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The nonlinear hydrodynamic equations for axion/scalar field dark matter (DM) in the nonrelativistic
Madelung-Shcrödinger form are derived in a simple manner, including the effects of universal expansion
and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion
DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive
enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT
equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are
necessary for accurately modeling the effects of axion DM on the formation of the first cosmic structures,
and suggest that the 21-cm power spectrum could improve constraints on axion mass by up to 4 orders of
magnitude with respect to the current best constraints. A further application of these results uses the
“quantum force” analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics
model of axion DM. Such a model can treat axion DM in the nonlinear regime and could be incorporated
into existing N-body codes.
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I. INTRODUCTION

The particle nature of the dark matter (DM) is unknown,
yet cosmological and astrophysical probes provide a wealth
of information about the length and time scales over which
it must form structure, providing bounds on the DM
particle mass. In the case of thermal DM, structure
formation excludes hot DM and limits warm (W)DM to
have mass mW ≳Oðfew keVÞ, e.g. Refs. [1,2]. In the case
of nonthermal DM, for example ultralight axions (ULAs)
or other scalar fields, e.g. Refs. [3–5], the limit on the mass
is ma ≳OðfewÞ × 10−23 eV, e.g. Refs. [6–8]. Forthcoming
astrophysical data, for example from the 21-cm power
spectrum, could extend these bounds substantially and
possibly find evidence pointing to the particle nature of
DM. Utilizing this data requires models for DM on
small scales, handling nonlinear effects. WDM and self-
interacting DM are fairly well studied in this regard, e.g.
Refs. [9–11], but much less is known about how to model
ULAs and other scalar fields. The most advanced simu-
lations in this field are those of Schive et al. [12] for
studying dwarf-galaxy-sized objects and density cores.
Alternative simulation models are necessary, both to con-
firm the accuracy of Ref. [12] simulations and to study new
effects on different scales.
In this paper I present a formalism, the nonlinear

hydrodynamic equations (NLHEs) in the nonrelativistic
limit. This is a useful model to compute the effects of ULAs
on the 21-cm power spectrum. The cutoff of power at small
scales, k≳Oð1Þ Mpc−1, induced by ULAs satisfying

ma > 10−23 eV, via the effect on star formation and the
baryon-DM relative velocity [13–18], has a knockon effect
at large scales that could distinguish ULAs from CDM. The
NLHEs also provide a possible method to model ULAs
using smoothed-particle hydrodynamics (SPH), which is
distinct from the method of Ref. [12] which used the
Widrow-Kaiser [19] approach. The SPH method can be
more easily incorporated into existing N-body codes, such
as GADGET [20], which already contain SPH modules to
deal with baryon pressure. The method has been discussed
recently in Ref. [21], and draws on ideas from Bohmian
mechanics and quantum trajectories (e.g. Refs. [22,23]) to
compute the anomalous pressure due to the scalar field
gradient energy. I present the equations, and discuss various
issues and links to other studies; possible algorithms are
discussed in Refs. [21,23], and will be the subject of future
discussion.
All linear power spectra are computed using AXIONCAMB

[8], a modified version of the publicly available CAMB code
[24]. I work in units where ℏ ¼ c ¼ 1.

II. HYDRODYNAMIC EQUATIONS

The action governing an axion (or general scalar field)1

of mass ma in general relativity is

*dmarsh@perimeterinstitute.ca

1I do not include self-interactions, as they are model depen-
dent. One can show that they are subdominant to gravity on linear
and nonrelativistic scales for an axion with the canonical cosine
potential. Scalar field condensates with attractive and repulsive
self interactions are discussed in e.g. Ref. [25]. Axions have an
attractive quartic self-interaction, and thus no Thomas-Fermi
limit. Other aspects of the self-interaction will be discussed in
future work.
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Assuming the vanishing of anisotropic stress, the line
element in Newtonian gauge in an expanding universe is

ds2 ¼ −ð1þ 2VÞdt2 þ a2ð1 − 2VÞd~x2; ð2Þ

where a is the cosmic scale factor and V is the Newtonian
potential. The Hubble rate H ¼ _a=a. The scalar field ϕ
obeys the Klein-Gordon (KG) equation

