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In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely,
relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the
first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown
that the system can be diagonalized by means of a nonlocal field redefinition, and, as a result of this
procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example,
two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The
equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological
constant coupled to each sector of the system). When a cosmological constant term is present, kinetic
mixing rescales it to a lower value which may be more amenable to observations.
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I. INTRODUCTION

The understanding of the dark matter/energy problem is
one of the great challenges of modern particle physics and
cosmology, and it has been studied from different perspec-
tives in past years [1].
An interesting advance in this direction—at least in the

context of dark matter—is based on the interaction between
standard (visible) photons and “dark” or “hidden” photons
which couple to visible matter only through kinetic mixing
[2]. Relics of this mixing can manifest through explicit
relations between the coupling constants and other observ-
ables (such as Sommerfeld enhancement) [3,4].
Although the experimental search for hidden sectors has

not given positive results so far [5], it is still a fertile arena
for proposing physics beyond the standard model and
kinetic mixing is an appealing mechanism to introduce
new physics.
A relevant and important question to answer in this

context is that of a generalization of kinetic mixing to the
case of gravity; namely, whether we can use kinetic mixing
as a guideline for constructing modified gravity theories
with some interesting phenomenological consequences
such as, for example, a natural explanation for dark energy
[6]. Although we do not have an answer to this question yet,
the objective of this paper is to go forward in this direction,
trying to understand how this mechanism works and if this
modification of gravity can be useful in understanding the
dark energy problem from a different perspective.
To the best of our knowledge, presently there are no

kinetic mixing mechanisms for gravity, although the closest
idea is bigravity which arises from a different point of view
(for example, by including interactions between metrics as

extensions of massive gravity [7]). Since gravity is a
nonlinear and covariant theory, to build such a mechanism
is not easy. However, we take a modest step by considering
a relativistic massless particle as the most simple example
of a generally covariant system. We build the covariant
analogue of kinetic mixing in this case, where the gauge
group is spanned by worldline time reparametrization.
Then, we move forward to a cosmological model
[a minisuperspace of General Relativity (GR) with
Friedmann-Robertson-Walker metric], which presents sev-
eral similarities with the relativistic particle. As shown
below in this paper a kinetic mixing mechanism can be
build in this case leading to some interesting phenomeno-
logical implications.
The paper is organized as follows. In the next section we

briefly consider the example of photons to explain kinetic
mixing. In Sec. III, we generalize this idea to relativistic
particles and study some of its implications. In Sec. IV, the
results are extended to cosmology with some of its
implications, while Sec. V contains a discussion of our
results.

II. MOTIVATING WITH AN EXAMPLE

In order to explain the main idea of kinetic mixing, let us
consider the Lagrangian density,

L ¼ ψ̄ði∂ − eAÞψ −
1

4
FμνðAÞFμνðAÞ − 1

4
FμνðBÞFμνðBÞ

þ γ

2
FμνðAÞFμνðBÞ; ð1Þ

where ψ is a fermion field coupled to the standard photon
field Aμ with coupling constant e. The field Bμ is a hidden
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Uð1Þ gauge field coupled only to Aμ through the kinetic
mixing term

γ

2
FμνðAÞFμνðBÞ;

where γ is a dimensionless coupling constant. Here
FμνðAÞ; FμνðBÞ are the field strength tensors for the photon
field and the hidden gauge field respectively. This coupling
was introduced in the 1980s by Holdom [2] as a way to
propose physics beyond the standard model.
A simple diagonalization of the system in (1) can be

carried out as follows. Let us redefine

Bμ ¼ ~Bμ þ γAμ; ð2Þ

which allows us to write

L ¼ ψ̄ði∂ − eAÞψ −
1

4
ð1 − γ2ÞFμνðAÞFμνðAÞ

−
1

4
Fμνð ~BÞFμνð ~BÞ: ð3Þ

The extra multiplicative factor in the F2ðAÞ term can be
absorbed into a redefinition of the electric charge e by
rescaling the field Aμ as

Aμ →
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p Aμ; ð4Þ

giving

L ¼ ψ̄ði∂ − ~eAÞψ −
1

4
FμνðAÞFμνðAÞ − 1

4
Fμνð ~BÞFμνð ~BÞ;

ð5Þ

where the modified charge ~e is defined to be

~e ¼ effiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p : ð6Þ

Therefore, Aμ and ~Bμ are decoupled and the only relic of
kinetic mixing is in the rescaling of the electric charge (6).

