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We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter
directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for
smoothing data. In this method, once the equation of state (w) of dark energy is specified, the interaction
can be reconstructed as a function of redshift. For the decaying vacuum energy case with w ¼ −1, the
reconstructed interaction is consistent with the standard ΛCDMmodel, namely, there is no evidence for the
interaction. This also holds for the constant w cases from −0.9 to −1.1 and for the Chevallier-Polarski-
Linder (CPL) parametrization case. If the equation of state deviates obviously from −1, the reconstructed
interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the
equation of state of dark energy when they get constraints from the observational data.
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I. INTRODUCTION

It has been more than fifteen years since the universe was
found in accelerating expansion [1,2]. However, it is fair to
say that its origin is still not yet clear. A possible
explanation of this cosmic acceleration is provided by
the introduction of a fluid with negative pressure called
dark energy (DE). The simplest dark energy candidate is
the cosmological constant Λ with the equation of state
w ¼ −1. The tiny cosmological constant together with the
cold dark matter (CDM) (called the ΛCDM model) turned
out to be the standard model which fits the current
observational data sets consistently. In spite of this success,
however, it is faced with the fine-tuning problem [3] and the
coincidence problem. The former arises from the fact that
the present-time observed value for the vacuum energy
density is more than 120 orders of magnitude smaller than
the naive estimate from quantum field theory. The later is
the question why we live in such a special moment
that the densities of dark energy and dark matter are of
the same order.
Many attempts have been made to tackle those issues,

including introducing “dynamical” dark energy or modi-
fying general relativity at the cosmic scales. In particular, to
alleviate the coincidence problem, an interaction between
dark energy and dark matter has been considered exten-
sively in the literature, for example, in [4–17] and refer-
ences therein. However, usually the interaction form has to
be assumed. The assumed form will lead to a bias when
observational data are used to give the constraint on the
interaction. In [11] the authors investigated the possible

interaction in a way independent of specific interacting
forms by dividing the whole range of redshift into a few
bins and setting the interacting term to be a constant in each
redshift bin. It was found that the interaction is likely to
cross the noninteracting line and has an oscillation behav-
ior. Recently, Salvatelli et al. [15] showed that the null
interaction is excluded at 99% confidence level (C.L.) when
they added the redshift-space distortions (RSD) data to the
Planck data for the decaying vacuum energy model (a class
of interaction of dark sectors). They parametrized the
interaction term to be of the form qHρ and also subdivided
the redshift into four bins with qðzÞ ¼ qiði ¼ 1;…; 4Þ.
More recently, the authors of Ref. [18] have reconstructed
the temporal evolution of the coupling strength between
dark matter and vacuum energy, αðaÞ in a nonparametric
Bayesian approach using the combined observational data
sets from the cosmic microwave background radiation,
supernovae and large scale structure. It was found that an
evolving interaction can remove some of the tensions
between different types of data sets, and is favored at
∼95% C.L. if the baryon acoustic oscillations measure-
ments of the BOSS Lyman-α forest sample are included.
Thus, it is quite interesting to see whether there exists some
signature of the interaction from the observational data in a
model-independent way.
In this paper we present a nonparametric approach to

reconstruct the interaction term between dark energy and
dark matter directly from the observational data using
Gaussian processes (GP). GP is a model independent
method to smooth the data. We set the nonparametrized
interaction term QðzÞ as a function of redshift and
reconstruct it from SNIa Union 2.1 data sets. We will
consider three cases, the decaying vacuum energy case with
w ¼ −1, the wCDM model and the Chevallier-Polarski-
Linder (CPL) parametrization of dark energy, respectively,
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and pay special attention to the first case as discussed
in [15].
This paper is organized as follows. In Sec. II we give the

interacting models of dark energy and dark matter in a flat
universe. In Sec. III, we briefly introduce the Gaussian
processes method and create a mock data set to demonstrate
the reliability of the GP reconstruction method. Then we
apply it to the real data Union 2.1 in the decaying vacuum
energy case, followed by different values of w for
comparison and the CPL case. We give some discussions
and make conclusions in Sec. IV.