ð□ −m2
aÞϕ ¼ 0: ð3Þ

To first order in V ∼ ϵ2NR (weak-field limit, where ϵNR
is the perturbative parameter for relativistic effects) the
d’Alembertian is

□ ¼ −ð1 − 2VÞð∂2
t þ 3H∂tÞ þ a−2ð1þ 2VÞ∇2 − 4 _V∂t:

ð4Þ

In the limit that H=ma ∼ ϵWKB we can use the WKB
approximation to solve for ϕ, giving

ϕ ¼ ðma

ffiffiffi
2

p
Þ−1ðψe−imat þ ψ�eimatÞ: ð5Þ

Taking WKB to first order implies _ψ=maψ ∼ ϵWKB. I also
take the nonrelativistic limit by letting the dispersion
relation for wave number k be ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ k2
p

¼ ma þ
km2

a þOðϵ2NRÞ, i.e. k=ma ∼ ϵNR [26]. Performing a double
expansion to Oðϵ2NR;WKBÞ, the nonrelativistic limit of the
KG equation gives the equation for the WKB amplitude ψ
(and also independently for ψ�)

i _ψ − 3iHψ=2þ ð2maa2Þ−1∇2ψ −maVψ ¼ 0: ð6Þ

Equation (6) is the Schrödinger equation on an expand-
ing spacetime. The Madelung form (see below) of this
equation has been presented before in e.g. Refs. [25,27] by
writing the standard Schrödinger equation in the comoving
frame. Expressing the equations in this frame is not the
norm in studies of the Schrödinger-Poisson system
[12,19,28], where expansion effects are accounted for by
rescaling the wave function by the background solution.
The axion energy density, ρa, is found from the energy

momentum tensor

Tμ
ν ¼ gμα∂αϕ∂νϕ −

δμν
2

ðgαβ∂αϕ∂βϕþm2ϕ2Þ; ð7Þ

with T0
0 ¼ −ρa giving

ρa ¼
1

2
½ð1− 2VÞ _ϕ2 þm2

aϕ
2 þ a−2ð1þ 2VÞ∂iϕ∂iϕ� ð8Þ

to first order in V. Taking the same limits as before we find
the leading order piece is

ρa ¼ jψ j2 þOðϵÞ: ð9Þ
Cosmological perturbation theory for scalar fields nor-

mally makes a background-fluctuation split at the level of
the field, ϕ ¼ ϕ̄þ δϕ (e.g. Refs. [29,30]). This, however,
does not preserve the canonical form of the fluid equations
at nonlinear order in density fluctuations. Therefore, I make
the background-fluctuation split at the level of the density,
as is usual for CDM and baryons (e.g. Ref. [31]).
To do this, express the wave function, ψ , in polar

coordinates as ψ ¼ ReiS (known as the Madelung form)
and transform Eq. (6) into equations of motion for

ρa ¼ R2; ~va ≡ ðmaaÞ−1∇S; ð10Þ
where this defines the axion fluid velocity, ~va. Separating
real and imaginary parts of Eq. (6) gives

_ρa þ 3Hρa þ
∇
a
ðρa~vaÞ ¼ 0; ð11Þ

_~va þH~vþ
�
~va ·

∇
a

�
~va ¼ −

∇
a

�
V −

1

2maa2
∇2 ffiffiffiffiffi

ρa
p
ffiffiffiffiffi
ρa

p
�
:

ð12Þ
The background-fluctuation split can now be carried out

as usual by writing ρa ¼ ρ̄að1þ δaÞ. This gives
_̄ρa þ 3Hρ̄a ¼ 0 ⇒ ρ̄a ¼ Ωaρcritða=a0Þ−3; ð13Þ

i.e. the axion background energy density behaves, in the
WKB approximation, as a w ¼ 0 barotropic fluid (true for
an oscillating field with a harmonic potential minimum
[32]). The fluctuations obey

_δa þ a−1~va ·∇δa ¼ −a−1ð1þ δaÞ∇ · ~va; ð14Þ
_~va þ a−1ð~va ·∇Þ~va ¼ −a−1∇ðV þQÞ −H~v; ð15Þ

