Y, to ensure a positive- or
negative-definite signature. In particular, this implies that
x and y lie in different ranges.
We also require that the region of interest is noncompact

with an asymptotic infinity. As can be seen from the metric
(2.1), asymptotic infinity is reached when x ¼ y. Given that
x and y necessarily lie in different ranges, there must exist a
common boundary at which they coincide. Without loss of
generality, we take this common boundary to be at
x ¼ y ¼ x2. We further assume that x ranges between
the two roots x2 and x3, and that y ranges between the
two roots x1 and x2.
At this stage, we note that the region of interest can be

visualized as a rectangle or “box” in a two-dimensional plot
with x and y as the axes. This box will have four sides,
corresponding to the boundaries of the ranges of x and y.
Asymptotic infinity itself is represented by the diagonal
line x ¼ y in this plot. The box will then have to touch the
point x ¼ y ¼ x2 on this line at either its lower-right or
upper-left corner.
Depending on the values of x1 and x3 relative to x2, either

the box may be finite in extent or up to two of its sides may
extend to infinity. For example, consider a box touching the
point x ¼ y ¼ x2 at its lower-right corner. If we have the
ordering x3 < x2 < x1, the box will be finite in extent. On
the other hand, if x2 < x3, the left side of the box will
extend to infinity and “wrap around” to the right side of the
plot, ending at x ¼ x3. Similarly, if x1 < x2, the top side of
the box will extend to infinity and wrap around to the
bottom side of the plot, ending at y ¼ x1. We thus have four
qualitatively different cases: (i) x3 < x2 < x1; (ii) x2 < x3
and x2<x1; (iii) x3<x2 and x1<x2; and (iv) x1 < x2 < x3.
We next turn to the constraints set by requiring that the

region of interest is free of curvature singularities. We note
that there are possible curvature singularities whenever H
vanishes. As can be seen from the expression of H in (2.1),
this occurs along the straight line y ¼ −νx, as well as on
nontrivial curves where the second factor of H vanishes.
We also note that there are curvature singularities at the four
points ðx ¼ 0; y ¼ �∞Þ and ðx ¼ �∞; y ¼ 0Þ.
We now show that a box touching the point x ¼ y ¼ x2

at its lower-right corner will always contain a curvature
singularity. As explained above, there are four different
cases to consider, labeled by (i)–(iv). It turns out that cases
(iii) and (iv) can immediately be eliminated, since we must
have x2 < x1 < 1 in order for the box not to touch the line
singularity y ¼ −νx for −1 ≤ ν ≤ 1. Turning to case (ii),
note that we require x1 < 0 in order for the box not to
contain the singularity at ðx ¼ −∞; y ¼ 0Þ. If this holds,
then case (ii) is in fact equivalent to case (i) under the
inversion-swapping symmetry. Thus we are left with case
(i) to consider. It can be checked that in this case, H will
necessarily change sign somewhere in the box. Indeed, if
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one demands that the box avoids the line singularity
y ¼ −νx, it will inevitably contain part of the nontrivial
singularity curves.
Hence we only need to consider a box touching the point

x ¼ y ¼ x2 at its upper-left corner. The analysis of this case
can be carried out in a similar fashion. Since ðx ¼ 0;
y ¼ −∞Þ is a curvature singularity, any box which does not
contain this point has x1 < x2, or can be transformed to
such a form by applying the inversion-swapping symmetry.
Furthermore, by requiring that H is everywhere nonvanish-
ing inside the box, one gets the constraint x2 < x3. In fact, a
detailed analysis shows that to avoid a possible curvature
singularity inside the box, we need only to consider the
box satisfying the following ranges of coordinates and
parameters:

−∞ < x1 < y < x2 < x < x3 < −x2; ð3:3Þ
with x4 obeying8>><

>>:
x4 ∈

�
−∞; x1x2x3

�
∪
�
x2x3
x1

;∞
�
; if x3 < 0;

x4 ∈
�

x1x3
x2

; x1x2x3

�
; if x3 > 0:

ð3:4Þ

The special value x3 ¼ 0 can be recovered as a limit of
either case. The two cases x3 < 0 and x3 > 0 are illustrated
in the plots in Figs. 1(a) and 1(b), respectively, for specific
choices of parameters.
When x3 < 0, one can in fact further narrow the range of

x4 to the finite interval ðx2x3x1
;−x2Þ by using a combination

of the inversion-swapping and scaling symmetries, which

maps a solution with any given x4 ¼ w to one with x4 ¼ x2
2

w
while preserving the value of x2.
The conditions that we have derived are also sufficient to

ensure that the signature of the metric is positive or negative
definite in the region of interest. Since we have required
that X and Y have opposite signs, it follows that F defined
in (2.1) has the same sign as X. If k is positive, then the
metric in (2.1) can be seen to have a positive- or negative-
definite signature.
To summarize, we have the coordinate range x2 < x <

x3 and x1 < y < x2, which can be visualised as a box in an
x-y plot. With the gauge choice (3.2), the solution is then

characterized by five parameters: the position of the box
determined by x1;3, the fourth root x4 of X, the line

y ¼ −νx; ð3:5Þ

with a slope between −1 and 1, and an overall (positive)
scale factor k. We have shown that these parameters have to
satisfy (3.3) and (3.4), in order to ensure that the solution
(2.1) has a Euclidean signature and that it does not contain
any curvature singularities.

B. ALF and non-self-dual properties

One key feature of the solution (2.1) is its ALF property
(with AF as a special case). One can quickly calculate that
when x → y,

gττ →
1

1 − ν2
; ð3:6Þ

which is a finite constant, a characteristic of an ALF metric.
This selects a particular Killing vector ∂

∂τ (up to constant
multiplication) for the solution, which has a finite norm and
generates the Euclidean time flow at infinity. This property
obviously indicates that, unlike say the Ricci-flat
Plebański-Demiański solution, there is no symmetry
between the coordinates τ and ϕ. To show the solution
is ALF, one can define the coordinates ðr; θÞ around the
asymptotic region x ¼ y ¼ x2 by

x ¼ x2 −
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − ν2Þ

p
r

cos2
θ

2
;

y ¼ x2 þ
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − ν2Þ

p
r

sin2
θ

2
; ð3:7Þ

and ð~τ; ~ϕÞ via the simultaneous substitutions

τ →
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
~τ þ b ~ϕ;

ϕ → −
2

ffiffiffi
k

p
x2

a4ðx2 − x1Þðx2 − x3Þðx2 − x4Þ
~ϕ:

ð3:8Þ

For large r, with b chosen as

b ¼
ffiffiffi
k

p ½ð1 − ν2Þðx32 þ x1x3x4Þ þ 2νx2ðx1x2 þ x1x3 þ x1x4 þ x2x3 þ x2x4 þ x3x4Þ�
ðx1 − x2Þðx2 − x3Þðx2 − x4Þ

; ð3:9Þ

the metric approaches (1.2), with ðτ;ϕÞ replaced by ð~τ; ~ϕÞ and

n ¼
ffiffiffi
k

p ½2νx2ðx1x2 þ x2x3 þ x2x4 − x1x3 − x1x4 − x3x4Þ − ð1þ ν2Þðx1x3x4 − x32Þ�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðx2 − x1Þðx2 − x3Þðx2 − x4Þ