II. THE MODEL

In a flat universe with an interaction between dark energy
and dark matter, the Friedmann equation describing the
evolution of the universe is given by

H2 ¼ 8πG
3

ðρm þ ρDEÞ; ð1Þ

where ρm denotes the energy density of dark matter and ρDE
the energy density of dark energy. However, the conserva-
tion equations are changed to be

_ρm þ 3Hρm ¼ −Q; ð2Þ

_ρDE þ 3Hð1þ wÞρDE ¼ Q; ð3Þ

where w is the equation of state of DE, H is the expansion
rate of the universe, and Q describes the interaction
between dark matter and dark energy. When Q ¼ 0 and
w ¼ −1, it recovers the standard ΛCDM model. Unlike
most of the ways to parametrize the interaction term Q
using such a form qHρ [5,15], here we use QðzÞ itself and
want to reconstruct it directly from data using a model-
independent method. As assumed in [15], the 4-vectorQν is
proportional to the 4-velocity of dark matter. Hence the
perturbation of the interaction is not considered in
this paper.
Combining the Friedmann equation and the conservation

equations (8πG ¼ 1 throughout the paper), we can obtain

−wQ ¼ 2

�
HH02 þH2H00 −

w0

w
H2H0

�
ð1þ zÞ2

−
�
2ð5þ 3wÞH2H0 −

3H3w0

w

�
ð1þ zÞ

þ 9ð1þ wÞH3; ð4Þ

where the prime denotes the derivative with respect to
redshift z. Note that here we also assume w is time
dependent. For convenience, we use a dimensionless q
to characterize the interaction, i.e., Q ¼ qH3

0. Note that
here q is not the usual deceleration. In this case, we have

−wqH0
3 ¼ 2

�
HH02 þH2H00 −

w0

w
H2H0

�
ð1þ zÞ2

−
�
2ð5þ 3wÞH2H0 −

3H3w0

w

�
ð1þ zÞ

þ 9ð1þ wÞH3: ð5Þ

The luminosity distances at redshift z can be expressed as

dLðzÞ ¼
cð1þ zÞ

H0

Z
z

0

dz�
H0

Hðz�Þ : ð6Þ

Writing DðzÞ ¼ ðH0=cÞð1þ zÞ−1dLðzÞ as the normalized
comoving distance, we can arrive at

−wq ¼ 2

�
3D002

D05 −
D000

D04 þ
w0D00

wD04

�
ð1þ zÞ2

þ
�
2ð5þ 3wÞ D

00

D04 þ
3w0

wD03

�
ð1þ zÞ

þ 9ð1þ wÞ
D03 : ð7Þ

From this, we see that using the observed distance-redshift
relationship DðzÞ, one can reconstruct the interaction, once
the equation of state w of dark energy is given.

III. RECONSTRUCTION METHOD

In order to reconstruct the interaction using current data
sets, we should find a model-independent method to
reconstructDðzÞ and its derivatives. While there are several
methods such as principle component analysis [19–21],
Gaussian smoothing [22,23] and Gaussian processes
[24–27], in this paper we will reconstruct DðzÞ and its
derivatives more precisely by using the GP method.

A. Gaussian processes

The Gaussian processes allows one to reconstruct a
function from data without assuming a parametrization for
it. We use Gaussian processes in PYTHON (GaPP) [27] to
derive our GP results. This GP code has been applied in
many papers [27–33]. The distribution over functions
provided by GP is suitable to describe the observed data.
At each point z, the reconstructed function fðzÞ is also a
Gaussian distribution with a mean value and Gaussian
error. The functions at different points z and ~z are related by
a covariance function kðz; ~zÞ, which only depends on a set
of hyperparameters l and σf. Here l gives a measure of the
coherence length of the correlation in x-direction and σf
denotes the overall amplitude of the correlation in the
y-direction. Both of them will be optimized by GP with the
observed data set. In contrast to actual parameters, GP does
not specify the form of the reconstructed function. Instead it
characterizes the typical changes of the function.
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The different choices of the covariance function may
affect the reconstruction to some extent. The covariance
function is usually adopted as the squared exponential
form [27]

kðz; ~zÞ ¼ σf
2 exp

�
−
ðz − ~zÞ
2l2

�
: ð8Þ

But it is not always the suitable choice. Here we take the
Matérn (ν ¼ 9=2) covariance function

kðz; ~zÞ ¼ σf
2 exp

�
−
3jz − ~zj

l

�

×

�
1þ 3jz − ~zj

l
þ 27ðz − ~zÞ2

7l2

þ 18jz − ~zj3
7l3

þ 27ðz − ~zÞ4
35l4

�
; ð9Þ

according to the analysis made in [29], where they consider
various assumed models and many realizations of mock
data sets for a test and conclude that the Matérn (ν ¼ 9=2)
covariance function can lead to more reliable results than
all others when applying GP to reconstructions using D
measurements.
Following Refs. [27,30], in which the detailed technical

description of GP can be found, we reconstruct the
interaction between dark energy and dark matter using
the SNIa Union 2.1 data set [34]. Before that we will first
show the reliability of the GP method.