Q≡ −
1

2m2
aa2

∇2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δa

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δa

p ; ð16Þ

where I have defined the “quantum potential” Q that
accounts for the scalar-field gradient energy. When
Q → 0, scalar fields have a Jeans instability [33].
A background-fluctuation split on the Einstein equations

gives

3H2 ¼ 8πG
X
i

ρi; ∇2V ¼ 4πGa2
X
i

ρiδi; ð17Þ

where the second equation applies in the subhorizon,
H=k ∼ ϵNR, limit (see e.g. Ref. [34]), and the sums extend
over all species, i.
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Equations (13)–(17) are the complete NLHEs in the
nonrelativistic limit for axion/scalar-field DM. These equa-
tions differ from those for CDM only by the inclusion of the
Q term in the Euler equation, Eq. (15). They are valid in the
nonrelativistic limit even for nonlinear density and axion
field perturbations.2 They thus illustrate the equivalence
between axion DM and CDM on large scales (where
k=ma ≪ 1), to all orders in Newtonian perturbation theory.
They also provide the correct setting to apply all the tools
of standard perturbation theory [31] and modern develop-
ments such as the effective field theory of large-scale
structures [35] to axion DM.

III. APPLICATIONS

A. Relative velocity of axion DM and baryons

The relative velocity between CDM and baryons can
have an observable effect by suppressing star formation in
the first structures at high-z [13–17]. The inclusion of the
quantum pressure, Q, in the Euler equation for axion DM
demands a separate treatment. The relative velocity
between axion DM and baryons at recombination,
zrec ≈ 1020, can be computed in first-order cosmological
perturbation theory using a Boltzmann code.
The variance of the relative velocity, ~vba ¼ ~vb − ~va, is

hv2bai ¼
Z

dk
k
Δ2

ζðkÞ
�
θb − θa

k

�
2

;

¼
Z

dk
k
Δ2

vbaðkÞ; ð18Þ

which defines the relative velocity power spectrum, Δ2
vba,

from the velocity divergence, θi ≡ a−1∇ · ~vi. The primor-
dial curvature power spectrum is Δ2

ζ ¼ Asð kk0Þns−1 with
amplitude, As, and tilt, ns, which are both well measured
by Planck [36]; the pivot scale, k0, is conventional. Figure 1
shows Δ2

vba for various axion masses. The lightest axions
suppress the relative velocity power at large wave numbers.
On the scales shown, ma ¼ 10−22 eV is indistinguishable
from CDM.
Relative velocities are gauge invariant, but the velocity of

an individual species depends on the choice of gauge. For
example, the CDM velocity divergence vanishes in syn-
chronous gauge, θcðsyn:Þ ¼ 0. Nevertheless it is instructive
to look at the single-species velocity power. Figure 2 shows
the velocity power comparing CDM and an axion with
ma ¼ 10−22 eV in synchronous and Newtonian gauges

[34]. We observe that, in the Newtonian gauge axion
DM has suppressed velocity power with respect to CDM
for wave numbers k > kJ;a, where kJ;a ¼ 1.6a

ffiffiffiffiffiffiffiffiffiffi
Hma

p
is the

axion Jeans scale. In the synchronous gauge, where va is
the relative velocity between CDM and axions, axions have
velocity power for k > kJ;a. For ma < 10−24 eV the coher-
ence scale of the axion-CDM relative velocity could be
large and may serve as an additional probe of the
composition of the DM, complementary to the CMB
constraints of Ref. [8] (see Refs. [37,38] for the case of
neutrino-CDM relative velocity).
The baryon-CDM relative velocity, vbc, is coherent on

scales kcoh ≳ 1 Mpc−1. Large scale structure and the CMB
[7,8] constrain ULAs to have ma > 10−23 eV if they are to
be all of the DM. This implies that kJ;a > kcoh. and axion

FIG. 1 (color online). Relative velocity power spectrum for
axions and baryons [Eq. (18)] at zrec ¼ 1020 for various axion
masses. On the scales shown the ma ¼ 10−22 eV spectrum is
indistinguishable from CDM.

FIG. 2 (color online). Velocity power spectra for axions,
ma ¼ 10−22 eV, and CDM in synchronous and conformal New-
tonian gauges. Note that the synchronous gauge has vcðsynÞ≡ 0.
The gauge terms decay on subhorizon scales.

