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We give a general method to find exact cosmological solutions for scalar-field dark energy in the
presence of perfect fluids. We use the existence of invariant transformations for the Wheeler De Witt
(WdW) equation. We show that the existence of a point transformation under which the WdW equation is
invariant is equivalent to the existence of conservation laws for the field equations, which indicates the
existence of analytical solutions. We extend previous work by providing exact solutions for the Hubble
parameter and the effective dark-energy equation of state parameter for cosmologies containing a
combination of perfect fluid and a scalar field whose self-interaction potential is a power of hyperbolic
functions. We find solutions explicitly when the perfect fluid is radiation or cold dark matter and determine
the effects of nonzero spatial curvature. Using the Planck 2015 data, we determine the evolution of the
effective equation of state of the dark energy. Finally, we study the global dynamics using dimensionless
variables. We find that if the current cosmological model is Liouville integrable (admits conservation laws)

then there is a unique stable point which describes the de-Sitter phase of the universe.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
universe (see [1] and references therein) has opened a
new window in cosmological studies. Indeed, the under-
lying physical process responsible for this phenomenon is
considered as one of the fundamental problems in cosmol-
ogy. Within the framework of general relativity, scalar
fields provide possible dark energy models which can
describe, but not so far explain, this acceleration. Scalar
field models require the choice of a self-interaction poten-
tial V(¢) for the scalar field ¢. The considerations of a
specific potential V(¢) is done by an ad hoc requirement
(ansatz). In this manner various candidates have been
proposed in the literature, such as an inverse power law,
exponential, hyperbolic and the list goes on (for review see
[2] and references therein). One such ansatz, which we
shall consider in the following, has been done by Rubano
and Barrow [3] (see also [4]) who found that if the scalar
field behaves as a perfect fluid then the potential
V(¢) « sinh?(g¢), where the constants g, p are given in
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terms of observable cosmological parameters, namely the
dark-energy equation of state (EoS) parameter and .
Obviously it is important to proposed potentials which
are realistic and at the same time lead to exactly soluble
models in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime. The reason for employing the
Noether symmetries is that Noether symmetries provide
us with the Noether integrals which facilitate the analytic
solution of the field equations. As an example, in extended
theories of gravity, where the Birkhoff theorem is not
guaranteed, the Noether approach provides a means of
describing the global dynamics using the first integrals of
motion [5]. Furthermore, besides the technical possibility
of reducing the dynamical system, the first integrals of
motion always give rise to conserved currents that are not
only present in physical space-time but also in configura-
tion spaces (see discussion in [6]). In space-time such
currents are linear (momentum, angular momentum etc.)
but in configuration space the conserved quantities appear
as relations between dynamical variables [7]. The latter
implies that in the configuration space (minisuperspace),
the first integrals are considered as “selection rules” for
scalar field potentials and coupling functions in the case of
modified gravity theories. The above features have inspired
many authors to propose the admittance of a Noether (point
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or dynamical) symmetry by the field equations as a
selection rule for dark-energy models, including those of
modified gravity [8—19].

In particular it has been shown that the dynamical
Noether symmetries are associated with the Killing tensors
of the space [19,20] and that the Noether point symmetries
are related to the homothetic algebra of the space (see [21]
and references therein). Therefore the requirement of a
Noether symmetry is indeed a geometric demand hence
independent of the particular dynamics.

In scalar field cosmology the system develops in
minisuperspace whose geometry is defined by the field
equations. Therefore the requirement that the field equa-
tions admit a Noether symmetry becomes, according to the
above results, a geometric requirement on a geometry
which is inherent to the system.

In this work by using a more general geometric criterion,
i.e. by employing the Lie point symmetries of the Wheeler-
DeWitt (WdW) equation, we extend the work of Rubano
and Barrow [3] to a general family of hyperbolic scalar-
field potentials V(¢).

In Sec. II, we give the basic theory of the scalar-field
cosmology in a FLRW spacetime. The basic definitions and
results from the Lie and Noether point symmetries of partial
differential equations and the application in the WdW
equation are presented in Sec. III. In Sec. IV, we consider
our cosmological model, which includes a hyperbolic
family of scalar field potentials with a perfect fluid with
constant EoS parameter w,,. We study the existence of Lie
point symmetries of the WdW equation, where we find that
for our model the WdW equation admits Lie point
symmetries if the free parameters of the potential and
the parameter w,, are related. In Sec. V we apply the Lie
point symmetries of the WdW equation in order to con-
struct invariant solutions of the WdW equation and exact
solutions of the field equations. Also, in Sec. VI we
perform a dynamical analysis by studying the fixed points
of the field equations in the dimensionless variables for the
general model and we show that when the cosmological
model is Liouville integrable (the model admits conserva-
tion laws), there is a unique stable point which describes
the de Sitter universe. Finally, in Sec. VII we draw some
conclusions.

II. SCALAR-FIELD COSMOLOGY

We start with the FLRW spacetime with line element
(c=1)

ds* = —dt* + a*(t) (dx* 4+ dy* +dz?). (1)

K 4212
(1+%x%)
The total action of the field equations is written as

S:SEH+S¢+Sm7 (2)
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where Sgyy = [ dx*,/=gR is the Einstein-Hilbert action, R
is the Ricci scalar of the underlying space, S is the action
of the scalar field

S, = / dx4\/——g{—%gﬂ”¢;,,¢;y+V(¢) )

and S, = [ dx*,/=gL,, is the matter term. We assume that
¢ inherits the symmetries of the metric (1) therefore ()
and consequently ¢,, = ¢S where ¢p = %.

