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We investigate the effect of equilateral-type primordial trispectrum on the halo/galaxy bispectrum. We
consider three types of equilateral primordial trispectra which are generated by quartic operators naturally
appearing in the effective field theory of inflation and can be characterized by three nonlinearity
parameters, g _σ

4

NL, g
_σ2ð∂σÞ2
NL , and gð∂σÞ

4

NL . Recently, constraints on these parameters have been investigated from
Cosmic Microwave Background (CMB) observations by using WMAP9 data. In order to consider the halo/
galaxy bispectrum with the equilateral-type primordial trispectra, we adopt the integrated perturbation
theory in which the effects of primordial non-Gaussianity are wholly encapsulated in the linear primordial
polyspectrum for the evaluation of the biased polyspectrum. We show the shapes of the halo/galaxy
bispectrum with the equilateral-type primordial trispectra and find that the primordial trispectrum

characterized by g _σ
4

NL provides the same scale dependence as the gravity-induced halo/galaxy bispectrum.

Hence, it would be difficult to obtain the constraint on g _σ
4

NL from the observations of the halo/galaxy

bispectrum. On the other hand, the primordial trispectra characterized by g _σ
2ð∂σÞ2

NL and gð∂σÞ
4

NL provide the
common scale dependence which is different from that of the gravity-induced halo/galaxy bispectrum on
large scales. Hence, future observations of the halo/galaxy bispectrum would give constraints on the

nonlinearity parameters, g _σ
2ð∂σÞ2

NL and gð∂σÞ
4

NL independently from CMB observations.
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I. INTRODUCTION

The primordial non-Gaussianity provides crucial infor-
mation on the interaction structure of inflation (for a review,
see [1]). At present, the most stringent constraint on
primordial non-Gaussianity is provided by the Planck
Collaboration [2] and it implies no evidence of non-
Gaussianity. Although the resultant constraint has almost
approached the observational limit predicted by ideal
observations, it is still rather weak from a particle physics
point of view. Therefore, it would be very interesting to try
further constraining the non-Gaussianity based on the
information other than CMB.
For this purpose, it has been recently noticed that large-

scale halo/galaxy distributions provide distinct information
on the primordial non-Gaussianity. In particular, in the
presence of local-type primordial non-Gaussianity, it has
been shown that thehalo/galaxypower spectrum is enhanced
on large scales (the so-called “scale-dependent bias”), which
is helpful to impose the constraint on the primordial non-
Gaussianity (e.g., [3–5]). Although the current constraints
derived from the scale-dependent bias are still weaker than
those from CMB [6], from the future observational projects
such as DES [7], BigBoss [8], LSST [9], EUCLID [10], and
HSC/PFS (Sumire) [11], it is expected that we can get the
constraint ΔflocalNL ∼Oð0.1Þ [12].
The influence of the scale-dependent bias sourced by the

primordial non-Gaussianity appears not only in the halo/

galaxy power spectrum but also in the halo/galaxy bispec-
trum and other polyspectra. Although it is well known that
the late-time nonlinear gravitational evolution also gives the
non-Gaussianity, if the amplitude of primordial non-
Gaussianity is sufficiently large, the halo/galaxy bispectrum
sourced by the primordial non-Gaussianity has a different
scale dependence from the nonlinear gravitational evolution
and it can dominate on large scales [13–21]. In particular,
when we consider the higher-order local-type primordial
non-Gaussianity, by combining the analysis of the halo/
galaxy power spectrum with the bispectrum it is expected
that we could get a much tighter constraint on the primordial
non-Gaussianity. Another important fact with the halo/
galaxy bispectrum is that the amplitude of the contribution
sourced by the equilateral-type primordial bispectrum is also
shown to be enhanced on large scales [13,15,18],which does
not give an enhancement in the halo/galaxy power spectrum.
Regardless of these works, compared with the analysis of

CMB, the one of Large Scale Structure (LSS) has not
covered another important class of primordial non-
Gaussianity, that is, the trispectra generated in theoretical
models which produce the equilateral-type bispectrum,
which from now on we call “equilateral-type trispectra.”
This is because the shapes of primordial trispectra of this
class strongly depend on the theoretical models, and they
are generically much more complicated than those of the
local-type trispectra. Recently, however, Ref. [22] has
investigated an optimal analysis of such equilateral-type
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trispectra by making use of CMB observations (for the
earlier works to obtain the constraints on the equilateral-
type trispectra based on CMB observations, see Refs. [23–
27]). For the analysis they introduce three new nonlinearity
parameters, g _σ

4

NL, g
_σ2ð∂σÞ2
NL , and gð∂σÞ

4

NL , which, respectively,
represent the amplitudes of the primordial trispectra that
correspond to quartic operators of the form _σ4, _σ2ð∂σÞ2, and
ð∂σÞ4 in theeffective field theoryof inflation(wewill showthe
detailed forms of these trispectra later in Sec. IV). The reason
that only these three trispectra have been considered is that
their forms are relatively simple and they have natural
theoretical origin in the sense that they are shown to be
generatedbygeneralk inflation [28–30] and the effective field
theory of inflation [31,32].
Following Ref. [22], in this paper, we investigate the

effect of these three equilateral-type primordial trispectra
on the halo/galaxy bispectrum and see if we can get
constraints on these trispectra from the future LSS obser-
vations independently from those from CMB. For this
purpose, we adopt the integrated perturbation theory (iPT)
[33] which enables us to connect the halo/galaxy clustering
with the initial matter density field and incorporate the
nonlocal biasing effect in a straightforward manner [18,34–
37]. Furthermore, it is worth mentioning that in iPT, we do
not rely on the approximations like the peak-background
split and the peak formalism.
This paper is organized as follows. In Sec. II, we begin

by presenting a general formula for the halo/galaxy
bispectrum in the presence of the primordial bispectrum
and trispectrum in terms of iPT. In Sec. III, we show that
while the effect of the equilateral-type primordial bispec-
trum does not appear in the halo/galaxy power spectrum, it
appears in the halo/galaxy bispectrum. For the analysis, we
estimate the amplitude of each contribution based on the
equilateral configuration where the signal becomes maxi-
mum. Then we investigate the effect of the equilateral-type
trispectra mentioned above on the halo/galaxy bispectrum
and show that two of them, T _σ2ð∂σÞ2

Φ and Tð∂σÞ4
Φ can give the

dominant contribution on very large scales, while T _σ4
Φ gives

the same scale dependence as the one induced by the
nonlinearity of the gravitational evolution in Sec. IV. In
the same section, we also consider the shape dependence of
the halo/galaxy bispectrum to distinguish the effects by the
equilateral-type bispectrum from the equilateral-type tris-

pectra T _σ2ð∂σÞ2
Φ and Tð∂σÞ4

Φ which provide the common scale
dependence on large scales for the equilateral configura-
tion. Section V is devoted to a summary. In our equations
throughout this paper, we adopt the best-fit cosmological

parameters taken from Planck [38] unless specifically
mentioned.