; ð3:10Þ

or in an alternative form
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n ¼
ffiffiffi
k

p ½2νða1x2 − a3x32Þ − ð1 − νÞ2ða0 − a4x42Þ�
2a4

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
x2ðx2 − x1Þðx2 − x3Þðx2 − x4Þ

: ð3:11Þ

We refer to the Killing vectors associated with the
newly defined coordinates ð~τ; ~ϕÞ as the “natural Killing
vectors” of our solution, which can be seen to generate
natural notions of (Euclidean) time translation and
rotation, respectively, at infinity. In the limit n → ∞, the
solution should become ALE. Indeed, in the limits
ν ¼ �1, the solution reduces to the Ricci-flat Plebański-
Demiański and triple-collinearly-centered Gibbons-
Hawking solutions, respectively, both of which are ALE.
The solution can thus be thought of as a one-parameter
family of ALF metrics interpolating between the latter two
metrics, indexed by ν. On the other hand, the solution
becomes AF in the limit n ¼ 0, and in particular it
contains the AF instanton discovered in [16] as a special
case. These important limits will be discussed in detail
in Sec. IV.
The solution (2.1) has a Riemann tensor that is in general

neither self-dual nor anti-self-dual. One self-dual limit is
taken by setting ν ¼ −1, which, as just mentioned, gives
the triple-collinearly-centered Gibbons-Hawking solution.
There is another self-dual limit in the case when X has two
pairs of opposite roots, which gives the double-centered
Taub-NUT solution. This limit will be discussed in detail in
Appendix A.2.

C. Rod structure

The solution (2.1) possesses two apparent Killing
vectors ∂

∂τ and
∂
∂ϕ. It can thus be put in a canonical form,

in so-called Weyl-Papapetrou coordinates given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffi
−XY

p

ðx − yÞ2 ;

z ¼ 2ða0 þ a2xyþ a4x2y2Þ þ ðxþ yÞða1 þ a3xyÞ
2ðx − yÞ2 ;

ð3:12Þ
where z is determined up to a constant shift and a flip of
sign. From the expression of ρ, one can see that the
locations of the rods correspond to the roots (including
possible infinite roots) of X and Y. Turning points are then
the meeting points of these rods: just like the Plebański-
Demiański solution, the above solution contains three
turning points in general.
In the coordinates (2.1), the turning points are located at

ðx ¼ x2; y ¼ x1Þ, ðx ¼ x3; y ¼ x1Þ, and ðx ¼ x3; y ¼ x2Þ,
respectively, or equivalently, along the z axis with

z1 ¼ −
a4ðx1x2 þ x3x4Þ

2
; z2 ¼ −

a4ðx1x3 þ x2x4Þ
2

;

z3 ¼ −
a4ðx1x4 þ x2x3Þ

2
; ð3:13Þ

respectively, in Weyl-Papapetrou coordinates. The four
rods have directions li ¼ Ki=κi, with

FIG. 1. The boxes for the cases (a) x3 ¼ − 2
3
, x4 ¼ 1

2
; and (b) x3 ¼ 3

4
, x4 ¼ 2. The other free parameters have been set as x1 ¼ −2 and

ν ¼ 1
2
. The lighter-shaded strips represent the allowed ranges of x4. The dashed diagonal line represents asymptotic infinity. The solid

curves are locations of potential curvature singularities, as are the crossed diamonds at the four points ðx ¼ 0; y ¼ �∞Þ and
ðx ¼ �∞; y ¼ 0Þ. Note that the shaded box in each case touches asymptotic infinity at one corner while avoiding all the curvature
singularities.
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K1 ¼
�
−
−a0 þ 2νa0 þ 2νa1x2 þ ν2a4x42

x22
; 1

�
; κ1 ¼

a4ðx2 − x1Þðx2 − x3Þðx2 − x4Þ
2

ffiffiffi
k

p
x2

;

K2 ¼
�
−
ν2a0 þ 2νa3x31 þ 2νa4x41 − a4x41

x21
; 1

�
; κ2 ¼

a4ðx1 − x2Þðx1 − x3Þðx1 − x4Þ
2

ffiffiffi
k

p
x1

;

K3 ¼
�
−
−a0 þ 2νa0 þ 2νa1x3 þ ν2a4x43

x23
; 1

�
; κ3 ¼

a4ðx3 − x1Þðx3 − x2Þðx3 − x4Þ
2

ffiffiffi
k

p
x3

;

K4 ¼
�
−
ν2a0 þ 2νa3x32 þ 2νa4x42 − a4x42

x22
; 1

�
; κ4 ¼ κ1: ð3:14Þ

Here, the direction ðα; βÞ is defined by α ∂
∂τ þ β ∂

∂ϕ. Alternative expressions for Ki½1� are

K1½1� ¼ a4½x1x3x4=x2 þ 2νðx1x3 þ x1x4 þ x3x4Þ − ν2x22�;
K2½1� ¼ a4½x21 þ 2νðx1x2 þ x1x3 þ x1x4Þ − ν2x2x3x4=x1�;
K3½1� ¼ a4½x1x2x4=x3 þ 2νðx1x2 þ x1x4 þ x2x4Þ − ν2x23�;
K4½1� ¼ a4½x22 þ 2νðx1x2 þ x2x3 þ x2x4Þ − ν2x1x3x4=x2�: ð3:15Þ

These are also useful, since our analysis below will be
based mainly on the factorized form of X in (2.6), involving
its four roots.
The above rod structure encodes much useful informa-

tion about the solution. The relative directions of the four
rods and the ratio of the lengths of two finite rods are
actually invariants of the solution. For example, the
asymptotic NUT charge n is related to the directions of
the two asymptotic rods by n ¼ λðK1½1� − K4½1�Þ, where λ
is some proportionality constant. In the same spirit, one can
define the NUT charges carried by the individual turning
points to be ni ≡ λðKi½1� − Kiþ1½1�Þ, so that one has

n1 ¼
ffiffiffi
k

p ðx1 þ νx2Þ2ðx1x2 − x3x4Þ
2x1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðx2 − x1Þðx2 − x3Þðx2 − x4Þ

;

n2 ¼
x2

ffiffiffi
k

p ðx1 þ νx3Þ2ðx2x4 − x1x3Þ
2x1x3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðx2 − x1Þðx2 − x3Þðx2 − x4Þ

;

n3 ¼
ffiffiffi
k

p ðx2 þ νx3Þ2ðx2x3 − x1x4Þ
2x3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðx2 − x1Þðx2 − x3Þðx2 − x4Þ

