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Non-Gaussianity in the distribution of inflationary perturbations, measurable in statistics of the cosmic
microwave background (CMB) and large scale structure fluctuations, can be used to probe nontrivial initial
quantum states for these perturbations. The bispectrum shapes predicted for generic non-Bunch-Davies
initial states are nonfactorizable (“nonseparable”) and are highly oscillatory functions of the three
constituent wave numbers. This can make the computation of CMB bispectra, in particular, computa-
tionally intractable. To efficiently compare with CMB data one needs to construct a separable template that
has a significant similarity with the actual shape in momentum space. In this paper we consider a variety of
inflationary scenarios, with different nonstandard initial conditions, and how best to construct viable
template matches. In addition to implementing commonly used separable polynomial and Fourier bases,
we introduce a basis of localized piecewise spline functions. The spline basis is naturally nearly orthogonal,
making it easy to implement and to extend to many modes. We show that, in comparison to existing
techniques, the spline basis can provide better fits to the true bispectrum, as measured by the cosine
between shapes, for sectors of the theory space of general initial states. As such, it offers a useful approach
to investigate nontrivial features generated by fundamental properties of the inflationary Universe.
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I. INTRODUCTION

We are fortunate to live in a time when cosmological data
sets can probe the Universe in exquisite detail. In particular,
the cosmic microwave background (CMB) provides a rich
source of information about the very early Universe, and is
an especially precise probe of the inflationary paradigm.
An important question that we are now in a position to
probe, more thoroughly than ever, is: what is the initial
quantum state of inflationary fluctuations? It is usually
taken to be the Bunch-Davies state, but from the point of
view of treating inflation as an effective theory it is not
unreasonable to consider the choice of state to be open,
subject to the conditions that it allow for inflation to occur
and that it be consistent with field theoretic precepts.
Explicit examples of scenarios that give rise to non-
Bunch-Davies initial conditions for inflation can be found
in [1–6]. Assuming that the initial state is more general than
the free vacuum, such as a Bogoliubov transform of the
Bunch-Davies state or even a mixed state, we can calculate
its imprint on cosmological observables like the power
spectrum and bispectrum of inflationary perturbations, and

in turn those of CMB temperature anisotropies [2,3,7–22].
Whether these effects can actually be observed in cosmo-
logical data depends on the extent of departure from a
Bunch-Davies state, the number of e-folds of inflation
beyond the minimum required, and of course the sensitivity
of our experiments [23–25].
Given these choices, how can we narrow down the

possibilities? The initial state of perturbations will leave its
imprints on their correlation functions, for example, log-
arithmic oscillatory modulations in the CMB power spec-
trum [26]. Higher order correlators, such as the bispectrum
[27,28], are extremely sensitive to deviations from the
Bunch-Davies state. The bispectrum carries information
both about the amplitude of the correlations, typically
encoded in fNL, as well as of preferred configurations in
momentum space; the three momenta must form a triangle,
but the shape of the triangle is sensitive to both the
interactions of the inflaton, including the mixing with
gravity, as well as the initial state.
The bispectrum for general initial states is highly

oscillatory and cannot be written in a separable form,
i.e. as a product of separate functions of the three
momentum modes. This makes the study of these states
via the bispectrum computationally difficult. For such
shapes we usually construct a basis of separable functions
and rewrite the desired shape as a sum over many such basis
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functions, for example, using a polynomial basis [29],
Fourier basis [30], or divergent basis [31].1 As long as the
original and reconstructed shapes are very similar and have
a significant overlap, or in other words have a cosine close
to unity, we can look for signatures of the reconstructed
shape in the CMB bispectrum and be assured that the result
will be an accurate reflection of what we would have
obtained for the real shape. Non-Bunch-Davies shapes,
however, can be difficult to efficiently describe with
existing bases [28–31]. This leaves open the possibility
that signatures of general initial states could still be present,
yet undetected, in the CMB data.
In this paper we describe a new basis of piecewise spline

functions and use it to fit non-Bunch-Davies shapes of the
bispectrum. The spline basis consists of polynomial func-
tions defined locally, between various points called “knots”
in 3D space [34,35]. This makes it particularly suitable for
smoothing and interpolating data with complex patterns,
and in our case, for capturing localized features of any
complicated shape of the bispectrum. Another immediate
advantage of defining localized functions is that the basis
functions are orthogonal to a good approximation, and
there is no need to perform a Gram-Schmidt-like ortho-
gonalization process on the basis functions. Instead, the
basis-fitting algorithm we adopt does not rely on having an
orthonormal basis. This makes the spline basis easy to
implement and to extend, using a large number of mode
functions to capture fine features in the bispectrum. We find
that the spline basis performs at least as well as the
polynomial and Fourier bases in describing most
non-Bunch-Davies shapes, and for many shapes offers
significant improvements (in the cosines) over existing
techniques.
The remaining paper is organized as follows. In Sec. II

we briefly review how we define the initial conditions for
the perturbations and obtain the bispectrum for general
initial states. We describe the spline basis in Sec. III and use
it to fit non-Bunch-Davies shapes in Sec. IV. We conclude
in Sec. V with a summary and discussion on the scope of
this work. Appendices A and B contain details on calcu-
lations of the correlation functions for general initial states,
and Appendix C describes our numerical implementation
of the spline basis.