II. HALO/GALAXY SPECTRA WITH
PRIMORDIAL NON-GAUSSIANITY

In this section, we briefly review the formula for the
power- and bi-spectra of galaxies and halos with primordial
non-Gaussianity based on the iPT. In Sec. II A, we first
present the general expressions for the power and bispec-
trum. We keep the terms giving leading contributions up to
the one-loop order in iPT. We then derive the concrete
expressions of the multipoint propagators in the large-scale
limit in Sec. II B, which will be the important building
blocks to study the scale-dependent behavior of the power
and bispectrum on large scales.

A. Halo/galaxy power spectrum and bispectrum from
integrated perturbation theory

We begin by defining the power- and bi-spectra of biased
objects (halos/galaxies), PX and BX,

hδXðkÞδXðk0Þi≡ ð2πÞ3δð3Þðkþ k0ÞPXðkÞ; ð1Þ
hδXðk1ÞδXðk2ÞδXðk3Þi

≡ ð2πÞ3δð3Þðk1 þ k2 þ k3ÞBXðk1;k2;k3Þ; ð2Þ
where the quantity δX is a Fourier transform of the number
density field of the biased objects. In iPT, the perturbative
expansion of the statistical quantities such as the power-
and bi-spectra of biased objects are composed of the
multipoint propagators and the polyspectra of the linear
density field δL.
The definition of the ðnþ 1Þ-point propagator of the

biased objects ΓðnÞ
X is given by [33]�

δnδXðkÞ
δδLðk1ÞδδLðk2Þ…δδLððknÞ

�

¼ ð2πÞ3−3nδðk1 þ k2 þ � � � þ knÞΓðnÞ
X ðk1;k2;…;knÞ;

ð3Þ
and it represents the influence on δX due to the infinitesimal
variation for the initial density field δL, such as nonlinear
gravitational evolution, nonlocal bias, redshift space dis-
tortion, etc. In Sec. II B, we will show the concrete
expression of the 2- and 3-point propagators in the
large-scale limit which play important roles in this paper.
On the other hand, the power-, bi-, and tri-spectra of the

linear density field PL, BL, and TL are defined by

hδLðkÞδLðk0Þi ¼ ð2πÞ3δðkþ k0ÞPLðkÞ;
hδLðk1ÞδLðk2ÞδLðk3Þi ¼ ð2πÞ3δðk1 þ k2 þ k3ÞBLðk1;k2;k3Þ;

hδLðk1ÞδLðk2ÞδLðk3ÞδLðk4Þi ¼ ð2πÞ3δðk1 þ k2 þ k3 þ k4ÞTLðk1;k2;k3;k4Þ: ð4Þ
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It is worth mentioning that the linear density field δL is
related to the primordial curvature perturbation Φ through
the function MðkÞ,

δLðkÞ ¼ MðkÞΦðkÞ;

MðkÞ ¼ 2

3

DðzÞ
Dðz�Þð1þ z�Þ

k2TðkÞ
H2

0Ωm0

;
ð5Þ

where TðkÞ, DðzÞ, H0, and Ωm0 are the transfer function,
the linear growth factor, the Hubble parameter at present
epoch, and the matter density parameter, respectively. z�
denotes an arbitrary redshift at the matter-dominated era.
For the concrete form of the transfer function and the
linear growth factor, we use the ones adopted in [39]
and [40], respectively. Furthermore, because of the finite
resolution of any observation, the density field always
requires the procedure of smoothing over some length
scale R. For the smoothing, we use the window function
WðkRÞ which is the spherical top-hat function of R,

WðkRÞ ¼ 3

�
sinðkRÞ
ðkRÞ3 −

cosðkRÞ
ðkRÞ2

�
; ð6Þ

in Fourier space. It is also useful to define the mass
scale M,

M ≡ 4

3
πR3ρm

≃ 1.16 × 1012Ωm0

�
R

h−1Mpc

�
3

h−1M⊙; ð7Þ

which is regarded as the mass of matter enclosed by the
top-hat window.
With the relation (5), the linear power spectrum is

expressed in terms of that of the primordial curvature
perturbation as

PLðkÞ ¼ MðkÞ2PΦðkÞ; ð8Þ

with

hΦðkÞΦðk0Þi ¼ ð2πÞ3δðkþ k0ÞPΦðkÞ; ð9Þ

where we assume the scale-invariant primordial power
spectrum, that is, PΦðkÞ ∝ k−3, for simplicity.1 We can
define the variance of density fluctuations smoothed on
scale R by

σ2R ≡ 1

2π2

Z
∞

0

dkk2WðkRÞ2MðkÞ2PΦ; ð10Þ

and we choose the normalization of the primordial power
spectrum so that it gives

σ8 ¼ σðR ¼ 8h−1 MpcÞ ¼ 0.815; ð11Þ

which is the value of σ8 reported by the Planck
Collaboration [38].
In terms of the multipoint propagators and the linear

polyspectra introduced above, the power spectrum of the
biased objects can be written as

PXðkÞ ¼ P0 þ Pbis þ � � � ; ð12Þ

with

P0 ¼ ½Γð1Þ
X ðkÞ�2PLðkÞ; ð13Þ

Pbis ¼ Γð1Þ
X ðkÞ

Z
d3p
ð2πÞ3 Γ

ð2Þ
X ðp;k − pÞBLðk;−p;−kþ pÞ:

ð14Þ

Here we have considered the perturbative expansion up to
the one-loop order in iPT.2 Up to the one-loop order in iPT,
the contribution from the primordial trispectrum does not
appear. It appears at the two-loop order. However, as shown
later, in cases with the equilateral-type non-Gaussianity, the
one-loop order contribution given by Eq. (14), which is
induced by the primordial bispectrum, is not so significant,
and it is expected that two-loop order contribution related
with the primordial trispectrum would be much suppressed.
Hence, here, for the halo/galaxy power spectrum, we
neglect the contribution from the equilateral-type primor-
dial trispectrum.
Similarly, the bispectrum of the biased objects can be

written as

BXðk1;k2;k3Þ ¼ Bgrav þ Bbis þ Btris þ � � � ; ð15Þ

with

Bgrav ¼ ½Γð1Þ
X ðk1ÞΓð1Þ

X ðk2ÞΓð2Þ
X ð−k1;−k2ÞPLðk1Þ

× PLðk2Þ þ 2 perms�; ð16Þ

Bbis ¼ Γð1Þ
X ðk1ÞΓð1Þ

X ðk2ÞΓð1Þ
X ðk3ÞBLðk1;k2;k3Þ; ð17Þ

Btris ¼
1

2
Γð1Þ
X ðk1ÞΓð1Þ

X ðk2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
X ðp;k3 − pÞ

× TLðk1;k2;p;k3 − pÞ þ 2 perms: ð18Þ

1For the equilateral-type trispectrum, a generalization to the
case of the slightly scale-dependent power spectrum has been
discussed in Ref. [22].

