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We present the affine coherent state quantization of the Bianchi I model. As in our previous paper on
quantum theory of Friedmann models, we employ a variable associated with a perfect fluid to play a role
of clock. Then we deparametrize the model. A distinctive feature, absent in isotropic models, is an extra
nonholonomic constraint, which survives the deparametrization and constrains the range of physical
variables. The appearance of the constraint reflects the “amplification” of singularity due to anisotropy. The
quantization smoothes the extra constraint and allows quantum contracting trajectories to be smoothly
transformed into expanding ones. Making use of an affine coherent state we develop a semiclassical
description. Figures are included to illustrate our result.
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I. INTRODUCTION

In our previous paper [1] we proposed a quantization of
spatially homogeneous and isotropic spacetime, based on
coherent states for the affine group (also known as wave-
lets). The main result of this approach was the appearance
of a quantum centrifugal potential, whose effect is the
regularization of the singularity, replacing the big bang with
a bounce both at quantum and semiclassical levels.
Moreover, the true Hamiltonian is essentially self-adjoint,
and hence the dynamics is unitary and unambiguous. The
results obtained in this simple model of cosmological
collapse encouraged us to tackle further investigations
concerning more elaborate models of the Universe.
In the present work, we study the anisotropic case of

Bianchi I, allowing for more degrees of freedom in the
description of spacetime. The canonical classical variables
p and q introduced in [1] apply equally well to the present
case, so that we can make contact with our previous result.
It needs to be said that we are entering an area much less
visited than the Friedmann models, and thus we should
expect some new difficulties.
In the Friedmann-Robertson-Walker (FRW) case [1],

apart from studying the quantum true Hamiltonian, we
were also interested in the properties of quantized volume
and expansion rate, as they signal the singularity by
vanishing and blowing up respectively. While the quantum
volume turned out to be self-adjoint, the quantum expan-
sion rate did not. Nevertheless, it was possible to give it a
semiclassical meaning through its lower symbol (i.e., its

expectation value on affine coherent states, opportunely
peaked at classical phase-space points). In the present
work, in addition to these quantities, we also have to deal
with shear and distortion describing the anisotropic evo-
lution. Classically, the shear and some of the scale factors
blow up at the singularity. However, the existence of
minimal volume for the Universe at the quantum level
prevents the unbound growth of anisotropy, i.e., it smoothly
evolves through the bounce. We will not provide an explicit
evolution of shear and distortion at the quantum level, but
confine ourselves to giving a well-behaved semiclassical
Hamiltonian, which generates a well-behaved dynamics of
anisotropic variables.
We should point out that, as in any Hamiltonian quantum

theory of cosmology, we must choose a degree of freedom
to play the role of physical time. (In the reduced phase-
space scheme, this is done before quantization.) Following
Schutz [2,3], we identify this internal clock with a
barotropic fluid filling the Universe. This particular choice
is technically attractive because the inclusion of fluid
extends the phase space with canonical variables T and
pT , where the fluid’s momentum pT is a constant of
motion. Thus, it is possible to perform a reduction to the
physical phase space equipped with a time-independent
true Hamiltonian. This feature may be particularly useful in
future analysis of a nonintegrable Bianchi IX model.
In Sec. II the geometry of the model we wish to quantize

is briefly presented. Its canonical formulation is described
in Sec. III, where the true Hamiltonian h is defined, and the
nonholonomic constraint h > 0 is specified. The affine
coherent state quantization of the true Hamiltonian is
performed in Sec. IV without taking into account this
constraint. In Sec. V we discuss different possibilities to
implement the latter. It appears that the best approach
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consists in incorporating this constraint in the classical true
Hamiltonian to be quantized. To do this, we use the
procedure for coherent state quantization of distributions
presented in [4]. The resulting quantum Hamiltonian is
presented in Sec. VI (detailed calculations can be found in
Appendix A), and its lower symbol is computed in Sec. VII.
This can be thought of as an effective classical Hamiltonian
accounting for quantum corrections. An approximate
analytic expression for this effective Hamiltonian is used
in Sec. VIII to study the effective dynamics of fundamental
variables, volume, and expansion rate. Numerical analysis
of the big bang singularity resolution is also presented.
Section IX concludes with a discussion of some interesting
issues of our results and possible future directions.

II. SPACETIME GEOMETRY

In the present work we study the anisotropic evolution of
compact (say, with torus topology T 3) locally flat spatial
sections of the spacetime equipped with the metric

ds2 ¼ −NðtÞ2dt2 þ
X
i

aiðtÞ2ðdxiÞ2: ð1Þ

We fix the spatial coordinates via
R
S1 dxi ¼ 1. The Ricci

scalar reads

R ¼ 2

�X
i

1

Nai

�
ȧi
N

�
;t
−
X
i>j

�
ȧi
Nai

��
ȧj
Naj

��
: ð2Þ

Filled with perfect fluids, these spacetimes are singular as
the world lines of comoving observers terminate within a
finite proper time. Starting from a spherical chunk of space,
the anisotropic evolution will deform its initial shape.
Following this observation, the spacetimes are said to have
cigar or barrel type singularities, with two scale factors
vanishing and the other one blowing up or two scale factors
reaching a finite value and the other one vanishing,
respectively, at the singularity. A more detailed discussion
of solutions may be found in [5].