From the action (2), we have the Einstein field
equations [2]

1 ~
R/w - Eg/wR = KTm/ (4)

where k = 82G = 1, R, is the Ricci tensor and Tﬂy is the
total energy momentum tensor given by T,w =T,+
T,,(¢). T,, is the energy-momentum tensor of baryonic
matter and radiation and 7', (¢) is the energy-momentum
tensor associated with the scalar field ¢. Modeling the
expanding universe as a fluid (which includes radiation,
matter and DE) with 4-velocity u,,, proper isotropic density
p,n and proper isotropic pressure P, gives le =
Pg,, + (p + P)u,u,, where p=p,+p, and P =
P, + Py. The variable p, denotes the energy density of
the scalar field and P, is the corresponding isotropic
pressure. Moreover the parameters (p,, P,) of the scalar
field are given by

po=3 B HVP).  Py=3 -V ()

For the FLRW spacetime, for comoving observers
(u" = 5’6), the Einstein field equations (4) are

K K
Hz:g(Perﬂqs)—; (6)

and

K

3H? +2H = —k(P,, + P,) -

(7)

where H(t) = a/a is the Hubble function.
Furthermore, assuming that the scalar field and matter do
not interact, we have the two conservation laws

pm +3H(p, +P,) =0 (8)
Py +3H(py+Py) =0 )

while the corresponding EoS parameters are given by w,,, =
P,/pn and wy = Py/p,. In what follows we assume a

constant w,,, so that p,, = poa ") (w, = 0 for cold
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matter and w,, = 1/3 for radiation), where p,, is the matter
density at the present time. Generically, some high-energy
field theories suggest that the dark energy EoS parameter
may be a function of cosmic time (see, for instance, [22]).
Replacing (5) in (9) we have the Klein-Gordon equation
¢+3Hp+V,=0 (10)
where V 4 = Z—Z. Furthermore the corresponding dark
energy EoS parameter is

(11)

which means that when w,, < —1 then ¢ < V(¢). On the
other hand, if the kinetic term of the scalar field is
negligible with respect to the potential energy, i.e.

‘/’ < V(¢), then the EoS parameter is w, = —1.

From the above analysis it becomes clear that the
unknown quantities of the problem are a(t), ¢(¢) and
V(¢) whereas we have only two independent differential
equations available namely Egs. (7) and (10). Therefore, in
order to solve the system of differential equations we need
to make an additional assumption (ansatz). This usually
concerns the functional form of the scalar field potential
V(¢). In the literature, due to the unknown nature of DE,
there are many forms of this potential which describe
differently the physical features of the scalar field (for
instance see [2—4,23-30]).

As far as the exact solution of the field equations (6), (7)
and (10) is concerned there are few solutions with spatial
curvature [31,32] and even fewer solutions are known for a
perfect fluid and a scalar field [19,33-36]. A special
solution for a spatially flat FLRW spacetime (K = 0)
which contains a perfect fluid with a constant EoS
parameter P,, = (y — 1)p,, and a scalar field with a con-
stant EoS state parameter w,, =y, — 1 = Py/p,, has been
found in [3]. Specifically in [3] it has been shown that under
these assumptions one solves the field equations and finds
the potential V(¢):

N . _)/_45 I_QmO rg,,/,
V(@) = 31301 - 0p0) (1-22) (15 20)

_
inh \/gy_%/) _ >:| —1¢
s ( v

Evidently, this solution is a special solution, in the sense
that it exists for specific initial conditions, for example with
w,(z) constant.

In the following we consider a spatially-flat FLRW
spacetime with a perfect fluid P,, = (y — 1)p,, and a scalar
field and assume that the potential has the generic form

(12)
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V(¢) = Volacosh (pp) + fsinh (p@)]e,  (13)

where V., a, B, p,and ¢q are constants. This potential (13) is
a generalization of (12) and our aim is to determine exact
solutions of the field equations for a particular relation
between the constants p, g of the potential (13) and the
barotropic parameter y of the perfect fluid.

III. PRELIMINARIES

In this section, we show that if the WdW equation admits
Lie symmetries which form an Abelian Lie algebra, then
the WdW equation is Liouville integrable; that is, the field
equations can be solved by quadratures.

A. Lie and Noether point symmetries

A Lie symmetry of a differential equation H =
H(x',u*, uf, u%;) is the generator of the one parameter
point transformation which leaves invariant the differential
equation H. That means that if X = & (x, uf)0;+
n*(x*, uP)d, is a Lie symmetry for H, then there exists
a function 4 such that the following condition holds [37,38]

modH = 0 (14)

where X1Z = X + 17A8 At jé?uA , is the second prolon-

gation vector' of X.

The importance of Lie symmetries is that each symmetry
can be used to reduce the number of dependent variables.
Solutions which follow from the application of Lie sym-
metries are called invariant solutions.

For differential equations which arise from a variational
principle there exists a special class of Lie symmetries, the
Noether symmetries. Noether symmetries are Lie sym-
metries which leave the action integral invariant. According
to Noether’s theorem to each Noether symmetry there
corresponds a conserved Noether current.

The condition for a Noether symmetry is that there exists
a vector field A’ = A(x’,u) such that the following
condition is satisfied:

XUL + LD =

DA, (15)

The corresponding Noether current I’ is defined by the

expression
oL 4 OL
afk( ——L) —8 A+A’ (16)

and it is conserved, that is, it satisfies the relation

D,I' =0 [37].

'Where 7

D_f,, (7[’3«”'/’"71) — uﬁjjnflkD/(ék) and Di is
the total denvatlve
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As we discussed above, the method of using the Noether
symmetries of the cosmological field equations has been
applied by many authors in scalar-field cosmology, in f(R)
gravity and other modified gravity theories. Recently
[39,40], it has been proposed that the cosmological model
will be determined by the existence of Lie symmetries of
the WdW equation of quantum cosmology.

This selection rule is more general than that imposed by
the Noether symmetries of the field equations, because, as it
has been shown in [40], the WdW equation is possible to
admit Lie point symmetries while the Lagrangian of the
field equations does not admit Noether point symmetries.
In the following we discuss the application of Lie sym-
metries in the WdW equation. Specifically, we discuss
the reduction process and we show how to construct
Noetherian conservation laws for a conformally related
Lagrangian of the field equations from the Lie point
symmetries of the WdW equation.

