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Canonical quantization of spherically symmetric space-times is carried out, using real-valued densitized
triads and extrinsic curvature components, with specific factor-ordering choices ensuring in an anomaly
free quantum constraint algebra. Comparison with previous work [Nucl. Phys. B399, 211 (1993)] reveals
that the resulting physical Hilbert space has the same form, although the basic canonical variables are
different in the two approaches. As an extension, holonomy modifications from loop quantum gravity are
shown to deform the Dirac space-time algebra, while going beyond “effective” calculations.
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I. INTRODUCTION

It has been shown that spherically symmetric gravity can
be canonically quantized in a nonperturbative manner [1,2].
In the original work by Kastrup and Thiemann, the theory
was reformulated in terms of self-dual Ashtekar variables;
i.e. self-dual connection coefficients and real densitized
triads were used as the canonical variables to quantize the
system. However, it has since been customary to introduce
a real-valued Immirzi parameter to define an Ashtekar–
Barbero connection for several technical reasons [3,4].1 In
the first part of this article, we intend to carry out a
Wheeler–Dewitt quantization of spherically symmetric
field configurations where the basic variables are all real.
The densitized triads are now conjugate to extrinsic
curvature components, which are themselves real variables.
We also eliminate one canonical pair of variables as
compared to Ref. [1] by classically solving for the
Gauss constraint and the corresponding gauge flows it
generates. Although the resulting classical systems we end
up with in the two cases are canonical transformations of
each other, the quantum theories are based on different
basic canonical variables, and consequently different equal
time commutation relations. This ensures that the form of
the gravitational constraints are also vastly different. Indeed
the number of constraints per spatial point in Ref. [1] was
three compared to the two we are left with in this case.
Thus, the system after quantization can end up being
inequivalent in the two cases. Remarkably, as we shall
show in this paper, the physical Hilbert space for both these
systems ends up having the same form in the triad
representation. This result goes to demonstrate the robust-
ness of the canonical quantization procedure for such a
system, irrespective of several details in the two methods.

To solve for this midisuperspace model, we consider the
classical phase space as given in Refs. [5–8]. We show that
there exists particular factor-ordering choices, in the formal
sense, for the Hamiltonian and diffeomorphism constraints
such that the quantum version of the Dirac space-time
algebra is well defined. This is a nontrivial task since we do
not have a Lie algebra in this case and thus must be careful
to ensure that the structure functions appearing on the right-
hand side of the algebra appear to the left of the constraints,
to ensure the Dirac consistency condition. This has been
elaborated on later in Sec. IV. Using one such factor
ordering for the constraints, we employ Dirac quantization
for extracting the physical Hilbert space and finally con-
struct a suitable inner product on it. The basis for Hphysical,
in the triad representation, turns out to be exactly the same
for us as in Ref. [1], although the technical details of the
two approaches are quite different. However, then we do
choose our physical states in a manner analogous to that in
Ref. [1] in order to induce an inner product on this physical
Hilbert space.
In the last section, we show the effects of including

holonomy corrections from loop quantum gravity (LQG)
on spherically symmetric space-times. In LQG, there is no
well-defined operator corresponding to the connection
components [3,4,9]. Instead the constraints are modified
such that they are represented by holonomy variables. In
this framework, quantum correction functions are intro-
duced to capture the effects of replacing connections by
their corresponding holonomies. Once again, we give a
consistent operator-ordering choice for the constraint oper-
ators that keeps the quantum Dirac space-time algebra
anomaly free. Although the algebra remains first class even
in the presence of such correction functions, the structure
functions are shown to get deformed by additional phase-
space functions in their presence. Since these structure
functions also encode the background structure of space-
time itself, this indicates that classical background struc-
tures may not be valid anymore in the presence of such
deformations. Our results seem to be consistent with

1This helps in setting up a well-defined Hilbert space that does
not have noncompact slð2;CÞ holonomies for complex connec-
tions. Additionally we do not have to worry about solving
complicated reality conditions.
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expectations from “effective” theories [10–12], although
they go beyond them by further restricting the exact form of
gravitational constraints. The consequences of having such
deformations of the algebra are also briefly discussed.

II. CLASSICAL PHASE SPACE

In canonical general relativity (GR), the Hamiltonian is a
linear sum of constraints and thus trivial on the constraint
surface. Since the theory is diffeomorphism invariant,
space-time diffeomorphisms can be realized as gauge
transformations on phase-space functions generated by
first-class constraints. As a consequence, time evolution
is also a pure gauge transformation. The canonical variables
of the theory, in this first-class formalism, are chosen to be
the suð2Þ-valued Ashtekar–Barbero connection Ai

a and the
densitized triad vector fields Ea

i , both of which are
functions on the three-dimensional manifold Σ. The spatial
metric on the manifold Σ can be written in terms of the
triad, qqab ¼ Ea

i E
b
jδ

ij with q≔ detðqabÞ, whereas the
Ashtekar–Barbero connection is related to the extrinsic
curvature of Σ and the triad-compatible spin connection Γi

a
according to the equation Ai

a ¼ Γi
a þ γKi

a, where γ is a
real constant called the Immirzi parameter2 and
Ki

a≔ðdetEÞ−1=2KabEbi. The action for GR, in terms of
these variables, is given by

S4D ¼
Z

dt

�
1

8πGγ

Z
Σ
d3xEa

i
_Ai
a

−
Z
Σ
d3x½λiGi þ NaDa þ NH�

�
; ð1Þ

where G is Newton’s constant in four dimensions and
λi, Na, and N are Lagrange multipliers for the various
first-class constraints. The Gauss constraint, G½λi� ¼
1

8πGγ

R
d3xλiGi, generates SUð2Þ transformations; the diffeo-

morphism constraint, D½Na� ¼ 1
8πGγ

R
d3xNaDa, generates

spatial diffeomorphisms; and the Hamiltonian constraint,
H½N� ¼ 1

8πGγ

R
d3xNH, generates time evolution. It is now

easy to identify Na and N as the familiar shift vector and
lapse function, respectively, as in the Arnowitt-Deser-
Misner (ADM) formulation of GR [13]. These constraints
can all be expressed explicitly in terms of the Ashtekar
variables.
Details of the symmetry reduction for spherical sym-

metry with Ashtekar variables have been carried out in
several previous works [5–8]. In this article, we shall
closely follow the conventions and notations as in
Ref. [6]. After spherical symmetry reduction, we have
three independent canonical pairs given by