2The limits taken are valid after axions begin oscillating
(H < ma), on subhorizon but super-Compton length scales
(H < k < ma), and for weak fields (jVj < 1). The first two of
these are generally valid during structure formation in the matter
dominated era down to subkiloparsec scales for the allowed axion
DM particle masses. The weak-field limit can be violated, of
course, via the instability to black hole formation.
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DM has the same large-scale velocity relative to the
baryons. Thus, moving background perturbation theory
(MBPT), which treats the large scale relative velocity
nonperturbatively, can be carried out for axion DM just
as for CDM [13] for cell sizes of order a few Mpc.
MBPT works by writing the velocities as

~við~x; tÞ ¼ ~vðbgÞi ðtÞ þ ~uið~x; tÞ; ð19Þ

then moving to the frame where

~vðbgÞb ¼ 0 and ~vðbgÞa ¼ −~vðbgÞba ð20Þ

and performing first-order perturbation theory on the
variables δi; ~ui. Going to Fourier space and expanding to
first order in δa the quantum pressure, Q, is

Q ≈ −
k2

4m2
aa2

δa þOðδ2aÞ: ð21Þ

The equations of motion for the coupled axion-baryon
system in MBPT are therefore

_δa ¼ ia−1ð~vðbgÞba ðtÞ · ~kÞδa − θa; ð22Þ

_θa ¼ ia−1ð~vðbgÞba ðtÞ · ~kÞθa − 3H2ðΩaðtÞδa þ ΩbðtÞδbÞ=2
− 2Hθa þ k4δa=4m2

aa4; ð23Þ

_δb ¼ −θb; ð24Þ

_θb ¼ −3H2ðΩaðtÞδa þΩbðtÞδbÞ=2 − 2Hθb þ c2s;bk
2δb=a2;

ð25Þ

where cs;b is the baryon sound speed. In these equations we
identify the axion effective sound speed

c2s;a ≈
k2

4m2
aa2

; ð26Þ

which can be seen here as the manifestation of quantum
pressure for linear density perturbations.
The axion effective sound speed is the only term

that distinguishes axion DM from CDM on small scales,
suppressing power for wave numbers k > kJ;a. Suppression
relative to CDM is imprinted on the transfer function at
matter-radiation equality, so the relevant scale is keqJ;a ≈
9ðma=10−22 eVÞ Mpc−1 [3]. The relative velocity of DM
and baryons also suppresses power (in a given patch of size
the vbc coherence length) over a range of wave numbers
centered near kvbc ¼ aH=vbc [13]. The relevant ratio is
thus keqJ;a=kvbc. At z ¼ 40kvbc ∼ 300 Mpc−1 and so

ðkeqJ;a=kvbcÞjz¼40 ≈ 0.03ðma=10−22 eVÞ0.5: ð27Þ

I have verified these estimates by scale of the relevance
of kJ;a versus kvbc by numerical solution of Eqs. (22)–(25),
with the appropriate average over the vba distribution,
following Ref. [13]. The results are shown in Fig. 3 at
z ¼ 40 for various axion masses.3 For m < 10−18 eV the
axion sound speed cuts off power while the effects of vba
are only of order a few percent. For ma ¼ 10−18 eV the
axion sound speed cuts off power on scales where vba is
relevant at tens of percent in the power.
Planned 21-cm power spectrum experiments may be able

to detect the vbc effect for CDM [39–41]. The power
spectrum shown in Fig. 3 is averaged over the vbc
distribution, but the power suppression caused by relative
velocity is highly inhomogeneous. The relative velocity
modulates the large-scale 21-cm power spectrum by
changing the small-scale matter power in regions of order
of the relative velocity coherence length: the moving
background couples small and large scales. For example
Ref. [39] show that this modulation actually increases the
21-cm power over a range of scales k ∼ 0.06 Mpc−1. The
increase in power compared to the case where relative
velocities are absent is larger than the projected sensitivity
for telescopes such as the Low Frequency Array.
As shown in Fig. 3, axion DM with ma ≲ 10−18 eV

wipes out small-scale power before modulation effects due
to relative velocity become important. The small-scale
power will be the same in different coherence length
patches and there will be no additional modulation power
communicated to large scales. For ma ≲ 10−18 eV the 21-
cm power on large scales will resemble the CDM power in

FIG. 3 (color online). Total matter power at z ¼ 40 with (solid
lines) and without (dashed lines) the vbc effect, computed for
various axion masses. Forma ¼ 10−18 eV axion sound speed and
vbc have effects on comparable scales.