III. KINETIC MIXING FOR RELATIVISTIC
PARTICLES

In this section we generalize the mechanism of kinetic
mixing to relativistic particles. First, let us briefly review
the Lagrangian description for the free relativistic particles.
As is well known, the standard Lagrangian for the massive
relativistic point particle is given by

L½x� ¼ m
ffiffiffiffiffiffiffiffiffi
_xμ _xμ

q
; ð7Þ

where xμ is the position four vector of the particle, m its
mass and we use the Bjorken-Drell metric. The dot stands
for a derivative with respect to the proper time parameter τ.
An equivalent formulation, more suitable for our pur-

poses, is obtained by introducing an auxiliary field N,

L½x; N� ¼ 1

2N
_xμ _xμ þ

m2

2
N: ð8Þ

Both Lagrangians are equivalent in the sense that they give
rise to the same equations of motion. Furthermore, the
Lagrangian (7) can be obtained from (8) by eliminating the
auxiliary field N using its equation of motion. Formulation
(8) has the advantage of having a well-defined mass-
less limit.
The equation of motion for xμ is

d
dτ

�
_xμ

N

�
¼ 0; ð9Þ

implying that _xμ
N is a constant. On the other hand, the

equation of motion of N gives the constraint

−
_xμ _xμ
N2

þm2 ¼ 0; ð10Þ

which describes the relativistic dispersion relation.
Note that the Lagrangian (8) possesses a gauge invari-

ance, namely, time reparametrization invariance. The field
transformations are given by

δxμ ¼ ϵ_xμ δN ¼ d
dτ

ðϵNÞ; ð11Þ

where ϵ is an infinitesimal function of τ.
Since we are interested in extending the kinetic mixing

mechanism to generally covariant systems, we will start
considering the most simple example, namely, two mass-
less relativistic particles as discussed in the last section,
described by the action

S ¼
Z

dτ

�
1

2N
_xμ _xμ þ

1

2M
_yμ _yμ þ

γffiffiffiffiffiffiffiffi
NM

p _xμ _yμ
�
; ð12Þ

where xμ and yμ are the position four vectors of the two
particles, N and M are auxiliary fields and γ is a coupling
constant. The choice of the interaction is dictated by
invariance under time reparametrizations.1

Just as in the electromagnetic case (1), the action (12)
can be diagonalized by performing a field redefinition.
However, in this case, this redefinition turns out to be
nonlocal. In order to see this, we rewrite the action as

1The interaction of two relativistic particles has been studied
previously in a different context in [8].
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S¼
Z

dτ

�ð1− γ2Þ
2N

_x2þ 1

2M

�
_yμþ γ

ffiffiffiffiffi
M
N

r
_xμ

�2�
; ð13Þ

where x2 ≡ xμxμ. By performing the nonlocal redefinition

_zμ ≡ _yμ þ γ

ffiffiffiffiffi
M
N

r
_xμ; ð14Þ

the action can be written as

S ¼
Z

dτ

�ð1 − γ2Þ
2N

_x2 þ 1

2M
_z2
�
; ð15Þ

which describes two decoupled relativistic particles. Note
that γ must be chosen different from 1, otherwise, action
(12) describes only one relativistic particle.
Two comments are in order. First, note that we could

have included a mass term for the x-particle

S ¼
Z

dτ

�ð1 − γ2Þ
2N

_x2 þm2

2
N þ 1

2M
_z2
�
: ð16Þ

The extra factor ð1 − γ2Þ can be absorbed into a rescaling of
the mass m. To see this, we redefine N as