�
AxðxÞ;

1

2γ
ExðyÞ

�
¼ Gδðx − yÞ; ð2Þ

fKϕðxÞ; EϕðyÞg ¼ Gδðx − yÞ; ð3Þ�
ηðxÞ; 1

2γ
PηðyÞ

�
¼ Gδðx − yÞ: ð4Þ

Here x and y parametrize the radial coordinate, and we
have a one-dimensional Dirac delta function on the rhs of
the above equations. In terms of these variables, the
spatial metric on the three-dimensional manifold can be
expressed as

dq2 ¼ ðEϕÞ2
jExj dx2 þ jExjdΩ2; ð5Þ

where the usual angular part is given by
dΩ2 ¼ dθ2 þ sin2θdϕ2. The symmetry reduced action
looks like

S ¼
Z

dt

�
1

2Gγ

Z
dxðEx _Ax þ 2γEϕ _Kϕ þ Pη _ηÞ

−
Z

dxðλGþ NxDþ NHÞ
�
; ð6Þ

where the various constraints are as follows. The only
nontrivial component of the Gauss constraint generating
Uð1Þ-gauge transformations is

G½λ� ¼ 1

2Gγ

Z
dxλðEx0 þ PηÞ: ð7Þ

The prime denotes a derivative with respect to the radial
coordinate x. Similarly, the diffeomorphism constraint also
has a single nontrivial component that generates spatial
diffeomorphisms in the radial direction

D½Nx� ¼ 1

2G

Z
dxNx

�
2EϕKϕ

0 −
1

γ
AxEx0 þ 1

γ
η0Pη

�
: ð8Þ

Finally time evolution is generated by the Hamiltonian
constraint

H½N� ¼ −1
2G

Z
dxNjExj−1=2ðKϕ

2Eϕ þ 2KϕKxEx

þ½1 − Γ2
ϕ�Eϕ þ 2Γϕ

0ExÞ; ð9Þ

where Γϕ ¼ −Ex0=ð2EϕÞ and Kx ¼ 1
γ ðAx þ η0Þ.

In what follows, we are going to assume that we
have solved the Gauss constraint (7) and thus eliminated
the canonical pair ðη; PηÞ. We are left with two constraints
per space-time point and the two canonical pairs ðEx; KxÞ;

2This parameter plays no role in the classical theory as it can be
changed by canonical transformations.
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ðEϕ; KϕÞ. Thus, one of the terms drops out to simplify the
diffeomorphism constraint as

D½Nx� ¼ 1

2G

Z
dxNxð2EϕKϕ

0 − KxEx0Þ: ð10Þ

The modified symplectic structure is

fKxðxÞ; ExðyÞg ¼ 2Gδðx − yÞ; ð11Þ

fKϕðxÞ; EϕðyÞg ¼ Gδðx − yÞ; ð12Þ

and all other Poisson brackets are equal to zero. Therefore,
we are left with two gravitational constraints per spatial
point and two canonical pairs, indicating that our model has
no local physical degrees of freedom, as expected in
spherically symmetric gravity. All the basic variables in
our model are thus real valued. At this point, comparison
with the canonical variables and the three gravitational
constraints in Ref. [1] is helpful to realize how vastly
distinct they are in form from that of ours.

III. QUANTIZATION

A. Algebra A

We define a � algebra A by converting the Poisson
brackets into equal time canonical commutation relations.
The hats are to remind us that these are quantum operators
corresponding to the classical variables. Only the nontrivial
commutators are shown below:

½K̂xðxÞ; ÊxðyÞ� ¼ 2iℏGδðx − yÞ; ð13Þ

½K̂ϕðxÞ; ÊϕðyÞ� ¼ iℏGδðx − yÞ: ð14Þ

(We note here that the above definitions for the algebra are
given in a formal sense. To be more rigorous, we should
smear the canonical variables with smooth functions to get
rid of the delta functions on the rhs. However, from our
viewpoint, we do not fully regularize the constraints but
rather pay attention to factor-ordering details for getting a
consistent Dirac space-time algebra. This point shall be
elaborated upon later on.)
These real Ashtekar variables must also satisfy the �

relations

ðÊxðxÞÞ� ¼ ÊxðxÞ; ðÊϕðxÞÞ� ¼ ÊϕðxÞ; ð15Þ

ðK̂xðxÞÞ� ¼ K̂xðxÞ; ðK̂ϕðxÞÞ� ¼ K̂ϕðxÞ: ð16Þ

We shall use these relations (15), (16) to determine the
physical scalar product as in, say, Refs. [14–16]. These �
relations on the basic variables are to be imposed as
adjointness conditions with respect to the inner product,
as we shall explore in detail later on.

B. Triad representation

We next need to construct a representation of the above �
algebra A on some linear space. In this article, we choose
the “triad representation,” whereby the basic variables act
via linear operators as

ÊxðxÞΨ ¼ ExðxÞΨ; ÊϕðxÞΨ ¼ EϕðxÞΨ; ð17Þ

K̂xðxÞΨ ¼ 2ðGiℏÞ δ

δExðxÞΨ;

K̂ϕðxÞΨ ¼ ðGiℏÞ δ

δEϕðxÞΨ; ð18Þ

where Ψ ¼ Ψ½Ex; Eϕ� is a smooth (differentiable)
functional of the triad variables, which remains to be
determined.

IV. ANALYSIS OF THE CONSTRAINT ALGEBRA

The diffeomorphism and Hamiltonian constraints for our
model are given in (10), (9). Classically, these constraints
satisfy Dirac’s space-time algebra [17]

fD½Nx�; D½Mx�g ¼ D½LNxMx�; ð19Þ

fH½N�; D½Nx�g ¼ −H½LNxN�; ð20Þ

fH½N�; H½M�g ¼ D½ðNM0 −MN0ÞjExjðEϕÞ−2�: ð21Þ

Our goal is to make sure the quantum constraint operators
corresponding to the classical constraints obey the so-called
“Dirac consistency” condition. What this means is as
follows. Schematically both the gravitational constraints
can be written as CI (with I ¼ 1; 2 for the diffeomorphism
and Hamiltonian constraint, respectively). Classically the
constraints must be satisfied (CI ¼ 0) to ensure that the
resulting system is space-time covariant, even though we
started with slicing up space and time in the canonical
formulation. In the quantum theory, the presence of these
constraint operators implies that not all wave functions of
the form Ψ½Ex; Eϕ� correspond to valid physical states.
Dirac quantization implies thatΨphys is a physical state only
if it is annihilated by both the gravitational constraints [18],