2In iPT, there is another term at one-loop order which is
constructed from two PL and two Γð2Þ

X . However, since it was
shown in [36] that this term is negligible on large scales, we do
not consider this term in this paper.
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Again, we have considered the perturbative expansion up to
the one-loop order in iPT3 and we find that for the halo/
galaxy bispectrum the contribution from the primordial
trispectrum appears at the one-loop order.
In Fig. 1, diagrammatic representation of each term in

Eqs. (12) and (15) is shown. A double solid line connected
with a grey circle indicate the multipoint propagator of
biased objects ΓðnÞ

X while a crossed circle glued to multiple
single solid lines indicate the correlator of the initial linear
density field.

B. Multipoint propagators in the large-scale limit

The multipoint propagator ΓðnÞ
X is defined as a fully

nonperturbative quantity and it is difficult to evaluate it
rigorously. But we know that the halo/galaxy polyspectra
are generically dominated by the nonlinearity of the
gravitational evolution on small scales and large scales
are the only window where the effect of the primordial non-
Gaussianity can be significant. In such a large-scale limit
where the scale of interest ∼1=ki is much larger than the
typical scale of the formation of the collapsed object ∼1=p,
the perturbative treatment works well and the multipoint
propagators can be simplified as

Γð1Þ
X ðkÞ≃ 1þ cL1 ðkÞ;

Γð2Þ
X ðk1;k2Þ≃ F2ðk1;k2Þ þ

�
1þ k1 · k2

k22

�
cL1 ðk1Þ

þ
�
1þ k1 · k2

k21

�
cL1 ðk2Þ

þ cL2 ðk1;k2Þ; ð19Þ
where F2 is the second-order kernel of standard perturba-
tion theory which is given by

F2ðk1;k2Þ ¼
10

7
þ
�
k2
k1

þ k1
k2

�
k1 · k2

k1k2
þ 4

7

�
k1 · k2

k1k2

�
2

:

ð20Þ

Due to the symmetric property of F2, we have

Γð2Þ
X ð−p;pÞ≃ cL2 ð−p;pÞ: ð21Þ

In Eq. (19), cLn is a renormalized bias function defined in
Lagrangian space, given by

cLnðk1;k2; � � � ;knÞ

¼ ð2πÞ3n
Z

d3k0

ð2πÞ3
�

δnδLXðk0Þ
δδLðk1ÞδδLðk2Þ � � � δδLððknÞ

�
;

ð22Þ

where δLX is the number density field of biased objects in
Lagrangian space.
For a simple model of nonlocal halo bias proposed by

Ref. [33,35], the renormalized bias function for halos with
mass M is given by

cLnðk1;k2; � � � ;knÞ ¼
AnðMÞ
δnc

Wðk1;MÞ…Wðkn;MÞ

þ An−1ðMÞσnM
δnc

d
d ln σM

×

�
Wðk1;MÞ…Wðkn;MÞ

σnM

�
; ð23Þ

where δcð≃1.686Þ is the so-called “critical density” of the
spherical collapse model and σM is the variance of density
fluctuations on the mass scale M defined by Eq. (7). Here,
AnðMÞ is defined by

AnðMÞ≡Xn
j¼0

n!
j!
δjcbLj ðMÞ; ð24Þ

where bLj ðMÞ is the jth order scale-independent Lagrangian
bias parameter which is constructed from the universal
mass function as

bLj ðMÞ ¼ ð−σMÞ−jf−1MF
dj

dνj
ðfMFðνÞÞ: ð25Þ

Throughout the paper, we adopt Sheth-Tormen mass
function [41] given by

FIG. 1. Diagrammatic representation of each term in Eqs. (12) (upper) and (15) (lower).

3In iPT, there are other five terms at one-loop order denoted by
Bloop;1
grav , Bloop;2

grav , Bloop;1
bis , Bloop;2

bis , Bloop;3
bis in [18]. However, since it

was shown in the paper that all of these terms are negligible on
large scales for the case with the equilateral-type primordial
bispectrum, we do not consider these terms in this paper.
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fSTðνÞ ¼ AðpÞ
ffiffiffi
2

π

r
½1þ ðqν2Þ−p� ffiffiffi

q
p

νe−qν
2=2: ð26Þ

In Eq. (26), ν ¼ δc=σM, p ¼ 0.3, q ¼ 0.707, and
the normalization factor AðpÞ ¼ ½1þ Γð1=2 − pÞ=
ð ffiffiffi

π
p

2pÞ�−1.
In the large-scale limit where ki → 0, the window

function and its derivative approach Wðki;RÞ → 1 and
dWðki;RÞ=d ln σM → 0. Therefore, the renormalized bias
function and the multipoint propagator do not have
significant scale dependence. Before closing this section,
and for later convenience, it is worth mentioning that in the
large-scale limit, MðkÞ appearing in Eq. (5) has a scale
dependence

MðkÞ ∝ k2: ð27Þ

III. HALO/GLAXY POWER SPECTRUM AND
BISPECTRUM WITH EQUILATERAL-TYPE

PRIMORDIAL BISPECTRUM

In this section, based on the simple expressions for the
multipoint propagators on large scales which are obtained
in the previous section, we will investigate the effect of an
equilateral-type primordial bispectrum on the halo/galaxy
power spectrum and bispectrum in Secs. III A and III B,
respectively.

A. Halo/galaxy power spectrum with equilateral-type
primordial bispectrum

Among the terms of the halo/galaxy power spectrum in
Eq. (12), P0 generically gives the dominant contribution on
small scales, which means that any type of corrections can
be significant only on large scales. Therefore, first let us see
the scale dependence of P0 in the large-scale limit. From

Eq. (13) and making use of the fact that Γð1Þ
X ðkÞ has no scale

dependence on large scales, it is estimated as

P0 ∝ MðkÞ2PΦ ∝ k: ð28Þ

On the other hand, in the presence of the primordial
bispectrum, the possible correction to PX is given by Pbis in
Eq. (12). From Eq. (14), in the large-scale limit, Pbis can be
approximated as

Pbis ≃ Γð1Þ
X ðkÞ

Z
d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞBLðk;−p;pÞ

¼ Γð1Þ
X ðkÞMðkÞ

Z
d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2

× BΦðk;−p;pÞ: ð29Þ

Therefore, the scale dependence of Pbis in the large-scale
limit depends on the type of primordial bispectrum.