N → ð1 − γ2ÞN; ð17Þ

obtaining

S ¼
Z

dτ

�
1

2N
_x2 þ ~m2

2
N þ 1

2M
_z2
�
; ð18Þ

where ~m is defined as

~m ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
: ð19Þ

This indicates that, as with the charge e in the electro-
magnetic case, the effect of the kinetic mixing of two
relativistic particles is a rescaling of the mass of one of the
particles. (Note that we can only add a mass term for one of
the particles. A mass term for both particles would spoil the
diagonalization procedure.)
A second interesting comment is that the diagonal form

of the action (15) makes explicit the gauge symmetries of
the system, which corresponds to two independent time
reparametrizations. Indeed, the infinitesimal transforma-
tions are

δxμ ¼ ϵ1 _xμ; δN ¼ d
dτ

ðϵ1NÞ;

δzμ ¼ ϵ2 _zμ; δM ¼ d
dτ

ðϵ2MÞ; ð20Þ

or, in terms of the original fields we have

δxμ ¼ ϵ1 _xμ;

δ_yμ ¼
d
dτ

ðϵ2 _yμÞ þ
γ

2

ffiffiffiffiffiffi
M
N3

r
_Nðϵ1 − ϵ2Þ_xμ − γ

ffiffiffiffiffi
M
N

r
ðϵ1 − ϵ2Þẍμ

−
γ

2

ffiffiffiffiffi
M
N

r
ð_ϵ1 − _ϵ2Þ_xμ;

δN ¼ d
dτ

ðϵ1NÞ;

δM ¼ d
dτ

ðϵ2MÞ: ð21Þ

Note that, since the field redefinition (14) is nonlocal, the
infinitesimal transformation for δ_yμ is rather nontrivial.
These two symmetries are useful when studying the
equations of motion since they allow for the gauge choice
N ¼ M ¼ 1.

IV. COSMOLOGICAL IMPLICATIONS

In this section we will analyze the implications of our
results when applied to cosmology. If we assume the spatial
curvature of the universe equal to zero (k ¼ 0), the
Friedmann equations read

�
_a
a

�
2

¼ 8πG
3

ρ; ð22Þ

2
ä
a
þ
�
_a
a

�
2

þ 8πGp ¼ 0; ð23Þ

where aðtÞ is the cosmological scale factor, while ρðtÞ and
pðtÞ are the energy density and pressure of matter.G stands
for Newton’s constant.
In order to study kinetic mixing in this case, it is useful to

obtain Friedmann equations from an action principle. Of
course, such an action exists. It is given by the Einstein-
Hilbert Lagrangian

I ¼
Z �

−
1

16πG
ffiffiffiffiffiffi
−g

p
Rþ ffiffiffiffiffiffi

−g
p

LM

�
; ð24Þ

where gμν is the space-time metric and R the Ricci scalar.
LM is a matter Lagrangian that leads to ρ and p in the
Friedmann equations. Varying with respect to the metric,
we obtain Einstein’s equations

Rμν −
1

2
Rgμν ¼ 8πG

�
2
δLM

δgμν
− gμνLM

�
; ð25Þ

where we can identify the right-hand side with the energy-
momentum tensor
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Tμν ≡ 2
δLM

δgμν
− gμνLM: ð26Þ

To obtain Friedmann’s equations, we must use the ansatz
for the metric

ds2 ¼ N2dt2 − a2ðdx2 þ dy2 þ dz2Þ; ð27Þ
where N and a are functions only of time t, while the
energy-momentum tensor is chosen to be that of a comov-
ing perfect fluid

Tμν ¼ ðpþ ρÞUμUν − pgμν: ð28Þ

The vectorUμ stands for the fluid 4-velocity. Since the fluid
is comoving, the spatial components ofUμ vanish. Besides,
it fulfills the condition UμUμ ¼ 1. These observations
completely fix Uμ. Plugging the ansatz (27) and (28)
into Einstein’s equations (25), we recover Friedmann
equations (22) and (23).
Since we are interested in a simple and tractable case,

without the complications associated with a fully covariant
theory, we build a minisuperspace out of the Einstein-
Hilbert action using the ansatz (27) for the metric. Plugging
the ansatz into the gravitational part of the action, we obtain
the Lagrangian