ĈIΨphys ¼ 0: ð22Þ

Obviously this implies that both the constraints acting
consecutively on Ψphys gives zero, and thus their commu-
tator must also annihilate the physical state,

½ĈI; ĈJ�Ψphys ¼ 0: ð23Þ

Since the above relation must hold for any arbitrary
physical state, we must have that the commutator of
two constraints must itself be a linear combination of
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constraints. This is the requirement for the constraints to be
first class in the language of Dirac. For the quantum
constraint operators, this means

½ĈI; ĈJ� ¼ f̂IJKĈK: ð24Þ

The coefficients on the rhs can be operators themselves
depending on phase-space variables. In the case of our
model, the only nontrivial structure function showing up in
the ½H;H� bracket is jÊxjðÊϕÞ−2, as is evident from (21).
However, the important thing is that this structure function
appears to the left of the constraint operator appearing on
the rhs. This must be so in order to have the commutator
annihilate a physical state. This is the essence of the Dirac
consistency condition. Failing to satisfy this condition
implies that the only physical state satisfying equations (22)
is the trivial one. Unless we can find a factor-ordering
choice for the quantum constraint operators such that the
Dirac consistency condition is satisfied, there shall be
gauge anomalies arising due to the quantization procedure.
As we shall demonstrate next, there exist consistent

factor-ordering choices, for which the quantum algebra
remains first class. Here we shall refer to ordering of the
constraint operators in a formal sense. For a full quantum
analysis, we should regularize the quantum constraint
operators first and then look for a consistent factor-
ordering choice3 [19]. Although we never need to utilize
distributional relations of the form fðyÞgðxÞδ0ðx − yÞ ¼
fðxÞgðxÞδ0ðx − yÞ þ f0ðxÞgðxÞδðx − yÞ, which was shown
to be cause of several ambiguities in Ref. [19], we need to
make sense of derivatives of delta functions that appear in
the calculations. (This, of course, stems from the fact that
we have several operators defined at the same spatial point
in these constraints.) We can take the point of view that the
constraint operators have been regularized, say, by point
splitting. In this case, instead of having two operators with
the same argument x, we replace one of them by a dummy
argument y and then multiply the operator product by some
smearing function very sharply peaked around x ¼ y, while
integrating over the dummy variable. In the limit of the
smearing function approaching the delta function δðx − yÞ,
we encounter divergences which are then removed by a
rigorous subtraction scheme. Instead of doing these explicit
calculations, we carry out the formal manipulations to show
that the particular operator ordering of the constraints leads
to a first-class algebra. Then we shall also have to show that
the physical wave functionals are annihilated by this
particular choice of the factor-ordered constraint operators
to get the physical Hilbert space.
Alternatively, we can take the point of view that this is a

gauge theory defined on some finite lattice, whereby the
constraint operators are already regularized by some lattice

parameter. We can then carry out the formal manipulations
before removing the lattice regulator at the end, at which
point we shall, once again, require a precise subtraction to
define how regularization works in this scheme. But our
main interest lies in going beyond effective models to show
that there are further restrictions on how the quantum
constraint operators must be ordered so as to have a well-
defined constraint algebra. Thus, we can ignore the details
of the regularization scheme for our purposes.

A. Factor-ordering choices

To demonstrate that a consistent factor-ordering choice
exists, we shall adopt the plan of starting with an ansatz and
then showing that such an ordering works. We shall show
that there are (at least) two different choices for the
gravitational constraints that seem to work. As far as the
Hamiltonian constraint goes, only the first two terms have
both triads and connection components in them, thereby
creating an ambiguity in their ordering. The rest of the
terms only consists of triads, and thus they seem to be free
from factor-ordering choices. For the diffeomorphism
constraint, we need to pick an operator ordering for both
the terms.
Let us start by factor ordering the Hamiltonian con-

straint. We shall drop all the hats on the quantum operators
from now on, which were introduced to differentiate them
from their classical counterparts (but remain careful with
orderings),

H½N� ¼ −1
2G

Z
dxN

�
ðExÞ−1=2EϕKϕ

2 þ 2ðExÞ1=2KxKϕ

þ ðExÞ−1=2Eϕ −
1

4
ðExÞ−1=2ðEx0Þ2ðEϕÞ−1

− ðExÞ1=2Ex00ðEϕÞ−1 þ ðExÞ1=2Ex0ðEϕÞ−2Eϕ0
�
:

ð25Þ
We shall name this ordering choice for the Hamiltonian
constraint the “normal ordering” choice since in this case
the triads are pushed to the left and the conjugate momenta
to the right. If we start with this ordering for the
Hamiltonian constraint and calculate the ½H;H� bracket,
then the factor ordering for the diffeomorphism constraint
comes out to be

D½Nx� ¼ 1

2G

Z
dxNx½2EϕK0

ϕ − KxEx0�: ð26Þ

The details of the calculations which show that this is a
consistent factor-ordering choice for both the gravitational
constraints are shown in Appendix A. It is interesting to
note that the diffeomorphism constraint is not normal
ordered in the sense of the Hamiltonian constraint, a
requirement from the closure of the algebra. This form

3We wish to thank Casey Tomlin for pointing out this article to
us.
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of the diffeomorphism constraint (where the relative
positions of Kx and Ex are different from those of Kϕ

and Eϕ) implies that, when we go on to solve for the
physical states, we shall need to regularize the constraints
by point splitting, such that the operator generates infini-
tesimal diffeomorphisms. This is consistent with our
expectation from before about regularizing the constraint
operators. This shall be implicitly assumed when we apply
the Dirac formalism to obtain the physical Hilbert space in
the next section.
It is obvious from this factor-ordering choice that there

exists another similar ordering choice where, for the
Hamiltonian constraint operator, all the triads are pushed
to the right, whereas the curvature components are moved
to the left. This leads to a diffeomorphism constraint
operator which is similar to the one above in (26), with
the canonical variables commuting places with each other.
However, we do not consider this to be a new ordering
choice, since this is exactly the opposite of our normal-
ordering choice.
There exists, at least, one other consistent factor-ordering

choice as follows. In this case, the Hamiltonian constraint
gets an ordering of the form