B. Mock data

To demonstrate the ability of the GP method to distin-
guish different models and recover the correct behaviors of
the models, we create mock data sets of future SNIa
according to the Dark Energy Survey (DES) [35] for
two fiducial models: the standard ΛCDM model and a
toy decaying vacuum model: ρDE ¼ 3αH with w ¼ −1.
Here we set Ωm0 ¼ 0.3 for both.
For the ΛCDM model, it is straightforward to calculate

the Hubble parameter H=H0 and then obtain the simulated
data of DðzÞ easily. Because there is no interaction, we just
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FIG. 1 (color online). Gaussian processes reconstruction of DðzÞ, D0ðzÞ (top), and D00ðzÞ, D000ðzÞ (bottom) obtained from a mock data
set of future DES and assuming the ΛCDMmodel with Ωm0 ¼ 0.3 (red line). The dashed blue line is the mean of the reconstruction and
the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively.
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FIG. 2 (color online). Reconstruction of ~qðzÞ (dashed line) from
the mock data set of future DES and assuming the ΛCDM model
with Ωm0 ¼ 0.3. The shaded blue regions are the 68% and
95% C.L. of the reconstruction.
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want to check whether the reconstruction with this simu-
lated data can recover q ¼ 0.
As for the decaying vacuum model, on the one hand we

should calculate the Hubble parameter and on the other
hand, we must get qðzÞ for this fiducial model. The Hubble
parameter is simply H=H0 ¼ 1 − Ωm0 þΩm0ð1þ zÞ3=2.
The fiducial interaction is qH0

3¼−3ð1−Ωm0Þð1þzÞH0H.
The rest of the task is to reconstruct qðzÞ from the Hubble
parameter, and then test how well the reconstructed qðzÞ
agrees with the fiducial one. If the GP method can recover
both of the fiducial models and has the ability to distinguish
them, we can demonstrate that GP is a valid method in the
reconstruction for our propose. In the following we will
create the mock data sets.
The DES is expected to obtain high quality light curves

for about 4000 SNe Ia from z ¼ 0.05 to z ¼ 1.2 in the next
five years. From Table 14 in [35] we can calculate the errors
ofD: σD and the corresponding numbers of SNe Ia for each
redshift bin. At every redshift point z, DðzÞsim is sampled
from the normal distribution DðzÞsim ∼ NðDðzÞfid; σDÞ
where DðzÞsim is the simulated data of DðzÞ and DðzÞfid
is the theoretical value from the fiducial model. Thus we
create the mock data sets for these two fiducial model. For
each of them we reconstruct DðzÞ and its derivatives and
then apply to the reconstruction of the interaction term
qðzÞ. Note that each of the reconstructed DðzÞ and its
derivatives at every redshift point is a distribution with a
mean value and the error regions. However, DðzÞ and its

derivatives are not independent but correlated by a covari-
ance between them. Using the reconstructed DðzÞ and its
derivatives, also the covariance matrix between them, we
can apply Monte Carlo sampling to determine the qðzÞ in
Eq. (7) for a given w at each point z which we want to
reconstruct. The detailed description of the covariance
matrix can also be found in [27].
We can see from Fig. 1 that the DðzÞ and its derivatives

are reconstructed very well from the mock data sets
assuming the ΛCDM model. The dashed blue line is the

CDM

Decaying model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Redshift z

D

CDM

Decaying model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Redshift z

D
'

CDM

Decaying model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.6

0.4

0.2

0.0

0.2

0.4

Redshift z

D
''

CDM

Decaying model

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

0.0

0.5

1.0

1.5

Redshift z

D
'''