II. NON-BUNCH-DAVIES SHAPES

We usually describe primordial correlation functions
in terms of the curvature perturbation ζðt; ~xÞ, since this
quantity is conserved outside the horizon [36]. It is defined
as the perturbation in the local scale factor aðtÞ; the metric

perturbation hijðt; ~xÞ is then written as hij ¼ a2e2ζδij. In an
effective field theory setting, ζðt; ~xÞ is related to the
Goldstone mode of time reparametrization symmetry
breaking, usually denoted as πðt; ~xÞ [37,38]. In this section
we describe how the choice of initial state for the
perturbation ζðt; ~xÞ [or equivalently πðt; ~xÞ] affects
the primordial bispectrum Bζðk1; k2; k3Þ defined via

hζ~k1ζ~k2ζ~k3i ¼ ð2πÞ3δ3ð~k1 þ ~k2 þ ~k3ÞBζðk1; k2; k3Þ.
Starting with the Einstein-Hilbert action, we can calcu-

late the action for scalar perturbations directly in the
ζ-gauge. Writing down the most general Lorentz-invariant
scalar-tensor theory with second order equations of
motion results in the Horndeski action for the perturbations
[39–43].2 For PðX;ϕÞ models of inflation, with
X ≡ −gμν∂μϕ∂νϕ,3 the leading order in slow-roll
Horndeski action at cubic order in the perturbations is
given by

S ¼
Z

d3xdta3
�
ε

c2s

�
_ζ2 −

c2s
a2

ð∂iζÞ2
�
þ Λ1

_ζ3 þ Λ2ζ _ζ
2

þ Λ3

a2
ζð∂iζÞ2

�
þ Sboundary: ð1Þ

Here we have set MPl ¼ 1, ε≡ − _H=H2 is the slow-roll
parameter, cs is the sound speed for perturbations, and the
couplings Λ1 − Λ3 are given by

Λ1 ¼
ε

Hc4s

�
1 − c2s − 2

λc2s
Σ

�
; ð2Þ

Λ2 ¼ −3
ε

c4s
ð1 − c2sÞ; ð3Þ

Λ3 ¼
ε

c2s
ð1 − c2sÞ; ð4Þ

with λ≡ X2 ∂2P
∂X2 þ 2

3
X3 ∂3P

∂X3 and Σ≡ X ∂P
∂X þ 2X2 ∂2P

∂X2 ¼ H2ε
c2s
.

The boundary terms in Eq. (1) are important and in general
do contribute to the bispectrum when the initial state is
different from the Bunch-Davies vacuum; here we assume
for simplicity that the initial state for ζðt; ~xÞ is defined in
such a way as to cancel these boundary terms. It is also
worth noting that the action in Eq. (1) is equivalent to that
obtained using an effective field theory approach [37,38] up

1In special shape-specific cases, other basis sets can be used:
for example, feature or resonant models exhibiting linear or
logarithmic oscillations, respectively, can be efficiently recon-
structed through a one-dimensional (1D) expansion in the sum of
wave numbers, k1 þ k2 þ k3 [32,33].

2The Horndeski action does not describe ghost inflation,
however, which can be included in an effective field theory
setting. Another example outside the Horndeski domain is
Horǎva-Lifshitz gravity, in which Lorentz invariance is explicitly
broken.

3The action for many single scalar field models of inflation can
be written as S ¼ 1

2

R
d4x

ffiffiffiffiffiffi−gp ½Rþ 2PðX;ϕÞ�, with ϕ controlling
the dynamics of both the background and perturbations.
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to boundary terms, and the bispectrum for general initial
states agrees between the two actions, as shown in [44].
The usual method to obtain correlation functions of

ζðt; ~xÞ is to use in-in perturbation theory [45–52]. The
initial state can be input as a density matrix defined at the
initial time t0 [20]; for simplicity we will assume that
the initial density matrix is pure and Gaussian.4 Doubling
the fields on the plus and minus branches of the in-in
contour, we can calculate the Green’s function correspond-
ing to the quadratic (or “free”) part of the action in Eq. (1),
including the effect of a general initial state; details of this
calculation can be found in the appendix of [20]. The
Green’s function for ζðt; ~xÞ is found to be

Gζ
kðη; η0Þ ¼

c2s
2ε

1

aðηÞaðη0Þ
�
Gþþ

k ðη; η0Þ Gþ−
k ðη; η0Þ

G−þ
k ðη; η0Þ G−−

k ðη; η0Þ

�
; ð5Þ

where η is the conformal time defined as η ¼ R
dt=a and

the factor out front comes from rewriting the quadratic
action in terms of the canonically rescaled field χðt; ~xÞ,
ζ ¼ 1ffiffiffiffi

2ε
p cs

a χ. The functions G�;�
k ðη; η0Þ are given by

Gþþ
k ðη; η0Þ ¼ f>k ðηÞf<k ðη0Þθðη − η0Þ

þ f<k ðηÞf>k ðη0Þθðη0 − ηÞ; ð6Þ

Gþ−
k ðη; η0Þ ¼ f<k ðηÞf>k ðη0Þ; ð7Þ

G−þ
k ðη; η0Þ ¼ Gþ−�

k ðη; η0Þ; ð8Þ

G−−
k ðη; η0Þ ¼ Gþþ�

k ðη; η0Þ; ð9Þ

and the mode functions f≷k ðηÞ are solutions to the second
order differential equation resulting from the Green’s
function equation,

f≷k ðηÞ ¼ α≷k hkðηÞ þ β≷k h�kðηÞ
− 2f≷k ðη0ÞAkgkðηÞθðη0 − ηÞ: ð10Þ

The last term above is an additional contribution from the
initial density matrix, Ak being the kernel that multiplies the
ζþ~k ζ