III. CANONICAL FRAMEWORK

The Hamiltonian constraint of general relativity in the
Arnowit-Deser-Misner variables ðqij; pijÞ, equippedwith the
Poisson bracket fqijðxÞ;pklðx0Þg¼16πGδðikδjÞlδðx−x0Þ,
reads [6]

Hg ¼
1

κ

Z
½NC0 þ NiCi�d3x; ð3Þ

where

C0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqijÞ

q �
3Rþ 1

detðqijÞ
�
1

2
ðpk

kÞ2 − pijpij

��
;

Ci ¼ −2pij
;j ð4Þ

are first-class constraints and N, Ni are Lagrange multi-
pliers and κ ¼ 16πG. The truncation of the gravitational
variables to the cosmological sector translates into
qijðxÞ ≔ δija2i and pijðxÞ ≔ δijpi, which in turn leads to
Ci ≡ 0 and

Hg ¼ −
1

κ

N
a1a2a3

�
1

2

�X
i

a2i p
i

�
2

−
X
i

ða2i piÞ2
�
; ð5Þ

where we defined

p1 ¼ −
1

N
ða2a3Þ̇
a1

; p2 ¼ −
1

N
ða3a1Þ̇
a2

;

p3 ¼ −
1

N
ða1a2Þ̇
a3

; ð6Þ

satisfying fa2i ; pjg ¼ κδji . The Hamiltonian (5) can be
brought to a simpler, diagonal form. We achieve this by
Misner (canonical) parametrization of the phase space [7]:
canonical pairs are given by ðβ0; p0; βþ; pþ; β−; p−Þ, where

0
B@

β0

βþ

β−

1
CA ¼

0
B@

1=3 1=3 1=3

1=6 1=6 −1=3
1

2
ffiffi
3

p − 1

2
ffiffi
3

p 0

1
CA
0
B@

ln a1
ln a2
ln a3

1
CA; ð7Þ

0
B@

p0

pþ
p−

1
CA ¼

0
B@

1 1 1

1 1 −2ffiffiffi
3

p
−

ffiffiffi
3

p
0

1
CA
0
B@

2a21p1

2a22p2

2a23p3

1
CA: ð8Þ

In termof thesevariables, the gravitationalHamiltonian reads

Hg ¼
1

κ
N
e−3β

0

24
ð−p2

0 þ p2þ þ p2
−Þ: ð9Þ

At this point, Hg is still a constraint. To make it into the
physical true Hamiltonian, we include matter in the form of a
barotropic fluid subject to the equation of state p ¼ wρ
(w ¼ const). Following Schutz [2,3]we obtain for this matter
the Hamiltonian

Hm ¼ N
pT

ð ffiffiffi
q

p Þw ¼ Ne−3wβ
0

pT; ð10Þ

where T and pT are canonical variables associated with the
fluid. In analogy with our previous work on the FRWmodels
[1], we now replace ðβ0; p0Þ with the following canonical
pair:
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q ≔ e
3ð1−wÞ

2
β0 ; p ≔ −

2

3ð1 − wÞ e
−3ð1−wÞ

2
β0p0; ð11Þ

such that ½q� ¼ 1, ½p� ¼ L2 and fq; pg ¼ κ. At the physical
levelwenotice that this is exactly the samepair of observables
which we considered for the FRW models, i.e.,

q¼ða1a2a3Þ1−w2 ; p¼ 8

3ð1−wÞða1a2a3Þ
1þw
2 Θ; ð12Þ

where Θ is the expansion rate. The full Hamiltonian
constraint reads

H ≔ Hg þ Hm

¼ Nqμ
�

1

24κ
ð−α2p2 þ q−2ðp2þ þ p2

−ÞÞ þ pT

�
≈ 0;

ð13Þ

where μ ≔ −2w=ð1 − wÞ, α ≔ 3ð1 − wÞ=2 > 0. Solving the
constraint for pT leads to

κpT ¼ α2

24
p2 −

1

24
ðp2þ þ p2

−Þq−2: ð14Þ

Upon choosing T=κ as the clock variable, we obtain the true
(nonvanishing) Hamiltonian

h ¼ α2

24
p2 −

1

24
ðp2þ þ p2

−Þq−2 ð15Þ

describing the evolution of gravitational degrees of freedom
ðq; p; β−; p−; βþ; pþÞ ∈ R�þ ×R5. The most important dif-
ference between (15) and the true Hamiltonian found in [1] is
the appearance of the attractive potential proportional to
−q−2. We must then impose positivity of h as a separate,
nonholonomic constraint

h > 0; ð16Þ

which classically restricts the range of gravitational variables.
As a side remark, we notice that in the limit of vanishing
anisotropy, p− → 0 andpþ → 0, the true Hamiltonian of the
flat FRW spacetime [1] is recovered.

