
Backreaction in growing neutrino quintessence

Florian Führer* and Christof Wetterich
Institut für Theoretische Physik, Universität Heidelberg,
Philosophenweg 16, D–69120 Heidelberg, Germany
(Received 13 April 2015; published 30 June 2015)

We investigate the cosmological effects of neutrino lumps in growing neutrino quintessence. The
strongly nonlinear effects are resolved by means of numerical N-body simulations which include
relativistic particles, nonlinear scalar field equations, and backreaction effects. For the investigated models
with a constant coupling between the scalar field and the neutrinos, the backreaction effects are so strong
that a realistic cosmology is hard to realize. This points toward the necessity of a field-dependent coupling
in growing neutrino quintessence. In this case realistic models of dynamical dark energy exist which are
testable by the observation or nonobservation of large neutrino lumps.
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I. INTRODUCTION

The origin of the observed accelerated expansion of the
Universe is still unknown [1,2]. It is usually accounted for by
a dark energy (DE) component. The simplest possibility
consistent with observations is a cosmological constant Λ,
but a lot of alternatives have been proposed [3]. Prime
candidates are dynamical dark energy models mediated by a
scalar field or modified gravity—the latter being often
equivalent to the former [4]. For many alternatives the
cosmological constant problem [5,6] of explaining the small
value of Λ persists, however. Also the explanation of why
DE becomes important in the present cosmological epoch is
often not more convincing than for a cosmological constant.
Growing neutrino quintessence (GNQ) [7,8] offers some

advantages here. As a quintessence model [9,10], the late
time acceleration is driven by a scalar field φ (the cosmon),
employing a mechanism similar to inflation. It is possible to
unify the late and early time acceleration into a single
picture [11–13] so that the same field is responsible for DE
and inflation. As an overall description within quantum
gravity crossover cosmology [14], GNQ also addresses the
cosmological constant problem.
GNQ is able to explain the smallness of the DE

component, since the dynamical DE density decays during
the cosmic history, just as the other energy densities in the
Universe. The DE density being small is then just a matter
of time—it is small because the Universe is old. In contrast
to simpler quintessence models, GNQ solves the why-now
problem. No fine-tuning of the self-interaction potential is
needed for this purpose. A coupling between the cosmon
and the neutrinos provides a mechanism for stopping the
evolution of the cosmon field as soon as the neutrinos
become nonrelativistic. The phenomenology of a very
slowly evolving scalar field resembles a cosmological
constant. The transition from relativistic to nonrelativistic

neutrinos acts as a trigger for the DE domination. For
neutrino masses allowed by observations, this transition
happens in the “recent” past, explaining why DE has
become important now.
Despite a background evolution similar to the ΛCDM

model for redshift z≲ 5, GNQ has a phenomenology which
is distinct from other models. It predicts a time varying
neutrino mass and the formation of neutrino lumps, which
might be detectable through their gravitational potentials
[15]. The formation of lumps is a consequence of the large
coupling between neutrinos and the cosmon, which is
required for the stopping mechanism. The resulting addi-
tional attraction between neutrinos is about 103 times
stronger than the gravitational attraction. It can have a
natural explanation in a particle physics framework [8].
While the strong coupling on the one hand offers with the

lumps a clear and distinct way of testing the model, on the
other hand, it renders the model technically difficult to
study. In GNQ perturbations in the neutrino density become
nonlinear already at z ≈ 1, this happens on very large scales
[15]. This has lead to the development of a comprehensive
N-body simulation [16,17] to follow the formation of the
neutrino lumps. The simulation is different from the usual
cold dark matter (CDM) only simulations: To include
backreaction effects, induced by the highly nonlinear nature
of the lumps [18], the background is solved simultaneously
with the perturbations. Additionally, neutrinos becoming
relativistic during the formation of lumps are captured by
the simulation. A similar framework for relativistic N-body
simulation with focus on the metric perturbations was
explored recently in Ref. [19]. With our simulation it
was possible to draw a consistent picture of neutrino
structures within GNQ. For stable lumps themain character-
istic features can be understood within an approximation in
terms of a nonrelativistic fluid of neutrino lumps [20].
In this work we investigate if GNQ can provide a realistic

expansion history. Therefore, we study the equation of state
and the energy density of the cosmon for different model*fuhrer@thphys.uni‑heidelberg.de
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parameters. We aim to find model parameters for which the
backreaction effect remains compatible with an accelerated
expansion with ΩDE ≈ 0.7. At the same time, the accel-
erated expansion of the Universe must start early enough to
be consistent with observations.
A time-dependent neutrino mass related to a scalar dark

energy field concerns a wider setting than GNQ. Mass
varying neutrino scenarios have been studied earlier in
Ref. [21] and share common features with GNQ as the
instability of neutrino perturbations [22–24].
This work is organized as follows. We start with a brief

review of GNQ in Sec. II. In Sec. III we discuss the
formation of lumps and their backreaction on the cosmo-
logical expansion. In Sec. IV we describe our simulation,
which we use to perform a parameter scan. Results are
presented in Sec. V. Finally, we conclude in Sec. VI.