L½a;N� ¼ −3
a _a2

N
; ð29Þ

whose equations of motion coincide with the Friedmann
equations without sources. From now on, we set 8πG ¼ 1.
The curvature conventions are chosen such that Vμ;νρ−
Vμ;ρν ¼ VαRα

μνρ.
It is straightforward to check that the Lagrangian (29)

has a gauge invariance given by

δa ¼ ϵ _a; δN ¼ d
dt

ðϵNÞ; ð30Þ

which corresponds to time reparametrization. It is worth
noting the similarity of this with the relativistic particle
discussed earlier. If we include a cosmological constant, the
Lagrangian has the form

L½a;N� ¼ −3
a _a2

N
− Λa3N: ð31Þ

Redefining the field variables as a ¼ −A1=3 and NA → N,
the Lagrangian can be written as

L½A;N� ¼ 2

3

�
_A2

2N
þ 3Λ

2
N

�
; ð32Þ

which is precisely the Lagrangian for the one-dimensional
massive particle (8), where the cosmological constant plays

the role of mass m2 ¼ 3Λ. Since the effect of kinetic
mixing in the relativistic particle case corresponds to
rescaling of the mass, we expect that in the case of the
cosmological model, the consequence of this mechanism is
to rescale the cosmological constant.
To include matter in the system (29), we need to

supplement the action with the
ffiffiffiffiffiffi−gp

LM term. The matter
Lagrangian in this case defines a constrained system
(because of the condition UμUμ ¼ 1) and needs to be
handled appropriately. Without going into technical details,
it is enough for our purposes to note that, when varying the
metric, the matter Lagrangian contributes with

δð ffiffiffiffiffiffi
−g

p
LMÞ ¼ 3Na2pδa − a3ρδN: ð33Þ

The first Friedmann equation (22) (G0
0 part of the Einstein’s

equations) comes from the variation of the action with
respect to N, while the second Friedmann equation (Gi

i)
comes from the Euler-Lagrange equation for a, combined
with the earlier equation. Due to the gauge invariance (30),
we can choose the condition N ¼ 1 in the equations [9,10].
The second Friedmann equation (23) can be cast in a

more compact form. Taking the time derivative of (22) and
substituting the value of ä from equation into (23), we
obtain the equation

d
dt

ðρa3Þ ¼ −p
d
dt

ða3Þ; ð34Þ

which resembles the first law of thermodynamics.
Summarizing, the first Friedmann equation (22), Eq. (34)

along with an equation of state fðp; ρÞ ¼ 0, can be solved
simultaneously to give the evolution of the scale factor a,
the density ρ and the pressure p with time, fully determin-
ing the system.

A. Including aðtÞ and bðtÞ fields
Having these facts in mind, the cosmological Lagrangian

for two fields aðtÞ and bðtÞ with a kinetic mixing is

L½a; b; N;M� ¼ −3
a _a2

N
− 3

b _b2

M
þ 6γ

_a _bffiffiffiffiffiffiffiffi
NM

p ; ð35Þ

where the kinetic mixing has been constructed in analogy
with the two-relativistic particles discussed above.
Note that the Lagrangian (35) can also be diagonalized

by means of a nonlocal redefinition of fields. By complet-
ing the square

L½a; b; N;M� ¼ −3
a _a2

N

�
1 −

γ2

ab

�
− 3

bð _b − γ
ffiffiffiffi
M
N

q
_a
bÞ2

M
;

ð36Þ
we can make the field redefinitions
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N

1− γ2

ab

→ N; _b− γ

ffiffiffiffiffi
M
N

r
_a
b
→ _c;

M
b
→

M
c
; ð37Þ

leading to

L ¼ −3
a _a2

N
− 3

c_c2

M
ð38Þ

which represent two noninteracting cosmological models.
Accordingly, the Lagrangian (35) has two time reparamet-
rization symmetries, one for each independent sector. These
transformations in terms of the fields a, b, N and M are
nonlocal due to the redefinitions in (37). See the Appendix
for a discussion on this point. However, it is important to
remember that these two symmetries allow us to impose
gauge fixing conditions on N and M.