H½N� ¼ −1
2G

Z
dxN

�
ðExÞ−1=2Kϕ

2Eϕ

þ 2ðExÞ1=2KxðEϕÞ−1KϕEϕ þ ðExÞ−1=2Eϕ

−
1

4
ðExÞ−1=2ðEx0Þ2ðEϕÞ−1 − ðExÞ1=2Ex00ðEϕÞ−1

þ ðExÞ1=2Ex0ðEϕÞ−2Eϕ0
�
: ð27Þ

In this case, the diffeomorphism constraint has to take the
form

D½Nx� ¼ 1

2G

Z
dxNx½2K0

ϕE
ϕ − Ex0Kx�: ð28Þ

Although we do not show the explicit calculations that this
is indeed a consistent factor-ordering choice for the
gravitational constraints, they go similarly to the calcu-
lations shown in Appendix A for the normal-ordering case.
At this point, we are unable to choose between either of
these ordering choices, and one of them is as good as the
other. However, in the next section, we shall demonstrate
that only one of these ordering choices gives us a nontrivial
physical state as the solution to the constraint operators. It
is also important to mention here that there certainly are
many different factor-ordering choices that do not obey the
Dirac consistency relation, for instance a totally symmetric
(or Weyl) ordering for each of the terms of the Hamiltonian
constraint.

V. PHYSICAL HILBERT SPACE

The Dirac quantization condition [18] tells us that the
physical subspace of states must be annihilated by the
gravitational constraints

DΨphys ¼ 0; ð29Þ

HΨphys ¼ 0; ð30Þ

where D and H are the unsmeared version of the con-
straints. We can treat these equations (29) as functional
differential equations and look for solutions which would
correspond to the physical wave functions. A theorem,
proved in Ref. [1], states that such solutions are guaranteed
to exist, at least locally, if the Dirac space-time algebra
remains first class and if the number of constraints per
spatial point coincides with the number of configuration
space variables (two for our model). To solve these
equations, we first need to pick one of the consistent
ordering choices mentioned in the section above. We pick
the normal-ordering choice for the constraints to
begin with.
The diffeomorphism constraint, as a functional differ-

ential equation, takes the form

EϕðxÞ d
dx

�
δΨ

δEϕðxÞ
�
¼ δ

δExðxÞ ½E
x0ðxÞΨ�: ð31Þ

The form of (31) shows that the wave functional cannot be a
local function of the spatial coordinate. The lhs of the above
equation has functional derivatives with respect to EϕðxÞ,
followed by a spatial derivative operator. However, the rhs
has a functional derivative with respect to ExðxÞ acting on
the product of the wave functional with the spatial
derivative of ExðxÞ. Thus, the physical states can only
be a functional of integrated out triads. When trying
different Ansätze, it is important to remember that the
density weight of EϕðxÞ is 1, while that of ExðxÞ is zero.
Thus, the functionals must be constructed with the inte-
grand having the proper density weight. Thus, the solutions
of (31) are of the form

Ψ ¼ Ψ

�Z
dxEϕðxÞf

�
ExðxÞ;

�
Ex0ðxÞ
EϕðxÞ

���
¼ Ψ

�Z
dxEx0ðxÞg

�
ExðxÞ;

�
Ex0ðxÞ
EϕðxÞ

���
;…; ð32Þ

where f stands for a yet undetermined functional. There are
obviously infinite such solutions for the diffeomorphism
constraint, which are represented by the dots above. Next
we should plug these solutions in the equation for the
Hamiltonian constraint, which, written in terms of func-
tional derivative operators (for simplicity we have set
G ¼ ℏ ¼ 1 in the following), is
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−
�
ðEϕðxÞÞ2 δ2

δðEϕðxÞÞ2−4ExðxÞEϕðxÞ δ2

δðEϕðxÞÞδðExðxÞÞ
�
Ψ

¼
�
−ðEϕðxÞÞ2þ1

4
ðEx0ðxÞÞ2þExðxÞEx00ðxÞ

−ExðxÞEx0ðxÞðEϕðxÞÞ−1Eϕ0ðxÞ
�
Ψ: ð33Þ

The form of this equation (33) prompts an exponential
Ansatz for the wave functional,

Ψ ¼ exp

�
−k

Z
dxEϕðxÞf

�
Ex0ðxÞ
EϕðxÞ

��
; ð34Þ

where k is some constant yet to be fixed. As of now, the
functional f is still undetermined up to the form defined
above, which will be determined as the solution of a
differential equation obtained by plugging in our Ansatz
(34) in (33). The argument of the function f is different
here than that in (32) since we want to start with a
relatively simple Ansatz before giving the most general
solution later,

2k2Ex0 _ff − k2
ðEx0Þ2
Eϕ

_f2 − k2Eϕf2 þ 4k2
ExEx00

Eϕ f̈f

− 4k2
ExEx00Eϕ0

ðEϕÞ2 f̈ _f−4k2
ExEx0Eϕ0

ðEϕÞ2 f̈f

þ 4k2
ExðEx0Þ2Eϕ0

ðEϕÞ3 f̈ _fþEϕ −
1

4

ðEx0Þ2
Eϕ −

ExEx00

Eϕ

þ ExEx0Eϕ0

ðEϕÞ2
¼ 0; ð35Þ

where a dot on f denotes a derivative with respect to its
argument ðEx 0

EϕÞ. A solution to the above differential
equation turns out to be

f

�
Ex0

Eϕ

�
¼

�
Ex0

Eϕ

�
sin−1

�
Ex0

2Eϕ

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

�
Ex0

Eϕ

�
2

s
; ð36Þ

where we have to fix k ¼ �1=2. The final solution for the
wave functional can be written as (the factor 1=2 intro-
duced here shall be explained later on)

Ψ ¼ exp

�
−
1

2

Z
dxEϕðxÞf

�
Ex0ðxÞ
EϕðxÞ

��
; ð37Þ

where f is given by (36).
Of course, any of the other infinite solutions from (32)

are equally suited to be an Ansatz for (33) with the
exponential functional. However, as it turns out, the most

general form for these solutions (up to one arbitrary
parameter) can be written as