þ
−~k

term in the initial state action [20]; it does not,

however, contribute to the bispectrum, and so we will
ignore it in our discussion. The Bogoliubov coefficients α≷k ,
β≷k are functions of kernels in the initial density matrix, the
mode functions, and time derivatives of the mode functions,
all at the initial time, and satisfy α<k ¼ β>�k , β<k ¼ α>�k ,

jα>k j2 − jβ>k j2 ¼ 1. Finally, the function hkðηÞ is defined at
leading order in slow-roll as

hkðηÞ ¼ −
1

2
ð−πηÞ1=2Hð1Þ

3=2ð−cskηÞ; ð11Þ

whereHð1Þ
3=2 is a Hankel function. The Bunch-Davies choice

consists of setting the initial time η0 → −∞, the initial
density matrix to unity, and additionally α>k ¼ 1, β>k ¼ 0

so that the mode function f>k ðηÞ picks out the positive
frequency solution proportional to e−icskη.
The time η0 at which the initial conditions are set can be

taken to be a constant time in the past at the onset of
inflation, or can be considered as a scale-dependent
quantity, η0ðkÞ. In the latter case, the initial conditions
for each k mode are set at the time when the physical
momentum corresponding to this mode csk=aðη0Þ (with
aðη0Þ ¼ −1=ðη0HÞ during inflation, at leading order)
crosses a fixed energy scale Λ of new physics. The
Bogoliubov transform in Eq. (10) is correct for either
choice of η0. In Appendix A we show that for a scale-
dependent initial time, this solution leads to the well-known
oscillations in the late-time power spectrum [10,11]. We
use both choices of initial time in Sec. IV when we apply
the spline basis to non-Bunch-Davies shapes of the
bispectrum.
Let us now discuss how general initial states modify the

bispectrum. Observables, such as the bispectrum, can be
calculated using any combination of plus and minus fields
on the in-in contour. For Gaussian initial states, we can
calculate the three-point function in the perturbations as

hζþ~k1ζ
þ
~k2
ζþ~k3

iðηÞ¼hζþ~k1ðηÞζ
þ
~k2
ðηÞζþ~k3ðηÞexp½iðS

ð3Þþ−Sð3Þ−Þ�iG;
ð12Þ

where Sð3Þ is the cubic part of the action in Eq. (1) written in
momentum space, with conformal time derivatives, and
with the time integral running from η0 to η. The subscript
“G” indicates that Wick contractions on the right are carried
out using the Gaussian theory. At leading order in slow-roll,
only the three operators _ζ3, ζ _ζ2, and ζð∂iζÞ2 contribute,
and we can write the three-point function at late times
hζþ~k1ζ

þ
~k2
ζþ~k3

iðηÞjη→0− as a sum of contributions from each of

these three operators. To calculate the three-point function
in Eq. (12) at late times we need the function Gζ;þþ

k ð0; η0Þ
and its derivative ∂η0G

ζ;þþ
k ð0; η0Þ for η0 ≥ η0; using Eqs. (6),

(10) [discarding the θðη0 − ηÞ term], and (11) these are
given by

Gζ;þþ
k ð0; η0Þ ¼ H2

4εcsk3
½akð1 − icskη0Þeicskη0

þ bkð1þ icskη0Þe−icskη0 � ð13Þ

4Here by “pure”we are distinguishing between pure and mixed
quantum states. Mathematically speaking, Trðρ2Þ ¼ 1 for pure
states, while Trðρ2Þ < 1 for mixed states, ρ being the density
matrix. Relaxing the pure state assumption leads to qualitatively
very similar results to what we discuss here. By “Gaussian” we
mean that the action describing the initial state is quadratic.
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and

∂η0G
ζ;þþ
k ð0; η0Þ ¼ H2csη0

4εk
ðakeicskη0 þ bke−icskη

0 Þ; ð14Þ

where we have defined the functions

ak ¼ ðα>k − β>k Þα>�k ; ð15Þ
bk ¼ −ðα>k − β>k Þβ>�k : ð16Þ

Using these in Eq. (12) and performing the time integrals
we find that the contributions to the bispectrum from the
three operators are given by

hζþ~k1ζ
þ
~k2
ζþ~k3

i
_ζ3
ðηÞjη→0− ¼−

3

32
ð2πÞ3δ3

�X
~ki

�
Λ1

H5

ε3

� X1
l;m;n¼0

cðlÞk1 c
ðmÞ
k2

cðnÞk3
F _ζ3ðð−1Þlk1; ð−1Þmk2; ð−1Þnk3;η0Þ

�
þ c:c:; ð17Þ

hζþ~k1ζ
þ
~k2
ζþ~k3

i
ζ _ζ2

ðηÞjη→0− ¼
1

32
ð2πÞ3δ3

�X
~ki

�
Λ2

H4

ε3

� X1
l;m;n¼0

cðlÞk1 c
ðmÞ
k2

cðnÞk3
F ζ _ζ2ðð−1Þlk1;ð−1Þmk2;ð−1Þnk3;η0Þ

�
þ c:c:; ð18Þ

and

hζþ~k1ζ
þ
~k2
ζþ~k3

i
ζð∂ζÞ2ðηÞjη→0− ¼ 1

64
ð2πÞ3δ3

�X
~ki

�
Λ3

H4

c2sε3

� X1
l;m;n¼0

cðlÞk1 c
ðmÞ
k2

cðnÞk3
F ζð∂ζÞ2ðð−1Þlk1; ð−1Þmk2; ð−1Þnk3; η0Þ

�

þ c:c:; ð19Þ

where “c.c.” denotes complex conjugate and

cðiÞk ¼
�
ak i ¼ 0

bk i ¼ 1:
ð20Þ

The functions F _ζ3 , F ζ _ζ2 , and F ζð∂ζÞ2 are written out
explicitly in Appendix B. The above equations give us
the leading order result for the bispectrum for general initial
states. The non-Bunch-Davies contributions to the bispec-
trum are strongly peaked in the flattened limit k1 ≈ k2 þ k3
(assuming that k1 is the largest momentum mode) and in
the squeezed limit k3 ≪ k1 ≈ k2. (We show these enhance-
ments and discuss apparent divergences in both limits in
Appendix B.) Further, these shapes are highly oscillatory,
which makes them even harder to constrain using the CMB
bispectrum. In the next section we discuss the spline basis
that we use to rewrite these shapes as a sum of separable
functions.