: ð3:16Þ

Note that the asymptotic NUT charge is then the sum of the
individual NUT charges: n ¼ n1 þ n2 þ n3.
The rod structure will be extensively used in the

subsequent study. In particular, many special cases of
the general solution were identified by first studying the
behavior of the rod structure. In the rest of this subsection,
we will briefly discuss the special case when two adjacent
rods are joined up.
Two adjacent rods, say the ith and iþ 1th rods, can be

joined up by setting ni ¼ 0. In this case, the turning point at
which they meet is effectively eliminated, and one obtains a

solution whose rod structure has only two turning points.
For example, we can impose

n3 ¼ 0; ð3:17Þ

to join up the third and fourth rods, thus eliminating the
third turning point from the rod structure. An obvious
solution to this condition is

x1x4 ¼ x2x3: ð3:18Þ

The resulting solution is the Kerr-NUT solution. In this
limit, the box touches a solution curve of H at one of its
corners. We have mentioned that the solution curves are
locations of curvature singularities for general parameters.
But in the present case, it can be explicitly checked that at
this corner, a zero factor emerges from the numerator of the
Kretschmann invariant, which cancels the zero factor of H.
This gives rise to a finite Kretschmann invariant. Another
solution to the condition (3.17) is

x3 → −x2; x4 → −x1; ν → 1; ð3:19Þ

which results in the double-centered Taub-NUT solution.
This limit can also be understood as a box with one corner
touching a solution curve of H, now corresponding to its
factor νxþ y. The details of how the Kerr-NUTand double-
centered Taub-NUT solutions are recovered in these limits
can be found in Appendixes A.1 and A.2, respectively.
The joining up of the first and second rods, or of the

second and third rods, can be similarly obtained. We can
see that the (finite) lower and upper bounds previously
identified for the parameter x4 in (3.4) correspond exactly
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to the joining up of different pairs of adjacent rods to obtain
the Kerr-NUT solution.

IV. VARIOUS LIMITS

We have noted that the solution (2.1) is ALF, and that it
contains two ALE limits: the Plebański-Demiański solution
and the triple-collinearly-centered Gibbons-Hawking sol-
ution. In this section, we show in detail how these two
limits are recovered. The AF limit of (2.1) is also discussed,
and we show how the new AF gravitational instanton can
be recovered from it. Finally, a new special case of (2.1) is
discussed: an ALF generalization of the C-metric, which
can also be called the NUT-charged C-metric. Note that all
the limits discussed here have three turning points in their
rod structure; limits with two or one turning points will be
discussed in Appendix A.

A. Plebański-Demiański solution

Recall from (3.6) that the norm of ∂
∂τ at infinity becomes

unbounded when ν → �1. This means that the metric
becomes ALE. Here, we will show that by directly setting

ν ¼ 1; ð4:1Þ

we recover the Plebański-Demiański metric from (2.1). We
first perform the Möbius transformation

x ¼ pþ 1

p − 1
; y ¼ qþ 1

q − 1
; ð4:2Þ

and redefine the parameters

a0;4 ¼
γ

2
−
ϵ

4
∓mþ n

2
; a1;3 ¼ ∓ðm − nÞ;

a2 ¼
ϵ

2
þ 3γ; k ¼ 1

m − n
: ð4:3Þ

Note that this redefinition of six parameters in terms of only
four is consistent with the above-mentioned fact that two of
the original parameters are redundant. Then after a linear
transformation of the coordinates τ and ϕ via the simulta-
neous substitutions

τ →
ð4m − 4nþ 6γ þ ϵÞτ þ ð4m − 4n − 6γ − ϵÞϕ

4
ffiffiffiffiffiffiffiffiffiffiffiffi
m − n

p ;

ϕ →
τ − ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
m − n

p ; ð4:4Þ

the metric is brought precisely to the Ricci-flat class of the
(Euclideanized) Plebański-Demiański metric [7]

ds2 ¼ 1

ðp − qÞ2
�
1 − p2q2

P
dp2 þ P

1 − p2q2
ðdϕ − q2dτÞ2

−
1 − p2q2

Q
dq2 −

Q
1 − p2q2

ðdτ − p2dϕÞ2
�
;

P ¼ γ þ 2np − ϵp2 þ 2mp3 þ γp4;

Q ¼ γ þ 2nq − ϵq2 þ 2mq3 þ γq4: ð4:5Þ

B. Triple-collinearly-centered
Gibbons-Hawking solution

The other ALE limit is taken by directly setting

ν ¼ −1; ð4:6Þ

and one recovers the triple-collinearly-centered Gibbons-
Hawking solution. To cast the resulting solution in a more
familiar form, we first define the coordinates ðr; θÞ by

r sin θ ¼
ffiffiffiffiffiffiffiffiffiffi
−XY

p

ðx − yÞ2 ;

r cos θ ¼ 2ða0 þ a2xyþ a4x2y2Þ þ ðxþ yÞða1 þ a3xyÞ
2ðx − yÞ2 ;

ð4:7Þ

the parameters d1;2;3 in terms of the roots of X as

d1 ¼ −
a4ðx1x2 þ x3x4Þ

2
; d2 ¼ −

a4ðx1x3 þ x2x4Þ
2

;

d3 ¼ −
a4ðx1x4 þ x2x3Þ

2
; ð4:8Þ

and n1;2;3 as

n1 ¼
kðx1x2 − x3x4Þ

a4ðx1 − x3Þðx1 − x4Þðx2 − x3Þðx2 − x4Þ
;

n2 ¼
kðx1x3 − x2x4Þ

a4ðx1 − x2Þðx1 − x4Þðx2 − x3Þðx3 − x4Þ
;

n3 ¼
kðx2x3 − x1x4Þ

a4ðx1 − x2Þðx1 − x3Þðx2 − x4Þðx3 − x4Þ
: ð4:9Þ

After the simultaneous substitutions

τ → ð−a2τ þ 4kϕÞ=
ffiffiffiffiffi
4k

p
; ϕ → τ=

ffiffiffiffiffi
4k

p
; ð4:10Þ

the metric is brought to the form

YU CHEN AND EDWARD TEO PHYSICAL REVIEW D 91, 124005 (2015)

124005-8



ds2 ¼ V−1ðdτ þ AÞ2 þ Vðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ;

V ¼
X3
i¼1

2ni
ri

; A ¼
X3
i¼1

2niðr cos θ − diÞ
ri

dϕ;

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ di2 − 2dir cos θ

q
; ð4:11Þ

which is recognized as the triple-collinearly-centered
Gibbons-Hawking solution. Note that there is a transla-
tional symmetry by adding an arbitrary constant to the
right-hand sides of r cos θ in (4.7) and d1;2;3 in (4.8).
The charges n1;2;3 in (4.9) always have the same sign in the
ranges (3.3) and (3.4) that we considered, as required by the
absence of curvature singularities in the solution.

C. AF limit and the new AF instanton

This limit is taken by setting the total NUT-charge (3.11)
to zero, so now the metric (2.1) becomes AF. The solution
to the condition n ¼ 0 and the gauge choice x2 ¼ −1 can
be written as follows:

a1 þ a3 ¼ a0 þ a2 þ a4; a1 − a3 ¼ −
ð1− νÞ2ða0 − a4Þ

2ν
:

ð4:12Þ

Within this four-parameter AF subclass is the completely
regular gravitational instanton recently discovered by the
present authors [16] and christened the “new AF instanton.”
It can be obtained as a special case by further imposing

l1 ¼ l4 ¼ �l2 � l3: ð4:13Þ

These conditions ensure that the metric is defined on an
underlying manifold with a globally well-defined Uð1Þ ×
Uð1Þ isometry and is free of conical and orbifold singu-
larities. A solution to these conditions can be written (for
general x2) in the following parametric forms:

ν ¼ −2ξ2; x1 ¼ −
ξð1 − 2ξþ 2ξ2Þx2

1 − 2ξ
;

x3 ¼
ð1 − 2ξþ 2ξ2Þx2

4ξ2ð1 − ξÞ ; x4 ¼ 0; ð4:14Þ

or

ν ¼ −2ξ2; x1 ¼
4ξ2ð1 − ξÞx2
1 − 2ξþ 2ξ2

;

x3 ¼ −
ð1 − 2ξÞx2

ξð1 − 2ξþ 2ξ2Þ ; x4 ¼ ∞; ð4:15Þ

which are related to each other by the inversion-swapping
symmetry.