IV. QUANTIZATION OF TRUE
HAMILTONIAN h

A. Affine quantization: a compendium

As the complex plane is viewed as the phase space for
the motion of a particle on the line, the half-plane is viewed
as the phase space for the motion of a particle on the half-
line. Let the upper half-plane Πþ ≔ fðq; pÞjp ∈ R; q > 0g
be equipped with the measure dqdp. Together with the
multiplication

ðq; pÞðq0; p0Þ ¼ ðqq0; p0=qþ pÞ; q ∈ R�þ; p ∈ R;

ð17Þ

the unity (1,0) and the inverse

ðq; pÞ−1 ¼
�
1

q
;−qp

�
; ð18Þ

Πþ is viewed as the affine group AffþðRÞ of the real line,
and the measure dqdp is left-invariant with respect to this
action. The affine group AffþðRÞ has two nonequivalent
unitary irreducible representations (UIR). Both are square
integrable and this is the rationale behind affine integral
quantization [4]. The UIRUþ ≡U is realized in the Hilbert
space H ¼ L2ðR�þ; dxÞ:

Uðq; pÞψðxÞ ¼ ðeipx= ffiffiffi
q

p Þψðx=qÞ: ð19Þ

Picking an admissible unit-norm state ψ , i.e., an element in
∈ L2ðR�þ; dxÞ∩L2ðR�þ; dx=xÞ, named fiducial vector, pro-
duces all affine coherent states (or wavelets) defined as

jq; pi ¼ Uðq; pÞjψi: ð20Þ

These states in ðq; pÞ representation, i.e., as functions
ζq;pðq0; p0Þ ≔ hq0; p0jq; pi, are expected to be well peaked
around their phase-space point ðq; pÞ.
Square integrability of the UIRU and admissibility yield

the resolution of the identityZ
Πþ

dqdp
2πc−1

jq; pihq; pj ¼ I;

where cγ ≔
Z

∞

0

dx
x2þγ jψðxÞj2:

ð21Þ

The covariant integral quantization of classical observables
fðq; pÞ follows

f ↦ Af ¼
Z
Πþ

fðq; pÞjq; pihq; pj dqdp
2πc−1

: ð22Þ

The above map is linear and transforms the constant
function 1 into the identity operator and real functions
into symmetric operators (provided that the integral makes
sense). Also, note that this quantization procedure can be
easily extended to singular functions and distributions [4].
In the sequel we restrict the choice of fiducial vector to real
functions.
The map (22) yields canonical commutation rule, up to a

scaling factor, for q and p. Indeed, in representation “x,”

Ap ¼ −i
d
dx

≡ P; Aq ¼ ðc0=c−1ÞQ;

QfðxÞ ≔ xfðxÞ; ½Aq; Ap� ¼ ðc0=c−1ÞiI: ð23Þ
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Multiplication operator Q is (essentially) self-adjoint
whereas P is symmetric but has no self-adjoint extension
[8]. The property of the procedure which is crucial for our
present purpose is the regularization of the quantum kinetic
energy:

Ap2 ¼ P2 þ ςψQ−2 with ςψ ≔
Z

∞

0

du
c−1

uðψ 0ðuÞÞ2:
ð24Þ

The additional term in regard with the standard canonical
quantization is a centrifugal potential ∝ Q−2 whose
strength depends on the fiducial vector only, and can be
made as small as one wishes through an appropriate choice
of ψ . If we consider the quantum dynamics of a free motion
on the open half-line R�þ, it is proved [8] that the operator
P2 ¼ −d2=dx2 alone in L2ðR�þ; dxÞ is not essentially self-
adjoint whereas the regularized operator (24) is for
ςψ ≥ 3=4. It follows that for ςψ ≥ 3=4, the quantum
dynamics is unitary during the entire evolution, in particu-
lar, in the passage from the motion towards the origin
(contracting branch) to the motion away from it (expanding
branch).

B. Quantization of Hamiltonian

We quantize the ðq; pÞ variables introduced in (11)
according to the above affine quantization framework,
while for the other variables we choose the canonical
quantization one since their respective phase-space geom-
etry is the harmless plane R2. Making use of the formulas
above (see also [1]), the quantum version of the true
Hamiltonian (15) is

h ↦ Ah ¼ α2

24
P2 þ a2P

α2

24
ςψQ−2 −

1

24

c−3
c−1

ðP2þ þ P2
−ÞQ−2:

ð25Þ

The operators Pþ and P− are the usual momentum
operators on the real line acting in L2ðR2; dβþdβ−Þ.
Since they are self-adjoint and commute with the
Hamiltonian, we can replace them with some fixed real
eigenvalues, kþ and k−, which will remain constant during
the evolution.
As in [1], we choose ψ as the function smooth in ð0;∞Þ

and rapidly decreasing at 0þ and at the infinity:

ψ ≡ ψνðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK0ðνÞ

p e−
ν
4
ðxξ12þ 1

xξ12
Þ; with ν > 0 and

ξ12 ¼
K1ðνÞ
K2ðνÞ

> 0: ð26Þ

Here and in the following, KrðzÞ denotes the modified
Bessel functions [9]. Since we deal with ratios of such

functions throughout the sequel, we adopt the convenient
notation

ξrs ¼ ξrsðνÞ ¼
KrðνÞ
KsðνÞ

¼ 1

ξsr
: ð27Þ

One convenient feature of such a notation is that ξrsðνÞ ∼ 1

as ν → ∞ [a consequence of KrðνÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2νÞp

]. Hence,
the quantum Hamiltonian (25) now reads

Ah ¼ α2

24
P2 þ a2P

α2

24
ςðνÞQ−2 −

1

24
ξ21ðνÞ2ðk2þ þ k2−ÞQ−2;

ð28Þ

where ςðνÞ≡ ςψν ¼ ð1þ νξ01Þ=4. It is convenient to intro-
duce the auxiliary strength parameter

ϰðνÞ ≔ ςðνÞ − ξ21ðνÞ2
ðk2þ þ k2−Þ

α2a2P
ð29Þ

so (28) reduces to

Ah ¼ α2

24
ðP2 þ ϰðνÞa2PQ−2Þ: ð30Þ

The key difficulty is the additional nonholonomic positivity
constraint [also present in open (k ¼ −1) FRW models],
h > 0, to which the next section is dedicated.

V. ANALYSIS OF POSITIVITY
CONSTRAINT h > 0

In what follows we consider different possible ways of
implementing the positivity constraint (16) in the quantum
theory.

A. Positivity via operator modification

The positivity requirement of the true Hamiltonian may
be imposed directly on the operator Ah by just putting
ϰðνÞ > 0. This leads to the condition on the amount of
shear, which is expressed in terms of eigenvalues kþ
and k−,

k2þ þ k2− < α2a2Pðξ12Þ2ξ1−1ς: ð31Þ

The above condition reduces the space of allowed quantum
states by restricting the spectral values associated with the
shear operator. More precisely, the amount of anisotropy is
bounded from above by the right-hand side, meaning that a
highly anisotropic spacetime cannot be realized. However,
there is no reason why the Universe should be so much
isotropic. On the contrary, since classically the anisotropy
goes as ∼a−6 with the overall scale factor, one reasonably
expects that the Universe is more and more anisotropy
dominated the closer it is to the classical singularity. We
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thus conclude that the above condition for the allowed
amount of anisotropy in the Universe is too restrictive, and
discard this approach as unphysical.

B. Positivity via domain restriction

Let us consider the eigenvalue problem for operator Ah

in (30) on L2ðR�þ; dxÞ:

−
d2ψ
dx2

þ ϰðνÞa2P
x2

ψ ¼ λψ : ð32Þ

A possible way of implementing the condition (16) is to
ensure the self-adjointness of (32) and then constrain the
Hilbert space to the positive eigenvalues, λ > 0. The
difficulty in this approach is to implement such a
Hilbertian projection in analytical computations, since it
requires full knowledge of the spectral decomposition of
Ah. We drop this approach for technical reasons.

C. Positivity via redefinition of classical variables

Consider the following canonical transformation:

q ↦ q0 ≔
1

2

pq
p2 − μ2=q2

; p ↦ p0 ≔ p2 −
μ2

q2
; ð33Þ

β� ↦ β0� ≔ β� þ p�
2α2μ

ln

�
pq − μ

pqþ μ

�
;

p� ↦ p0� ≔ p�; ð34Þ

where μ2 ≔ ðp2þ þ p2
−Þ=α2. In these new variables, the

positivity constraint (16) becomes p0 > 0. There is also
another constraint, which is jq0p0j > μ=2. We observe that
this condition splits the physical phase space into two
disconnected regions. If we now define ~q0 ≔ q0p0 − μ=2
and ~p0 ≔ lnp0, then ð ~q0; ~p0Þ ∈ R�þ ×R, and the true
Hamiltonian reads h ¼ e ~p0

. The advantage here is that
we do not have to impose the positivity constraint quantum
mechanically, since h in this form is automatically positive
definite. The disadvantage of this approach is that we lose
connection with the variables used for FRW models [1].
More importantly, the expanding and contracting branches
of the Universe become disconnected. For these reasons we
discard also this approach.

D. Positivity via redefinition of classical expression

Another idea is to take θðhÞh (where θ is the Heaviside
function) as the classical true Hamiltonian, and quantize it
in the spirit of an integral quantization framework [4,10].
The resulting operator AθðhÞh will have the positivity
constraint implemented. Moreover, in this way we do
not redefine the initial Hilbert space. In the next section
we follow this last idea, in what we call “refined quantiza-
tion” (as opposed to Sec. IV).