III. THE SPLINE BASIS

B-splines, short for “basis splines.” are a well-
established, and conceptually simple, mathematical for-
malism for curve fitting, using a set of piecewise
polynomial functions [34,35]. For a basis in one dimension,
one chooses a set of “knots,” fx0; x1;…; xNg, representing
the points at which the polynomial function pieces are
joined, and the degree q of the polynomials. For example, a
1D spline basis spanning 0 ≤ x ≤ 1 with a set of six
piecewise cubic polynomials is shown in Fig. 1. As an

explicit example of the functional form of the basis, one of
the basis functions shown in the figure is

B1ðxÞ ¼
� 9

4
ð4x − 18x2 þ 21x3Þ 0 ≤ x < 1

3

1
4
ð8 − 36xþ 54x2 − 27x3Þ 1

3
≤ x ≤ 2

3
:

ð21Þ

The numerical coefficients defining the spline basis for
input knots and q are easily generated using existing
software libraries in many languages.
A general 1D function, fðxÞ, can be expanded, and

approximated, using the spline basis,

f0ðxÞ ¼
XN−1

n¼0

αnBnðxÞ: ð22Þ

FIG. 1 (color online). Example spline basis generated from
knots at x ¼ f0; 0; 0; 0; 1=3; 2=3; 1; 1; 1; 1g and polynomials of
degree q ¼ 3.
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The expansion coefficients are computed by first tabulating
a sample of ðxi; fiÞ values, where fi ≡ fðxiÞ, correspond-
ing to M data points, and finding the values of fαng that
minimize the least-squares function,

LS ¼
XM
i¼1

�
fi −

XN−1

n¼0

αnBnðxiÞ
�

2

: ð23Þ

In practice, this requires solving the linear system of

equations given by BTB~α ¼ BT~f, where B here is an
M × N matrix containing the values of BnðxiÞ.
Similarly, we can generate a higher-dimensional basis

by multiplying 1D b-splines together. For example, a 3D
b-spline fit for a shape5 can be expressed as

S0ðk1; k2; k3Þ ¼
XN−1

k¼0

Xk
j¼0

Xj

i¼0

Aijk½Biðk1ÞBjðk2ÞBkðk3Þ

þ perms�; ð24Þ

where “perms” refers to permutations of k1, k2, and k3. We
note that the number of relevant ði; j; kÞ combinations in
such a fit is not N3, because each spline mode is symmetric
in the three wave numbers, and not all ði; j; kÞ combinations
will correspond to a spline mode that is nonzero for wave
number combinations that can form a closed triangle. In
the 2D and 3D cases, efficient algorithms solving for the
expansion coefficients Aijk already exist in the literature
[53]. We illustrate how to use the spline basis further
through explicit examples and include snippets of our
numerical codes in Appendix C.
In contrast to other bases used to create non-Gaussian

templates made of globally varying functions, such as
polynomial, Fourier, and divergent functions, the spline
basis consists of a set of localized modes, each of which
describes only a small region of the allowed k-space. This
makes the spline basis very well suited to describing shapes
such as those of non-Bunch-Davies models, that are
characterized by highly-peaked features concentrated on
very flattened triangles. Because of the localization of
spline modes, the modes are by construction nearly
orthogonal, and no orthogonalization procedure (such as
Gram-Schmidt) is used in our implementation. Avoiding
any explicit orthogonalization is an advantage, as ortho-
gonalizing the polynomial/Fourier basis sets via Gram-
Schmidt is numerically unstable, and requires very high
precision throughout to create a basis with a large number
of modes.6

IV. FITTING NON-BUNCH-DAVIES SHAPES

In this section we consider two non-Bunch-Davies
shapes included in Planck’s analysis that were not well
reconstructed in multipole-space using the polynomial
modal expansion, SNBD1 and SNBD2 [28].

7 We also consider
a set of generalized non-Bunch-Davies shapes, S_ζ3 , Sζ _ζ2 ,
and Sζð∂ζÞ2 ,

8 with different assumptions for the initial time
boundary csη0 and its potential wave number dependence,
csjη0j ¼ 103 Mpc, ðΛ=HÞ=ðk1 þ k2 þ k3Þ, and ðΛ=HÞ=k1,
where we allow Λ=H to be 10 or 103, representing a
physically-motivated range of values. These shapes span a
wide variety of possible non-Bunch-Davies features in the
bispectrum, and allow us to compare our results with
previous analyses.
For any nonseparable primordial shape S, and given a

choice of basis fMng, one can compute a separable fit S0
that approximates S as a linear combination of separable
basis functions,

S0ðk1; k2; k3Þ ¼
X
n

αnMnðk1; k2; k3Þ: ð25Þ

The similarity between the original shape and its fit is
quantified by a cosine,

cosðS; S0Þ≡ hS; S0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihS; SihS0; S0ip ; ð26Þ

where the inner product is defined in Fourier space with a
choice of weighting,

hS; S0i≡
Z

dVTSðk1; k2; k3ÞS0ðk1; k2; k3Þwðk1; k2; k3Þ:

ð27Þ

The volume VT includes only those combinations of k1, k2,
and k3 that can form a closed triangle, with each wave
number satisfying kmin ≤ k1; k2; k3 ≤ kmax, where kmin ¼
10−3 Mpc−1 and kmax ¼ 0.1 Mpc−1. The weight
wðk1; k2; k3Þ is typically taken to be either unity or
1=ðk1 þ k2 þ k3Þ, where the latter choice is meant to
represent a more accurate reflection of the scaling of the

5A shape function is usually denoted by Sðk1; k2; k3Þ, not to be
confused with the action S.