In the latter parametrization with an appropriate gauge
choice, the new AF instanton is then given by the metric
(2.1) with the parameter ν and the structure function X
defined as

ν¼−2ξ2;

X¼ðxþ4ξ3−4ξ4Þðxþξ−2ξ2þ2ξ3Þðx−1þ2ξÞ: ð4:16Þ

The parameters a0;…;4 are encoded in the polynomial X as
its coefficients; in particular, we simply have a4 ¼ 0 and a
gauge-fixed a3 ¼ 1. The solution is then determined by the
parameters k and ξ. This gives an alternative but simpler
form of the new AF instanton. Now the awkward square-
root terms in the latter are eliminated, and its analysis based
on this parametrization will be much easier. To cast it in
exactly the same form used in [16], one needs to perform
the Möbius transformation,

x→−
ξ½ð1−2ξþ2ξ2Þ2x−ð1−2ξ2Þð1−4ξþ2ξ2Þ�

ð1−2ξþ2ξ2Þxþ1−2ξ2
; ð4:17Þ

with a similar equation for y, followed by the simultaneous
substitutions

τ→
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξ4

p
ψ−

16k2ξ3ð1−4ξþ8ξ2−12ξ3þ16ξ4−8ξ5Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξ4

p
ð1−2ξ2Þð1−2ξþ2ξ2Þ2

ϕ;

ϕ→
4k2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−4ξ4
p

ð1−2ξ2Þð1−2ξþ2ξ2Þ
ϕ;

k→
4k4ð1−2ξ2Þð1−ξÞ2ð1−2ξÞ2
ð1þ2ξ2Þð1−2ξþ2ξ2Þ4 ; ð4:18Þ

and finally introduce the new parameters λ and γ defined as

λ ¼ 1 − 2ξ2

1 − 2ξþ 2ξ2
; γ ¼ −

1 − 4ξþ 2ξ2

1 − 2ξþ 2ξ2
: ð4:19Þ

D. NUT-charged C-metric

The NUT-charged C-metric is obtained by requiring that
the second rod is parallel to the fourth rod, which is
achieved by setting

a4 ¼ 0 or x4 ¼ �∞; ν ¼ 0: ð4:20Þ

The metric then becomes

ds2 ¼ ðFdτþ a0YdϕÞ2
ðx− yÞHF

þ kH
ðx− yÞ3

�
dx2

X
−
dy2

Y
−
XY
kF

dϕ2

�
;

H ¼ yð−2a0 − a1yþ a3xy2Þ; F ¼ y2X − x2Y;

X ¼ a0 þ a1xþ a2x2 þ a3x3;

Y ¼ a0 þ a1yþ a2y2 þ a3y3: ð4:21Þ
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We make the gauge choice a3 ¼ 1 and use the roots of
X ¼ ðx − x1Þðx − x2Þðx − x3Þ as the parameters. Requiring
H to be everywhere nonvanishing in the box gives the
following ranges of the parameters and coordinates:

−∞ < x1 < y < x2 < x < x3 < 0; ð4:22Þ

which is consistent with (3.3) and (3.4) from our general
analysis. The reader is reminded that we actually have
x4 ¼ −∞, which provides the lower bound for x1 and
implies the upper bound for x3.
The rod structure of this solution can be brought to a

form very close to that of the C-metric by defining

τ ¼ τ0; ϕ ¼ −
2x2

ffiffiffi
k

p

ðx1 − x2Þðx2 − x3Þ
ϕ0: ð4:23Þ

In these coordinates, the corresponding rod directions are

l1 ¼ ð4n; 1Þ; l2 ¼
1

κ02
ð0; 1Þ;

l3 ¼
1

κ03
ð4n0; 1Þ; l4 ¼ ð0; 1Þ; ð4:24Þ

where n and κ02 are given by

n ¼
ffiffiffi
k

p
x1x3

2ðx1 − x2Þðx2 − x3Þ
; κ02 ¼

x2ðx1 − x3Þ
x1ðx2 − x3Þ

; ð4:25Þ

and n0 and κ03 are given by

n0 ¼ x22
x23

n;
1

κ02
þ 1

κ03
¼ 1: ð4:26Þ

We note that the lengths of the two finite rods are,
respectively,

z021 ¼
ffiffiffi
k

p
x2

x1 − x2
; z032 ¼

ffiffiffi
k

p
x2

x2 − x3
: ð4:27Þ

This rod structure is illustrated in Fig. 2. The first and third
rods are the analogues of the horizon rods of the C-metric,
while the second and fourth rods are the usual axis rods.
Like the original solution, the metric (4.21) is ALF with

an asymptotic NUT charge n. An ALE limit is obtained
when n → ∞, in which case we recover the C-metric. To
take this limit, we need to set

x1;3 → x2; ð4:28Þ

while fixing the other parameters. The box in this case thus
becomes a point at ðx ¼ x2; y ¼ x2Þ. More specifically, we
first write the parameters in the following form:

x1 ¼ x2ð1þð1−cÞϵÞ; x3¼ x2ð1−2cϵÞ; k¼ ϵ3c2l2;

ð4:29Þ

and define new coordinates by performing the following
substitutions:

x→x2½1−cð1þxÞϵ�; y→x2½1−cð1þyÞϵ�;

τ→
2x1x3

ffiffiffi
k

p ð1−cÞ
ðx1−x2Þðx2−x3Þ

τ; ϕ→−
2x2

ffiffiffi
k

p ð1−cÞ
ðx1−x2Þðx2−x3Þ

ðτþϕÞ:

ð4:30Þ

After taking the limit ϵ → 0, the metric becomes the
familiar form of the C-metric:

ds2 ¼ l2

ðx − yÞ2
�
dx2

GðxÞ þ GðxÞdϕ2 −
dy2

GðyÞ −GðyÞdτ2
�
;

GðxÞ ¼ ð1 − x2Þð1þ cxÞ: ð4:31Þ

On the other hand, the AF limit of (4.21) is taken by
requiring

n ¼ 0 ⇒ x3 ¼ 0 or a0 ¼ 0: ð4:32Þ

In this limit, the first rod joins up with the second, or in
other words, the first turning point vanishes. The resulting
rod structure has two turning points and turns out to be
just the Schwarzschild solution. The mapping to this metric
is a special case of the transformation described in
Appendix A.3.
The solution (4.21) admits several other, more subtle

limits. In the limit x1 → x2 and k → 0while keeping ðx1−x2Þ2
k

finite, one can recover the self-dual Taub-NUT solution. In
this case, the second and third turning points merge with
each other, and together they disappear from the rod
structure. The details of how this limit is taken can be
found in Appendix A.4. The self-dual Taub-NUT solution
can also be obtained in the limit in which the second and
third turning points are pushed to infinity. These limits
show that the asymptotic NUT charge can be thought of as
being carried by the first turning point.
Finally, in the limit x1 ¼ −∞ or a3 ¼ 0, the second rod

shrinks down to zero length, and the first and second
turning points merge with each other. In this case, one
recovers the Kerr-NUT solution with NUT-charge param-
eter equal to the rotational parameter, i.e., (A4) with n ¼ a.