II. GROWING NEUTRINO QUINTESSENCE

A. Basic concepts

In this section we briefly describe GNQ. The ingredients
of GNQ are a scalar field φ (the cosmon) and neutrinos. The
neutrino mass depends on the value of φ, thereby coupling
the cosmon and the neutrinos. The cosmon itself is described
by the standard Lagrangian of a scalar field which takes,
using the metric signature ð−;þ;þ;þÞ and setting the
reduced Planck mass to unity, 8πG ¼ 1, the form

−Lφ ¼ 1

2
∂μφ∂μφþ VðφÞ: ð1Þ

Wechoose an exponential potentialVðφÞ ∝ e−αφ. As long as
the neutrinomass can be neglected, the exponential potential
leads to scaling solutions of the cosmon field. The back-
ground energy density of the cosmon becomes independent
of the initial conditions andmimicsmatter (radiation) during
matter (radiation) domination [9], where the energy density
of the cosmon is a constant fraction of the total energy
density Ωφ ¼ 3 1þw

α2
. Here w is the equation of state of the

dominating species. Constraints on early dark energy (EDE)
require α≳ 10 [25–28], where we use a conservative bound
in view of possible unexplored parameter degeneracies.
The dependence of the neutrino mass on the cosmon is

given by

β ¼ −
d lnmνðφÞ

dφ
< 0: ð2Þ

In general the couplingβ canbeφ dependent.We establish in
this paper that the size of the backreaction effect depends
crucially on the presence or absence of a variation of βðφÞ.
An investigation of a particle physics motivated variation of
β [8] inRef. [17] has revealed a small backreaction effect and
an overall cosmology consistent with present observations.
For a constant β, large backreaction effects have been
observed [16]. We address here the question if the model
remains compatible with observations in this case as well.

A constant coupling implies for the neutrino mass

mνðφÞ ¼ mie−βφ; ð3Þ

where an additive constant in φ is fixed such that
Vðφ ¼ 0Þ ¼ 2.915 × 10−7 eV. The φ-dependent neutrino
mass allows for energy transfer between neutrinos and the
cosmon, which is proportional to the trace of neutrino
energy-momentum tensor:

∇νT
μν
ðφÞ ¼ þβTðνÞ _φ

∇νT
μν
ðνÞ ¼ −βTðνÞ _φ: ð4Þ

The trace of the energy-momentum tensor TðνÞ ¼ Tμ
μ;ðνÞ ¼

−ρν þ 3Pν vanishes for ultrarelativistic neutrinos. The
coupling between neutrinos and the cosmon is therefore
ineffective for relativistic neutrinos. The neutrino energy-
momentum tensor also sources the Klein–Gordon equation
which governs the evolution of the cosmon:

∇μ∇μφ − V 0ðφÞ ¼ βTðνÞ: ð5Þ

We will describe neutrinos and dark matter by an N-body
simulation. The trajectories of classical neutrinos obey a
modification of the geodesic equation [16],

duμ

dτ
þ Γμ

νλu
νuλ ¼ β∂μφþ βuν∂νφuμ; ð6Þ

where uμ denotes the 4-velocity and τ the proper time. The
left-hand side is the usual gravitational motion, with
the Christoffel symbols Γλ

μν determined by the metric.
Throughout this work we use the Newtonian gauge for
the metric:

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞdx2: ð7Þ

We will work to first order in the gravitational potentials Φ
and Ψ and neglect their time derivatives.
The right-hand side of Eq. (6) describes an additional

force due to the coupling to the cosmon. It consists of two
parts. First, a velocity-dependent part βuν∂νφuμ compen-
sates changes in the mass for neutrinos moving in a varying
cosmon field so that momentum is conserved. A neutrino
moving into a region with smaller (larger) values of φ
will lose (gain) mass. To compensate the loss (gain) of
momentum, it will be accelerated (decelerated). Second, the
term β∂μφ is a velocity-independent fifth force. In the
nonrelativistic limit, it acts as an attractive force about 2β2

times stronger than gravity [29].