6The numerical instability of the classical Gram-Schmidt
algorithm can be partially mitigated by instead adopting the
modified Gram-Schmidt algorithm, which is what we have
implemented in generating the polynomial and Fourier modes.

7In the notation of [28], SNBDi here is equal
to ðk1k2k3Þ2BNBDi

Φ =ð2A2fNBDiNL Þ, where i ¼ 1; 2.
8The shapes S_ζ3 , Sζ _ζ2 , and Sζð∂ζÞ2 here are related to correspond-

ing leading order non-Bunch-Davies corrections to the bispectrum;
for example, S_ζ3ðk1; k2; k3Þ ¼ ðk1k2k3Þ2½F _ζ3ð−k1; k2; k3; η0Þþ
F _ζ3ðk1;−k2; k3; η0Þ þ F _ζ3ðk1; k2;−k3; η0Þ þ c:c:�, where we
have set aki ¼ 1 and bki ¼ 0.01. In general bki can have some
scale-dependence as long as it does not spoil constraints from
backreaction of the energy density in the initial state. Whatever
choice is made for bki should be applied consistently in the case of a
joint analysis of the power spectrum and bispectrum.
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covariance of the CMB bispectrum, such that the Fourier-
space cosine is closer to the multipole-space cosine
between the CMB bispectra corresponding to the shapes
S and S0. However, in general we find that both choices
result in similar cosines. In our analysis, we use a unit
weight for the 3D Fourier basis fits and all 2D fits, and a
weight of 1=ðk1 þ k2 þ k3Þ for the remaining fits.
In this section we implement the existing polynomial and

Fourier basis methods, and additionally our new basis of
piecewise splines, to obtain separable fits to non-Bunch-
Davies shapes. In each case, we quantify the performance
of the basis by computing the cosine as a function of an
increasing number of modes used in the fit.
We use the polynomial basis described in [29] and the

Fourier basis described in [30]. In each case, three 1D
functions based on either polynomials or sines/cosines of ki
are multiplied together to form 3D separable functions, that
are then orthogonalized using a Gram-Schmidt algorithm
to create a basis of 3D orthonormalized and separable
functions, called fRng for polynomials and fF ng for
Fourier modes. Since the basis functions are orthonormal
in each case, the expansion coefficients fαng can be
computed through inner products between S and the basis
functions, αn ¼ hS;Rni or αn ¼ hS;F ni.
Alternatively, in the spline basis expansion, three 1D

piecewise spline functions are multiplied together to form a
basis of 3D separable spline functions fBng. In this case,
each mode is highly localized in a region of Fourier space,
so any two modes are orthogonal by construction unless
they have peaks that overlap. While the lack of strict
orthogonality means that the expansion coefficients in the

spline basis cannot be computed using simple inner
products, existing algorithms can solve for the coefficients
efficiently [53] (also see Appendix C).
In the subsections that follow, we present polynomial,

Fourier, and spline basis fits to a variety of non-Bunch-
Davies shapes.

A. SNBD1 and SNBD2
The cosines for polynomial, Fourier, and spline fits to

these shapes are shown in the upper left panel of Fig. 2. We
find that the polynomial expansion produces a better fit
than the Fourier basis, and polynomial cosines typically
increase slowly beyond about 100 modes for SNBD1 and 50
modes for SNBD2, indicating that lower order modes
contribute most to the fits. While it is possible that
increasing the number of polynomial or Fourier modes
will increase the cosines further, during our analysis we
found that generating large polynomial and Fourier basis
sets is computationally very demanding. The separable
modes are orthogonalized using a Gram-Schmidt algo-
rithm, which is known to be numerically unstable, and the
instabilities become more severe as higher order polyno-
mials are used. On the other hand, the spline basis
expansion as we have implemented it does not require
orthogonalization, so in comparison a large number of
modes can easily be generated and used in the separable
fits. In the case of SNBD1 and SNBD2, we find that the spline
expansion performs similarly well as the polynomial
expansion when 200 modes are used, and better fits can
be achieved by using a larger number of modes.

FIG. 2 (color online). Comparisons of shape reconstructions for SNBD1 (solid) and SNBD2 (dashed) [upper left panel] or S_ζ3 (solid) and
Sζ _ζ2 (dashed) [other three panels] using the polynomial (black), Fourier (gray), and b-spline methods. Top row and lower left panels:
The 3D spline basis reconstructions correspond to the colored curves, where the purple, blue, orange, and red colors correspond to spline
basis sets derived from using 10, 14, 22, and 40 1D spline functions in each dimension. Lower right panel: The 2D spline basis
reconstructions correspond to the colored curves, where the purple, blue, orange, and red colors correspond to spline basis sets derived
from using 50, 100, 200, and 300 1D spline functions in each dimension.
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B. S_ζ3 , Sζ _ζ2 , and Sζð∂ζÞ2 with k-independent csη0
These shapes have oscillatory features that grow with the

size of the triangle (i.e. with k1) and in the flattened and
squeezed limits. With csjη0j ¼ 103 Mpc, the set of 200
polynomial modes produces a cosine of 0.52 for S_ζ3 and
0.80 for Sζ _ζ2, as shown in the upper right panel of Fig. 2.9

While these modes produce a higher cosine than a set of
200 spline functions, better fits can be generated with a
larger set of splines.