B. Minisuperspace and invariant solutions
of the WdW equation

The Lagrangian of the field equations in minimally
coupled scalar field cosmology in a spatially flat FLRW
spacetime with a perfect fluid with a constant EoS
parameter P,, = (y — 1)p,, is

. 1 .
L(a, L'Z, ¢’ ¢) - —361&2 =+ §a3¢2 — aSV(¢) — mea_3(}/_1>‘
(17)

The field equations are the Euler-Lagrange equations of
(17) with respect to the variables (a,¢) and are equa-
tions (7) and (10). As the Lagrangian is independent of
time, we also have the Hamiltonian constraint (6), which, in
terms of the momenta p, = 3—1&‘ Py = g—g, becomes

1 1
2 2 3 =3(r-1) —
- 124 Da+ 243 p¢ +a V(¢) + Pmod =1 = 0. (18)

Finally, the field equations are equivalent to the following
Hamiltonian system:

1 1
. . _ . _ 3
a__6apa’ ¢_;pz/}v Py = —a V,(/n
. L pa 3p(2/, 2 3742
Pa = —5?4-5?— a“V(¢) + (3r = 3)pmoa =0.

The WdW equation is the Klein Gordon equation which
is defined by the conformal Laplacian operator. The general
conformal Klein Gordon equation is

n—2

Ap T2
TPy

R()W + Ve (X)W = 0, (19)

where A = ﬁ% (+/lgl %) is the Laplacian operator, g;;

is the metric of the space and n = dim g;;. We break the
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Lagrangian (17) in two parts. The kinematic part which we
consider as a Riemannian space with dimension n = 2, and
line element

ds* = —6ada® + a’*dg¢? (20)

which we call the minisuperspace, and the dynamic part
which is defined by the potential Vg (a, ¢p) = 2a*[V(d)+
pmoa~>]. Specifically, the minisuperspace is a 2-
dimensional Lorentz manifold whose coordinates are the
scale factor and the scalar field. The symmetries of this
space are related to the Lie and the Noether symmetries of
the dynamical field equations. The metric of the minisuper-
space is defined by the kinematic part of the Lagrangian
(17) for the dynamics of the field. The rest of the
Lagrangian is considered to be the “effective potential”
of the dynamical system that is defined by the gravitational
and scalar fields. Therefore, using the minisuperspace (20)
the WdW equations becomes

AV + 283 V() + ppoa™ ¥ = 0, (21)

where the Laplacian operator A is given by

A= L(& + 0 +

~ 6a\da®> Oa
In [39], it was proved that the Lie point symmetries of
Eq. (19) are related to the conformal algebra of the
minisuperspace g;;. More specifically, it has been

shown that:
A. The general form of the Lie point symmetry vector is

1 &

(2-n)
2

X = éi(xk)ai + W\IJ + ao\:[/ 8\1,, (23)

where & (x¥) is a conformal Killing vector of the minisuper-
space, with conformal factor y(x¥).

B. The Lie point symmetry condition which constrains
the potential is L:Vep + 2p Ve = 0.

We require now that Eq. (19) admits as Lie point
symmetry the vector (23). Then under the coordinate
transformation x’ — y* so that & (x*)9; — 0,, the Lie
symmetry vector (23) becomes

X =0+ [2;"1,/\1/ + aO\IJ] Dy (24)

There exist two equivalent methods to reduce the WdW
equation by means of the symmetry vector (24).

(i) In the first method we calculate the zero-order
invariants from the Lagrange system (b # J),

. S
(2%"1//—“10)\1/’
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which turn out to be

2—n

Y u(yP,y") = ®(y?) exp [/ (T"’ + a0>dyf] .
(26)

(ii) The second method is to write the Lie point
symmetry as a Lie Bédcklund symmetry. The Lie point
symmetry (24) is equivalent to the contact symmetry

_ 2 —
X = <q/, - <Tn"’ + a0> \Il) . (27)
from which we obtain the differential equation
72—
v, - (an—l-a())\ll — a, V. (28)

We set ag + a; = Qy and find that the solution of the
reduced equation is

(. y7) = @(y") exp [/ (%an+Qo)dy’] (29)

from which it follows again that the coordinate y’ is
factored out from the solution of the wave function
vy, y’).

In the Wentzel-Kramers—Brillouin-Jeffreys (WKB)
approximation, W(x*) ~ ¢"*") the WdW equation reduces
to a (null) Hamilton-Jacobi equation. The latter can be seen
as the Hamilton-Jacobi equation of a Hamiltonian system
moving in the same geometry under the conformal Laplace
operator of the WdW equation and with the same potential.
Specifically, the WdW equation (21) in scalar field cos-
mology provides the null Hamilton-Jacobi equation:

1 /OS\? 1 [(0S\? S30-1) _
12a (861) N 243 <8¢> +aV(P) + pod =0

(30)

Furthermore, in [39] it was also shown that the sym-
metries of the WdW equation can be used in order to find
Noether point symmetries for classical particles. However,
the null Hamilton-Jacobi equation is separable if the n-
dimensional Hamiltonian system admits n conservation
laws ®; (symmetries) i.e. n corresponding Noether sym-
metries which are independent and in involution, i.e.
{®;,Px} =0 where {.,.} denotes the Poisson bracket.
If this is the case, then the Hamiltonian system is Liouville
integrable [41]. That means that it is possible for the WdW
equation to admit an invariant solution and at the same time
the classical Hamiltonian system to be not integrable.
Therefore, in order for the WdW equation to admit an
invariant solution and the Hamiltonian system to be

PHYSICAL REVIEW D 91, 123535 (2015)

Liouville integrable, the n- dimensional WdWequation
must admit at least » — 1 independent Lie point sym-
metries, X;, which form an Abelian Lie algebra. If this is
the case, the zero-order invariants of these n — 1 Lie point
symmetries will give the solution of the WdW equation in
the form

(", %) = O(x") exp Ez_i:/ (2;ny/—Qj)d5c’},

(31)

where Q; are constants, J = 1,2,...,n — 1, and the func-
tion ®(x") satisfies a linear second-order ordinary differ-
ential equation (ODE). That is, when the field equations are
Liouville integrable by Noether point symmetries then
there exists a coordinate system where the WdW equation
admits n oscillatory terms in the solution and vice versa. It
is important to note that this result is more general and
includes the one given in [13] when y/(x¥) = 0; that is, if
one considers the Killing algebra of the minisuperspace
only. We conclude that for the reduction/solution of the
WdW we may consider directly the Lie point symmetries of
the WdW equation which are given in terms of the
conformal killing vector (CKVs) of the space instead of
restricting ourselves to the Noether point symmetries only,
as has been done in [13].