FIG. 2. The rod structure of the NUT-charged C-metric, with
asymptotic NUT charge n.
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V. ALTERNATIVE INTERPRETATION
AS TWO TOUCHING KERR-NUTS

In this section, we show how the general solution (2.1)
can be regarded as a system consisting of two touching
Kerr-NUTs. We also analyze in detail, the special case
consisting of a Schwarzschild in superposition with a
self-dual Taub-NUT.

A. Kerr-NUT touching Kerr-NUT

The general solution (2.1) has an alternative interpreta-
tion as a system consisting of two touching Kerr-NUTs: the
south pole of one Kerr-NUT touches the north pole of the
other. This is consistent with our ISM construction. Recall
that in our construction, one possible seed solution is the
double Schwarzschild solution, with an inner axis sepa-
rating the two black holes; the inner axis is then joined up
with one of the black-hole horizons by appropriately
choosing the corresponding BZ parameter. The inner axis
disappears from the solution, and in this sense the resulting
two Kerr-NUTs are touching each other, sharing one single
point as their common pole. In what follows, we shall
present the rod structure of the solution in a form that favors
this interpretation and show how one can remove one Kerr-
NUT from the solution in certain limits.
In the natural Killing coordinates, the rod structure is

~l1 ¼ ð2n; 1Þ; ~l2 ¼
1

κI
ð1;ΩIÞ;

~l3 ¼
1

κII
ð1;ΩIIÞ; ~l4 ¼ ð−2n; 1Þ; ð5:1Þ

where the angular velocities ΩI;II are given by

ΩI ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
x1x3ðx2 − x1Þðx2 − x3Þðx2 − x4Þffiffiffi

k
p ð−L1 þ L2 þ L3Þ

;

ΩII ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
x1x3ðx2 − x1Þðx2 − x3Þðx2 − x4Þffiffiffi

k
p ð−L1 − L2 þ L3Þ

; ð5:2Þ

and the surface gravities κI;II are given by

κI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
x2x3ðx1 − x2Þðx1 − x3Þðx1 − x4Þffiffiffi

k
p ð−L1 þ L2 þ L3Þ

;

κII ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
x1x2ðx3 − x1Þðx3 − x2Þðx3 − x4Þffiffiffi

k
p ð−L1 − L2 þ L3Þ

: ð5:3Þ

Here, L1;2;3 are the three functions defined as

L1 ¼ x1ðx2x3 − x1x4Þðx2 þ νx3Þ2;
L2 ¼ x2ðx1x3 − x2x4Þðx1 þ νx3Þ2;
L3 ¼ x3ðx1x2 − x3x4Þðx1 þ νx2Þ2: ð5:4Þ

We note that the lengths of the rods are

~z21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − kν2

p
x2ðx1 − x4Þ

ðx1 − x2Þðx2 − x4Þ
;

~z32 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − kν2

p
x2ðx3 − x4Þ

ðx2 − x3Þðx2 − x4Þ
: ð5:5Þ

This rod structure is illustrated in Fig. 3. For comparison,
we recall that the rod structure of a single Kerr-NUT [12]
has three rods, with directions ð2n; 1Þ, 1

κ ð1;ΩÞ, and
ð−2n; 1Þ in suitable coordinates, where n is the NUT
charge, and κ and Ω are the surface gravity and angular
velocity of the horizon, respectively. It is then clear that the
rod structure considered here consists of two Kerr-NUTs,
whose horizons touch at the poles. κI;II and ΩI;II are the
surface gravities and angular velocities of the two horizons,
respectively.
One can remove a Kerr-NUT from the solution by

zooming in to one of the Kerr-NUTs and at the same time
sending the other pole of the second Kerr-NUT to infinity.
Alternatively, one can shrink the size of the second Kerr-
NUT to zero. We will give a more detailed discussion of
both of these possibilities in Appendix A.1. The explicit
mapping of the first limit to the Kerr-NUT solution is given
therein. Recall that in addition to these two possibilities, we
have a third possibility to recover Kerr-NUT by joining up
two rods as discussed in Sec. III. C, corresponding to the
lower and upper bounds of x4.
In the rest of this subsection, we will briefly discuss

a few special cases of this solution. First, consider the
case

x1 ¼ ∞; i:e:; a4 ¼ 0 ⇒ ΩI ¼ 0; ð5:6Þ

in which the first Kerr-NUT becomes static.2 This can be
interpreted as a configuration in which a (non-self-dual)
Taub-NUT touches a Kerr-NUT. On the other hand, the
case

x3 ¼ 0; i:e:; a0 ¼ 0 ⇒ ΩII ¼ 0; ð5:7Þ

is essentially the same configuration, with the locations of
these two objects swapped. This is of course expected,
since they are related by the inversion-swapping
symmetry.

FIG. 3. The rod structure of the general solution, regarded as a
touching double-Kerr-NUT system.

2Note that there is a well-defined notion of being “static,”
given by the requirement that the rod has a direction proportional
to ∂

∂τ.
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The case with both Kerr-NUTs static,

x1 ¼∞; x3¼ 0; i:e:; a0;4¼ 0⇒ΩI;II ¼ 0; ð5:8Þ

can then be interpreted as a configuration in which a Taub-
NUT touches another Taub-NUT, which is of course a
single larger Taub-NUT. We will discuss this limit in detail
in Appendix A.3 and show how the familiar form of the
Taub-NUT solution can be recovered. By further setting
ν ¼ 0, one obtains the Schwarzschild solution, which can
be viewed as resulting from a Schwarzschild touching
another Schwarzschild.