VI. REFINED QUANTIZATION OF
TRUE HAMILTONIAN

A. General formula for the operator

Let us consider the simplified formof theHamiltonian (15)

hs ¼ p2 −
k2

q2
ð35Þ

obtained after dropping unnecessary factors, togetherwith the
positivity constraint hs > 0. We derive from the decompo-
sition hs ¼ θðhsÞhs þ θð−hsÞhs and the linearity of the
affine integral quantization the equation

AθðhsÞhs ¼ Ahs − Aθð−hsÞhs : ð36Þ

With the fiducial vector (26) and from results given in [1],
we obtain for the affine quantized version of hs in x
representation:

hx0jAhs jxi ¼
�
−

d2

dx2
þ ðςðνÞ − ξ21ðνÞ2k2Þ

1

x2

�
δðx − x0Þ:

ð37Þ

All the details about the derivation of this expression aregiven
in Appendix A.
The second term Aθð−hsÞhs for the same fiducial vector

(26), in x representation reads

hx0jAθð−hsÞhs jxi ¼
2

πK0ðνÞc−1

�
kRe½K0ð2γÞ�ffiffiffiffiffiffi
xx0

p ðx − x0Þ2

−
4ξ12
ν

ffiffiffiffiffiffi
xx0

p
Im½γK1ð2γÞ�

ðx − x0Þ3ðxþ x0Þ
�
; ð38Þ

where

γ ¼ ν

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

x
þ 1

x0

��
xþ x0 − i

4

ν

k
ξ12

ðx − x0Þ
�s

¼ ν

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

y

��
1þ y − i

4

ν

k
ξ12

ð1 − yÞ
�s

ð39Þ

with y ¼ x0=x. This is a nonlocal operator, and there is little
chance to solve its eigenvalue problem analytically. We are
not going to analyze it except for noticing that the operator
AθðhsÞhs is positive definite and as such it admits self-adjoint
extension(s), e.g., Friedrich’s extension. Therefore, the
existence of unitary evolution is guaranteed. In what
follows we make use of the semiclassical description
available in our approach based on affine coherent states.
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VII. SEMICLASSICAL APPROACH

A. From Lagrangian

Inspired by Klauder’s approach [11,12], we present a
consistent framework allowing us to approximate the
quantum Hamiltonian and its associated dynamics by
making use of a semiclassical Lagrangian approach.
For a general Hamiltonian operator H, the Schrödinger

equation, iℏ ∂
∂t jΨðtÞi ¼ HjΨðtÞi, can be deduced from the

Lagrangian:

LðΨ; Ψ̇;N Þ ≔ hΨðtÞj
�
iℏ

∂
∂t − H

�
jΨðtÞi; ð40Þ

through the application of the variational principle with
respect to jΨðtÞi. Following Klauder, we assume that
jΨðtÞi is an affine coherent state jqðtÞ; pðtÞi, where qðtÞ
and pðtÞ are some time-dependent functions. Then the
Lagrangian (40) turns to the semiclassical form

~Lðq; q̇; pÞ ¼ hqðtÞ; pðtÞj
�
iℏ

∂
∂t − H

�
jqðtÞ; pðtÞi

¼ −ξ02ðνÞqṗ − hqðtÞ; pðtÞjHjqðtÞ; pðtÞi: ð41Þ

We rescale the family of coherent states to define a new
family of coherent states jqðtÞ; pðtÞinew ≔ jλqðtÞ; pðtÞi,
where λ ¼ ξ20ðνÞ. In this way, we ensure that ðq̬ ; p̬ Þ,
computed as the expectation values with respect to the
rescaled family, fully correspond to the classical pair,
i.e., ðq̬ ; p̬ Þ ¼ ðq; pÞ. Then, we derive the semiclassical
equations of motion as

q̇ ¼ ∂
∂pH

̬
ðq; pÞ; ð42Þ

ṗ ¼ −
∂
∂qH

̬
ðq; pÞ; ð43Þ

where H
̬
ðq; pÞ is the lower symbol of H,

H
̬
ðq; pÞ ¼ hλqðtÞ; pðtÞjĤjλqðtÞ; pðtÞi. We note that the

classical relation between q̇ and p cannot hold any longer
on the semiclassical level since this relation is now given by

(42), in which classicalH is replaced withH
̬
. This is viewed

as the consequence of the quantum noncommutativity of
basic variables. In our reconstruction of the semiclassical
description of spacetime wewill keep the interpretation of q
as fundamentally given by (12).

We now specify H¼AθðhsÞhs, and H
̬
¼hλq;pjAθðhsÞhs j

λq;pi. The latter lower symbol is the basis of our semi-
classical description.

B. Lower symbol

We find that the lower symbol of Aθð−hsÞhs reads

hλq; pjAθð−hsÞhs jλq; pi ¼
2

π

�
4ξ12

λqνK0ðνÞ
�

2
Z

∞

0

�
k
Re½K0ð2γÞ�
yð1 − yÞ2 −

4ξ12
ν

Im½γK1ð2γÞ�
ð1 − yÞ3ðyþ 1Þ

�
~γ2K2ð2~γÞ
ðy2 þ 1Þ2

y2dy
c−1

ð44Þ

where

~γ ¼ ν

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

y

��
1þ y − i

4

ν

pλq
ξ12

ð1 − yÞ
�s

and y ¼ x0=x. The analytic evaluation of the above integral
is rather intractable and we proceed with a numerical
integration instead.