Below, we study the Lie point symmetries and the WdW
equation for the potentials of the form (13) which general-
ize the work done in [3,4].

IV. LIE POINT SYMMETRIES OF THE
WHEELER-DEWITT EQUATION

We are considering a scalar field cosmological model
which contains a quintessence scalar field with the potential
of Eq. (13) and a perfect fluid with EoS parameter
w,, = (y —1). Under these assumptions the Lagrangian
of the field equations (17) becomes

L(a,a,¢,¢) = —3ad® + %a3<}.§2 — Voalacosh (pg)

+ fsinh (pg))9 = ppoa>0. (32)
From previous work on Noether point symmetries in scalar-
field cosmology [19], and on dynamical symmetries, [19]
we know that this Lagrangian admits conservation laws
when: (i) the potential reduces to the exponential potential
i.e. f = ta, and (ii)) we have the so-called unified dark
matter (UDM) potential (see Paliathanasis et al. [19] and

references therein), i.e. p = @ and ¢ = 2, when the extra
fluid is dust, namely (w,,.y) = (0, 1).

In the following we consider a # # which implies that
the current analysis generalizes the previous works of
[3,19]. The Hamiltonian (18) of the field equations for
the Lagrangian (32) in terms of the momenta p,,, and p, is

123535-5
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1
12a 243

and the WdW equation (21) is

1 1 1
T R PR

12a 243 12a

Applying the results of [39], we find that the second-
order partial differential equation (34) admits the generic
Lie point symmetry vector

X = aXl +ﬁX2 + aO\I/&I, (35)
where a is a constant,’

X, = at ? a sinh (? ﬂ¢> 0, + cosh <? /4(;5) on

(36)
X, = a* @acosh Lg/ul) 0, + sinh ﬁ/l(j) 0y |-
| 6 4 4 |
(37)
and the constants p, g,y are related as follows:
V6 4
p= y=u+2. (38)

M :_7_27
O el

That is, the effective potential of the field equations is

—_4_9o
Veip = (Voa3 {a cosh (x/Tg/uﬁ) + psinh (?y(/;)] '

+pmoa-3w+l>). (39)

Therefore, for 4 = —1, we have that g =2, y = 1 i.e. we
have the UDM potential with dust (for the exact solution
and the observation constraints of that model see [19]).
If the perfect fluid is a barotropic fluid, that is the
barotropic index y € [1,2] then, from (38), u € [-1,0)
since u # 0. However, if we require the perfect fluid to have
a negative EoS parameter, like a cosmological constant,
then y € [0,2) which means that 4 € [-2, 0). Furthermore,
when p,,o = 0, i.e. there is no extra fluid, we have that
u € R*. In the following, we apply the Lie symmetry vector
(35) in order to construct the invariant solution of the WdW
equation (34) and to solve the null Hamilton-Jacobi
equation of the Hamiltonian (33) in order to reduce the

*The fields X;, X, are CKVs of the minisuperspace (20).
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1
—— P2+ 5P+ (Voa[acosh (pp) + fsinh (pg)}4 + p,0a=>7=D) =0, (33)

U, + (Voa’[acosh (pg) + Bsinh (ph)]7 + p,ea>7"D) T =0. (34)

order of the field equations. In the following section we
study the case aff = 0 and in Appendix B we present the
general solution for af # 0.

V. EXACT SOLUTIONS FOR THE cosh /sinh
POTENTIAL

In this section we determine the exact solution of the
field equations and of the WdW equation for the quintes-
sence scalar field. We consider the case @ = 1, = 0 (the
case « =0, =1 is equivalent to that case). Under the
coordinate transformation:

¢ = % arctan i <X> . (40)
3u X

the effective potential (39) becomes

a=(x*—y),

I+p 4

Verr = V(a2 — y?) # x 772 (41)
and the WdW equation is

(2 = Y2 [0, =W+ (VT2 4 29,0) 0] = 0

Yy

(42)
where V{ =24V, pl,o = 2 ?p,0. In these coordinates the
Lie point symmetry vector (35) is X = 0y + az¥0y.
Therefore, the solution of Eq. (42) admits an oscillatory
term, i.e.¥(x,y) = e“Y®(x) where

O — 2VixT 242+ ad)P = 0. (43)

Furthermore, in the WKB approximation, ¥ « ¢’ and
Eq. (42) becomes

1 08\2 0S8\ 2 4
(x% — y2)ut! [<8—y> - (5> +2Vix 20 0| =0,

(44)

*We assume y < 0. However when p,,o = 0 it is possible to
have y > 0. In that case all calculations remain valid provided we
replace y = —v in (39) and in the subsequent coordinate trans-
formations.
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w¢(a) evolution for u= -1 (Dust)

I‘og(c1)=0 g
————— log(c,)=1
s logleg)=2] |

a
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wtot(a) evolution for u= -1 (Dust)

0 0.2 0.4 0.6 0.8 1 1.2
a

FIG. 1. The evolution of the equation of state parameters w,,(a) for the scalar field and wy,(a) for the total fluid for the Lagrangian
(32) with a = 1,4 = 0. In (46) we have taken the minus sign and ¢ = —1 (dust fluid: w,, = 0). For the numerical solution we use
(x,¥),m0 = (0.01,0.0099), log(Vy) = 4, puo = 3Q,0H3 with Q0 = 0.308 and H, = 67.8 Km/s/Mpc (or p,,o = 4.25 x 103 in units
of 872G = 1). The solid line is for log(c;) = 0; the dashed line is for log(c;) = 1; the dotted line is for log(c;) = 2.