It is well known that the effect of the local-type
primordial bispectrum whose amplitude is characterized
by the nonlinearity parameter, flocalNL , appears in the halo/
galaxy power spectrum on large scales. Actually, by
substituting the following shape of the local-type primor-
dial bispectrum [42],

Blocal
Φ ðk1;k2;k3Þ
¼ 2flocalNL ½PΦðk1ÞPΦðk2Þ þ 2 perms�; ð30Þ

into Eq. (29) and making use of the fact that Γð1Þ
X ðkÞ on

large scales and the integral of p in Eq. (29) both have no
scale dependence, we obtain

Plocal
bis ∝

MðkÞ
k3

∝ k−1: ð31Þ

From Eqs. (28) and (31), we can see that Plocal
bis increases

while P0 decreases as k decreases, and we can expect that
Plocal
bis will dominate P0 above some scale, which is called

the “scale-dependent bias effect.”
However, as we will show, this is not the case with the

equilateral-type primordial bispectrum whose shape is
given by [43]

Bequil
Φ ðk1;k2;k3Þ
¼ 6fequilNL ½−ðPΦðk1ÞPΦðk2Þ þ 2 permsÞ
− 2PΦðk1Þ2=3PΦðk2Þ2=3PΦðk3Þ2=3
þ ðPΦðk1Þ1=3PΦðk2Þ2=3PΦðk3Þ þ 5 permsÞ�: ð32Þ

Here fequilNL is the nonlinearity parameter. Performing the
similar procedure as the local-type one, we see that
BΦðk;−p;pÞ ∝ 1=k since the terms ∝ 1=k3 and ∝ 1=k2

in this shape are canceled because of the high symmetry of
this shape. Then we obtain

Pequil
bis ∝

MðkÞ
k

∝ k: ð33Þ

Comparing Eq. (33) with Eq. (28), Pequil
bis decreases as k

decreases with the same scaling as P0 even in the large-
scale limit, which means that Pequil

bis always keeps to be
subdominant compared with P0. Then we cannot expect
that the effect of the equilateral-type primordial bispectrum
can be seen through the halo/galaxy power spectrum.

B. Halo/galaxy bispectrum with equilateral-type
primordial bispectrum

If there is a primordial bispectrum, it naturally affects the
halo/galaxy bispectrum. In Eq. (15), this effect is included
in Bbis. Here, as the shape of the primordial bispectrum, we
will consider only the equilateral-type one characterized by
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Eq. (32) which was shown to give only a subdominant
contribution to the halo/galaxy power spectrum,

Bequil
bis ¼ 6fequilNL Γð1Þ

X ðk1ÞΓð1Þ
X ðk2ÞΓð1Þ

X ðk3ÞMðk1ÞMðk2Þ
×Mðk3Þ½−ðPΦðk1ÞPΦðk2Þ þ 2 permsÞ
− 2PΦðk1Þ2=3PΦðk2Þ2=3PΦðk3Þ2=3
þ ðPΦðk1Þ1=3PΦðk2Þ2=3PΦðk3Þ þ 5 permsÞ�: ð34Þ

On the other hand, it is well known that although the
density fluctuation is Gaussian initially, the non-
Gaussianity is generated through the nonlinearity of gravi-
tational evolution and this effect is included in Bgrav in
Eq. (15). Since Bgrav gives the dominant contribution on
small scales, we will investigate the amplitude and shape
dependence of Bgrav and Bequil

bis in the large-scale limit as in
the analysis of the power spectrum. In Fig. 2, we plot Bgrav

and Bequil
bis to show the shape of each contribution in k space.

We fix k1 ¼ 0.003h Mpc−1 and set the redshift and the
mass scale of halos to z ¼ 1.0 and M ¼ 5 × 1013h−1 M⊙,
respectively. For the information on the halo, we use these
values throughout this paper. We take fequilNL ¼ 80, which is
almost the 2-σ upper bound obtained by the Planck
Collaboration [2]. Notice that from the symmetry and
the triangle condition, it is enough to consider only k1 ≥
k2 ≥ k3 and k3 ≥ k1 − k2.
From Fig. 2, we can see that both Bgrav and B

equil
bis take the

maximum values at the equilateral configuration
(k1 ¼ k2 ¼ k3). Therefore, in order to clarify the scale
dependence of their contributions, we concentrate on the
equilateral configuration given by k≡ k1 ¼ k2 ¼ k3.
Then, from Eq. (16) and making use of the fact that the

multipoint propagators have no scale dependence on large
scales after fixing the configuration, the scale dependence
of Btree

grav is estimated as

Bgrav ∝ MðkÞ4P2
Φ ∝ k2; ð35Þ

while from Eq. (17) and the similar procedure, the scale
dependence of Bequil

bis is estimated as

Bequil
bis ∝ MðkÞ3P2

Φ ∝ k0: ð36Þ

From Eqs. (35) and (36), we can see that Bequil
bis stays

constant while Bgrav decreases as k decreases, and we can

expect that Bequil
bis will dominate Bgrav above some scale. For

the quantitative analysis, we plot the contributions Bgrav and

Bequil
bis which we obtain numerically as functions of the wave

number k in Fig. 3. We can see that for fequilNL ¼ 80, Bequil
bis

dominates Bgrav at k≲ 0.003h Mpc−1.

Bgrav

Bbis
equil

z = 1.0

M = 5.0 x 1013 h 1 M Sun
f NL

equil
= 80

0.001 0.002 0.005 0.01 0.02 0.05 0.1
107

108

109

1010

1011

k h Mpc 1

B
X

k,
k,

k
h

1
M

pc
6

FIG. 3 (color online). Bgrav (black dashed line) and Bequil
bis (red

thick line) as a function of k. We take the equilateral configuration
characterized by k ¼ k1 ¼ k2 ¼ k3 and adopt fequilNL ¼ 80.