B. Homogeneous evolution

Let us now turn to the homogeneous limit and discuss
how GNQ in its simplest form can lead to an accelerated
expansion of the Universe. At early times when the
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neutrinos are relativistic, the evolution of the cosmon is
determined by the potential. Therefore, the cosmon will
evolve toward its scaling solution with the DE density
decreasing with a−3 during matter domination. In view of
the growing mass, the neutrinos become nonrelativistic
rather late. The interaction becomes important once
αVðφÞ ≈ βTðνÞ ≈ −βρν. It acts as an effective potential
barrier stopping the time evolution of the energy density
of the cosmon-neutrino fluid. The constant energy density
then mimics a cosmological constant. Since the energy
density of the neutrinos is small compared to the cosmon
energy density, the coupling must be rather large.
Most of the cosmological parameters asΩDE ¼ Ωφ þΩν

and mν depend to a good approximation only on the ratio
− β

α; see Fig. 1. Demanding a dark energy density of ΩDE ≈
0.7 enforces − β

α ≈ 5 [7] for a present neutrino mass
mν ¼ Oð1 eVÞ, where smaller neutrino masses require
large − β

α. We note that the usual cosmological bounds
on the neutrino mass from CMB and large scale structure
observations [30,31] do not apply here, since neutrino
masses have been substantially smaller in the past. In the
homogeneous limit, the neutrino mass is mainly con-
strained by Earth-based experiments. Also the scale factor
at which the neutrinos stop the cosmon evolution has only a
moderate dependence on the individual values of α and β.
The energy density fraction of the cosmon before stopping
is given by Ωφ ∝ α−2 and hence becomes smaller for larger
α. The time at which the interaction with neutrinos
compensates the self-interaction of the cosmon becomes
earlier for larger α. The onset of dark energy is therefore
earlier for larger values of α and β; see Fig. 1.
As we will discuss later, strong backreaction effects

will alter this simple picture. We will see in Sec. III
that backreaction effects always counteract the stopping

mechanism and the cosmon will evolve again, so that
it is not guaranteed that values for α and β which describe
a realistic cosmology in the homogeneous limit will
also describe a close-to-realistic cosmology including
backreaction.
Since backreaction effects can only be important after the

neutrinos became nonrelativistic, the homogeneous
description remains valid at early times. Large values for
α are preferred by bounds on EDE. For large α the stopping
mechanism acts earlier, and hence also the backreaction
becomes important earlier. From these qualitative consid-
erations, we already find some tension between reducing
the backreaction effects, which spoil the stopping of the
cosmon evolution, and satisfying bounds on EDE.

III. BACKREACTION AND EFFECTIVE
EQUATION OF STATE

A. Neutrino lumps

In GNQ it is important to understand structure formation,
not only in view of using large scale structure observation
as a probe for our cosmological models, especially to test
DE models or “measure” the neutrino mass. It is crucial to
understand the formation and evolution of neutrino lumps
before being able to judge about the viability of GNQ as a
DE model. In this section we shortly review the progress
toward an understanding of the neutrino lumps, for details
we refer to previous work [15,16,18,20,24,29,32–34]. Our
main focus lies on the strong backreaction effects from
nonlinear perturbations in the neutrino-cosmon fluid.
The large nonlinearities have their origin in the large

coupling β ¼ Oð102Þ. Therefore, the additional force
between neutrinos will be about 103 − 104 times larger
than the gravitational interaction between neutrinos and
between neutrinos and CDM. In turn the neutrino pertur-
bations grow very quickly as soon as neutrinos become
nonrelativistic. This implies that the fluctuations in the
neutrino energy density become nonlinear even at large
scales. The scale factor aNL at which this happens for a
neutrino perturbation of a given wavelength k−1 can be
estimated by the value of a at which the linear dimension-
less neutrino power spectrum ΔνðkÞ ¼ k3PνðkÞ=ð2π2Þ
becomes order unity. Looking at Fig. 2, we see that for
the particular choice of parameters α ¼ 10 and β ¼ −52
already at a ∼ 0.4 scales around kNL;ν ∼ 0.01 hMpc−1

become nonlinear, while today scales around kNL;ν ∼
0.002 hMpc−1 are nonlinear. The exact value of the
nonlinear scale of neutrino-cosmon perturbations depends
on the chosen parameters, but it is a generic finding
that kNL;ν is smaller than the corresponding wave vector
for CDM perturbations, kNL;C;0 ∼ 0.1 hMpc−1. These
can be traced back to instabilities in the neutrino perturba-
tions already present at linear order. These instabilities
are stabilized nonperturbatively by the formation of
neutrino lumps.
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FIG. 1 (color online). Energy density of the cosmon-neutrino
fluid, for different parameters α and β. We compare to the CDM
density and the density of a cosmological constant ΩΛ. The
parameters were chosen to match ΩΛ today. The stopping occurs
earlier for larger α, with a smaller amount of EDE.
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B. Backreaction