which is the null Hamilton-Jacobi equation which describes
the field equations. The solution of (44) is

S(x,y)=cy=£ / \/C% + 2000+ 2V6x_/%_2. (45)

Therefore, the field equation is reduced to the following
two-dimensional system,

(x* = yz)_(}'H))'c = :F\/C% + 2000+ 2V6x_%_2,

(2 =y Wy = ey, (46)

In order to simplify the system (46) further we apply the
transformation dz = (x2 — y?)«™'dr = a=3#+1dr, and the
dynamical system becomes

X = :F\/C% +2p)0 + 2V6x_§_2, yV=c. (47)
The exact solution of the system (47) is expressed in terms
of elliptic functions.*

We perform a numerical integration of the nonlinear
system (46) and in Fig. 1 we give the evolution of the
EoS parameter for the scalar field w,(a) and for the
total fluid wy,(a) for various values of the constant c;
in the case y = —1. For y = —1 the extra perfect fluid is
dust, i.e. (w,,,y) = (0,1). Concerning the values of the

tis easy to see that when y = —1 then dzr = dt, which is the
UDM solution for @, = 0 of [19].

cosmological parameters, we use the Planck priors [49],
namely Q,, = 0.308 and H, = 67.8 km/s/Mpc which
imply  pno =3Q,0H;=425x10% in units of
k =8xG = 1. From Fig. 1, we observe that the scalar
field mimics the cosmological constant for small values of
the constant c¢;, however for large values of ¢, the scalar
field has an EoS parameter w, > —1. We find that within a
physical range of the above cosmological parameters the
corresponding dark energy EoS parameter deviates by
~1-2%. Furthermore, from the evolution of w(a) we
see that there is a matter-dominated epoch. However, as the
parameter c; increases, this epoch has shorter duration. In
what follows we study the case c¢; =0 and express
analytically the scalar field and the Hubble function in
terms of the scale factor.

A. Subcase ¢c; =0

When ¢; = 0, from (46) we have y(7) = y,, hence from
(40) it follows that x> = y3 + a~. Furthermore, from the
transformation (40) and from (46) we find that

(a) W82+ 0+ a7 —a ¥+ am )
W¢ a) = . -
W+ (63 + a7 )5 + a (53 + a7y
(48)
where we have set
VO Pm0

Qo =51, Q=220 49
. 3H; 0 3H} (49)
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Here, we would like to note that we call Q, the density
parameter of the cosmological constant-like term and Q,,,
the parameter of the perfect fluid.”

Therefore, for the scalar field density p,(a) we have:

Q.0
pata) = 300030~ [ 3332 + 07 + a7 )
AO
+ a3 (y3 + a‘3”)'%']] ) (50)

Then (6) implies that
H?(a)
Hi

Q, e
+ Qppa™® <3’(2)[ " (Vg +a*) 3 1]
Q)0

EZ(a) _ _ Qmoa—S(u+2)

+a ¥ (yh + a‘3")_t%_l>. (51)
We note that if y3 + a= ~ a=* then

Q
E*(a) = Q,0a73W2) 4+ Qy <1 + 5 [QZO 64+ aﬂ)
0

(52)

If yo = 0, then (52) becomes E*(a) = Q,,0a7>"*+2) + Q.
which is obvious because when y, = 0, we have ¢p = 0 and
V(¢) = V,, which means that the scalar field acts as a
cosmological constant. Furthermore, from (51) and
H(a = 1) = H,, we have the constraint

(14 33)[ Qo + Quo(1+)3)+ '] = 1=0.  (53)

In the following section we consider special values of the
barotropic constant y = u + 2.

1. Dust fluid versus the effective dark energy EoS

When the perfect fluid is dust then p=-1,y =1
(w,, = 0 for other cases see Appendix A) Eq. (51) takes
the following form

Qm
E%(a) = Q,0a7> + Q) {1 +2y5a= + v} ( QA(? + y%) a‘ﬂ

=Q,0a +AH(a). (54)

It should be mentioned that the last term AH(a) of the
normalized Hubble function (54) introduces a cosmological

’In general, for y, # 0, hold Q,,o + Q¢ # 1; however the
equality holds only when the constant y, = 0 [V(¢) = V] which
means that the scalar field act as a cosmological constant, i.e.
wy = —1, see Eq. (53).
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constant-like fluid, dust and stiff matter. Furthermore,
from (53) we have the following algebraic equation

Qpoyo + (2Qp0 + Qy )¥5 + (o + Qa0 —1) =0 (55)
hence, the discriminant of the polynomial (55) (for y(z)) is

= (2Q0 + Q)7 +4Qp0(1 = Q0 = Qyg),  (56)
and D >0 when (1-Q,—Qy)>0. Recall that

Q.0 € 0,1],Qx0 € (0, 1], and because y3 >0 we have
the solution

V= (Q0)% + 490 — (2Q40 + Q,0) C(57)
2Q0

Let us now compute the effective dark energy
EoS wy o for the scalar field model introduced above. It
is well known that one can express the effective dark
energy EoS parameter in terms of the normalized Hubble
parameter [42]

2dInE

" 3dlna
T 3dina 58
—0(a)" 58)

W¢,eff(a) =

where Q,,(a) = gz'"z‘)(‘;;}. Inserting the second equality of

Eq. (54) into Eq. (58), the effective dark energy EoS
parameter takes the following form (see [43]):

1dlnAH

Wu,eff(a) = 3 dlna

(59)

which implies that any modifications to the effective EoS
parameter are included in the second term of Eq. (59).
Inserting Eq. (54) into Eq. (59) it is straightforward to
obtain a simple analytical expression for the effective dark
energy EoS parameter:

2y5a> + 25 (22 + yg)a™°
W{/),Eff(a) = _1 + 2 -3 mmo N (60)
1+2y3a7% + ¥3(5 o+ yga®

2. The total case

Our dynamical system is integrable in the case of a single
perfect fluid. Here, we introduce two perfect fluids (for
example dust and radiation). Consider that we have dust
(w,, = 0) and another perfect fluid with EoS parameter

Py = wypy (for radiation w, = 1/3), and (Q”’) < 1. The

latter implies that the EoS parameter which is associated
with the two perfect fluids is
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wmt(a) evolution for u=-1 £ 0.05

u=—1

0 0.2 0.4 0.6 0.8 1 1.2
a

FIG. 2. The evolution of the equation of state parameters
wi(a) for the total fluid for the Lagrangian (32) with a =1,
p = 0 where in (46) we take the minus sign and ¢; = 0. For the
numerical solution we use (x,y),_, = (0.01,0.0099),log(V,) =
4 and p,,, = 4.25 x 10>. The solid line is for u = —1 [dust:
(W, 7) = (0,1)], the dash-dotted line is for p = —0.95 and the
dotted line is for y = —1.05.