FIG. 2 (color online). The shapes of Bgrav (left panel) and Bequil
bis (right panel) as functions of k2=k1 and k3=k1 in momentum space for

k1 ¼ 0.003h Mpc−1 . We adopt fequilNL ¼ 80.
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IV. HALO/GLAXY BISPECTRUM WITH
EQUILATERAL-TYPE PRIMORDIAL

TRISPECTRA

In this section, let us move on to the halo/galaxy
bispectrum with equilateral-type primordial trispectrum,
which appears at the one-loop order in iPT. Generally,
inflation models that produce the equilateral-type primor-
dial bispectrum also produce the primordial trispectrum.
After imposing scale-invariance, the trispectrum is
described by a scalar function of five scalar variables,

while the bispectrum is by two scalar variables. Therefore,
although the current constraints are still very limited, the
information of the primordial trispectra is helpful to
constrain such inflation models. In this section, we inves-
tigate whether we could see the effect of the equilateral-
type primordial trispectra through the halo/galaxy
bispectrum.
Among the primordial trispectra which can be generated

by models producing the equilateral-type bispectrum, we
concentrate on the following three types of trispectra:

T _σ4
Φ ðk1;k2;k3;k4Þ ¼

221184

25
g _σ

4

NLA
3
ΦS

_σ4ðk1;k2;k3;k4Þ; ð37Þ

T _σ2ð∂σÞ2
Φ ðk1;k2;k3;k4Þ ¼ −

27648

325
g _σ

2ð∂σÞ2
NL A3

ΦS
_σ2ð∂σÞ2ðk1;k2;k3;k4Þ; ð38Þ

Tð∂σÞ4
Φ ðk1;k2;k3;k4Þ ¼

16588

2575
gð∂σÞ

4

NL A3
ΦS

ð∂σÞ4ðk1;k2;k3;k4Þ; ð39Þ

with

S _σ4ðk1;k2;k3;k4Þ ¼
1

ðP4
i¼1 kiÞ5Π4

i¼1ki
; ð40Þ

S _σ2ð∂σÞ2ðk1;k2;k3;k4Þ ¼
k21k

2
2ðk3 · k4Þ

ðP4
i¼1 kiÞ3Π4

i¼1k
3
i

�
1þ 3

k3 þ k4P
4
i¼1 ki

þ 12
k3k4

ðP4
i¼1 kiÞ2

�
þ 5 perms; ð41Þ

Sð∂σÞ4ðk1;k2;k3;k4Þ ¼
ðk1 · k2Þðk3 · k4Þ þ ðk1 · k3Þðk2 · k4Þ þ ðk1 · k4Þðk2 · k3ÞP

4
i¼1 kiΠ4

i¼1k
3
i

×

�
1þ

P
i<jkikj

ðP4
i¼1 kiÞ2

þ 3
Π4

i¼1ki
ðP4

i¼1 kiÞ3
X4
i¼1

1

ki
þ 12

Π4
i¼1ki

ðP4
i¼1 kiÞ4

�
: ð42Þ

Here, g _σ
4

NL, g
_σ2ð∂σÞ2
NL , and gð∂σÞ

4

NL are nonlinearity parameters
which characterize the amplitude of each trispectrum, AΦ is
the amplitude of the primordial power spectrum, defined by
AΦ ¼ k3PΦ. In Eqs. (37), (38), and (39), the normalization
have been chosen so that they give ð216=25ÞgNLA3

Φ=k
9

for tetrahedral 4-point configurations with jkij ¼ k and
ki · kj ¼ −k2=3 for i ≠ j. This convention fixes all tris-
pectra to have the same values on the tetrahedron as the
local trispectrum.
Before starting the analysis, we briefly explain the

physical motivation for concentrating on the above three
trispectra. First, it was shown that these trispectra are
generated by general k-inflation models through the contact
interaction which is characterized by a quartic vertex [28].
But it turned out that these trispectra are just a part of the
full trispectra for this type of inflation models and they were
completed to add another type of trispectra generated
through the scalar-exchange interaction which is

characterized by two cubic vertices [29,30]. From this
result, it was pointed out that the amplitude of T _σ4

Φ can be
large even when the equilateral-primordial bispectrum is
small by tuning the model parameters. This possibility was
supplemented by the effective field theory of inflation [44]
to clarify the symmetry that keeps to give T _σ4

Φ while protects
the generation of cubic terms which are related with the
other trispectra. In this respect, the trispectrum T _σ4

Φ was
regarded as more important than the other trispectra
generated by models producing the equilateral-type pri-
mordial bispectrum. Actually, the constraints on this
trispectrum imposed by WMAP5 were reported in [25].

However, recently, a new possibility that the three

trispectra T _σ4
Φ , T _σ2ð∂σÞ2

Φ , and Tð∂σÞ4
Φ are equally important

in the context of the effective field theory of multifield
inflation [22]. In this setup, since we can protect the cubic
interactions, the other trispectra generated through the
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scalar-exchange interaction are suppressed. In the same
paper, the authors also perform the optimal analysis of the
CMB trispectrum and impose the constraints on the non-
linearity parameters for these three trispectra making use of
the fact that the shapes of these trispectra can be written as
factorizable forms, which enables us to reduce the compu-
tational cost. Following [22], we will concentrate on the
case that these three trispectra are equally important, while
the other trispectra related with the cubic terms are sup-
pressed. Although our analysis from now on is completely

phenomenological in the sense that we regard the non-
linearity parameters gNL to be free, for those who are
interested in how these trispectra are obtained in concrete
models, we show the trispectra generated by general
k-inflation models through the contact interaction in the
Appendix.
The effect of the primordial trispectrum on the halo/

galaxy bispectrum is given by Btris in Eq. (15). From
Eq. (18), in the large-scale limit Btris can be approxi-
mated as

Btris ≃ 1

2
Γð1Þ
X ðk1ÞΓð1Þ

X ðk2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞTLðk1;k2;p;−pÞ þ 2 perms

¼ 1

2
Γð1Þ
X ðk1ÞMðk1ÞΓð1Þ

X ðk2ÞMðk2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2TΦðk1;k2;p;−pÞ þ 2 perms: ð43Þ