Usually backreaction in cosmology is assumed to be
negligible. In the last years, several quantitative estimates
[35–37] came to the conclusion that backreaction is indeed
small in the ΛCDMmodel. In contrast, backreaction effects
are crucial in GNQ. We demonstrate this in Fig. 3, where
we compare the numerical results for the clumping neu-
trinos with the pure background evolution for which the
effects of nonlinear neutrino perturbations are neglected.
We choose the parameters α ¼ 10 and β ¼ −52 that have
often been employed in the literature.
We find two types of backreaction effects. First, the

Friedmann equation involves the volume averaged energy
density, which we will define below. Second, the average
value of the cosmon φ̄ cannot be obtained by solving the
homogeneous equation of motion. The Klein–Gordon
equation needs to be modified to include backreaction
effects from the neutrino lumps. The reason is that the
typical velocities and masses of the neutrinos do not
coincide with their counterparts of the homogeneous
calculation. While the first effect mainly affects the
expansion history of the Universe, the second effect is
also important for an understanding of the lump dynamics.
Let us first discuss the second effect. Due to the strong

interaction, most of neutrinos are bound in the lumps.
Inside gravitational bound objects, the gravitational poten-
tial has a well. Similarly, inside neutrino lumps the local
field value is smaller than its average by an amount
of δφ. The mass of a neutrino inside a lump is therefore
smaller than the mass of a free-streaming neutrino
mðφ̄þ δφÞ < mðφ̄Þ. As a consequence most of the neu-
trinos have a mass substantially smaller than the mass
estimated from the homogenous calculation. Due to the

velocity-dependent force, the loss of mass during the
formation of lumps is accompanied by an acceleration to
relativistic velocities. These two effects lead to a mismatch
between the energy-momentum tensor of neutrinos from
the homogeneous calculation and its average value, as soon
as the formation of lumps has started.
We account for the backreaction effects by using the

volume averaged energy-momentum tensor. The Klein–
Gordon equation for the average field is given approx-
imately by

̈φ̄þ 3H _̄φþ αVðφ̄Þ ¼ −βT̄ðνÞ; ð8Þ

where the volume average is defined as

T̄ðνÞ ¼
1

V

Z
d3x

ffiffiffiffiffiffiffi
gð3Þ

q
TðνÞ ≈

a3

V

Z
d3xð1 − 3ΦÞTðνÞ: ð9Þ

The determinant of the spatial 3-metric up to first order in

metric perturbations is given by
ffiffiffiffiffiffiffi
gð3Þ

p
≈ a3ð1 − 3ΦÞ. The

integration is to be understood over the whole simulation
box. The volume is given by V ≈ a3

R
d3xð1 − 3ΦÞ. Taking

backreaction effects consistently into account and evolving
the volume averaged field φ̄, additional modifications arise

FIG. 2 (color online). The scale factor aNL at which the
dimensionless linear neutrino power spectrum becomes unity,
Δðk; aNLÞ ¼ 1, as a function of scale, for the parameters α ¼ 10
and β ¼ −52. Already at a ∼ 0.40 scales around k ∼ 0.02 are
nonlinear, demonstrating the failure of standard perturbative
methods compared to the same figure in Ref. [17].
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FIG. 3 (color online). Dark energy density fraction ΩDE (top)
and equation of state w (bottom) as a function of the scale factor,
for α ¼ 10 and β ¼ −52, with and without backreaction.
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in the equation. However, we will neglect these terms for
the qualitative discussion of backreaction in this section
and postpone a more detailed discussion to Sec. IV.
The right-hand side of Eq. (8) can be written as

βT̄ðνÞ ¼ βð−ρ̄ν þ 3P̄νÞ ¼ −βρ̄νð1 − 3wνÞ < −βρ̄ν; ð10Þ

where the energy density and pressure are understood as
volume averages. We use them to define the equation of
state wν. The neutrino pressure is positive (wν ≥ 0) such
that pressure effects lower the effective potential barrier
which stops the cosmon evolution. As a consequence, the
time at which the cosmon evolution stops is postponed
toward the future. If the evolution has already stopped, the
effective reduction of the barrier can have the effect that the
cosmon will evolve again. The weaker interaction between
the neutrinos and the cosmon after the formation of lumps
can also be interpreted as a lower effective coupling βl,
which gets renormalized by integrating out short wave-
length modes [20]. In a qualitative sense, βl can be
interpreted as the effective coupling between a fluid of
neutrino lumps and the homogenous cosmon field. The
smaller value of βl as compared to β is the dominant
backreaction effect in our model.
We next turn to the backreaction effect for the evolution

of the background metric. One needs to replace the back-
ground density of neutrinos and the cosmon by their
volume average, such that the Friedmann equation becomes