Ψc ¼ exp

�
−
1

2

Z
dxEϕðxÞfc

��
Ex0

Eϕ

�
; ExðxÞ

��
; ð38Þ

with

fc

��
Ex0

Eϕ

�
; ExðxÞ

�
¼

�
Ex0

Eϕ

�
sin−1

��
Ex0=Eϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ðc=ExÞ1=2
p ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4þ

ffiffiffiffiffiffi
c
Ex

r �
−
�
Ex0

Eϕ

�
2

s
;

ð39Þ

where c ¼ cðtÞ is some arbitrary function of time. The
above solutions form a basis for the physical Hilbert space
in the triad representation. Thus, we have the same basis for
Hphys as in Ref. [1]. To make a comparison, we need to
identify Ex and Eϕ in our notation with E1 and

ffiffiffiffi
E

p
,

respectively.4 It is also important to remember at this point
that we have eliminated for one canonical pair by solving
the Gauss constraint. Since we have quantized a system
with fundamental canonical variables different from those
in Ref. [1], the resulting physical Hilbert space did not have
to be the same in both cases. It is surprising that the Hilbert
spaces in the two cases are identical since not only are the
basic canonical variables very different in the two
approaches, but also the mathematical details followed in
the quantization procedures are also different. For instance,
the set of constraints chosen in Ref. [1] is linear in the
momenta variables (a mathematical fact used at various
steps of the construction) which is certainly not true for our
case of the gravitational constraints. However, since they do
turn out to be the same, we want to stress that this exhibits
the robustness of the quantization procedure. Canonical
quantization of this midisuperspace model using real and
self-dual (in the latter case, the Immirzi parameter is fixed
to be i) Ashtekar variables seem to be consistent with
each other.
We can now define physical states as in Ref. [1] as

Ψphysical ¼
Z
R
dcgðcÞΨc; ð40Þ

where gðcÞ is a square integrable function on the real line.
Although Ψc itself is not normalizable, we can choose gðcÞ

4There is a factor of 1
2
in front of the integral in the exponential,

which is different from that in Ref. [1]. The reason for this
discrepancy stems from the difference in the basic Poisson
brackets in the two approaches. There is an overall factor of 1

2
in Ref. [1] in both the brackets as compared to our convention.
This also leads to a factor of 2 discrepancy in the form of the
argument of the function f.
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to be a sharply peaked function around some value c0
such that we can define a normalizable physical wave
function.
Finally we have to get an inner product on thisHphys. We

shall employ an algebraic method to do this as described in
Ref. [15]. This task is easier for us than in Ref. [1], since
both the triads and their conjugate extrinsic curvature
components are real variables in this model. For the
physical states defined above in (40), we can choose an
Ansatz for the inner product to be

hΨphysicaljΦphysicali¼
Z

dEx∧dEϕμðEx;EϕÞΨ̄physicalΦphysical:

ð41Þ

Using the relations (15), (16), we solve for the measure μ.
As we do not have “hybrid” canonical variables as in
Ref. [1], this turns out to give the trivial solution
μ ¼ constant.5 Choosing μ ¼ 1 gives us the obvious form
of the inner product as

hΨphysicaljΦphysicali ¼
Z

dEx∧dEϕΨ̄physicalΦphysical: ð42Þ

This form of the inner product again matches with the
one given in Ref. [1], except for a factor of expðRΣ E1Γ1Þ in
their notation. This is a factor absent for us both in the
scalar product as well as the definition of a physical
state. The reason is that Γ1ð¼ η0 in our notationÞ is pure
gauge, and η was eliminated by us right from the
beginning by assuming that the Gauss constraint has been
solved.
At this point, it is pertinent to discuss the form of the

second-order differential equation (35), which leads to a
one-parameter family of solutions (39). This is not an
ordinary differential equation for the function
f ¼ fðEx0=Eϕ; ExÞ, since the coefficients of the derivative
operators are arbitrary functions of Ex, Eϕ and their
derivatives and are not of the form of the argument of f.
Thus, there is no systematic way to find the general solution
for such an equation, and one has to come up with a suitable
Ansatz. The solution found here coincides with what has
been derived in Ref. [1] up to factors of 2 as discussed
earlier. This indeed corresponds to the correct physical
solution as well since, for static configurations, this leads to
the classical Schwarzschild solution. This analysis has been
performed in detail in Sec. VI of Ref. [1] and is not repeated
here. It is possible to construct observables in this context
mimicking the exact same treatment in Ref. [1] which
would lead to the remaining physical degree of freedom to
be the Schwarzschild mass (after choosing the parameter c
to be proportional to the square of the Schwarzschild mass).

This also implies that the physical wave function obtained
using these variables is a function of the Schwarzschild
mass (for stationary space-times) which matches with
results coming from using metric variables [2]. Although
we do not repeat these calculations here again, the above-
mentioned conclusions about classical states follow natu-
rally since the basis of the physical Hilbert space (and the
inner product on it) in our case turns out to be the same as
that in Ref. [1].
For the other choice of factor ordering, we can once

again solve for states satisfying the diffeomorphism con-
straint first to be of the form

Ψ ¼ Ψ

�Z
dxEx0ðxÞf½ExðxÞ�

�
;

Ψ

�Z
dx

�
ExðxÞ
EϕðxÞ

�0
f

�
ExðxÞ
EϕðxÞ

��
;… ð43Þ

However, it can be shown that none of these states satisfies
the Hamiltonian constraint, leading to a trivial solution for
the physical Hilbert space. Thus, to get a nontrivial Hphys,
we choose the normal ordering for the gravitational
constraints.

VI. DEFORMED CONSTRAINT ALGEBRA IN THE
PRESENCE OF HOLONOMY CORRECTIONS

Loop quantum gravity is based on holonomy and flux
operators which are obtained by “smearing” out the canoni-
cally conjugate connection components and densitized triad
fields described above, with smooth functions [3,4]. Instead
of working with quantum operators corresponding to the
gravitational constraints in full LQG, we shall work in a
formalismwhereby the effects of variousmodifications shall
be encoded by appropriate correction functions (for effective
formulations using these ideas, see Refs. [6,10,20]). To
begin with, these functionals can depend generically on all
the canonical field variables and their spatial derivatives.
However, requiring that the constraint algebra closes in an
anomaly-free manner imposes certain restrictions on these
functions. In fact, a priori, it is not obvious that the quantum-
corrected constraints would form a first-class system. (In
case they do form a closed algebra, the quantum-corrected
constraints, as generators of gauge transformations, must
eliminate the samenumber of spurious degrees of freedomas
in the classical theory.) This is sometimes referred to as the
“anomaly" problem in canonical quantum gravity [21]. We
shall introduce such correction functions only in the
Hamiltonian constraint since spatial diffeomorphism invari-
ance is implemented in the full quantum theory through
finite unitary transformations. There is no inifinitesimal
quantum operator generating spatial diffeomorphisms in
LQG, and the Hamiltonian constraint operator acts on diff-
invariant states in the full theory. Thus, we shall leave the
diffeomorphism constraint unchanged although we