Then substituting Eqs. (37), (38), and (39) into Eq. (43) gives

B_σ4
tris

A3
Φ

≃ 3456

25
g _σ

4

NLΓ
ð1Þ
X ðk1ÞΓð1Þ

X ðk2Þ
Mðk1Þ
k1

Mðk2Þ
k2

Z
d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2

p7
þ 2 perms; ð44Þ

B _σ2ð∂σÞ2
tris

A3
Φ

≃ −
1728

325
g _σ

2ð∂σÞ2
NL Γð1Þ

X ðk1ÞΓð1Þ
X ðk2Þ

Mðk1Þ
k31

Mðk2Þ
k32

ðk1 · k2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2

p5
þ 2 perms; ð45Þ

Bð∂σÞ4
tris

A3
Φ

≃ −
4147

2060
gð∂σÞ

4

NL Γð1Þ
X ðk1ÞΓð1Þ

X ðk2Þ
Mðk1Þ
k31

Mðk2Þ
k32

Z
d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2

p5

×
�
ðk1 · k2Þ þ 2

�
p
p
· k1

��
p
p
· k2

��
þ 2 perms

¼ −
4147

1236
gð∂σÞ

4

NL Γð1Þ
X ðk1ÞΓð1Þ

X ðk2Þ
Mðk1Þ
k31

Mðk2Þ
k32

ðk1 · k2Þ
Z

d3p
ð2πÞ3 Γ

ð2Þ
X ðp;−pÞMðpÞ2

p5
þ 2 perms; ð46Þ

where in the last line of Eq. (46), we have used the relation about the angular part of the integration of p

Z
dΩp

�
p
p
· k1

��
p
p
· k2

�
¼ 4π

3
ðk1 · k2Þ ¼

ðk1 · k2Þ
3

Z
dΩp: ð47Þ

From Eqs. (44), (45), and (46), we can easily see that
although we have started with three equilateral-types of the
primordial trispectra, in the large-scale limit, B _σ2ð∂σÞ2

tris and

Bð∂σÞ4
tris become degenerate and we get only two types of

shapes in the halo/galaxy bispectrum. This is caused by the

fact that the primordial trispectrum T _σ2ð∂σÞ2
Φ is very strongly

correlated with Tð∂σÞ4
Φ and from this reason, only two of the

three trispectra, T _σ4
Φ and Tð∂σÞ4

Φ were used as the basis of the
optimal analysis of the CMB trispectrum [2,22]. From this
reason, we will concentrate on the two equilateral-type

primordial trispectra T _σ4
Φ and Tð∂σÞ4

Φ where the constraints
from CMB have been obtained. Notice that although we do

not mention the effect of T _σ2ð∂σÞ2
Φ from now on, once we can

constrain the effect of Tð∂σÞ4
Φ , it should be constrained by the

similar degree.
Then, from Eqs. (44) and (46), and making use of the fact

that neither Γð1Þ
X ðkÞ on large scales nor the integral of p in

Eq. (29) has no scale dependence, we can obtain the

following scale dependence of B_σ4
tris and Bð∂σÞ4

tris :

B_σ4
tris ∝

MðkÞ2
k2

∝ k2; ð48Þ

Bð∂σÞ4
tris ∝

MðkÞ2
k4

∝ k0: ð49Þ
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As shown in the previous section, Bgrav has the scale
dependence which is proportional to k2 in large scales.
Comparing the above scale-dependent behaviors of B _σ4

tris

and Bð∂σÞ4
tris with that of Bgrav, we can expect that Bð∂σÞ4

tris will
dominate Bgrav above some scale, while it is difficult to find

B _σ4
tris which has the same scale dependence as Bgrav. Thus,

hereinafter we focus on the halo/galaxy bispectrum with the

primordial trispectrum Bð∂σÞ4
tris .

In Fig. 4, we plot Bð∂σÞ4
tris to show not only the k

dependence with k ¼ k1 ¼ k2 ¼ k3, but also the shape
of each contribution in k space. We fix k1 ¼ 0.003h Mpc−1

and take gð∂σÞ
4

NL ¼ 2.0 × 107 so that it gives almost the same
amplitude as Bequil

bis with fequilNL ¼ 80.
From Fig. 4, we can see that Bð∂σÞ4

tris takes the maximum
value at the equilateral configuration (k1 ¼ k2 ¼ k3) as is
the case in Bgrav and Bequil

bis . Therefore, first we concentrate
on the equilateral configuration given by k≡ k1 ¼ k2 ¼ k3.
For the quantitative analysis, we plot the contributions Bgrav

and Bð∂σÞ4
tris which we obtain numerically as functions of the

wave number k in Fig. 5. We can see that for gð∂σÞ
4

NL ¼
2.0 × 107, Bð∂σÞ4

tris dominates Bgrav at k≲ 0.003h Mpc−1,
and if we can observe such large scales, we can detect this,
in principle.
On the other hand, comparing Figs. 3 and 5, we see that

both Bequil
bis and Bð∂σÞ4

tris have the same scale dependence
∝ k0, which means that it is difficult to distinguish these
two effects as long as we only consider the equilateral
configuration.
However, as Figs. 2 and 4, the two shapes of Bequil

bis and

Bð∂σÞ4
tris in Fourier space are different. In particular, the

amplitude of Bð∂σÞ4
tris does not decrease so much at

z = 1.0

M = 5.0 x 1013 h 1 M Sun

Bgrav

Btris

4

g NL

4

2.0 107
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FIG. 5 (color online). Bgrav (black dashed line) and Bð∂σÞ4
tris (blue

thick line) as functions of k. We take the equilateral configuration

characterized by k ¼ k1 ¼ k2 ¼ k3 and adopt g
ð∂σÞ4
NL ¼ 2.0 × 107.

FIG. 4 (color online). The shape of Bð∂σÞ4
tris as a function of k2=k1

and k3=k1 in momentum space for k1 ¼ 0.003h Mpc−1. We adopt

gð∂σÞ
4

NL ¼ 2.0 × 107.

Bbis
equil

Btris

4
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z = 1.0

M = 5.0 x 1013 h 1 M Sun

Bgrav
Btris

4

g NL

4

2.0 107
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FIG. 6 (color online). (Left panel) Bequil
bis (red line) and Bð∂σÞ4

tris (blue line) as functions of α which characterizes the isosceles

configuration given by k≡ k1 ¼ k2 ¼ αk3. We take k ¼ 0.003h Mpc−1 and adopt fequilNL ¼ 80 and gð∂σÞ
4

NL ¼ 2.0 × 107. (Right panel)

Bgrav (black dashed line) and Bð∂σÞ4
tris (blue thick line) and as functions of k. We take the folded configuration characterized by

k ¼ k1 ¼ k2 ¼ k3=2 and adopt gð∂σÞ
4

NL ¼ 2.0 × 107.
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k1 ¼ k2 ¼ 2k3, the so-called “folded configuration” and
this feature is very different from that of Bequil

bis . Hence,
we expect that, in principle, by considering a different
configuration, it would be possible to distinguish the

contributions from Bequil
bis and Bð∂σÞ4

tris in the halo/galaxy
bispectrum. For this purpose, we introduce the isosceles
configuration given by k≡ k1 ¼ k2 ¼ αk3 and character-
ized by a parameter α. The parameter α can take α ≥ 1=2
and α ¼ 1 corresponds to the equilateral configuration.
In the left panel of Fig. 6, we plot the contributions Bequil

bis

and Bð∂σÞ4
tris as functions of the parameter α. We can see that

while Bequil
bis is comparable to Bð∂σÞ4

tris at the equilateral
configuration (α ¼ 1), it falls to zero very quickly at the
folded configuration (α ¼ 1=2). Therefore, even if there is a
primordial bispectrum whose effect gives the same scale
dependence of the halo/galaxy bispectrum (∝k0) at the
equilateral configuration, we can eliminate this effect by
considering the folded configuration. In the right panel of

Fig. 6, we confirm that Bð∂σÞ4
tris can dominate Bgrav on

sufficiently large scales, which will open up the possibility

to detect the effect of the primordial trispectrum Tð∂σÞ4
Φ

through the halo/galaxy bispectrum by considering both
equilateral and folded configurations.