B. Schwarzschild in superposition
with a self-dual Taub-NUT

The case describing a Schwarzschild in superposition
with a self-dual Taub-NUT is obtained by requiring

that the second rod is static and that the first rod is
parallel to the third rod. The solution to these condi-
tions is

x1 ¼ −∞; x4 ¼ −
2νx2x3
x2 þ x3

: ð5:9Þ

An equivalent solution can be obtained by applying the
inversion-swapping symmetry, in which the third rod
becomes static and the second rod becomes parallel to
the fourth rod. To be concrete, we will focus on the former
case in the rest of this subsection.
Choosing the gauge a3 ¼ −x2 − x3, x2 ¼ −1, and defin-

ing x3 ¼ μ, the metric is then given by

ds2 ¼ ðFdτ þGdϕÞ2
ðx − yÞHF

þ kH
ðx − yÞ3

�
dx2

X
−
dy2

Y
−
XY
kF

dϕ2

�
;

H ¼ ðνxþ yÞ½ð1 − μÞðνx − yÞðμð2ν − 1Þ − xyÞ þ 4μ2νð1 − νÞ�;
G ¼ 2ν½ðy3ð1 − μÞ − μ2ν2ÞX − μð2ν − 1Þðx − μx − μÞY�; F ¼ y2X − x2Y;

X ¼ ðxþ 1Þðx − μÞðx − μxþ 2μνÞ; Y ¼ ðyþ 1Þðy − μÞðy − μyþ 2μνÞ: ð5:10Þ

Recall that ðx ¼ 0; y ¼ −∞Þ is a curvature singularity, so
one needs to impose μ < 0. The requirement that H
remains nonvanishing inside the box gives ν > 0. Then
the ranges of the parameters and coordinates are given by

−1< μ< 0< ν< 1; −∞<y<−1<x< μ: ð5:11Þ

These ranges are consistent with (3.3) and (3.4) from our
general analysis. The restriction on the range of the
parameter ν originates from its relation to x4 in (5.9).
The rod structure of this solution can be brought to a

nicer form by defining

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
τ0 þ 4μνð2ν − 1Þ ffiffiffi

k
p

ð1þ μÞð1 − μ − 2μνÞϕ
0;

ϕ ¼ 2
ffiffiffi
k

p

ð1þ μÞð1 − μ − 2μνÞϕ
0: ð5:12Þ

In these coordinates, the four rods are located at x ¼ −1,
y ¼ −∞, x ¼ μ, and y ¼ −1, respectively. The correspond-
ing rod directions are

l1 ¼ ð0; 1Þ; l2 ¼
1

κ02
ð1; 0Þ;

l3 ¼
1

κ03
ð0; 1Þ; l4 ¼ ð−4n; 1Þ; ð5:13Þ

where

κ02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p

2
ffiffiffi
k

p ; κ03 ¼
1 − μþ 2ν

1 − μ − 2μν
;

n ¼ −
ffiffiffi
k

p
νð1 − μνÞ2ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ν2
p

ð1þ μÞð1 − μ − 2μνÞ
: ð5:14Þ

We note that the lengths of the two finite rods are,
respectively,

z021 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − ν2Þ

p
ð1 − μÞ

1 − μ − 2μν
;

z032 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − ν2Þ

p
μðμ − 1 − 2νÞ

ð1þ μÞð1 − μ − 2μνÞ : ð5:15Þ

This rod structure is illustrated in Fig. 4. We recognize a
Schwarzschild-like structure in the first three rods,
while the third turning point can be regarded as an isolated
self-dual Taub-NUT. The distance between the
Schwarzschild horizon and the self-dual Taub-NUT is

FIG. 4. The rod structure of a Schwarzschild in superposition
with a self-dual Taub-NUT. In the parametrization used here, one
has x1 ¼ −∞, x2 ¼ −1, and x3 ¼ μ.
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given by z032. In this picture, the asymptotic NUT charge n
is carried entirely by the self-dual Taub-NUT.
Note that in the ranges of interest (5.11), the quantities

κ02, κ
0
3, z

0
21, and z032 remain positive. The NUT-charge n is

negative and ranges from 0 down to −∞ when ν ranges
from 0 to 1. We can thus interpret ν as the asymptotic NUT-
charge parameter: ν ¼ 0 corresponds to a zero value of the
NUT charge and gives the Schwarzschild solution, while
ν ¼ 1 corresponds to an infinite (negative) value of the
NUT charge and gives an ALE solution. k simply sets the
scale of the solution and can thus be taken as the mass
parameter. μ determines the length of the third rod, and so it
can be interpreted as the separation parameter: μ ¼ −1
corresponds to the infinite-separation limit z032 ¼ ∞ and
gives either the self-dual Taub-NUT or the Schwarzschild
solution, while μ ¼ 0 corresponds to the zero-separation
limit z032 ¼ 0, in which the self-dual Taub-NUT merges
with the Schwarzschild to give a non-self-dual Taub-NUT.
We do not present the details here, apart from mentioning
that some of these limits are special cases of those
considered in Appendix A.
One could wonder what happens when −1 ≤ ν < 0, and

in particular when ν ¼ −1. It turns out that these possibil-
ities do not give rise to well-behaved solutions, since a
curvature singularity appears inside the box. In the case
ν ¼ −1, the above solution reduces to a triple-collinearly-
centered Gibbons-Hawking solution with two nuts pos-
sessing opposite NUT charges. The latter is known to be
singular, since it corresponds to at least one nut possessing
a negative “magnetic mass.”

VI. INTERPRETATION IN KALUZA-KLEIN
THEORY

Given an ALF solution, there is a well-known procedure
by which it can be turned into a solution of four-
dimensional Kaluza-Klein theory. One first adds a flat
time direction to the ALF solution to obtain a solution of
five-dimensional vacuum Einstein gravity with Lorentzian
signature. Upon dimensional reduction along the compact
direction ∂

∂τ (or ∂
∂ ~τ), one then obtains an AF solution of

Kaluza-Klein theory with Lorentzian signature.
When this procedure is applied to the Taub-NUT

solution, one obtains a magnetic monopole solution in
Kaluza-Klein theory [17,18]. In this process, the NUT
charge has turned into a magnetic charge associated with
the Kaluza-Klein gauge field. When applied to the n-
centered Taub-NUT solution, a system of n magnetic
monopoles results. Each turning point in the rod structure
of the original solution has turned into a source for a
monopole.
This procedure can also be applied to AF solutions with

vanishing asymptotic NUT charge. The resulting Kaluza-
Klein solution will then have zero total magnetic charge,
although they would still in general describe a system of

monopoles. For example, when this procedure is applied to
the Kerr solution, one obtains a magnetic dipole [17].
It is clear then that the solution (2.1) can be turned into a

Kaluza-Klein solution describing a system of three collin-
early centered magnetic monopoles. Of the five parameters
in the original solution, three of them characterize the
independent charges of the monopoles, and the remaining
two their relative positions. The charges of these monop-
oles, as well as other properties of this system, can be read
off from the rod structure of the original solution. In the
natural Killing coordinates ð~τ; ~ϕÞ, the four rods have
directions li ¼ ~Ki=~κi, with

~K1 ¼ð2n1þ2n2þ2n3;1Þ; ~K2 ¼ð−2n1þ2n2þ2n3;1Þ;
~K3 ¼ð−2n1−2n2þ2n3;1Þ; ~K4 ¼ð−2n1−2n2−2n3;1Þ;

ð6:1Þ

where n1;2;3 are the NUT charges of the turning points,
given by (3.16). Recall that the asymptotic NUT charge is
n ¼ n1 þ n2 þ n3. The surface gravities in these coordi-
nates are given by

~κ1;4 ¼ 1; ~κ2 ¼
x2ðx1 − x3Þðx1 − x4Þ
x1ðx2 − x3Þðx2 − x4Þ

;

~κ3 ¼
x2ðx3 − x1Þðx3 − x4Þ
x3ðx2 − x1Þðx2 − x4Þ

: ð6:2Þ

Now, n1;2;3 can be identified with the charges of the three
monopoles. The identity ~κ1;4 ¼ 1 indicates that the space-
time described by the solution in Kaluza-Klein theory is
asymptotically flat if ~ϕ has standard periodicity 2π. Conical
singularities then exist along the inner axes if j~κij ≠ 1, for
i ¼ 2; 3. For the ranges we consider, we actually always
have j~κ2;3j ≥ 1, with equality holding only in certain
degenerate limits. So in general, one cannot obtain a
balanced triple-monopole system in Kaluza-Klein theory
from (2.1). Conical singularities necessarily exist along the
two axes joining the monopoles. This is in contrast to the
triple-centered Taub-NUT solution, which describes a
balanced triple-monopole system.
Finally, we remark that in the AF limit n ¼ 0, the three

monopoles will carry a zero total charge. A special case of
this system was previously considered in [16].