We can calculate the equations of motion, including
matter as in (33). The equation of motion for N and M
yields to

_a2

a2
¼ ρ

3
þ γ

_a _b
a3

; ð39Þ

_b2

b2
¼ ~ρ

3
þ γ

_a _b
b3

; ð40Þ

while the equations associated to a and b are

_a2 þ 2aäþ a2p − 2γb̈ ¼ 0; ð41Þ

_b2 þ 2bb̈þ b2 ~p − 2γä ¼ 0. ð42Þ

(a) (b)

(c)

FIG. 1. Numerical solution of the field equations when pressureless matter is coupled to both sectors, for different values of the
coupling constant (γ ¼ f−0.95;−0.65;−0.35; 0.25; 0.55; 0.85g). Upper curves correspond to increasing values of γ. The dotted lines
represent the standard GR solution. (a) Evolution of the scale parameter aðtÞ. (b) Evolution of the Hubble parameter HaðtÞ. (c) A
comparison between the evolution of the scale parameter aðtÞ with kinetic mixing and the standard GR evolution
aGRðtÞ (coupled to dust).

COSMOLOGICAL KINETIC MIXING PHYSICAL REVIEW D 91, 123528 (2015)

123528-5



We are choosing N ¼ M ¼ 1 from now on. The notation
used is ρ and p for the density and pressure of the matter
coupled to the a-sector, while ~ρ and ~p are the correspond-
ing magnitudes in the b-sector.
Using the same trick shown above, we can transform the

last two equations into two first law equations. This gives

d
dt

ðρa3 þ 3γ _a _bÞ ¼ −
�
p − 2γ

b̈
a2

�
d
dt

ða3Þ; ð43Þ

d
dt

ð~ρb3 þ 3γ _a _bÞ ¼ −
�
~p − 2γ

ä
b2

�
d
dt

ðb3Þ: ð44Þ

Note that the kinetic mixing can be interpreted as a time
dependent contribution to the energy density and pressure
on both sectors.
The set of Friedmann equations (39) and (40), the

equations (43) and (44), along with two equations of state

fðp; ρÞ ¼ 0 and ~fð ~p; ~ρÞ ¼ 0, completely determine the
state of the system. Nonetheless, even for the simplest cases
of matter (radiation or pressureless matter), an analytical
solution is very hard to obtain. However, as shown in the
next section, we can use numerical integration of the
equations to study the behavior of the fields.

B. Numerical integration

In this section, we choose some appropriated equations
of state, fðp; ρÞ ¼ 0 and ~fð ~p; ~ρÞ ¼ 0, and solve equa-
tions (39), (40), (43) and (44) numerically. For simplicity,
the equations of state will describe sources such as
pressureless matter, radiation or a cosmological constant.
It will be shown below that the most interesting case is
when considering a cosmological constant coupled to one
of the sectors.
The numerical integration of the equations is done with

the arbitrary initial conditions

(a) (b)

(c)

FIG. 2. Numerical solution of the field equations when radiation is coupled to both sectors, for different values of the coupling
constant (γ ¼ f−0.95;−0.65;−0.35; 0.25; 0.55; 0.85g). Upper curves correspond to increasing values of γ. The dotted lines represent
the standard GR solution. (a) Evolution of the scale parameter aðtÞ. (b) Evolution of the Hubble parameter HaðtÞ. (c) A comparison
between the evolution of the scale parameter aðtÞ with kinetic mixing and the standard GR evolution aGRðtÞ (coupled to radiation).
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Numerical solution of the field equation when dust is coupled the a-sector, while radiation couples to the b-sector, for different
values of the coupling constant (γ ¼ f−0.65;−0.35;−0.15; 0.3; 0.6; 0.9g). Upper curves correspond to increasing values of γ. The
dotted lines represent the standard GR solutions. (a) Evolution of the scale parameter aðtÞ. (b) Evolution of the scale parameter bðtÞ.
(c) Evolution of the Hubble parameter HaðtÞ. (d) Evolution of the Hubble parameter HbðtÞ. (e) A comparison between the evolution of
the scale parameter aðtÞ with kinetic mixing and the standard GR evolution aGRðtÞ (coupled to dust). (f) A comparison between the
evolution of the scale parameter bðtÞ with kinetic mixing and the standard GR evolution bGRðtÞ (coupled to radiation).
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Numerical solution of the field equation when a cosmological constant couples to the a-sector, while dust couples to the b-
sector, for different values of the coupling constant (γ ¼ f0.15; 0.3; 0.75g). The closest curves to the dotted line correspond to smaller
values of γ. The dotted lines represent the standard GR solution. (a) Evolution of the scale parameter aðtÞ. (b) Evolution of the scale
parameter bðtÞ. (c) Evolution of the Hubble parameter HaðtÞ. (d) Evolution of the Hubble parameter HbðtÞ. (e) Evolution of the energy
density ρðtÞ in the a-sector. (f) Evolution of the energy density ρ