FIG. 3 (color online). Gaussian processes reconstruction of DðzÞ, D0ðzÞ (top), and D00ðzÞ, D000ðzÞ (bottom) obtained from a mock data
set of future DES and assuming a toy decaying vacuum model: ρDE ¼ 3αH with w ¼ −1 and Ωm0 ¼ 0.3 (green line). The dashed blue
line is the mean of the reconstructions and the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively. The
ΛCDM model is also shown (red dotted).
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FIG. 4 (color online). Reconstruction of ~qðzÞ from a mock data
set of future DES and assuming a decaying-vacuum model:
ρDE ¼ 3αH with w ¼ −1 andΩm0 ¼ 0.3 (green line). The shaded
blue regions are the 68% and 95% C.L. of the reconstruction. The
ΛCDM model is also shown (red dotted).
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mean of the reconstruction and the shaded blue regions are
the 68% and 95% C.L. of the reconstruction. The errors for
higher derivative of DðzÞ are a litter larger than the lower
ones. As expected, at higher redshifts the errors become
large due to the poor quality data in that region.
Since our reconstruction involves D000ðzÞ whose errors

are even larger in the higher redshift, and will definitely
lead to somehow uncontrollable large errors in high redshift
regions when apply it to the Monte Carlo sampling in
Eq. (7). For a better show, we introduce a prefactor
ð1þ zÞ−n to qðzÞ, that is, ~qðzÞ ¼ qðzÞð1þ zÞ−n. The
choice of n is somehow arbitrary, we take n ¼ 6 here.
The motivation to introduce the prefactor is comprehen-
sible: we just focus on the interaction in the low and
medium redshift ranges because the quality of observed
data in the higher redshift range is so poor that it gives a
weak constraint on the reconstructed interaction. Such a
prefactor is just considered as a scale transformation with
respect to redshift, which does not influence the
reconstruction of qðzÞ in the low and medium redshift
ranges significantly and provides a better show in the
higher redshift range. Moreover, our aim is to examine
the evidence of the interaction, namely, we are testing the
equality of the quantity with zero. As a consequence, we
are free to do this without loss of generality like what
Ref. [30] has done for the null test of the ΛCDM model. In
the rest of this paper, we use ~q as our interaction term to test
the interaction and we mainly focus on the low and medium
redshift ranges because of the poor quality of the observed

data in high redshift ranges which will not give a good
constraint for the interaction term.
Figure 2 shows that the reconstructed interaction ~qðzÞ is

consistent with the fiducial ΛCDM model nicely, falling in
the 1σ limit. The reconstruction in the redshift range from 0
to 0.6 is better than that in the high redshift where the error
is large. Further, we see from Figs. 3 and 4 that the
reconstructions of the decaying vacuum model also recover
the fiducial model very well, and obviously deviate from
the ΛCDM model. This shows that the Gaussian processes
can capture both the two models very well and correctly
distinguish between them.
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FIG. 5 (color online). Gaussian processes reconstruction of DðzÞ, D0ðzÞ (top), and D00ðzÞ, D000ðzÞ (bottom) obtained from Union 2.1
data sets. The shaded blue regions are the 68% and 95% C.L. of the reconstruction. The ΛCDM model (red line) is also shown.
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FIG. 6 (color online). Reconstruction of ~qðzÞ from Union 2.1
data sets. The shaded blue regions are the 68% and 95% C.L. of
the reconstruction. The red line corresponds to the ΛCDMmodel.
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FIG. 7 (color online). Reconstructions of ~qðzÞ for the wCDM model and CPL parametrization. (a) w ¼ −0.7; (b) w ¼ −0.8;
(c) w ¼ −0.9; (d) w ¼ −1.006� 0.045 from Planck 2015; (e) wðaÞ ¼ w0 þ wað1 − aÞ with w0 ¼ −1.046þ0.179

−0.170 and wa ¼ 0.14þ0.60
−0.76 ;

(f) w ¼ −1.1; (g) w ¼ −1.2; (h) w ¼ −1.3. The shaded blue regions are the 68% and 95% C.L. for the reconstruction.
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C. Reconstruction using Union 2.1 data