5Requiring that the extrinsic curvature components are self-
adjoint turns out to be sufficient to determine μ.
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introduce correction functions in the Hamiltonian constraint
operator.6

Different correction functions can be introduced to
account for different nonperturbative quantum effects
coming from LQG. Here we shall only be concerned with
corrections due to the use of holonomies instead of
connections in LQG. Also, as a first approximation, we
shall require that the correction functions only depend on
the Kϕ component and not on any spatial derivatives. This,
in turn, implies that we are only considering pointwise
holonomy corrections coming from the angular extrinsic
curvature component and not considering corrections
coming from using the holonomy of the radial component
Kx. Corrections from the latter are more difficult to
implement even in effective theories and should come in
the form of nonlocal corrections, which might be expanded
in a formal derivative series if possible as approached in
Ref. [22]. The algebra of basic variables is thus modified as

½K̂xðxÞ; ÊxðyÞ� ¼ 2iℏGδðx − yÞ; ð44Þ

½fð dKϕðxÞÞ; ÊϕðyÞ� ¼ iℏG

� ddf
dKϕ

ðxÞ
�
δðx − yÞ: ð45Þ

In the following, our main aim is to show that the Dirac
space-time algebra can indeed still be closed even after
considering such pointwise holonomy modifications,
although the structure functions get deformed in such cases
(at the same level of formality). Let us start by introducing
the modified Hamiltonian constraint with holonomy cor-
rections, which are encoded by functions of the (angular)
extrinsic curvature component

H½N� ¼ −1
2G

Z
dxN

�
ðExÞ−1=2f1ðKϕÞEϕ

þ 2ðExÞ1=2KxðEϕÞ−1f2ðKϕÞEϕ þ ðExÞ−1=2Eϕ

−
1

4
ðExÞ−1=2ðEx0Þ2ðEϕÞ−1 − ðExÞ1=2Ex00ðEϕÞ−1

þ ðExÞ1=2Ex0ðEϕÞ−2Eϕ0
�
: ð46Þ

We have to be more careful with the factor ordering in this
case compared to (25) as is evident from the form of the

second term. Classically there is no Eϕ in this term.
However, we need this (nontrivial) form of the operator
ordering for a consistent constraint algebra.
The quantum correction functions f1ðKϕÞ and f2ðKϕÞ

are not both independent but related to each other to ensure
we have a closed algebra, as shown in Appendix B.
Classically, f1ðKϕÞ¼Kϕ

2, while f2ðKϕÞ¼Kϕ. Although
the holonomy corrections here are kept unspecified for our
purposes, they can take a specific form such as a periodic
function of the extrinsic curvature. Of course, the modi-
fication must also be such that these functions have the
correct classical limit.7 The diffeomorphism constraint
remains unchanged as stated above,

D½Nx� ¼ 1

2G

Z
dxNx½2K0

ϕE
ϕ − Ex0Kx�: ð47Þ

The commutator of the diffeomorphism constraint operator
with itself and with the Hamiltonian constraint operator
remains the same. However, the commutator between two
Hamiltonian constraint operators is modified as shown in
Appendix B. The resulting Dirac space-time algebra is
deformed as follows:

½D½Nx�; D½Mx�� ¼ D½LNxMx�; ð48Þ

½H½N�; D½Nx�� ¼ −H½LNxN�; ð49Þ

½H½N�; H½M��

¼ D

�
ðNM0 −MN0ÞjExjðEϕÞ−2

�
d2f1ðKϕÞ
dKϕ

2

��
: ð50Þ

The structure function in the last equation is deformed by
the second derivative of the function coming from hol-
onomy corrections of LQG. Although we do not specify the
exact form of the holonomy correction function, we do
know that it is a bounded function of the extrinsic curvature
component. In fact, generic singularity resolution in LQG
models results from replacing connection components by
their holonomies, which are represented by such bounded
functions. Indeed if this function is bounded, then at its
maximum value the second derivative must be negative.
This is interpreted sometimes as “signature change”
[10,20,23] since this now has the right sign as in
Euclidean GR. This is consistent with the interpretation
of the inverse of the spatial metric effectively changing sign
in the presence of such deformations (although the usual

6We are interested in possible closed algebras of constraint
operators, which to a large degree is a representation-independent
question. The problems with a nonexisting diffeomorphism
constraint operator come up when one tries to represent it on
spin-network states, so clearly in a situation in which the specific
representation is important. It is then justified to use an unmodi-
fied diffeomorphism operator because the flow should not be
crucially different from the classical one. However, we wish to
emphasize that this is indeed an assumption for our purposes,
albeit justified as above.

7One such choice would be f1ðKϕÞ ¼ 2ð1−cosðγδKϕÞ
ðγδÞ2 Þ, for

holonomies of compact groups. The δ here is related to some
scale, say lp, quantum gravity effects are supposed to become
relevant. As expected, we thus have a bounded function of the
extrinsic curvature which has the required classical limit.
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space-time picture is more fuzzy in the presence of such
deformations [24,25] due to lack of a classical metric
variable). Our main aim here is to show that, in a formal
sense, there are consistent (yet highly nontrivial) factor-
ordering choices for the constraint operators even when we
include some holonomy modifications from LQG. More
interestingly, although the algebra of constraints is still
closed, this leads to deformations of the effective structure
functions in this scheme. Although this is sufficient to show
the nature of the deformed Dirac space-time algebra in this
setting, specific forms of these correction functions must be
introduced to construct a physical Hilbert space. However,
we do not aim to do so in this article and leave it for
later work.