VIII. SINGULARITY RESOLUTION

A. Numerical examples

The semiclassical refined true Hamiltonian is defined
as the difference of the lower symbol of (37) and the lower
symbol (44). Figures 1 and 2 illustrate the singularity
resolution in the half-plane ðq; pÞ for different values of the
strength k. The contour plots of the lower symbol of the

FIG. 1 (color online). The figure shows the trajectories gen-
erated by the lower symbol of the true Hamiltonian. The
trajectories are clearly reversed and the bounce occurs. The
parameters are chosen as k ¼ 10aP (for the potential strength),
ν ¼ 3 (for the fiducial vector).
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Hamiltonian contain semiclassical trajectories as constant-
value levels. The numerical computations prove that they
exhibit bouncing behavior.

B. Lower symbol of the Hamiltonian

Combining the lower symbol of the operator Ahs, given
in Appendix A, with (44), we find that the lower symbol of
the true Hamiltonian (36) has the following form:

hλq; pjAθðhsÞhs jλq; pi ¼
1

λ2q2
ðp2λ2q2 þ AðνÞ − BðνÞk2

þ Fνðk2; p2λ2q2ÞÞ; ð45Þ

where

AðνÞ ≔ a2P
4
ξ10ξ12ðνξ32 − 1Þ; BðνÞ ≔ ξ20; ð46Þ

and

1

λ2q2
Fνðk2; p2λ2q2Þ ≔ −hλq; pjAθð−hsÞhs jλq; pi ð47Þ

is the corrective term due to the positivity constraint, for
which we find the following limits:

Fνð0; 0Þ ¼ 0;

lim
k→∞

Fνðk2; 0Þ ¼ −AðνÞ þ BðνÞk2;
lim
x→∞

Fνðk2; xÞ ¼ 0: ð48Þ

Note that the lower symbol (45) is even in k and in pq.
Based on our numerical simulations, we can guess the

following approximative form for Fνðk2; p2λ2q2Þ:

Fνðk2; p2λ2q2Þ ≈ aνðk2Þbνðk2; p2λ2q2Þ ð49Þ
where

aνðk2Þ ¼ −AðνÞ λ1ðνÞk2
1þ λ1ðνÞk2

þ BðνÞk2; ð50Þ

bνðk2; p2λ2q2Þ ¼ 1þ λ1ðνÞk2
1þ λ1ðνÞk2 þ λ2ðνÞp2λ2q2

: ð51Þ

That this factorization is indeed a good approximation of
Fνðk2; p2λ2q2Þ is confirmed for ν ¼ 3 by the plots in
Figs. 3(a) and 3(b) with λ1 ≈ 0.3 and λ2 ≈ 0.7.

C. Effective dynamics of q and p

Let us now restore the original physical factors α and aP
present in (25). The approximate form of the lower symbol
(45) of the true Hamiltonian now reads

hλq; pjAθðhÞhjλq; pi ≈
1

λ2q2
α2

24

�
p2λ2q2 þ AðνÞ − BðνÞ k

2

α2
þ aν

�
k2

α2

�
bν

�
k2

α2
; p2λ2q2

��
≡ ~hðq; pÞ: ð52Þ

FIG. 2 (color online). Here k ¼ 50aP, the semiclassical trajectories are initially more divergent, but they are again reversed. On the
left, the same scale as above. On the right, the plot is zoomed in, so that we can see the reversal of trajectories near q ¼ 0.
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Making use of the approximation we obtain

d
dT

ðpqÞ ¼ fpq; ~hg ¼ 2~h > 0 ð53Þ

where ~h, our semiclassical Hamiltonian, is constant and d is defined in the preambule thus

pq ¼ 2~hðT − TbounceÞ: ð54Þ
We set Tbounce ¼ 0. Now we easily integrate (42)–(43) and obtain for q the expression

q ¼
ffiffiffiffiffiffiffiffi
q2 ~h
~h

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~h

α2

24λ2

�
4~h2T2λ2 þ AðνÞ − BðνÞ k

2

α2
þ aν

�
k2

α2

�
bν

�
k2

α2
; 4~h2T2λ2

��s
; ð55Þ

where we substituted pq according to (54) and where ~h on the right-hand side is treated as a constant of integration.
Next, we find for p

p ¼ 2~hTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
~h

α2

24λ2
ð4~h2T2λ2 þ AðνÞ − BðνÞ k2

α2
þ aνðk2α2Þbνðk

2

α2
; 4~h2T2λ2ÞÞ

q : ð56Þ

D. Effective spacetime

From the initial definitions given in Sec. III we have

ds2 ¼ −N2dT2 þ ða1dx1Þ2 þ ða2dx2Þ2 þ ða3dx3Þ2; ð57Þ

where

N ¼ −
1

qμ
; a1 ¼ q

1
αeβ

þþ ffiffi
3

p
β− ;

a2 ¼ q
1
αeβ

þ−
ffiffi
3

p
β− ; a3 ¼ q

1
αe−2β

þ
: ð58Þ

In order to construct the semiclassical spacetime, in
addition to qðTÞ, we need the semiclassical dynamics of

β�, which can be derived from the respective Hamilton
equations after replacing k2 with p2þ þ p2

− in (52).
However, the resulting formulas are involved and will
be omitted. Instead we focus on the overall expansion and
the total volume.