We now apply the GP method to the real data, Union 2.1
data sets [34], which contains 580 SNeIa data. Let us
consider

m −M þ 5 log

�
H0

c

�
− 25 ¼ 5 log ½ð1þ zÞD�; ð10Þ

with H0 ¼ 70 km=ðsMpcÞ, following [34]. Actually our
results are not sensitive to the values ofH0. The values ofD
depend on both H0 and the absolute magnitudeM. We can
fix the H0 and only consider the uncertainties in M as
adopted in Ref. [30]. We transform the distance modulus
m −M given in the data set to D and set the theoretical
initial conditions Dðz ¼ 0Þ ¼ 0 and D0ðz ¼ 0Þ ¼ 1. First,
let us consider the decaying vacuum energy case with w ¼
−1 [15]. Figure 5 shows the reconstructed DðzÞ and its
derivatives from Union 2.1 data. The error is a little larger
than that for the reconstruction of the DES survey due to the
smaller number of SNe Ia and larger measurement errors.
The reconstruction of the interaction ~qðzÞ is shown in
Fig. 6. We see that both the distance DðzÞ and interaction
~qðzÞ are consistent with the ΛCDM model, which implies
that there is no evidence for the existence of the interaction.
We now change the equation of state w to see how much

the differences of w will influence the output of our
reconstruction. We consider the wCDM model with
w ¼ −1.006� 0.045 from the Planck 2015 [36], the
CPL parametrization wðaÞ ¼ w0 þ wað1 − aÞ with w0 ¼
−1.046þ0.179

−0.170 and wa ¼ 0.14þ0.60
−0.76 from HST Cluster

Supernova Survey 2011 [34] and other constant equation
of state: w ¼ −0.7, −0.8, −0.9, −1.1, −1.2 and −1.3,
respectively, for a comparison. All of the results are
presented in Fig. 7. Here we emphasize that we have
considered the effects of the errors of w on the recon-
structed ~qðzÞ in the cases of (d) and (e) in Fig. 7. Since the
constant w for the wCDM model from Planck 2015 is very
close to −1, so the reconstruction is almost the same as the
w ¼ −1 case. While for the CPL case, the error of the
reconstruction is a little larger than those in other cases
because of the poor constraints on w0 and wa. We see that if
w lies between −0.9 and −1.1, ~qðzÞ ¼ 0 is captured within
the 95% confidence region of the reconstruction, while the
interaction is shown up if the equation of state for dark
energy deviates significantly from −1. This shows the fact
that there is a degeneracy between the interaction and the
equation of state of dark energy, as indicated in Eq. (7).

IV. DISCUSSIONS AND CONCLUSIONS

We have presented an approach to reconstruct the
interaction between dark energy and dark matter by using
Gaussian processes. To check the reliability of the GP
method, we create mock data for two fiducial models, one
is the ΛCDMmodel which has no interaction between dark
matter and dark energy, the other is a toy decaying vacuum
energy model with ρDE ¼ 3αH, which is of the interaction.
It shows that the reconstruction method by using the
Gaussian process works well and can capture the features
of these two models.
We then applied the method to the real data from Union

2.1 data sets and reconstructed the distance and its
derivatives, and then the interaction. It was found that
for the decaying vacuum energy model with w ¼ −1 [15],
there is no evidence for the existence of the interaction,
namely, the ΛCDM model is consistent with the Union 2.1
data sets within 1σ limits.
To check the influence of the equation of state of dark

energy on the method, we have also considered several
constant values of w from −0.7 to −1.3. The results show
that ~q ¼ 0 falls in 95% C.L. of the reconstruction if w lies
between −0.9 and −1.1. The wCDM model with w ¼
−1.006� 0.045 from Planck 2015 falls in this range and
q ¼ 0 is within the 1σ limits. This also holds for the CPL
parametrization case. However, as we can see from Fig. 7,
if w deviates obviously from −1, the interaction exists
beyond 2σ C.L. This reflects the degeneracy between the
interaction and the equation of state of dark energy.
Note that in our reconstruction method, only the obser-

vational data on the expansion history of the universe can
be used. For example, some measurements of Hubble
parameter can also be combined into the above
reconstruction. It is certainly of interest to develop a
reconstruction method for the interaction between dark
matter and dark energy, in which some kinetic data of the
universe, for example, the growth factor of large scale
structure, can be used for this aim. Our paper shows that the
existence of the interaction between dark matter and dark
energy found in [15] is mainly due to the data of redshift
space distortion.
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