Q.
Wi = = = oVl )
PmtPr PmtPr 1+ (5h) Q,

w2, =0

(61)

that is, y = 1+w,, and y = -1 +w,,. When w; >0 we
have that w,, > 0 and when w; < 0 holds we have w,, < 0.
We replace (61) in (51) and perform a Taylor expansion
near w,, =0 (y =1 or y = —1). We find

Ez(a) = E;%:l(a) - 3Qm061_3 ln(a)wm + QAOF(a)"_Vm
(62)

where the normalized Hubble parameter E>_, (a) is given
by Eq. (54) and

Fla)=2In(y}+a®)(1+y3a)*—6(y5+a’)aIna

where  F(a—1)=2In(y3+1)(1+y3)> and when
vo = 0, F(a) = 0. In Fig. 2 we give the numerical solutions
of the total EoS parameter w(a) for g =1=+0.05
and ¢; = 0.

In Appendix A, we give the exact solutions for the
Hubble function, H(a), for the cases where y = § (radiation
fluid) and y = % (curvature-like fluid).

VI. DYNAMICAL ANALYSIS

In order to complete our analysis of the model with
Lagrangian (32), we perform a dynamical analysis of the

PHYSICAL REVIEW D 91, 123535 (2015)

field equations by studying the fixed points of the
field equations. We introduce the new dimensionless
variables [2,44]

_ @ _
V6H ' V3H'
Pm V,¢
= e 63
" 3H? 1% (63)

and the lapse time N = In a. In the new variables the field
equations reduce to the following first-order ODEs

dx \/6 5
N -3x + T/Iy
3
+ 51 =wp)? + (1 +w)(1=07)] (64)
dy __ V6,
an ~ 2%
3
+ 5[ =wi)? + (1 +w)(1=37)] (65)
dA 5
2 - VR -1
N V6 = 1)x (66)
where I' = Y#" and the Friedmann equation (6) gives the

VZ

P
constraint Q,, = 1 — Q,, where Q; = x> + y7.

In this case the second Friedmann equation (7) becomes

2 H
gﬁ:_l_wm_(l_wm)xz_(l+Wm)(1_yz) (67)
which gives that the total EoS parameter w,, as a function
of w,,, x and y:

Wiot = Wi + (1 - Wm)xz - (1 + Wm)yz' (68)

Furthermore, the EoS parameter w,, for the scalar field is
Wy = % Note that at any point (xg, yg, 4), from (67) the
solution of the scalar factor is a power law as long as
Wit = const; that is, a(f) « ol for Wit 7 —1 and
a(t) = aget for wy = —1.

In the following we consider in (32) # = 0, so that the
potential of the scalar field is V(¢) = Vycosh?(pg)
[45-47]. For this potential we write I'(¢) as a function

of ,ie. T'(A) =1+ qT’f — 4> and Eq. (66) becomes

d V6

- Y7 -2 A)x. 69

N 7 (gp = 2)(qp +A)x (69)
Equations (64), (65) and (69) describe an autonomous

dynamical system in the E3 space. Furthermore from the

constraints 0 <Q, <1,y>0, the variables (x,y) are
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TABLE I. Fixed points and cosmological parameters.
Point (x,3,4) Q. Wiot Wy Acceleration
o (0* 0. )') 1 Win ﬂ Wy < _%
A(:\:) (1, 0, :tqp) 0 1 1 No
By (=1,0,x¢gp) 0 1 1 No
C (0,1,0) 0 -1 -1 Yes
D 2 0 14 e -1 4 2
@) (£ gp. /1 -9 1qp) 1+ 1+ lap| < V2
E w) Ve T-w2, _ 30+wy) Wi Wi < —%
=0 (Yol Y2 k) 1= R
E . N VBy/1-w2, _ 3(14w,) W, Wy, < _1
=) (2 Y0e) - YRt gp) T Wi <73
TABLE II. Eigenvalues of fixed points.
Point m; my ms
9 0 S+ wn) ~3(1=w,)
Aw) 3(1-wy) +2pV6 37 84p
B 3(1-wy) F2pV6 3+ 84p
C =31+ wy) -3(1-+/1-44p? -3 (1++/1-4qp?)
D) =3(1+w,) + (¢p) —3 42 2qp°
E(ii) g(1+wm) _%[(l_wm)—i_%] _%[(l_wm)_qA_;}

bounded in the ranges x € [-1,1], y € [0, 1] from which
follows that the points (x, y) belong to a half disk; however
for the parameter 4 there is no constraint that implies that
A € R [44,48]. Furthermore, we consider w,, € (=1, 1).
The fixed points of the dynamical system (64), (65)
and (69) and the corresponding cosmological parameters
are given in Table I. The eigenvalues of the linearized
dynamical system near the fixed points are given in
Table I1.°

Point O exists for all values of the parameter 4 and
corresponds to the matter epoch (Q,, = 1); the total EoS
parameter is wy, = w,,. Since there exists at least one
positive eigenvalue, m, > 0, the point O is always
unstable. At this point the universe accelerates if and
only if w,, < — % At the points A () and B+, the universe
is dominated by the kinetic energy of the scalar field
(Q,, = 1,V(¢) = 0) which means that the scalar field acts
as a stiff fluid, i.e. p, « a~® which provides a decelerating
universe. These points exist when 4 = +¢p, for arbitrary
q, p- For these points there exist positive eigenvalues of the
linearized system, m; > 0, for w,, € (-1, 1), hence these
critical points are always unstable.