E. Effective dynamics of volume and expansion rate

The volume V and expansion rate Θ read, respectively,

VðTÞ ¼ q
3
α; ΘðTÞ ≔ 1

N
V̇
V
¼ −

3

α
qμ−1q̇: ð59Þ

Towards the singularity, the volume decreases until it
reaches its minimal value, which is

1 2 3 4 5

2.5

2.0

1.5

1.0

0.5

5 10 15 20

0.2

0.4

0.6

0.8

1.0

FIG. 3 (color online). (a) Plot of the exact F3ðk2; 0Þ in blue and its approximation a3ðk2Þ in red. (b) Plot of the exact F3ðk2;x2Þ
F3ðk2;0Þ in blue and

its approximation b3ðk2; x2Þ in red. Plotted for k ¼ 1; 2; 3; 4. Beyond the plotted range of x the effect of theta function becomes
negligible due to the relatively large positive value of hλq; pjAθðhÞhs jλq; pi, and the accuracy of the approximation is not very significant
for reproducing the correct dynamics.
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Vmin ¼
�

AðνÞ
1þ λ1

k2

α2

α2

24λ2 ~h

� 3
2α

: ð60Þ

We note that for k2 ¼ 0 the above formula gives the
minimal volume of the flat FRW universe [1]. The precise
moment of the maximal value of the expansion rate, TΘ, is
very difficult to obtain. Let us assume that in the vicinity of
the bounce, where the contraction reaches it maximal value,
we may apply the following approximation:

q ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~h

α2

24λ2

�
4~h2T2λ2 þ AðνÞ

1þ λ1ðνÞ k2

α2

�s
: ð61Þ

Then, we find

TΘ ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4λ2 ~h2ð1 − μÞ
AðνÞ

1þ λ1ðνÞ k2

α2

s
; ð62Þ

and

Θmax¼ΘðTΘÞ

≈�α

4

�
μ−2

μ−1

α2

24~hλ2
AðνÞ

1þλ1ðνÞk2α2

�μ−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−μ

AðνÞ
1þλ1ðνÞk2α2

s
:

ð63Þ

IX. DISCUSSION

A. Mechanism behind the singularity resolution

In the present paper we have dealt with the anisotropic
cosmological model of Bianchi I. Classically, such space-
time presents a singularity which is much stronger than the
one for the Friedmann models considered in our previous
paper [1]. The classical trajectories in the ðq; pÞ plane
diverge as they approach the singularity q ¼ 0. Indeed, the
contracting and expanding branches are disconnected
manifolds of the constraint surface. Therefore, one does
not expect that canonical quantization may resolve such
singularities.
We employ a more suitable framework, known as the

affine coherent state quantization. In order to resolve the
singularity with a bounce, we introduce a phase space in
which the expanding and contracting branches are con-
nected by a classically forbidden region. Classically, an
extra positivity constraint is present, to ban that region. The
affine coherent state quantization, because it can also be
applied to distributions, smoothes this constraint, allowing
the semiclassical trajectories to cross the classically for-
bidden region and join the contraction and expansion with a
smooth bounce (see Fig. 1). Thus, we have obtained an
anisotropic singularity resolution by a new mechanism,
which is peculiar to our quantization framework. To
illustrate the smoothing which takes place in the phase

space, we analyze the case of the theta function in
Appendix B. Upon quantization, the theta function
becomes a positive operator with a trivial kernel and its
lower symbol is presented in Fig. 4. Consequently, all
quantum configurations corresponding to the phase space
become accessible by the physical (i.e., satisfying all the
classical and quantum constraints) motion.
The present result shows that, in order to solve the

singularity problem, one needs (at least partially) to impose
the gravitational constraints at the quantum level. It does
not mean that the Dirac approach is preferred. Rather, a
combination of reducing the constraint partially on the
classical level and partially on the quantum level seems to
be the best option.

B. Features of the quantum bounce

We notice in formula (60) that the larger the anisotropy
k2, the smaller the minimal volume which is reached by
the collapsing universe. This straightforward observation
challenges the relevance of the Planck scale to the big
bounce as the change in anisotropy may make the bounce
scale arbitrarily low.1 Moreover, we notice that in (60) the
minimal volume depends only on one effective constant

FIG. 4 (color online). Contour plot of the semiclassical
expression hq; pjAθjq; pi. Here k ¼ 3, q is running on the
interval [0,2] and p on ½−10; 10�. hq; pjAθjq; pi is running on
the interval [0.74,1].