VII. CONCLUSION

Quantizing gravity in the full ð3þ 1Þ-dimensional
theory has been a daunting task for several years. This
leads us to look toward symmetry-reduced toy models like
spherically symmetric gravity to apply the general tools of
canonical quantum gravity. Our main aim in this work has
been twofold:
(1) To show that the canonical quantization of this

model using real-valued triads and extrinsic curva-
ture components agrees surprisingly well with that
done using self-dual Ashtekar connections, as
constructed in Ref. [1]. Canonically equivalent
phase spaces do not necessarily generate unitarily
equivalent quantum theories. It is indeed rather
satisfactory to have the same physical Hilbert space
in the triad representation, coming from the
two different approaches, keeping in mind the
different techniques that have to be employed while
dealing with complex-valued and real-valued basic
variables.

(2) To get a consistent Dirac ordering for the gravita-
tional constraint operators, even when some holon-
omy modifications from LQG are taken into account
and to show how the resulting algebra differs from
the standard Wheeler–DeWitt case. Several interest-
ing new features are touched upon in this respect,
namely that not all consistent factor-ordering
choices can give rise to a nontrivial physical Hilbert
space. This is in accordance with the expectation that
different operator orderings lead to different physical
solutions. The results are consistent with results
from effective theories [6,10,20], although our
formalism goes beyond them.

Building on similar methods used in this paper, future
work would be focused on constructing a similar physical
Hilbert space for holonomy-corrected constraints, whereby
we would have to choose a particular form for the
correction functions. Another possible future extension
would be to include matter degrees of freedom on such
deformed algebras.
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APPENDIX A ½H;H� bracket
When calculating the commutators between various

terms of the constraint operators, it is instructive to keep
several things in mind.8 Obviously, terms that consist only
of triads will commute with each other. If we focus on the
commutator between two of the same constraints, i.e.
½D;D� or ½H;H�, then only those terms will survive when
at least one of the terms contains the spatial derivative of the
triad and the other a connection component. It is so because
only in that case do we get the derivative of a delta function
which prevents the term from being cancelled by another
identical term from the commutator. We shall see this in
detail below.
Let us start by calculating the commutator between

the two Hamiltonian constraints ½H½N�; H½M��, which is
the most nontrivial of all the commutators since it has a
structure function on the right. The form of the Hamiltonian
constraint operator is given in (25). The bracket between the
first term and the last one is shown below:

1

4G2

Z
dxdyNðxÞMðyÞ½ðExðxÞÞ−1=2EϕðxÞKϕ

2ðxÞ;

ðExðyÞÞ1=2Ex0ðyÞðEϕðyÞÞ−2Eϕ0ðyÞ0�: ðA1Þ

There is another identical term coming from the commutator
between the last term of the first Hamiltonian constraint
H½N� and the first term of the second constraint H½M�:
1

4G2

Z
dxdyNðxÞMðyÞ½ðExðxÞÞ1=2Ex0ðxÞðEϕðxÞÞ−2Eϕ0ðxÞ;

ðExðyÞÞ−1=2EϕðyÞKϕ
2ðyÞ�: ðA2Þ

Calculating these two terms in (A1), (A2), we get

1

2G

Z
dxdy

�
NðxÞMðyÞ d

dy
½δðx− yÞ�

−NðyÞMðxÞ d
dy

½δðy− xÞ�
�

× fðExðxÞÞ−1=2EϕðxÞEx0ðyÞðExðyÞÞ1=2ðEϕðyÞÞ−2KϕðxÞg;
ðA3Þ

8For these calculations, we suppress factors of ðiℏÞ coming
from the basic commutators to simplify the notation.
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wherewe have exchanged the dummy variables x and y in (A2). Now carrying out an integration by parts, and throwing away
a surface term, we are left with two terms of the form

1

2G

Z
dxdy½NðxÞMðyÞ − NðyÞMðxÞ�δðy − xÞ × d

dy
fðExðxÞÞ−1=2EϕðxÞEx0ðyÞðExðyÞÞ1=2ðEϕðyÞÞ−2KϕðxÞg

þ 1

2G

Z
dxdyðN0ðyÞMðxÞ −M0ðyÞNðxÞÞδðx − yÞ × fðExðxÞÞ−1=2EϕðxÞEx0ðyÞðExðyÞÞ1=2ðEϕðyÞÞ−2KϕðxÞg: ðA4Þ

Obviously the first term just cancels out, and we are left with the term below

1

2G

Z
dxðN0M −M0NÞfðExÞ0ðEϕÞ−1Kϕg; ðA5Þ

wherewe have suppressed the dependence of the field variables on x. This also illustrates why only those terms survive in the
commutator which gives rise to the derivative of the delta function, and not just the delta function itself.
Next we consider the commutator between the second and fourth terms of the Hamiltonian constraints:

1

4G2

Z
dxdyNðxÞMðyÞ

�
2ðExðxÞÞ1=2KϕðxÞKxðxÞ;−

1

4
ðExðyÞÞ−1=2ðEx0ðyÞÞ2ðEϕðyÞÞ−1

�
¼ 1

2G

Z
dxdyNðxÞMðyÞfðExðxÞÞ1=2ðExðyÞÞ−1=2ðEϕðyÞÞ−1Ex0ðyÞKϕðxÞg

d
dy

½δðx − yÞ�: ðA6Þ

Combining this with the corresponding bracket between the fourth and the second terms, and performing integration by
parts like before, we get

−
1

2G

Z
dxðN0M −M0NÞfðExÞ0ðEϕÞ−1Kϕg: ðA7Þ

Thus, the terms in (A5) and (A7) cancel each other. Another calculation similar to the above comes from the commutator
between the second and last terms of the Hamiltonian constraints. We employ standard commutator formulas of the form
½AB;CD� ¼ A½B;C�Dþ CA½B;D� þ ½A;C�BDþ C½A;D�B to calculate the term below:

1

4G2

Z
dxdyNðxÞMðyÞ½2ðExðxÞÞ1=2KϕðxÞKxðxÞ; ðExðyÞÞ1=2Ex0ðyÞðEϕðyÞÞ−2Eϕ0ðyÞ�

¼ 1

2G

Z
dxdyNðxÞMðyÞfðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−2g × fKxðxÞEx0ðyÞ þ 2Eϕ0ðyÞKϕðxÞg

d
dy

½δðx − yÞ�: ðA8Þ

Combining the above with the corresponding commutator between the last term of H½N� and the second term of H½M�, we
get