VII. FUTURE WORK

To summarize, we have presented a five-parameter class
of Ricci-flat solutions in four dimensions with a Euclidean
signature. This solution can be regarded as a generalization
of the Ricci-flat Plebański-Demiański solution with the
inclusion of an asymptotic NUT charge; alternatively, it
can be regarded as a system consisting of two touching
Kerr-NUTs. Various properties and limits of the solution
were studied.
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The reader should bear in mind that we have entirely
focused on the solution as a Euclidean solution. The most
prominent problem related to this solution is whether it
admits a Lorentzian section and how to find it if it exists.
Such a section would be very interesting, since it may
have a (single)-black-hole interpretation, as the Plebański-
Demiański solution does. We do not have a definite answer
to this yet. On the one hand, the solution does contain
various limits which do have Lorentzian sections, such as
the Plebański-Demiański and Kerr-NUT solutions. On the
other hand, the solution also contains the triple-collinearly-
centered Gibbons-Hawking solution as a special case,
which does not admit a Lorentzian section. This fact cannot
rule out the existence of a Lorentzian section for our
general solution, because a solution may have a Lorentzian
section even though one of its subclasses does not: as an
example, the Kerr-NUT solution contains the Eguchi-
Hanson solution as a special case and admits a
Lorentzian section. We remark that if a Lorentzian section
could be found, it is natural to interpret the lowest crossed
diamond in Fig. 1(b) as the black-hole curvature singu-
larity, hidden behind the horizon at y ¼ x1.
It may also be interesting to study the algebraic proper-

ties of the solution. The Plebański-Demiański solution is
algebraically special and is so far the most general known
Type-D solution in four dimensions. Based on the fact that
our solution is a generalization of the Ricci-flat Plebański–
Demiański solution and that it possesses a very compact
form, one may suspect that the solution may have some
special algebraic properties. Of course, since a Lorentzian
section is still lacking, one has to study this in the regime
with a Euclidean signature.
Recall that the general Plebański-Demiański solution

carries both electric and magnetic charges. A challenging
problem is then to seek a generalization of this solution, by
adding electric and/or magnetic charges. It is even more
challenging to seek an (anti–)de Sitter [(A)dS] generaliza-
tion. We have mentioned that our solution emerges from the
same ISM construction as the triple-collinearly-centered
Taub-NUT solution. The latter solution has an (A)dS
generalization, which can be obtained as a special case from
the general construction carried out by Calderbank and
Pedersen [19]. These facts lead us to believe that it is
worth more effort to consider the possibility of these

generalizations in the future. One may even try to make
guesses, by choosing an ansatz similar in form to our metric.
The new AF instanton was identified within this sol-

ution, as mentioned previously. Then a natural question to
ask is whether the solution admits more new completely
regular gravitational instantons. The analysis is straightfor-
ward with the aid of the rod structure presented in this
paper, but the actual calculations are rather involved. More
careful and exhaustive analysis is needed.
Other possible future directions include the interpreta-

tion of the solution when embedded in string theory, in
terms of a system of interacting D-branes. More detailed
analysis of the solution in Kaluza-Klein theory is also
worth pursuing.
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APPENDIX A: DOUBLE-CENTERED
AND SINGLE-CENTERED LIMITS

In this appendix, we consider degenerate limits of the
solution (2.1) in which the final solution contains only two
or one turning point. The resulting solutions include the
Kerr-NUT, the double-centered Taub-NUT, the non-self-
dual as well as the self-dual Taub-NUT solutions.

1. Kerr-NUT solution

It is known that a scaling limit [7] of the Plebański-
Demiański solution results in the Kerr-NUT solution (as a
subclass of the Carter-Plebański solution [3,4]). This limit
corresponds to sending the first or third turning point to
infinity while zooming in to the region around the remain-
ing two turning points. This limit is still present in the
general solution (2.1), although in a more subtle way. To
recover it, one first defines the parameters

x1 ¼ x2−2ϵ; x3¼−x2−c1ϵ;

x4 ¼−x2−c2ϵ; ν¼ 1þc3ϵ=x2; k¼ l=ϵ3; ðA1Þ

and the coordinates ðr; θÞ by

x ¼ x3 þ ϵ

"
4rx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2

lð2þ c1 þ c2 þ 2c3Þ
r

þ ðc1 þ c3Þð2þ c1 þ c3Þ
2þ c1 þ c2 þ 2c3

#
; y ¼ x2 − ϵð1þ cos θÞ: ðA2Þ

After making the substitutions

τ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ϵð2þ c1 þ c2 þ 2c3Þ

x2

s
τ þ x2

ffiffiffi
k

p ðK2½1� þ K4½1�Þ
a4ðx1 − x2Þðx2 − x3Þðx2 − x4Þ

ϕ;

ϕ →
2x2

ffiffiffi
k

p

a4ðx1 − x2Þðx2 − x3Þðx2 − x4Þ
ϕ; ðA3Þ
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and taking the limit ϵ → 0, one can show that the first
turning point is pushed to infinity. The metric in this limit
becomes

ds2 ¼ Δ
Σ
½dτ þ ð2n cos θ þ asin2θÞdϕ�2

þ sin2θ
Σ

½adτ − ðr2 − n2 − a2Þdϕ�2 þ Σ
�
dr2

Δ
þ dθ2

�
;

Σ ¼ r2 − ðn − a cos θÞ2; Δ ¼ r2 − 2mr − a2 þ n2;

ðA4Þ

with parameters

m ¼
ffiffi
l

p ½ðc1 þ c3Þ2 þ ðc2 þ c3Þ2 þ 2c1 þ 2c2 þ 4c3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−64x32ð2þ c1 þ c2 þ 2c3Þ

p ;

n ¼ −
ffiffi
l

p ½ðc1 þ c3Þðc2 þ c3Þ þ 2þ c1 þ c2 þ 2c3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16x32ð2þ c1 þ c2 þ 2c3Þ

p ;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
lð2þ c1 þ c2 þ 2c3Þ

16x32

s
: ðA5Þ

This is the familiar form of the Kerr-NUT solution.
However, there is a more natural limit in which one can

recover the Kerr-NUT solution. As mentioned above, one
can join up two adjacent rods to eliminate the turning point
between them, instead of sending it to infinity. Without loss
of generality, here we consider the limit (3.18), in which the
third rod is joined up with the fourth. We first define k in
terms of l, and choose a4 appropriately:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − ν2Þ

q
¼ 2lðx1 − x2Þðx1 − x3Þ

x1ðx2 − x3Þ
;

a4 ¼
4l

ðx1 − x4Þðx2 − x3Þ
: ðA6Þ

We then bring the solution to its natural Killing coordinates
by doing the substitutions