3I use cosmological parameters of Ref. [36]. This accounts for
the difference in normalization to Fig. 2 of Ref. [13], who used a
scale-invariant spectrum and different matter content.
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the absence of relative velocity effects and the power boost
shown in Ref. [39] will be absent. A detection of the
modulation would exclude ma ≲ 10−18 eV, an improve-
ment of some 4 orders of magnitude with respect to current
limits [6,7]. This prognosis for 21 cm agrees by order of
magnitude with extrapolation from linear theory [42] using
the WDM forecasts of Ref. [18] (although these forecasts
ignored the vbc effect for WDM, and constraints were
driven by the reduced collapse fraction, which is expected
to be similar for axions and WDM [42]). On the other hand,
the absence of a large-scale modulation will imply the
existence of some small-scale cutoff in the power spectrum
at k < kvbc.
While the small-scale power suppression caused by

relative velocity is highly inhomogeneous, the power
suppression caused by the axion sound speed affects all
of space. This could lead to further interesting effects.
Finally, and very optimistically, the amplitude and shape
of the large-scale 21-cm power could probe axions in the
range 10−18 eV≲ma ≲ 10−16 eV, where the small-scale
power is affected on the same scales by both the axion
Jeans scale and the vbc effect.

B. Notes on a SPH treatment

The identification of the scalar field gradient energy in
the nonrelativistic limit with a “quantum force” suggests a
new approach to model axion/scalar-field DM on small
scales. In quantum mechanics one can use the hydro-
dynamic Madelung representation to solve the Schrödinger
equation by introducing the quantum force. This is the
so-called “synthetic” view of Bohmian mechanics [23]: the
motion of the hydrodynamic “particles” is not necessarily
understood as fundamental, and due to hidden variables,
although it can nonetheless provide insights into processes
such as quantum-mechanical tunneling [22].
In axion hydrodynamics, of course, the resemblance to

Bohmian mechanics is just an analogy. Axions are
described by a classical field due to the huge occupation
numbers. One need not worry about measurement prob-
lems and decoherence. However, the hydrodynamic
description is one of a condensate: although it is a classical
field, the dynamics are “very quantum” from the particle
viewpoint [43].
If cosmological structure formation is to be studied

including the effects of the expansion and Hubble friction,
Eqs. (14)–(16) should be used. If equations proposed by
Ref. [21] are used, the expansion must be correctly
accounted for by choice of frame. In the absence of the
expansion-related terms, one can only study already-bound
structures.
It is conceptually simple to consider including the axion

pressure in SPH. The quantum force in the hydrodynamic
treatment is simply computed from the gradient of Q, and
added to the force due to self gravity, giving the total force

F ¼ −a−1∇ðV þQÞ: ð28Þ

The gravitational potential, V, is found from the density by
solving the Poisson equation as usual, whileQ is computed
from gradients of the density via Eq. (16). Of course, the
correct initial linear power spectrum for axion DM must be
used. So far, so theoretically simple.
The numerical problem with such a treatment arises in

two ways. First, Q depends on the Laplacian of the local
density, and derivatives are difficult to estimate accurately
in multiscale problems like cosmological structure forma-
tion. The second difficulty arises because Q can blow
up in regions where ρa → 0. This will be a problem in
particular at interference nodes and in deep voids, where
∇2ρ ≠ 0. In the literature of quantum trajectories, many
stable algorithms for computing the gradients have been
studied, as well as methods for dealing with nodes [23],
providing a possible “off-the-shelf cookbook” for cosmo-
logical simulators.
As pointed out by Ref. [21], SPH is naturally adaptive,

smearing the particles over large distances in low-density
regions and providing a natural force softening. In the
scheme of Ref. [21] the density field is represented with
smoothing kernels at SPH particle locations,