V. SUMMARY AND DISCUSSIONS

The information contained in the primordial non-
Gaussianity will contribute to a huge advance in our
understanding of the physics of inflation. Although recent
CMB observation by the Planck satellite has reported a very
stringent constraint on the primordial non-Gaussianity [2],
it would be very interesting to try further constraining the
amplitude of non-Gaussianity based on the information
other than CMB. For this purpose, recently, the fact that the
large-scale halo/galaxy distributions are affected by the
primordial non-Gaussianity through the scale-dependent
bias has been paid much attention. Although there have
been many important works on investigating the effect of
primordial non-Gaussianity on the scale dependence of
halo/galaxy distributions, most works have been restricted
to the primordial bispectrum and local-type trispectrum.
This is because the shapes of the equilateral-type primordial
trispectra strongly depend on theoretical models and also
because their forms are generically much more complicated
than those of the local-type trispectrum. Regardless of this,
since this class of primordial trispectrum possesses more
information of the interaction structure of inflation, it would
be worth trying to constrain this class of trispectrum, too. In
this line, recently, based on the optimal analysis of the
CMB, constraints on the amplitudes of the three equilateral-

type trispectra T _σ4
Φ , T _σ2ð∂σÞ2

Φ , and Tð∂σÞ4
Φ have been obtained

in Ref. [22]. These trispectra are considered not just because
their forms are relatively simple, but also because they have

a natural theoretical origin in the sense that they are shown
to be related with general k inflation [28–30] and the
effective field theory of inflation [31,32].
In this paper, we have investigated the effect of these

three important equilateral-type primordial trispectra on the
scale dependence of large scale halo/galaxy distributions.
For this purpose, we have adopted the iPT formalism by
which we can calculate systematically the nonlocal biasing
effect in the presence of any type of primordial non-
Gaussianity. Since it is not necessary for us to rely on
approximations like the peak background split and the peak
formalism in iPT, the formulation for the large scale halo/
galaxy distributions based on iPT can provide more general
results than the formalisms mentioned above.
Before considering the effect of the equilateral-type

primordial trispectrum, we have demonstrated that it is
necessary to consider the halo/galaxy bispectrum to see the
scale-dependent behavior of halo/galaxy distributions
sourced by the equilateral-type primordial bispectrum.
This is completely different from the cases with the
local-type primordial non-Gaussianity where there is an
enhancement of the halo/galaxy power spectrum on large
scales. We have shown that this difference comes from the
fact that the shape of the equilateral-type bispectrum has
higher symmetry than the shape of the local-type bispec-
trum, which cancels the component enhanced on large
scales in the halo/galaxy power spectrum. Since it is
expected that a similar statement holds for the equilat-
eral-type primordial trispectrum, we have investigated the
effect of such a trispectrum on the halo/galaxy bispectrum.
For the analysis of the scale dependence of the halo/

galaxy bispectrum in the presence of the equilateral-type
primordial trispectrum, although we started with three

primordial trispectra T _σ4
Φ , T _σ2ð∂σÞ2

Φ , and Tð∂σÞ4
Φ , we have

found that the large-scale behaviors of B _σ2ð∂σÞ2
tris and Bð∂σÞ4

tris ,

the contributions sourced by T _σ2ð∂σÞ2
Φ and Tð∂σÞ4

Φ , respec-
tively, become degenerate and we have only two indepen-
dent shapes. This is related with the fact that the primordial

trispectrum T _σ2ð∂σÞ2
Φ is very strongly correlated with Tð∂σÞ4

Φ

and only two trispectra, T _σ4
Φ and Tð∂σÞ4

Φ , have been used as
the basis for the optimal analysis of the CMB trispectrum

[2,22]. We have found that B _σ2ð∂σÞ2
tris and Bð∂σÞ4

tris are enhanced
on large scales and dominate Bgrav, the contribution
induced by the nonlinearity of the gravitational evolution,
on very large scales. On the other hand, we have shown that
B _σ4
tris, the contribution sourced by T _σ4

Φ , has the same scale
dependence as Bgrav, and it cannot be expected that we can

find B _σ4
tris. Actually, for g

ð∂σÞ4
NL ¼ 2.0 × 107 with which Bð∂σÞ4

tris

gives almost the same amplitude as Bequil
bis with fequilNL ¼ 80,

almost the 2-σ upper bound obtained by the Planck

Collaboration [2], Bð∂σÞ4
tris would dominate the halo/galaxy

bispectrum on large scales. Setting the typical redshift and
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the mass of the halos in surveys to be z ¼ 1.0 and

M ¼ 5 × 1013h−1 M⊙, respectively, Bð∂σÞ4
tris with gð∂σÞ

4

NL ¼
2.0 × 107 will dominate Bgrav at k≲ 0.003h Mpc−1. So far,
we have estimated the scale dependence of the halo/galaxy
bispectrum with an equilateral configuration where the
amplitudes of the contributions take the maximum values.