τ →
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðτ − bϕÞ; ϕ → −ϕ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
; ðA7Þ

with b given by

b¼ 2l½ð1−ν2Þðx21þx24Þþ2νððx1þx4Þðx2þx3Þþ2x1x4Þ�
ð1−ν2Þðx1−x4Þðx2−x3Þ

:

ðA8Þ

By introducing the parameters m, a, and n

m¼−
l½ð1þν2Þðx2þx3Þþ2νðx1þx4Þ�

ð1−ν2Þðx2−x3Þ
; a¼−

lðx1−x4Þ
x2−x3

;

n¼−
l½ð1þν2Þðx1þx4Þþ2νðx2þx3Þ�

ð1−ν2Þðx2−x3Þ
; ðA9Þ

and the coordinates r and θ

r ¼ lðx2 þ x3Þðxþ yÞ − 2ðxyþ x2x3Þ
ðx2 − x3Þðx − yÞ

−
lð1þ ν2Þðx2 þ x3Þ þ 2νðx1 þ x4Þ

ð1 − ν2Þðx2 − x3Þ
;

cos θ ¼ ðx1 þ x4Þðxþ yÞ − 2ðxyþ x1x4Þ
ðx1 − x4Þðx − yÞ ; ðA10Þ

the metric is brought to the Kerr-NUT solution in the
familiar form (A4). The corresponding joining-up limit of
the Plebański-Demiański solution results in the double-
centered Gibbons-Hawking solution, a subclass of the
Kerr-NUT solution with an infinite asymptotic NUT
charge.
A third way to eliminate a turning point from the rod

structure is to set the length of say the second rod to zero,
while keeping the third rod finite. In the touching double-
Kerr-NUT picture, this corresponds to shrinking the size of
the first Kerr-NUT to zero. This limit is achieved by taking

a3;4 ¼ 0 or a0;1 ¼ 0: ðA11Þ

We will not present the detailed coordinate transforma-
tions here.

2. Double-centered Taub-NUT solution

To recover the double-centered Taub-NUT solution, it is
convenient to use the natural Killing coordinates ð~τ; ~ϕÞ
defined in (3.8). We define

ν ¼ 1 − c1ϵ=l; k ¼ 2c1l=ϵ;

x3 ¼ −x2ð1 − ϵÞ; x4 ¼ −x1ð1 − c2ϵÞ; ðA12Þ

and take the limit ϵ → 0. We then introduce the new
parameters ða; n1; n2Þ by

a ¼ 2c1x1x2
x21 − x22

; n1 ¼
lð1þ c2Þðx1 þ x2Þ

4ðx1 − x2Þ
;

n2 ¼
lð1 − c2Þðx1 − x2Þ

4ðx1 þ x2Þ
; ðA13Þ

and the coordinates ðr; θÞ by
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r sin θ ¼ 2c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx2 − x21Þðx2 − x22Þðy2 − x21Þðy2 − x22Þ

p
ðx21 − x22Þðx − yÞ2 ;

r cos θ ¼ 2c1ðxy − x21Þðxy − x22Þ
ðx21 − x22Þðx − yÞ2 : ðA14Þ

After dropping the tildes on the natural Killing coordinates,
and taking ϕ → −ϕ, the metric is brought to the familiar
form

ds2 ¼ V−1ðdτ þ AÞ2 þ Vðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ;

V ¼ 1þ
X2
i¼1

2ni
ri

;

A ¼
X2
i¼1

2niðr cos θ − diÞ
ri

dϕ;

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ di2 − 2dir cos θ

q
; d1;2 ¼ ∓a: ðA15Þ

The parameter ranges that we are interested in, (3.3)
and (3.4), imply that −1 < c2 < 1, which in turn ensures
that n1;2 are non-negative, consistent with the requirement
that the “magnetic masses” are non-negative.

3. Non-self-dual Taub-NUT solution

As mentioned in Sec. V. A, the case

a0;4 ¼ 0 ðA16Þ

describes a (non-self-dual) Taub-NUT touching another
Taub-NUT, resulting in a larger Taub-NUT. To map this
solution to the familiar form of the Taub-NUT solution, we
choose the gauge a3 ¼ 1 and write X ¼ ðx − x2Þxðx − x4Þ.
Note that one has x1 ¼ −∞ and x3 ¼ 0. We then define

r ¼
ffiffiffi
k

p ðν2x − yÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ðx − yÞ

;

cos θ ¼ 2ðxyþ x2x4Þ − ðx2 þ x4Þðxþ yÞ
ðx2 − x4Þðx − yÞ ; ðA17Þ

and make the substitutions

τ →
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
τ þ 2ν

ffiffiffi
k

p ðx2 þ x4Þ
x2 − x4

ϕ; ϕ → −
2

ffiffiffi
k

p

x2 − x4
ϕ:

ðA18Þ

The metric then becomes the Taub-NUT solution, in the
form (A4) with

m¼
ffiffiffi
k

p ð1þν2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p ; n¼−
ν

ffiffiffi
k

pffiffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p ; a¼ 0: ðA19Þ

It is interesting to note that, in this limit, x2;4 make no
appearance in the physical parameters and become redun-
dant. One is thus free to choose any value for a1;2;3 without
changing the physical space, as long as the solution does
not become degenerate. The nontrivial parameters are k and
ν, which can be interpreted as the mass and NUT charge
parameter, respectively. It can be seen that the special case
with a0 ¼ a4 ¼ ν ¼ 0 is the Schwarzschild solution.
This is also an example of joining up two rods: the

second rod is joined up with the third. If instead one insists
that −∞ ≤ x4 ≤ x2, then one has to close the box by x ¼ x4
(instead of x ¼ x1) as its second rod. In this case, it is the
first rod that joins up with the second. The final solution is
of course still the non-self-dual Taub-NUT solution.

4. Self-dual Taub-NUT solution

In this subsection, we show how the self-dual Taub-NUT
solution is recovered from the NUT-charged C-metric
(4.21). We first define the parameters and coordinates

x1 ¼ x2 − ϵ; k¼ lϵ2; x¼ x2 þwϵ; y¼ x2 − zϵ;

ðA20Þ

and make the substitutions

τ → τ þ
ffiffiffi
k

p
x1x3

ðx1 − x2Þðx2 − x3Þ
ϕ;

ϕ → −
2

ffiffiffi
k

p
x2

ðx1 − x2Þðx2 − x3Þ
ϕ: ðA21Þ

After taking the limit ϵ → 0, the metric then becomes

ds2¼V−1ðdτþ2ncosθÞ2þVðdr2þ r2dθ2þ r2sin2θdϕ2Þ;

V¼ 1þ2n
r
; ðA22Þ

if one identifies

r ¼
ffiffi
l

p
x2ðz − w − 1Þ

wþ z
; cos θ ¼ w2 þ wþ z2 − z

w2 þ wþ z − z2
;

n ¼ −
ffiffi
l

p
x2x3

2ðx2 − x3Þ
: ðA23Þ

This is the standard form of the self-dual Taub-NUT
solution.
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