H2 ¼ ρ̄CDM þ ρ̄ν þ ρ̄φ: ð11Þ

In the presence of lumps, ρν has contributions from the
neutrino velocities, and ρφ involves additional gradient
contributions. The observable DE component is the com-
bined neutrino-cosmon fluid ρDE. The neutrinos are typ-
ically subdominant but still contribute a significant fraction
ρ̄ν
ρDE

∼ 0.1. With an equation of state wν ∼ 0.1, the neutrinos
lift the dark energy equation of state away from w ≈ −1 to
some higher value.
The volume average of the cosmon energy density is

given by

ρ̄φ ¼ 1

2
_φ2 þ 1

2a2
ð1þ 2ΦÞð∂iφÞð∂jφÞδij þ VðφÞ; ð12Þ

where we only keep metric perturbations up to first order,
neglect their time derivatives, and use that the volume
average of the gravitational potentials vanishes Φ̄ ¼ Ψ̄ ¼ 0.
Also assuming that time derivatives of the cosmon pertur-
bation δφ are small allows us to approximate _̄φ2 ≈ _̄φ2.
Using the quasistatic approximation is justified although
the individual neutrino velocities are large. For the quasi-
static approximation to hold, it is sufficient that the energy-
momentum tensor for all neutrinos does not evolve quickly,
so that there are no quickly varying sources for the cosmon.

A nonzero δ _φ results in a positive contribution to the
pressure, making it even harder to achieve an almost
constant energy density for the cosmon-neutrino fluid.
Without the gradient term, one has the usual competition

between potential and kinetic energy. The potential energy
should be dominant in order to have an accelerated
expansion. The averaged potential energy VðφÞ differs
from the potential energy Vðφ̄Þ of the averaged field φ̄ only
by a few percent, such that no major backreaction effect
arises from this source. In contrast, the gradient term can be
almost as large as the potential energy. From the expression
for the pressure

P̄φ ≈
1

2
_̄φ2 −

1

6a2
ð1þ 2ΦÞð∂iφÞð∂jφÞδij − VðφÞ; ð13Þ

we see that a gradient term dominated equation of state
would be wν ¼ − 1

3
. We emphasize that all backreaction

effects individually lead to an evolving energy density of
neutrino-cosmon fluid and typically push w away from −1.
For models with constant β, the lumps have the tendency

to stabilize and to remain present once formed. The
neutrino-cosmon fluid can be understood as an effective
fluid of nearly virialized neutrino lumps with parameters
differing from the microscopic ones [20]. The observable
DE is then the sum of a neutrino lump fluid and a
homogenous background field. For virialized lumps the
pressure between relativistic neutrinos and cosmon gra-
dients is expected to cancel [20]. Therefore, the equation of
state of the lump fluid is close to zero, similar to the fluid of
nonrelativistic neutrinos. The backreaction effect that
remains even in this limit is the reduced effective coupling
βl between neutrino lumps and the cosmon background
field. Due to the not completely virialized lumps, the
pressure contribution from the neutrinos and the cosmon
gradients do not cancel exactly, adding a small but relevant
additional backreaction effect. This is different to gravita-
tionally bound objects, for which a nonrenormalization
theorem states that small virialized objects decouple
completely from the background evolution and there is
no backreaction effect from small virialized objects at
all [36].

IV. N-BODY SIMULATION

The highly nonlinear nature of the neutrino lumps makes
their description nonamenable to standard perturbative
techniques. Instead we use a N-body simulation specially
designed for GNQ. The N-body simulation solves the
background and the inhomogeneities simultaneously and
therefore allows us to study the backreaction effect of
lumps on the homogeneous background evolution. The
concept and many details of the simulation were already
described in Refs. [16,17], and we focus here on the
equation of motion for the average cosmon field φ̄ and
its perturbation δφ.
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In our simulation we follow the usual motion of non-
relativistic CDM particles and their clustering due to
gravity. In contrast to the standard picture of structure
formation, the two gravitational potentials differ, Φ ≠ Ψ,
because of the anisotropic stress from the neutrinos. This is
accounted for by solving the Poisson equation for Φ −Ψ,
which yields Φ once the Newtonian potential Ψ is known.
The Poisson equation for Ψ is sourced by the energy
density of CDM, neutrinos, and to a small part by the one of
the cosmon perturbations.
The neutrinos are evolved using Eq. (6). The cosmon

evolution is governed by the Klein–Gordon equation (5).
We split the cosmon into the volume average

φ̄ ¼ 1
V

R
d3x

ffiffiffiffiffiffiffi
gð3Þ

p
φ and a perturbation δφ ¼ φ − φ̄.