1

2G

Z
dxðN0M −M0NÞfExðEϕÞ−2gfKxEx0 þ 2Eϕ0Kϕg: ðA9Þ

We immediately observe that the first term above is one of the required terms in the end. Finally we must calculate the
commutator between the second term of H½N� and the fifth term of H½M�. This is a slightly different calculation from the
rest since there is a second derivative on one of the triad terms:

1

4G2

Z
dxdyNðxÞMðyÞ½2ðExðxÞÞ1=2KϕðxÞKxðxÞ;−ðExðyÞÞ1=2Ex00ðyÞðEϕðyÞÞ−1�

¼ −
1

G

Z
dxdyNðxÞMðyÞfðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞg

d2

dy2
½δðx − yÞ�: ðA10Þ

After performing a couple of integration by parts, we get three terms given by
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−
1

G

Z
dxdyNðxÞM00ðyÞfðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðx − yÞ

−
2

G

Z
dxdyNðxÞM0ðyÞ d

dy
fðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðx − yÞ

−
1

G

Z
dxdyNðxÞMðyÞ d2

dy2
fðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðx − yÞ: ðA11Þ

Now if we do the same calculation for the commutator between the fifth term ofH½N� and the second term ofH½M�, we are
left with three similar terms like above:

1

G

Z
dxdyN00ðyÞMðxÞfðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðy − xÞ

þ 2

G

Z
dxdyN0ðyÞMðxÞ d

dy
fðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðy − xÞ

þ 1

G

Z
dxdyNðyÞMðxÞ d2

dy2
fðExðxÞÞ1=2ðExðyÞÞ1=2ðEϕðyÞÞ−1KϕðxÞgδðx − yÞ: ðA12Þ

The last term in (A11) is cancelled by the last term in (A12). The terms which are left over can be combined to give

1

G

Z
dxðN0M −M0NÞfðEϕÞ−1Ex0Kϕ − 2ExðEϕÞ−2Eϕ0Kϕg þ

1

G

Z
dxðN00M −M00NÞfðEϕÞ−1ExKϕg: ðA13Þ

Performing integration by parts on the last term in the above equation, and combining with the other term, we finally
get

−
1

G

Z
dxðN0M −M0NÞfExðEϕÞ−1K0

ϕ þ ExðEϕÞ−2Eϕ0Kϕg: ðA14Þ

We notice that the first term in (A14) cancels the second term in (A9). The terms that remain gives us

½H½N�; H½M�� ¼ 1

2G

Z
dx½NðxÞM0ðxÞ − N0ðxÞMðxÞ�fExðxÞðEϕðxÞÞ−2gf2K0

ϕðxÞEϕðxÞ − KxðxÞEx0ðxÞg: ðA15Þ

The rhs of the ½H;H� commutator is exactly what we require for our particular choice of the diffeomorphism
constraint.
For our factor-ordering choice of the gravitational constraints as above, the ½D;D� and the ½H;D� commutators can be

easily shown to satisfy the required operator relations. We do not show the details of those calculations as they are similar to
the above calculations and yet much simpler due to the absence of any phase-space functions on the rhs. In fact these two
relations show that the spatial diffeomorphism algebra is a subalgebra free of structure functions, and thus forms a usual Lie
algebra.

APPENDIX B ½H;H� bracket with holonomy modifications

For the particular ordering choice for the holonomy corrected Hamiltonian constraint operator, we show that the ½H;H�
bracket closes into the diffeomorphism constraint, albeit with a deformed structure function. The ½D;D� and ½H;D�
commutators remain unaltered.
Like before, we look at brackets between various terms of the Hamiltonian operator (46). The bracket between the first

term and the last one is shown below:

1

4G2

Z
dxdyNðxÞMðyÞ½ðExðxÞÞ−1=2f1ðKϕðxÞÞEϕðxÞ; ðExðyÞÞ1=2ðEx0ðyÞÞðEϕðyÞÞ−2ðEϕ0ðyÞÞ�: ðB1Þ

Combining the above with the corresponding commutator between the last term of H½N� and the first term of H½M�, we get
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1

4G

Z
dxðN0M −M0NÞfðEx0ÞðEϕÞ−2 _f1ðKϕÞEϕg: ðB2Þ

The dot on f1ðKϕÞ denotes a derivative with respect to Kϕ.
A similar calculation between the second and fourth terms
of the Hamiltonian constraint yields

1

2G

Z
dxðN0M −M0NÞfðEx0ÞðEϕÞ−2f2ðKϕÞEϕg: ðB3Þ

From the previous calculation, we know that these two
terms (B2) and (B3) must cancel each other in order to
make the algebra close. This imposes a relation between the
so far unconstrained correction functions of the form

f2ðKϕÞ ¼
1

2

df1ðKϕÞ
dKϕ

: ðB4Þ

This has the same form as what is obtained from effective
theories of LQG [6].
The bracket between the second and the fifth terms gives

rise to terms of the form

1

G

Z
dxðN0M −M0NÞfEx0ðEϕÞ−2f2ðKϕÞEϕ

− 2Eϕ0ExðEϕÞ−3f2ðKϕÞEϕg

þ 1

G

Z
dxðN00M −M00NÞfExðEϕÞ−2f2ðKϕÞEϕg: ðB5Þ

Performing integration by parts on the last term, we get

−
1

G

Z
dxðN0M −M0NÞfExðEϕÞ−2 _f2ðKϕÞK0

ϕE
ϕ

þExðEϕÞ−2f2ðKϕÞEϕ0g: ðB6Þ

Finally, the bracket between the second and the last term
gives

1

2G

Z
dxðN0M −M0NÞfExðEϕÞ−2g

× f _f2ðKxÞEx0Kx þ 2f2ðKϕÞEϕ0g: ðB7Þ

The second term of (B7) cancels the second term of (B6),
and the final form of the commutator is

½H½N�; H½M�� ¼ 1

2G

Z
dx½NðxÞM0ðxÞ − N0ðxÞMðxÞ�

×

�
ExðxÞðEϕðxÞÞ−2

�
d2f1ðKϕÞ
dKϕ

2

��
× f2K0

ϕðxÞEϕðxÞ − Ex0ðxÞKxðxÞg: ðB8Þ

The term on the rhs is the diffeomorphism constraint as in
(47). We have replaced the correction function f2 in terms
of the function f1, whereby the structure function now is no
longer just the inverse of the spatial metric. It is now
multiplied by the second derivative of the correction
function (which replaces the extrinsic curvature component
with its corresponding holonomy function).
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