C. S_ζ3 , Sζ _ζ2 , and Sζð∂ζÞ2 with k-dependent csη0
For small Λ=H, we find that the shapes are easily

reconstructed with both the polynomial and spline methods
using ≲200 modes, as shown in the lower left panel of
Fig. 2. The oscillatory features are of low enough frequency
that lower order polynomials are sufficient to capture most
of the features of these shapes, and the spline functions also
do not need to have a very fine resolution. If the initial
conditions are set at 10=k1, rather than 10=ðk1 þ k2 þ k3Þ,
then the oscillatory features are of somewhat higher
frequency; for either shape, however, the large global
features still allow both the polynomial and spline bases
to efficiently reconstruct these shapes.
For cases with k-dependent csη0 and larger values of

Λ=H, the oscillations have a much higher frequency than
what can be captured by polynomials, and we find that
the spline reconstructions perform similarly poorly.
However, the k-dependence of csη0, whether it be
ðΛ=HÞ=ðk1 þ k2 þ k3Þ or ðΛ=HÞ=k1, allows the shapes
to be rewritten as functions of only two free parameters: the
ratios x≡ k3=k1 and y≡ k2=k1. In terms of x and y, the
oscillation frequency does not increase drastically through-
out the allowed parameter space, which makes it easier to
generate good 2D fits. The advantage of rewriting scale-
invariant shapes such as these in terms of two free
parameters for computing k-space cosines and CMB
bispectra has been discussed in earlier works [54].
We generate the 2D fits by defining a 2D analogue of

the polynomial/spline basis sets and the cosine. We find,
however, that to generate the same number of polynomial
modes as in the 3D case (200) requires using higher order
1D polynomials, which exacerbates the numerical issues
that we encountered in the 3D case, so for the 2D fits we
only use 100 polynomial modes with unit weight. We do
not encounter similar numerical issues in the spline fits.
We show the results for the 2D fits in the csjη0j ¼

103=ðk1 þ k2 þ k3Þ case in the lower right panel of Fig. 2;
for csjη0j ¼ 103=k1 the shapes have very similar features,
with the oscillations being slightly more rapid and more
difficult to represent in the latter case. 2D spline fits achieve
similar cosines as 2D polynomial fits using the same

number of modes (∼100), while also being able to produce
higher cosines through the addition of more modes without
running into numerical issues, as shown in Fig. 3.

V. DISCUSSION

If the CMB is to be used to its full potential to elucidate
the details of inflation, we need to be able to both
effectively characterize a wide variety of potential infla-
tionary signatures while also ensuring that this information
is accessed in a timely manner. For non-Gaussian signa-
tures, present in the CMB bispectrum, a potential bottle-
neck in this process is the production of separable templates
that accurately match the characteristic properties of the
underlying shape. This issue is particularly acute for initial
states that differ from the Bunch-Davies state, which can
generically have highly oscillatory features whose charac-
teristic scale can vary over the bispectrum configura-
tion space.
In this work we have analyzed a variety of functions to

generate templates for bispectrum shapes arising in a
variety of non-Bunch-Davies scenarios. We have quantified
how well different choices of separable basis functions,
derived from polynomials, Fourier functions, and b-splines,
can reconstruct the original non-Bunch-Davies shapes. The
spline expansion method is a new alternative choice of
basis, that we implement here for the first time, and can be
used at a reasonable computational cost to obtain cosines
that can be very close to unity.
We find that the polynomial basis is good for describing

some non-Bunch-Davies shapes with large features, and
generally performs better than the Fourier basis. For the rest
of the shapes we considered, assuming the low cosines
will steadily increase with the addition of more modes, we
find that numerical difficulties prevent us from generating
enough modes to see higher cosines. For most shapes, the
spline basis performs as well as the polynomial one when
equal numbers of modes are chosen. The spline basis is
both numerically simpler to compute, and does not require

FIG. 3 (color online). 2D b-spline fits to S_ζ3 (solid) and Sζ _ζ2
(dashed), where the purple, blue, orange, and red colors corre-
spond to spline basis sets derived from using 50, 100, 200, and
300 1D spline functions in each dimension.

9The shape for Sζð∂ζÞ2 is sufficiently similar to Sζ _ζ2 that its fits
are not shown separately in the figures.
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orthogonalization due to its localized nature. This allows a
larger number of modes to be efficiently calculated to
improve the match between the templates and the actual
shapes.
The spline basis expansion method is very flexible, and

there are other ways to adapt a spline basis to target specific
shapes better that we have not explored here. For example,
while our spline bases are derived from equally spaced
knots, we note that one can create a basis using unequally-
spaced knots, such that different k-space regions are
sampled more finely than others. Non-Bunch-Davies
shapes, where the features are sharply peaked and localized
near flattened and squeezed configurations, can potentially
be probed more efficiently by optimizing the spline basis
in this way.
Finally, while our analysis takes place in primordial k-

space, the flexibility and computational simplicity of the
spline basis approach translates directly to multipole-space,
where it complements existing approaches, such as the
polynomial basis. Utilizing a variety of basis expansion
techniques ensures that the exquisite CMB data
available now, and in the future, can be used efficiently
to explore the full theory space of viable inflationary
scenarios.
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APPENDIX A: POWER SPECTRUM FOR
GENERAL INITIAL STATES