Neglecting time derivatives of the gravitational potentials,
time derivatives commute with the process of averaging
_̄φ ≈ _̄φ. The averaged equation (5) is

̈φ̄þ 3H _̄φþ αð1þ 2ΨÞVðφÞ
¼ −βð1þ 2ΨÞTðνÞ þ a−2δijð∂jΨÞð∂iδφÞ; ð14Þ

where we expanded up to first order in metric perturbations.
Equation (14) is the full version of Eq. (8). As already
discussed in Sec. III, the most important difference as
compared to a naive homogeneous calculation is the use of
the actual average of the neutrino momentum tensor.
Including the gravitational potential in the average gives
only a minor correction. Also the averaged potential term
agrees up to a few percent with the homogeneous estimate.
The gradient terms are roughly 1 order of magnitude
smaller than the potential term and therefore only sub-
dominant. Nevertheless, our numerical code includes all
these effects.
By subtracting Eq. (14) from the Klein–Gordon equa-

tion (5), we find the equation for the perturbation:

δφ̈þ 3Hδ _φ − a−2δij∂i∂jδφð1þ 2ΦÞ
− a−2δijð∂jðΨ − ΦÞÞð∂iφÞ þ a−2δijð∂jΨÞð∂iφÞ
þ αðð1þ 2ΨÞVðφÞ − ð1þ 2ΨÞVðφÞÞ

¼ −βðð1þ 2ΨÞTðνÞ − ð1þ 2ΨÞTðνÞÞ: ð15Þ

This equation is a nonlinear wave equation, which is, due to
the averaging, nonlocal in position space. To be able to
solve this equation, we need to make some approximations.
We employ a quasistatic approximation for the cosmon
perturbation for which we neglect the second-order time
derivative δφ̈. Simply neglecting all time derivatives is not a
consistent approximation. Doing so the resulting equation
does not ensure that the perturbation has a vanishing mean
δ̄φ ¼ 0. This can be seen by averaging Eq. (15). Taking
into account the Φ dependence in the volume element and
only keeping terms to first order in the metric perturbations,
all terms except the time derivatives cancel:

δ̈φþ 3H _δφ ¼ 0: ð16Þ

This relation ensures that the if the average vanishes
initially it will vanish at all times. This is still true if we
neglect the second time derivative while keeping the first
one. This approximation is consistent with the approxima-
tion for the kinetic term of the average energy density and
pressure

_φ2 ¼ _̄φ2 þ δ _φ2; ð17Þ

where we neglected the δ _φ2 term, which is also second
order in time derivatives of the cosmon perturbation.
If one instead neglects the second derivative with respect

to conformal time, the Hubble damping changes
3H → 2H; we compared both possibilities and found only
a small difference. We interpret this as a sign that the
quasistatic approximation is justified. To solve the equation
for δφ, we use a Newton–Gauss–Seidel (NGS) multigrid
relaxation method, already applied to the varying coupling
model [17] and originally developed for modified gravity
[38]. The quasistatic approximation is crucial for applying
the NGS method, which is not applicable to wavelike
equations but can be applied to diffusionlike equations [39].
The idea of the NGS solver is to rewrite the equation to be
solved into a functional form,

L½δφ� ¼ Dδφ − F½δφ� ¼ 0; ð18Þ

with some differential operator D and a nonlinear func-
tional F. The root of L½δφ� ¼ 0 can be obtained by a
Newton-like iterative procedure,

δφðnþ1Þ ¼ δφðnÞ − L½δφðnÞ�
�∂L½δφðnÞ�

∂δφðnÞ

�−1
; ð19Þ

the derivative is taken at each point individually, and the
coupling between different points, induced by the deriv-
atives, is taken into account solely by the iterative pro-
cedure. The derivative of the differential operator ∂Dδφ

∂δφ is
defined by the discretization rule used in the simulation. We
define the gradient and the Laplacian by relating a grid
point to its neighbors in the j direction by a Taylor
expansion, δφðxi � ΔxδijÞ ¼ δφðxiÞ � ∂jδφðxiÞΔxþ
1
2
∂2
jδφðxiÞΔx2 þ …, with Δx the spacing between two

grid points. The Laplacian is then approximated by a seven-
point stencil, and the derivative is −6=Δx2. The derivative
of the gradient vanishes.
In principle this method can be applied even in the

presence of the nonlocal terms present in Eq. (15). In
practice this not possible because calculating the nonlocal
terms involves an integration over the full simulation box in
each iteration step. We account for these terms iteratively.
The difference between the values of the average terms of
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two time steps is small. So we use at a given time step the
average terms of the proceeding time step as a first
approximation and apply the NGS solver a few times to
correct for the difference.