Point C is the de Sitter solution, (€,, =0, w = —1)
where the scalar field acts as a cosmological constant and
the matter component vanished. This point exists for all
values of the constants ¢, p and could be the future attractor

®Where in Table 11
\/(1 - Wm)(24(1 + Wm)z - (7 + 9Wm)(qp)2)'

Ag =

of the universe. From the eigenvalues of Table II for that
point we have that it is stable when g > 0 (for a similar
solution see [50]). The points D4 correspond to a scalar
field dominated universe (€,, =0) and exist only when
lgp| < V/6. The total EoS parameter is that of the scalar
field wy = -1 + % which gives an accelerated universe
when |gp| < v/2. The points D4 are stable for g < 0 and
lgp| < v/3(1 +w,,). Hence, we see that D, are stable

points and describe an accelerated universe when wy, < —%

and |gp| < /2. Furthermore, in the limit g — 07, these
points correspond to the de Sitter universe; when ¢ — 0~
then V(¢) — V.

Finally, the points E. ., are the so-called “scaling”

solutions where Q,, =1 —% and the scalar field

mimics the matter component of the universe, i.e. wy =

w,,. The points E(,  exist when gp > /3(1 +w,,) and
they are stable when g, p < 0 whereas the points E(. _)

exist when ¢gp < —4/3(1 +w,) and are stable when
qg <0, p> 0. The total EoS parameter is w,,, = w,, SO
they lead to an accelerated universe when w,, < —%.

In Fig. 3, we give the two-dimensional phase portrait in
the x — y plane and the three-dimensional phase portrait of
the model with values (p,q,w,)=(1,—-1.5,0) and
(p,q.w,) = (1,=3,0). We observe that for (pg)* <3
the two stable points are the points D) whereas for
(pg)* > 3 the stable points are E(, _).
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Phase portrait in the x-y plane for (p,q,wm):(1 ,—3,0)
1.2

1

y X

PHYSICAL REVIEW D 91, 123535 (2015)

Phase portrait in the x-y plane for (p,q,wm):(1 ,—1.5,0)
1.2

1

FIG. 3. Phase portrait in the x — y plane and in the E3 space for the potential V() = Vycosh?(p¢). Left-hand figures are for the
variables (p, g,w,,) = (1,—1.5,0) and the right-hand figures are for the variables (p,q,w,,) = (1,—=3,0). For (pq)* > 3, the stable
points are the points E(y) (scaling solutions) while for ( pq)? < 3 the two stable points are the points D . The solid lines are for the
initial condition 4 = pgq, the dashed lines for A = —pgq, and the dotted lines for 1 = 0.

It is important to study the case when the constants
q,p,w,, are related to the constant y so as to render the
integrable field equations (38). This is the case we studied
in the previous section. Since we considered w,, € (-1, 1)
we have that u € (-2,0).

Hence, for the integrable case we have that the points
O,A(+), Bx), D) exist and they are always unstable.
The point O has wy < —% when u € (-2,—3) and the
points D describe an accelerated universe so long as

ue(-2,-2+ %) The point C exists and it is the unique
stable point. Finally, the tracker solutions, i.e. points E (£,4)>
do not exist for 4 € (=2, 0). The existence and the stability
of the fixed points for general values ¢, p and for the
integrable case are given in Table III

In Fig. 4 we give the two-dimensional phase portrait in
the x — y plane and the three-dimensional phase portrait of

the model with values (p,q,w,,) = (—‘/76,2,0), which
correspond to the integrable case for 4 = —1. The point
C is the unique stable point. We observe that the points

D, act as attractors in the plane (x — y) for 1 = + */76 and
the solutions reach the boundary where Q,, = 0, and move
to the de Sitter points (w; = —1). It is important to note
that the existence of conservation laws in the field equa-
tions which follow from the Lie point symmetries of the
WdAW equation, i.e. the dynamical system is Liouville
integrable, gives us constraints on the free parameters of the
model so that there exists a unique stable point which
describes the de Sitter universe.

TABLE III.  Fixed points and their stability for the general potential and for the integrable subcases.

Point Existence Stability Stability for u € (=2,0) Acceleration

0 p,q ER" Unstable Unstable ne(=2,-%)
A p,q € R* Unstable Unstable No

B4 p,q €R* Unstable Unstable No

C p,q €ER” Stable for g € R**" Stable Yes

Dy lgp| < V6 Stable for g € R*~, |gp| < /3(1 +w,,) Unstable peE (=2,-2 _,_%5)
E 4 gp > /31 +w,) Stable for g € R*~, p <0 A |

E. qp < —/3(1+wy,) Stable for g € R*",p > 0 A 2
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Phase portrait in the x-y plane for u=—1 (Dust)
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Phase portrait for u=—1 (Dust)

D+ ))\" 1

0.5

y X
FIG. 4. Phase portrait in the x—y plane and in the E® space for the potential V(¢) = Vycosh?(p¢) with variables
(p.q,wy) = (—‘/76,2, 0), which corresponds to the integrable case for 4 = —1. The point C is the unique stable point. The points

D4 act as attractors in the plane (x—y)forl=+ ‘/76. From the right-hand plot we observe that the solutions reach a boundary where
Q,,0 = 0,w, > —1 and from there they move to the de Sitter point C. The solid lines are for initial condition 4 = pg, the dashed lines for

A= —pgq, and the dotted lines for 4 = 0.