In this appendix we show that the result for the Green’s
function for general initial states in Sec. II with a scale-
dependent initial time η0ðkÞ gives the correct form of the
late-time power spectrum in [10,11]. We start with devel-
oping a precise definition for the adiabatic vacuum at
η0 → −∞ or the Bunch-Davies vacuum. Let us write the
field χ~kðηÞ (defined via ζ ¼ 1ffiffiffiffi

2ε
p cs

a χ) in terms of annihilation

and creation operators at the time η0, a~kðη0Þ and a†
−~k
ðη0Þ,

and the mode functions f≷k ðηÞ, as

χ~kðηÞ ¼ a~kðη0Þf>k ðηÞ þ a†
−~k
ðη0Þf<k ðηÞ: ðA1Þ

The conjugate momentum, π~kðηÞ can be obtained from the
quadratic Lagrangian for χ~kðηÞ; at leading order this is
given by

π~kðηÞ ¼
∂Lð2Þ

∂ _χ ¼ dχ~k
dη

−
1

a
da
dη

χ~k; ðA2Þ

We can write π~kðηÞ in terms of its corresponding mode

functions g≷k ðηÞ as

π~kðηÞ ¼ −iða~kðη0Þg>k ðηÞ − a†
−~k
ðη0Þg<k ðηÞÞ: ðA3Þ

For Bunch-Davies modes we choose the positive frequency
solution at early times, and using aðηÞ ¼ −1=ðηHÞ at
leading order during inflation, the mode functions are
given by

f>k ðηÞ ¼
1ffiffiffiffiffiffiffiffiffi
2csk

p e−icskη
�
1 −

i
cskη

�
; ðA4Þ

g>k ðηÞ ¼
ffiffiffiffiffiffiffi
csk
2

r
e−icskη: ðA5Þ

The choice of Bunch-Davies vacuum can then be expressed
as the following relationship between the field and its
conjugate momentum in the infinite past,

π~kðη0Þ ¼ ð−icskÞχ~kðη0Þ: ðA6Þ

Note that this does not imply that the position and
momentum operators commute at all times; it is merely
a statement of how they are related at η0 → −∞.
Equivalently, in terms of the mode function f>k ðηÞ we
can write

df>k
dη

				
η¼η0

−
1

a
da
dη

f>k ðη0Þ ¼ ð−icskÞf>k ðη0Þ; ðA7Þ

for η0 → −∞. The above condition is the definition of the
adiabatic vacuum in the infinite past, or equivalently the
Bunch-Davies vacuum. As shown in [10,55] this choice
corresponds to a minimum uncertainty state.
The prescription to choose an adiabatic vacuum at a

finite initial time is to enforce the same condition in
Eq. (A7) at a given η0. This corresponds to a state which
minimizes the uncertainty at η ¼ η0. Choosing the initial
density matrix to be unity, but still having a non-Bunch-
Davies initial state by allowing β>k ≠ 0, i.e. with f>k ðηÞ
given by Eq. (10) with Ak ¼ 0, this leads to the following
relation between the Bogoliubov coefficients,

β>k
α>k

¼
�

i
2cskη0 þ i

�
e−2icskη0 : ðA8Þ
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Combining this with the usual condition jα>k j2 − jβ>k j2 ¼ 1

we find that

jα>k j2 ¼
4c2sk2η20 þ 1

4c2sk2η20
: ðA9Þ

Let us now choose η0 to be a function of k such that the
physical momentum csk=aðη0Þ crosses some fixed high
energy scale Λ of new physics at η0, then

η0 ¼ −
Λ

Hcsk
: ðA10Þ

With the above equations we can write the following
solution for α>k and β>k (note that we are free to choose
any overall phase),

α>k ¼
�
2Λ=H − i
2Λ=H

�
e−iΛ=H; ðA11Þ

β>k ¼ −
�

i
2Λ=H

�
eiΛ=H: ðA12Þ

For Λ=H ≫ 1 we can now write the late-time power
spectrum as

PζðkÞ ¼
k3

2π2
c2s
2ε

1

a2ðηÞ f
>
k ðηÞf<k ðηÞjη→0−

¼ H2

8π2εcs

�
1 −

H
Λ
sin

�
2Λ
H

��				
csk¼aH

; ðA13Þ

which includes a scale-dependent oscillatory term. The
argument of the oscillations is usually written as being
proportional to lnðk=kpÞ, where kp is some fixed pivot
scale. This can be seen by expanding H around the
pivot scale so that HðkÞ ≈ HðkpÞ½1 − εðN − NpÞ þ � � �� ≈
HðkpÞ½1 − ε ln k

kp
þ � � ��, leading to logarithmic oscillations

in the power spectrum. Note that this expansion only holds
for small ε and a reasonable range of scales.