V. RESULTS AND DISCUSSION

Using the N-body simulation described in Sec. IV, we
perform a parameter scan and search for parameters
describing a realistic universe with accelerated expansion.
For the details on the formation of lumps and their
characteristics, we refer to previous work [16,20]. We
use a simulation box with a comoving volume of
V ¼ ð600 h−1 MpcÞ3, which we divide into Nc ¼ 128
cells. The numbers of effective CDM particles NC and
neutrino particles Nν are chosen to be equal to the number
of cells Nc ¼ NC ¼ Nν. The initial power spectrum has a
spectral index of ns ¼ 0.96 and an amplitude of As ¼
2.3 × 10−9 at the pivot scale kpivot ¼ 0.05 Mpc−1. We start
our simulation with the CDM particles only at aini;C ¼ 0.02
and add the neutrinos at a later time, after they became
nonrelativistic.
In view of the strong backreaction effects, it is no longer

clear that the stopping power of neutrinos for the time
evolution of the cosmon is sufficient in order to account for
a large present fraction of dark energy and an acceleration
of the expansion similar to a cosmological constant. If so,
the parameter range where this happens may be rather
different from the one where the background evolution
neglects the effect of neutrino structures.
Our model has three parameters relevant for this inves-

tigation, namely α related to the amount of EDE, the
cosmon neutrino coupling β and the parameter mi which is
related to the size of the neutrino mass. We have performed
a parameter scan in order to search for a parameter range
consistent with observations. For this purpose we vary the
parameters α and β individually while fixing the mass
parameter
to mi ¼ 1 eV. Figure 4 shows that changing the mass
parameter by a factor of 10 affects the effective equation of
state and the energy density by no more than 10%.
A realistic DE model must certainly assume the bench-

mark values for the present DE density ΩDE;0 ≈ 0.7 and the
present equation of state w0 ≈ −1. In Fig. 5 we show the
values of ΩDE;0 and w0 for a grid in the parameter space for
α and β. Sufficient acceleration typically requires rather
small values α≲ 5. A band with an acceptable fraction of
present DE is typically found in the range 5≲ α≲ 10,
showing some tension already at this stage.
The parameter range yielding an accelerated expansion

(α ≲ 5) is problematic also in view of the bounds on EDE,
which require α≳ 10. In the parameter range where one
finds w0 < −0.9, some tension persists if one tries to get
both the equation of state and the energy density compat-
ible with observations. For α ¼ 3 and α ¼ 4, we indeed
find w0 ≲ −0.9, but the energy density exceeds with

ΩDE ≈ 0.75 the benchmark value of ΩDE;0 ≈ 0.7. On the
other hand, for α ¼ 5 one has ΩDE ≈ 0.7, but the equation
of state is w0 ≈ −0.7. Although we could not find param-
eters for which w0 and ΩDE;0 match the benchmark values
precisely, our results are not too far from those values,
either. It might be that varying also the mass parameter mi
could bring them into agreement with observations.
The equation of state is not constant in time, and it

can even possess oscillating features; see Fig. 4. It may
happen that the present time coincides with a minimum
(maximum) of w during an oscillation. In this case the
cosmic evolution is actually better described by an average
value somewhat larger (smaller) than w0. The time evolu-
tion of the equation of state is shown in Fig. 6 for a range of
parameters α and β in the region not too far from the
benchmark values. One typically observes a first stop of the
scalar field (w ≈ −1). Due to backreaction this is followed
by a slow decrease of the dark energy, typically
with −0.9≲ w≲ −0.8.
Only looking at the energy density and the equation of

state today is not sufficient. In the parameter range
acceptable for the benchmark, the neutrinos become

mi 2.75 eV

mi 27.5 eV

mi 0.275 eV

0.5 0.6 0.7 0.8 0.9 1.0 1.1
a0.2
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0.9
DE

mi 2.75 eV

mi 27.5 eV

mi 0.275 eV
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FIG. 4 (color online). Energy density fraction of the cosmon-
neutrino fluid ΩDE and effective equation of state w, for different
mass parameters mi, with α ¼ 5 and β ¼ −78. Even for mass
parameters different by a factor of 100, the equation of state varies
at a maximum of about 10%, indicating that the value ofmi plays
only a minor role.
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nonrelativistic late. Consequently the cosmon evolution
stops late. This is visible in Fig. 6, where the first
pronounced minimum in w precisely corresponds to
the time when the increase of φ is first stopped and the
oscillations set in. Supernova observations probe the
expansion history up to redshifts higher than z ≈ 1 and
prefer an almost constant dark energy [40]. We find that for
close-to-realistic models the equation of state reaches
values around −1 only for scale factors a≳ 0.6, which
is difficult to get into agreement with w ≈ −1 from a≲ 0.5
until today.
Figure 6 shows the generic evolution of the equation

of state: It drops down after the neutrinos become

nonrelativistic followed by a few damped oscillations. In
the homogeneous evolution, these oscillations are damped
away quickly, and the equation of state assumes an almost
constant value rather close to w ¼ −1. In fact the equation
of state grows again due to the backreaction and typically
reaches values w ≈ −0.8. An equation of state of w0 ≲ −0.9
is only reached before or shortly after backreaction
becomes important. This simply means that lumps do
not have enough time to grow large enough for being able
to induce significant backreaction effects.
From these results we conclude that GNQ with a

constant coupling β is probably not a viable DE model.
Realistic values for w0 and ΩDE;0 seem only possible if the
cosmon evolution is stopped late, so that backreaction
effects have no time to become important. Stopping the
cosmon evolution late is in some tension with supernova
data and involves a large amount of EDE, probably not
consistent with observations.