1Another argument against the role of the Planck scale in
dynamics of quantum cosmological models stems from the lack
of a privileged time function in quantum gravity. A detailed
reasoning may be found in [13]. Even for a specific choice of
time, it has recently been shown [14] that quantum gravitational
effects could be detected by relatively low-energy particles,
provided that the spacetime is in a sufficiently nonclassical state.
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AðνÞ, that is, the one which was present already in the
isotropic models. Thus, we have obtained an extension of
our previous result [1], which is exactly the “isotropic
limit” of our present result. The next step in our research is
to study in a similar manner other types of singularity. In
farther future, we will consider the effect of the obtained
singularity resolution on cosmological perturbations.
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APPENDIX A: COMPUTATION OF
QUANTIZED HAMILTONIAN

The affine CS quantization (with fiducial vector ψ) of
the simplified Hamiltonian hs ¼ p2 − k2=q2, together with
the positivity constraint hs > 0, is performed through the
decomposition into two terms

AθðhsÞhs ¼ Ahs − Aθð−hsÞhs ;

where the operators read in x representation, hx0jAjxi≡ A,

Ahs ¼
Z
Πþ

dqdp
2π

θ

�
p2 −

k2

q2

��
p2 −

k2

q2

�
eipðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ;

Aθð−hsÞhs ¼
Z
Πþ

dqdp
2π

θ

�
−p2 þ k2

q2

��
p2 −

k2

q2

�
eipðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ:

First, let us focus on the second term:

Aθð−hsÞhs ¼
Z
Πþ

dqdp
2π

θ

�
−p2 þ k2

q2

��
p2 −

k2

q2

�
eipðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ

¼
Z
Πþ

dqdp
2π

θðjkj − jpqjÞ
�
p2 −

k2

q2

�
eipðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ

¼
Z
Πþ

dqdP
2πq3

θðjkj − jPjÞðP2 − k2ÞeiPqðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ

¼
Z

∞

0

Z jkj

−jkj

dqdP
2πq3

ðP2 − k2ÞeiPqðx−x0Þq−1ψ̄ðx0=qÞψðx=qÞ

¼
Z

∞

0

Z jkj

−jkj

dqdP
2πq3

ψðx=qÞ
�
−q2

∂2

∂x2 − k2
�
ei

P
qðx−x0Þq−1ψ̄ðx0=qÞ

¼
Z

∞

0

dq
2πq3

ψðx=qÞ
�
−q2

∂2

∂x2 − k2
�
2 sin ðjkjq ðx − x0ÞÞ

x − x0
ψ̄ðx0=qÞ

¼ 2

π

Z
∞

0

dq
q

�
k
q

cos ðjkjq ðx − x0ÞÞ
ðx − x0Þ2 −

sin ðjkjq ðx − x0ÞÞ
ðx − x0Þ3

�
ψ̄ðx0=qÞψðx=qÞ:

Considering now the first term,

Ahs ¼
Z
Πþ

dqdp
2π

ψðx=qÞ
�
−

∂2

∂x2 −
k2

q2

�
eipðx−x0Þq−1ψ̄ðx0=qÞ

¼ −
Z

∞

0

dqδðx − x0Þq−1ψ̄ðx0=qÞ½ψ ;xxðx=qÞ þ 2ψ ;xðx=qÞ∂x þ ψðx=qÞ∂2
x�

− k2
Z

∞

0

dqδðx − x0Þq−3ψ̄ðx0=qÞψðx=qÞ;

and introducing the integrals
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In ≔
Z

∞

0

ynjψ j2dy; J n ≔
Z

∞

0

ynjψ 0j2dy; Kn ≔
Z

∞

0

ynðψ̄ψ 0 − ψ̄ 0ψÞdy;

we get the expression

Ahs ¼
�
I−1P2 þ i K0

2
ðQ−1Pþ PQ−1Þ þ ðJ 1 − k2I1ÞQ−2

�
:

This reduces to (37) if ψ is real, since then K0 ¼ 0 and we evaluate, with the notation ξrsðνÞ ¼ KrðνÞ=KsðνÞ,
J 1

I−1
¼ ςðνÞ ¼ 1

4
ð1þ νξ01ðνÞÞ;

I1

I−1
¼ ξ21ðνÞ2:

The lower symbol of Ahs is constructed out of the following partial results:

hq; pjP2jq; pi ¼ p2 þ 1

4
ξ10ðνÞξ12ðνÞðνξ32ðνÞ − 1Þq−2

and

hq; pjQ−2jq; pi ¼ ξ10ðνÞξ12ðνÞq−2:

APPENDIX B: QUANTIZATION OF θ

The kernel of Aθ is (dimensionless)

hxjAθjx0i ¼ δðx − x0Þ − ξ

2πK0ðνÞ
1

x − x0
Im

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ik
ξν

x − x0

xþ x0

s
K1

�
ν

2

xþ x0ffiffiffiffiffiffi
xx0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ik
ξν

x − x0

xþ x0

s �#
: ðB1Þ

The semiclassical expression is

hq; pjAθjq; pi ¼ 1 −
ξ

πK0ðνÞ2
Z

1

0

dyffiffiffi
y

p ð1 − yÞ Im
�
γðy; kÞK1

�
ν

2

1þ yffiffiffi
y

p γðy; kÞ
��

Re
�
K0

�
ν

2

1þ yffiffiffi
y

p γðy; qpÞ
��

ðB2Þ

with

γðy; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ia
ξν

1 − y
1þ y

s
: ðB3Þ
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