∼ðtÞ in the b-sector.
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að0Þ ¼ bð0Þ ¼ 1; ρð0Þ ¼ ~ρð0Þ ¼ 1:

The overall behavior of the evolution of the system is not
affected by choosing different boundary conditions. Note
that initial conditions for the first derivatives of the fields
are not needed, since they can be expressed algebraically in
terms of the fields and the energy densities [see (39)–(40)].

1. Pressureless matter coupled to both sectors

We consider the equations of state

p ¼ 0 ~p ¼ 0; ð45Þ

which corresponds to pressureless matter (or dust) coupled
to both sectors.
The evolution of the scale parameter aðtÞ for different

values of γ is displayed in Fig. 1(a). As it can be seen from
the figure, the late time evolution of the scale factor aðtÞ
does not present new features compared to the standard
cosmology solution aGRðtÞ (plotted as a dotted line) with
the same initial conditions. Indeed, the Hubble parameter

HaðtÞ ¼ _aðtÞ
aðtÞ evolves similar to the standard case, as it can

be noted from Fig. 1(b). Furthermore, for late times, the
evolution of aðtÞ is just a rescaling of aGRðtÞ, as seen from
Fig. 1(c), which plots the evolution of aðtÞ=aGRðtÞ. For
each value of γ, this magnitude tends to a constant.

2. Radiation coupled to both sectors

Similar considerations can be made if we consider
radiation coupled to both sectors of the theory. In this
case, the appropriated equations of state are

p ¼ 1

3
ρ ~p ¼ 1

3
~ρ: ð46Þ

Choosing the same initial conditions as in the previous
case, the behavior of the scale factor is displayed in
Fig. 2(a) for different values of γ. The Hubble parameter
is plotted in Fig. 2(b), while the ratio aðtÞ=aGRðtÞ is in
Fig. 2(c). Just like the previous case, the late time evolution
is similar to standard cosmology with radiation.

3. Pressureless matter coupled to a-sector, radiation
coupled to b-sector

In the two above cases, both sectors are treated in a
symmetric way. Now we couple different kinds of matter
(with different equations of state) to each sector and show
that the above conclusions remain, i.e., the late time
evolution of the scale factors is similar to standard
cosmology. For definiteness, we couple pressureless matter
to the a-sector and radiation to the b-sector. In this case, the
pertinent equations of state are

p ¼ 0 ~p ¼ 1

3
~ρ: ð47Þ

The same plots as in the above sections are displayed. The
evolution of aðtÞ and bðtÞ [Figs. 3(a) and 3(b)], the Hubble
parameters HaðtÞ and HbðtÞ [Figs. 3(c) and 3(d)] and the
ratios aðtÞ=aGRðtÞ and bðtÞ=bGRðtÞ [Figs. 3(e) and 3(f)]
show no particular new features than those from general
relativity.