But we have seen that Bequil
bis , B_σ2ð∂σÞ2

tirs , and Bð∂σÞ4
tirs provide the

same scale dependence on large scales. In order to pick up

only the information of Tð∂σÞ4
Φ , we have shown that the

folded configuration where Bequil
bis falls to zero very quickly

is helpful.
In summary, in this paper, it has been shown that we can

constrain the nonlinear parameters gð∂σÞ
4

NL and g _σ
2ð∂σÞ2

NL by the
future LSS observations independently from those from
CMB, and we can use this at least as a cross check of the
CMB results. The next natural question is whether the
constraints based on the future LSS observations can be
more stringent than the ones from CMB. Actually, accord-
ing to [22], the 2-σ upper bound obtained by WMAP9 data
is 0.19 × 106. Given the fact that it is expected that the
future LSS observations can constrain fequilNL ∼Oð10Þ [13],
and a simple extrapolation provides gð∂σÞ

4

NL , g _σ
2ð∂σÞ2

NL
∼Oð106Þ, which is almost the same order as the ones
obtained by current CMB observations. However, we have

shown that Bð∂σÞ4
tris and B _σ2ð∂σÞ2

tris have a signal for wider
regions in k space than Bequil

bis , which may provide more

stringent constraints on gð∂σÞ
4

NL , g _σ
2ð∂σÞ2

NL . We leave the
discussion on the detailed analysis to estimate the forecast

on gð∂σÞ
4

NL , g _σ
2ð∂σÞ2

NL to future work.
Finally, as is mentioned above, we have concentrated on

three equilateral-type primordial trispectra whose ampli-
tudes are constrained by CMB observations and whose
theoretical origin is very clear. But there are still many
interesting primordial trispectra generated by theoretical
models which produce the equilateral-type bispectrum
[45–59]. Although constraints are not obtained for these
trispectra even by CMB observations, it might be interest-
ing to consider the possibility of constraining these
primordial trispectra based on the large scale halo/galaxy
distributions.
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APPENDIX: EQUILATERAL-TYPE PRIMORDIAL
TRISPECTRUM IN GENERAL SHINGLE-FIELD k

INFLATION MODELS

Here we briefly summarize the primordial trispectra
generated by the general single-field k-inflation models

[29] (see also [30]). The action of k inflation is given
by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2PðX;ϕÞ�; ðA1Þ

where R is the Ricci scalar, ϕ is the inflaton field, and
X ≡ −ð1=2Þgμν∂μϕ∂νϕ is its kinetic term.
We calculate the primordial trispectrum making use of

the so-called “interaction picture formalism” [60]. As we
mentioned in Sec. IV, although there are two types of
trispectra which are generated through the contact inter-
action characterized by a quartic vertex and the scalar-
exchange interaction characterized by two cubic vertices,
we concentrate on the former ones. For this class of models,
the fourth-order interaction Hamiltonian of the field per-
turbation σ ≡ δϕ in the flat gauge at leading order in the
slow-roll expansion is given by

Hð4Þ
I ðηÞ ¼

Z
d3x½β1σ04I þ β2σ

02
I ð∂σIÞ2 þ β3ð∂σIÞ4�; ðA2Þ

where the subscript I denotes that the variable is evaluated
in the interaction picture, the prime denotes derivative with
respect to conformal time η, and coefficients β1, β2, and β3
are given by

β1 ¼ P;XX

�
1 −

9

8
c2s

�
− 2XP;XXX

�
1 −

3

4
c2s

�

þ X3c2s
P;X

P2
;XXX −

1

6
X2P;4X; ðA3Þ

β2 ¼ −
1

2
P;XX

�
1 −

3

2
c2s

�
þ 1

2
Xc2sP;XXX; ðA4Þ

β3 ¼ −
c2s
8
P;XX; ðA5Þ

where cs is the sound speed given by

c2s ¼
P;X

P;X þ 2XP;XX
: ðA6Þ

Based on this interaction Hamiltonian, we can calculate
the primordial trispectrum of the inflaton field perturbation
at horizon crossing as

hΩjσð0;k1Þσð0;k2Þσð0;k3Þσð0;k4ÞjΩi

¼ −i
Z

0

−∞
dηh0j½σIð0;k1ÞσIð0;k2ÞσIð0;k3Þ

× σIð0;k4Þ; Hð4Þ
I ðηÞ�j0i; ðA7Þ

where jΩi denotes the vacuum in the interaction picture.
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At leading order in slow-roll and in the small sound
speed limit, in order to obtain the primordial trispectrum of
the curvature perturbation at some time after the horizon
crossing, we can use the linear relation Φ ¼ ðH= _ϕÞδϕ
because the higher-order terms in this relation only gen-
erate subleading corrections to this result. Then we can
obtain the following equilateral-type primordial trispectra:

hΩjΦð0;k1ÞΦð0;k2ÞΦð0;k3ÞΦð0;k4ÞjΩi
¼ −ð2πÞ3δð3Þðk1 þ k2 þ k3 þ k4ÞA3

Φ

×
X

csP;X
ð1152β1c3sS _σ4 þ β2csS _σ2ð∂σÞ2 þ 32β3c−1s Sð∂σÞ4Þ;

ðA8Þ

where AΦ ≡ k3PΦðkÞ ¼ H4=ð4XcsP;XÞ is the amplitude of
the primordial power spectrum and S _σ4 , S _σ2ð∂σÞ2 and Sð∂σÞ4
are shape functions given by Eqs. (40), (41), and (42),
respectively.
By comparing Eq. (A8) with Eqs. (37), (38), and (39),

we can express the nonlinear parameters g _σ
4

NL, g
_σ2ð∂σÞ2
NL and

gð∂σÞ
4

NL in terms of the derivatives of P with respect to X.
However, since we have considered general k-inflation
model so far and kept P to be an arbitrary function of ϕ and
X, it is not easy to see which trispectrum can give the
dominant contribution among the three in Eq. (A8). In
order to see this, we consider the Dirac-Born-Infeld (DBI)

inflation as a concrete example [61] where the functional
form of Pðϕ; XÞ is given by

PðX;ϕÞ ¼ −fðϕÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2fðϕÞX

p
− VðϕÞ; ðA9Þ

where fðϕÞ and VðϕÞ are functions of ϕ determined by
string theory configurations, the derivatives of P are related
with cs like cs ¼ P−1

;X . Then, at leading order in the sound
speed, β1, β2, and β3 are simplified as

β1 ¼
1

4c7sX
; β2 ¼

1

8c3sX
; β3 ¼ −

1

16csX
: ðA10Þ

Therefore, from Eqs. (A8) and (A10), we can see T _σ4
Φ gives

the dominant contribution and the other two terms T _σ2ð∂σÞ2
Φ

and Tð∂σÞ4
Φ are subdominant unless 1=c2s ∼ 1, in which case

the trispectrum is only marginally large ∼Oð1Þ. Although
we do not show it explicitly, similar things happens and the

contributions from T _σ2ð∂σÞ2
Φ and Tð∂σÞ4

Φ cannot be dominant
whenever we expect a large non-Gaussian signal [30] in
general single-field k inflation. However, as we explain in
Sec. IV, the result based on the effective theory of multifield
inflation [32] suggests that we can realize the situation

where the three trispectra T _σ4
Φ , T _σ2ð∂σÞ2

Φ , and Tð∂σÞ4
Φ give

comparable contributions if we consider a multifield
extension of the k-inflation models.
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