ρað~xÞ ¼
X
i

ρað~xiÞWð~x − ~xi; ξÞ; ð29Þ

Wð~x; ξÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffi
2πξ2

p
Þ−3 expð−j~xj2=2ξ2Þ; ð30Þ

where ξ is a smoothing parameter. The advantage of this
method is that density gradients only affect the kernel,
whose derivative is analytically known.
In the scheme of Ref. [21], ξ is chosen adaptively such

that there is a fixed mass within the smoothing kernel. This
ensures that regions of both high and low density are
resolved equally well. However, since the quantum force
can blow up inside low-density regions such as voids, one
might worry about the accurate resolution of the velocity
field in these regions. Indeed, Ref. [12] showed that rapid
oscillation of the wave function is common everywhere,
even in voids, implying large fluid velocity. The adaptive
mesh refinement in the solution of the Schrödinger equa-
tion had to be carefully chosen to resolve phase oscillations.
Similar considerations will apply to optimal choices of
smoothing in SPH.
In the continuum limit, the SPH smoothing kernel is the

position-space Husimi distribution (see, e.g., Ref. [44])

PHð~xÞ ¼
Z

d3x0jψðxÞj2Wð~x − ~x0; ξÞ: ð31Þ

The smoothing scale, ξ, is a free parameter reflecting the
uncertainty relation. The Husimi distribution gives spatial
resolution δx ¼ ξ and momentum resolution δp ¼ ð2ξÞ−1.
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The adaptive SPH smoothing described above will make ξ
large in regions of low density, leading to good velocity
resolution in these regions and possibly mitigating any
issues within voids.
One sees that the choice of SPH smoothing is related to

choosing the best measurements of a quantum probability
distribution to extract phase-space information. Different
possible choices of ξ are suited to different problems. For
example, ξ could be chosen using the de Broglie scale, thus
increasing resolution in both high-density and high-veloc-
ity regions. Such a smoothing might be useful for studying
the phase-space density of axion DM halos [45] and the
structure of voids in this model. In quantum mechanics, the
distribution is “nearly classical” if ξ can be chosen such that
δx and δp are each smaller than typical structures in the
observables. Such a criterion could be used to determine
when the quantum force is relevant, possibly saving
computation time in an N-body simulation of this model.
For further discussion of smoothing issues in the

Schrödinger picture, see Refs. [19,28]; for smoothing
issues in standard CDM, see e.g. Ref. [46]. While smooth-
ing is ad hoc in CDM, it emerges naturally in the scalar
field case, along with the adhesion approximation [25].
Since SPH modules are standard in many modern N-

body codes (as they are used to model the baryon sound
speed) I hope that this method for modeling axion DM on
small scales can be implemented relatively easily into
cosmological simulations.

IV. CONCLUSIONS

I have presented a simple derivation of the NLHEs,
Eqs. (14)–(16), for axion/scalar field DM derived from a
fundamental action. They are valid in the large occupation-
number limit, where axion DM is described by the classical
field equations. I have taken the nonrelativistic, Newtonian
limit, but have left the treatment of the axion energy density
and field fluctuations nonperturbative. The equations pre-
sented differ from the usual Schrödinger picture for DM by

the inclusion of expansion and Hubble drag effects explic-
itly, rather than through implicit frame choice. The NLHEs
are the correct setting to study nonrelativistic perturbation
theory and nonlinear clustering of axion DM. Two possible
applications of these equations were outlined.
The first discussed the relative velocity of baryons and

DM. The effects shown in Fig. 3 will delay formation of
first stars and thus are expected to affect heating of the
intergalactic medium and metal enrichment, and suggests
that the 21-cm power spectrum could tighten constraints on
the axion mass by several orders of magnitude with respect
to the current best constraints. Further study of this
possibility is currently underway. If axions play a role in
the formation of cores in dwarf galaxies, these searches will
find evidence for axions [47]. Constraining ma ∼ 10−18 eV
is a theoretically well-motivated goal as this is the
“anthropic” boundary for axions in string theory [48],
and is also a range of masses independently constrained by
black hole spins [49,50].
The second application discussed a SPH model for N-

body simulations of axion DM, which is an alternative to
the adaptive-mesh-refinement approach of Ref. [12], and
could be incorporated within existing N-body codes. Work
on this topic, too, is underway. Such simulations will open
new doors on the study of structure formation with
axion DM.
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