4. Cosmological constant coupled to a-sector,
pressureless matter coupled to b-sector

As opposite to the above cases, when coupling a
cosmological constant, the kinetic mixing plays an impor-
tant role. To see this, we choose equations of state
describing a constant energy density in the a-sector and
dust in the b-sector. These are given by

p ¼ −ρ ~p ¼ 0: ð48Þ
We can see from Figs. 4(a) and 4(b) that the behavior of the
scale factors aðtÞ and bðtÞ differs drastically from the GR
case. In Fig. 4(a) we can see the evolution of aðtÞ for
different values of γ. In all cases the growth is exponential,
just as in GR. Nonetheless, for increasing values of γ, the
velocity of the expansion is slower, which indicates that
kinetic mixing produces a rescaling of the cosmological
constant. Another way to see this effect is with Fig. 4(e),
where the evolution of the a-sector energy density ρ is
displayed. In ordinary GR with cosmological constant, the
energy density remains constant in time, while for γ ≠ 0 the
energy density drops to a lower constant value. A similar
observation can be made in Fig. 4(c) from where we can see
that the Hubble parameter is constant, but smaller than
standard GR, when γ is turned on.
On the other hand, the evolution of the bðtÞ parameter

becomes exponential, although there is only dust coupled
in this side [see Fig. 4(b)]. Note from Fig. 4(f) that the
energy density ~ρ becomes constant for late times, as
opposite to GR, where it drops to zero. Similarly, the
Hubble parameter becomes constant in time [Fig. 4(d)].
This indicates that the b-sector of the theory feels an
effective cosmological constant due to the presence of the
kinetic mixing.
Summarizing, in this setup, the kinetic mixing has two

effects: it shields the cosmological constant in the a-sector
and turns on an effective cosmological constant in the b-
sector.

V. DISCUSSION AND CONCLUSIONS

Hoping to understand how to construct a kinetic mixing
mechanism for gravity, we have turned our attention to
simple models that are not fully covariant theories but rather
have a time reparametrization invariance, which can be
regarded as a “simpler” case of covariance. The first system
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considered is composed of two relativistic particles inter-
acting with each other, while the second system is a
cosmological model. Both systems are related to gravity;
the Lagrangian for the massive relativistic particle (8) can be
regarded as a one-dimensional theory of gravity interacting
with scalar fields, while the cosmological model considered
in (29) can be easily obtained by a minisuperspace con-
struction starting from General Relativity. In both cases, the
kinetic mixing procedure has given similar results.
For the interacting relativistic particles (12), the system

can be decoupled by means of an appropriated nonlocal
redefinition of fields, leaving two noninteracting particles.
However, as a result of this redefinition, the mass of one the
particles gets rescaled by a factor

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
, where γ is the

coupling constant of the kinetic mixing. It is important to
notice that one of the particles must be chosen massless
since including mass terms for both particles would spoil
the diagonalization procedure. This rescaling of the mass is
similar to what happens with kinetic mixing in electrody-
namics (1), where it is the electric charge that gets rescaled,
allowing for phenomenological searches of this hidden
interaction. The diagonalization procedure also makes
explicit the symmetries of the system (12). Since it
describes two independent particles, the system possesses
two independent time reparametrization symmetries (21).
This also resembles the electromagnetic case where, after
the diagonalization, the two Uð1Þ gauge symmetries are
explicit.
For the interacting cosmological models (35) it is more

difficult to obtain conclusions since the theory is nonlinear.
However, it is straightforward to prove that, similarly to the
particles case, this system can be decoupled by means of a
nonlocal redefinition of the fields, leaving explicitly two
gauge symmetries (time reparametrizations).
In order to study the consequences of the kinetic mixing

in the cosmological setup, it is easier to study the evolution
of the fields through numerical integration of the equations
of motion. Several scenarios can be studied, depending on
which kind of matter is coupled to the different sectors of
the theory. In Figs. 1, 2 and 3 it is displayed the evolution of
the fields with time, when dust, radiation or a combination
of both are present in the system. It can be seen from the
figures that no significant difference occurs when the
kinetic mixing is turned on (compared to the standard
cosmology evolution with the same initial conditions). For
the three cases, the late time evolution of the scale factors
tends to a rescaling of the standard GR solution.
It is worthwhile to mention that the evolution of the scale

factors is always decelerating in the cases of Figs. 1 and 2, a
fact that can be easily checked numerically. However, in the
case of Fig. 3 (dust coupled to the a-sector, radiation in the
other) with negative γ, the initial evolution of the scale
factor aðtÞ presents a short period of acceleration, whose
extension in time increases as the value of γ shifts away
from zero. Although this is not a period where the Hubble