VI. CONCLUSION

We have performed a numerical analysis of GNQ with a
constant cosmon-neutrino coupling β. Due to strong back-
reaction effects from the formation of large neutrino lumps,
these models have difficulties being compatible with the
observed properties of dark energy.
A specific choice for the model parameters α, β, and mi,

which appears to be compatible with observations at the
homogenous level, is typically no longer viable if back-
reaction is included. Our parameter scan reveals regions for
which the backreaction effects are small enough to allow a
slowly evolving cosmon and consequently an almost

FIG. 5 (color online). Present energy density ΩDE;0 and
equation of state w0 of the cosmon-neutrino fluid. Realistic
values (w0 ≈ −1, ΩDE;0 ≈ 0.7) are found for small values of α.
It is hard to get both values “correct” simultaneously, for
sufficiently large α.

FIG. 6 (color online). Equation of state as a function of the scale
factor. The model parameters are chosen such that w and ΩDE;0
are near the benchmark values. Values w0 ≲ −0.9 are only
reached before backreaction effects become important. Thus, w ≈
−0.99 for α ¼ 5 and β ¼ −52 is not accompanied by large
negative w at redshifts relevant for supernova observations.
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constant DE density. However, this is only possible if the
neutrino lumps form late so that backreaction effects are
still small today. In this case an accelerated expansion is
only possible for scale factors a≳ 0.6, in tension with an
almost constant equation of state for scale factors a≲ 0.5,
as preferred by supernova data. Furthermore, the parameter
region for which the equation of state is close to −1 and the
DE density is not too far from 0.7 requires α ≲ 5. This
contradicts constraints on EDE for which α ≳ 10 is
necessary. We conclude that GNQ with a constant coupling
β is probably not a viable DE model.
These results for a constant coupling should be con-

trasted with models where β increases with φ. For this
second class of models, the backreaction effect is found to
be small since the neutrino lumps form and disrupt
periodically [17]. At the present stage this second class
of models seems compatible with observations. In certain
parameter ranges, it may even be hard to detect a difference
from the ΛCDM model and its variants.
These two classes of models may be seen as particular

points in a larger class of models where β is allowed to vary
with φ. Having established points that are viable with only
rather small deviations from ΛCDM, as well as other points
where the deviations are so strong that the model is no
longer acceptable, we can conclude by continuity that in
between there will be models which are still compatible
with observations today but also offer highly interesting
prospects of finding deviations from ΛCDM. Finding large
neutrino lumps, thereby observing the cosmic neutrinos
directly, would be a direct hint for GNQ. Even for models
with small neutrino perturbations, we expect observable
deviations from the ΛCDM model, due to the different
evolution of the neutrino sector. First, the transition of
relativistic to nonrelativistic standard massive neutrinos is
imprinted in the CMB fluctuations as well as in the matter
distribution, with a specific scale dependence [30,31].
The signal differs for constant or time-varying neutrino
masses. Second, free-streaming standard massive neutrinos

attenuate the growth of matter perturbations on small scales
and therefore add an additional scale-dependent effect to
the matter distribution. Observing these scale-dependent
effects as predicted for standard neutrinos with a constant
mass would be a strong argument for the ΛCDMmodel and
against GNQ.
The result for models with constant β presented in this

note as well the results on the varying β model presented in
Ref. [17] suggest that only those models are viable in which
the small scale nonlinear neutrino perturbations have only a
moderate effect on the large scale dynamics. Nevertheless,
the neutrino lumps can have a observable effects on larger
scales. One possibility to account for these effects is to
construct an effective fluid for the long wavelength
perturbations by averaging over small scale nonlinearities
as proposed in Ref. [36]. A similar route has already been
taken in Ref. [20] to describe the large scale dynamics of
virialized neutrino lumps in the constant β model by means
of an effective lump fluid. These ideas were already
successfully applied to the mildly nonlinear regime of
structure formation in the form of the effective field theory
of large scale structure [41–46]; see also Ref. [47].
Adopting these ideas to GNQ, we hope that it will become
possible to study the dynamics of perturbations in GNQ on
large scales qualitatively. It might even become possible to
study some effects of lumps on the CMB, without running
time-consuming simulations.
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