VII. CONCLUSIONS

We have applied Lie symmetry methods in order to
extend the works of Rubano and Barrow [3] and
Paliathanasis et al. [19] in scalar field cosmology for a
general family of potentials, V(¢). We have shown that
there exists a unique connection between the Lie point
symmetries of the WdW equation and the conservation
laws of the field equations. We considered a general form of
V(¢) which contains hyperbolic functions for a scalar field
with a perfect fluid and we have investigated the existence
of Lie point symmetries of the WdW equation. This
approach is more general than the application of Noether
point symmetries. We recovered the result of [3], that is,
that in scalar field cosmology amongst the variety of V(¢)
potentials the hyperbolic types play a key role because they
admit conservation laws. Moreover, based on the Lie point
symmetries of the WdW equation, we have obtained the
exact solutions of the field equations. Finally, we have

|

performed a dynamical system analysis by studying the
fixed points of the field equations in dimensionless vari-
ables. We found various dynamical cases among which, if
the current cosmological model is Liouville integrable there
is a unique stable point which describes the de-Sitter
universe as a late-time attractor for the dynamics.
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APPENDIX A: SOLUTIONS WITH RADIATION
AND CURVATURE

Here we provide some details concerning the solutions of
Sec. VA. Specifically, for a radiation perfect fluid, y = ‘5‘
[hence u = —% (w,, = 1/3) and Q, = Q,,0] Eq. (51) gives

E2(g) — H(a) _ 4 2.2 44, 20 2,6
(a) = 5= = Q0a" + Qpo |1 +3yga + 3yga™ + ¥ +y5]a®|. (A1)
H} Qo
On the other hand, when y :% (or u = —%), the perfect fluid has an EoS w,, = —% (which can also be seen as the
curvature term in a nonflat FLRW spacetime); then Qg = €, and:
H? Q
E*(a) = (;l) = Qoa™2 + Quo {\ [vi+a*a™® +y} (—KO +/v5 + a“) a“’} . (A2)
Hj Qo

This is a solution of the scalar field cosmology in a curved FLRW spacetime.
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APPENDIX B: EXACT SOLUTION FOR A GENERAL POTENTIAL

In the general case where a # 0 and # = 1 we apply the following coordinate transformations,

2 5 2V6
a= Kx—X> —yz} " q’):iarctanh( yy). (B1)
a 3u X ==
In the new coordinate system the WdW equation becomes
2 % 1 2
Kx - ﬁ) - yZ] [— <1 - E) Vot =Wy 0+ (2Vha x4 2p;n0)\11] —0, (B2)

where V{ =3 WRa 2V, Plyo = §#°Pmo and the Lie symmetry vector is (35) X = dy + agWdy. Therefore, the invariant
solution of the WdW equation (B2) is ¥(x,y) = e“’®(x) where ®(x) satisfies the following second-order ODE

1= 2 =
[—(1——2><1>H+ e\
=) |

When a = 1, which is the case of the exponential scalar field, from (B3) we have

O (x) = exp

5 (_ (2010 + a5)

Furthermore, in the WKB approximation the WdW equation (B2) becomes the null Hamilton-Jacobi equation

=2 A D6 26

with solution of the form S(x,y) = S;(x) + ¢y, where

a
Sl(x) ::Fl—a2

and

7 6)(_’%_2 -+ 2p:nO + a%)(i] =0. (B3)
LYo e (B4)
X # .
2ay ao(; +1)
o8\?  [(05\? s

— — 2VixT 2420 )| =0 B5
)(5) +(5) vt s (B5)
/ (c1 + \/ (@ = )x 7 + e +2(a? = Dphg). o] #1 (B6)

,0/
1 —’"0> dx, a=1 (B7)

1

From the solution of the Hamilton-Jacobi equation (B5)
we can reduce the equivalent Hamiltonian system of the
field equation to the following system of first order
equations

. 1 1 ] ¥\ 2 o
a a’ a
. 1 I v\ 2 L
y= [—prrpy] (x——> —yz] ",
a L a

where p, = O—i and p, = g—*yg.

(B9)

In order to make the reduced system simpler, we
apply the transformation dr = a=>#+1)dt, and the system
(B8)—(B9Y) becomes

1 1 1
x’=—<1—;)px+apy, Y =-p.+py,. (BIO)

a

For the exponential potential (o = 1), from system (B10)
we find the solution in closed form. The solution is

x(7) = ¢yt + co, (B11)
! /
0 —t1 _Pmo_ €1
7) =5 (t+co) " —Er+—1+Y),
y(z) C%(%+l)( 1 0) ) ) Yo
(B12)
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where the scale factor is a(z) = (x*(z) —2x(r)y(1))_3l~.
This is the solution of the exponential scalar field with
matter in the Einstein frame. Recall that the matter has an
EoS parameter of the form w,, = u + 1.

1. Special solution with p,,0 =0, c; =0

When p,,0 = 0 and ¢; = 0, from the dynamical system
(B10) we have the solution

1 T
X(T) = |:<——|— 1>XOT+X1:|2<I ),
u

a
at—1

where xy = £4/2Vy(a? — 1), and & = £1.

In the case of u = —1 the solution of the system (B10) is

x(7) = o, (B13)

a
a? -1

y(r) = - (B14)

x(7) = x; €7, x(7) = yo

(recall that for y = —1, we have dt = dr). Hence, the
solution for the scale factor is

PHYSICAL REVIEW D 91, 123535 (2015)

2,2 2 1
a Xy 2xpt _ -1 2|’ B15
2-1°¢ 2 0| (B13)

a(t) =

Furthermore, from the singularity condition a(0) = 0, we

have that y3 = %L which impli = ay (e — 1)}
ave that yj = 1 which implies a(f) = a;(e*" - 1)3,

h — (S5Y. We obtain H(r) =20 £Y and
where a@; = (7=;)’. We obtain H(t) =37, an

1(a) :2—)1601n[1 + (;—1)3] Therefore, we can express the

Hubble function in terms of the scale factor, i.e.

H*(a) = _
Ez(a) = H—% = QAO -+ Qmoa 3 —+ Qxfoa 6 (B16)
where
P L £ S .
) mi ’ S
9H3 9H} 9H}

which means that the scalar field introduces an effective
dark matter component, namely Q,,(a) = Q,,a~*/E*(a) in
the cosmic expansion.
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