parameterHa is constant, it may be useful to accommodate
a period of inflation. Further studies in this direction will be
left for future work.
The situation is very different when a cosmological

constant is coupled to the system. In Fig. 4 is plotted the
evolution of the system when a cosmological constant is
coupled to the a side and dust on the b side. In this setup,
the kinetic mixing has two effects. First, the value of the
energy density in the a-sector (constant in the case of
standard GR) drops a to smaller constant value. This
indicates that the cosmological constant in the a side gets
screened to a smaller value, similar to the effect of the
rescaling of the mass in the relativistic particles example.
On the other side, the b-sector of the theory evolves
exponentially, attaining an effective cosmological constant,
indicating that the kinetic mixing allows the b side to feel
the cosmological constant coupled in the a side. As
mentioned above, a similar observation can be made for
the relativistic particles, when one particle interacts with the
matter coupled to the other one. Note that the value of
the constant energy density in the b-sector is smaller than
the a-sector.
The rescaling observed numerically may help in under-

standing the smallness of the measured cosmological
constant [11]. Recall that the observed value for it is about
120 orders of magnitude smaller than the prediction from
QFT. A process such as kinetic mixing might help to
alleviate the problem. However, note from Figs. 4(e) and
4(f) that values of γ of the order 1–10−1 generates values for
the energy density of 10−1 in the a-sector and 10−2 in the b-
sector (in units used in the paper). It is unclear to us whether
the observed rescaling might correct 120 orders of magni-
tude without introducing an unnaturally large value for γ.
Another way to interpret the result is by considering that

our universe is coupled to the b-sector of the theory,
containing only normal matter, and the cosmological
constant measured by observations might be due to a
kinetic mixing with a hidden sector.
Although the examples mentioned here are just simple

cases of fully covariant theories, the kinetic mixing
mechanism developed for the cosmological case still leaves
much work to be done. Further study must be done on how
this modifies the inflation scenario and to understand the
evolution of cosmological perturbation in this context.
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APPENDIX

Here we present the infinitesimal symmetry transforma-
tions of the action (36), corresponding to the two inde-
pendent time reparametrizations.
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Recall that using the field redefinition (37)

n≡ N

1 − γ2

ab

; _c≡ _b − γ

ffiffiffiffiffi
M
N

r
_a
b
; m≡M

c
b
; ðA1Þ

the action (36) becomes diagonalized

L ¼ −3
a _a2

n
− 3

c_c2

m
: ðA2Þ

In this setting, both symmetries can be easily written as

δa ¼ ϵ1 _a; δn ¼ d
dt

ðϵ1nÞ;

δc ¼ ϵ2 _c; δm ¼ d
dt

ðϵ2mÞ; ðA3Þ

where ϵ1 and ϵ2 are two arbitrary functions of time.
To find the transformations in terms of the original fields,

we perform a variation of the relations (A1), yielding

δn ¼ 1

1 − γ2

ab

δN −
γ2N

a2bð1 − γ2

abÞ
2
δa −

γ2N

ab2ð1 − γ2

abÞ
2
δb;

ðA4Þ

δm ¼ c
b
δM þM

b
δc −

Mc
b2

δb; ðA5Þ

δ_c ¼ δ _b − γ

ffiffiffiffiffi
M
N

r
1

b
δ _aþ γ

ffiffiffiffiffi
M
N

r
_a
b2

δb − γ
_a

2b
ffiffiffiffiffiffiffiffi
MN

p δM

þ γ

ffiffiffiffiffiffi
M
N3

r
_a
2b

δN: ðA6Þ

Using the transformations (A3), and with the aid of the
relations (A1), the above equations can be solved to find
δb, δN, and δM in terms of the fields and the parameters
ϵ1 and ϵ2 [the transformation δa is already given in
(A3)]. Of course, such a procedure cannot be done
algebraically, since the relation between c and the other
fields is nonlocal in time, which implies nonlocal field
transformations.
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