APPENDIX B: BISPECTRUM FOR GENERAL
INITIAL STATES

The functions F _ζ3 , F ζ _ζ2 , and F ζð∂ζÞ2 in Eqs. (17)–(19)
are given by

F _ζ3ðp1; p2; p3; η0Þ ¼
1

k1k2k3

�
−

2

K3
1

þ eicsK1η0

K1

�
2

K2
1

−
2icsη0
K1

− c2sη20

��
; ðB1Þ

F ζ _ζ2ðp1; p2; p3; η0Þ ¼
1

k1k2k3

�
−2K3

1K
3
3 þ K2

1K
4
2 þ K1K2

2K
3
3

K3
1K

6
3

þ eicsK1η0

K3
1K

6
3

ð2K3
1K

3
3 − K2

1K
4
2 − K1K2

2K
3
3 þ icsK2

1K
2
2K

3
3η0Þ

�
;

ðB2Þ

and

F ζð∂ζÞ2ðp1; p2; p3; η0Þ ¼
1

ðk1k2k3Þ3
�
K6

1 − 3K4
1K

2
2 − K3

1K
3
3 þ 2K2

1K
4
2 þ 2K1K2

2K
3
3

K3
1

þ eicsK1η0

csK3
1η0

fiðK5
1 − 2K3

1K
2
2Þ þ csðK4

1K
2
2 þ K3

1K
3
3 − 2K2

1K
4
2 − 2K1K2

2K
3
3Þη0

− ic2sðK4
1K

3
3 − 2K2

1K
2
2K

3
3Þη20g

�
; ðB3Þ

where for brevity of notation we have suppressed the
explicit momentum dependence of the functions K1; K2,
and K3,

K1ðp1; p2; p3Þ ¼ p1 þ p2 þ p3; ðB4Þ

K2ðp1; p2; p3Þ ¼ ðp1p2 þ p2p3 þ p3p1Þ1=2; ðB5Þ

K3ðp1; p2; p3Þ ¼ ðp1p2p3Þ1=3: ðB6Þ

In the next two subsections we show how one obtains the
flattened and squeezed enhancements from the functions F
(also see [56]). We work with the simplest function F _ζ3 ,
though the results are similar for the other two functions (or
at least for their appropriate sum) as well.

1. Flattened limit

The bk1ak2ak3 term leads to an enhanced flattened limit
(k1 ≈ k2 þ k3, k1 being the largest momentum mode)
bispectrum. Let us first assume that bk1 is purely imaginary,
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so that the bispectrum is proportional to the imaginary part
of F . The corresponding F function we consider is

F _ζ3ð−k1; k2; k3; η0Þ ¼ −
2

~k31k1k2k3

þ eics ~k1η0

~k1k1k2k3

�
2

~k21
−
2icsη0
~k1

− c2sη20

�
;

ðB7Þ

where ~k1 ≡ −k1 þ k2 þ k3. In the limit of ~k1 → 0, the
exponential can be expanded as

lim
~k1→0

eics ~k1η0 ¼ 1þ ics ~k1η0 −
c2s ~k

2
1η

2
0

2
−
ic3s ~k

3
1η

3
0

6
þ � � � ðB8Þ

Using this in Eq. (B7), and noticing that any term with ~k1 in
the numerator goes to zero, we find that

lim
~k1→0

F _ζ3ð−k1; k2; k3; η0Þ ¼ −
i

3ðk2 þ k3Þk2k3
c3sη30: ðB9Þ

For fixed η0, we can set csjη0j ¼ 1=k�. The above limit of
the three-point function is therefore enhanced (though not
divergent) in the flattened limit. For η0ðkÞ with large Λ=H
as well we see an enhancement in the flattened limit. If we
instead assume that bk1 is real, then the bispectrum is still
enhanced, though not in the exactly flattened limit but in a
near-flattened limit.

2. Squeezed limit

Let us now look at the ak1bk2ak3 piece,

F _ζ3ðk1;−k2; k3; η0Þ ¼ −
2

~k32k1k2k3

þ eics ~k2η0

~k2k1k2k3

�
2

~k22
−
2icsη0
~k2

− c2sη20

�
;

ðB10Þ

where ~k2 ≡ k1 − k2 þ k3. In the squeezed limit
(k3 ≪ k1 ≈ k2) we have ~k2 → kmin, where kmin is the
smallest momentum mode observable today. Using this
in Eq. (B10) we find that

lim
~k2→kmin

F _ζ3ðk1;−k1; k3; η0Þ

¼ −
2

k21k
4
min

þ eicskminη0

k21k
2
min

�
2

k2min

−
2icsη0
kmin

− c2sη20

�
: ðB11Þ

For fixed η0 and in the limit of kmin ≫ k�, the c2sη20 term
gives the largest contribution. This term is multiplied with a
highly oscillatory function though, and averaging over the
large argument of the cosine (real part of the exponential)
we expect its contribution to vanish. The leading order
contribution is then proportional to 1=ðk21k4minÞ, which
shows a strong squeezed limit enhancement. In the limit
of kmin ≳ k� or for η0ðkÞ this argument no longer holds and
we may or may not see enhancements.10

APPENDIX C: B-SPLINES
FITTING ALGORITHM

In this appendix, we build on the discussion of Sec. III to
describe in more detail the b-spline fitting algorithms we
have used, and illustrate b-spline fitting examples for a
simple 1D function and a 2D representation of the scale-
invariant enfolded template. Snippets of Mathematica 10
codes we have implemented are shown here, and the same
algorithms were first constructed and explicitly shown as
MATLAB code in [53].
Our first example considers a spline fit to a simple 1D

function fðxÞ, with 0 ≤ x ≤ 1. To generate a fit, we first
make two choices: a choice of basis and a choice of data
points to fit. The spline basis is determined by a choice of
kþ 1 equidistant knots, fx0; x1;…; xkg, at which each
basis function’s degree q polynomial pieces will be joined.
The b-splines in general do not have to be generated using
constant knot intervals, but for simplicity we always start
with equidistant knots, and additionally include q extra
knots at each of x ¼ 0 and x ¼ 1 to produce a “clamped”
basis. Without these extra knots, the generated basis sets do
not have splines with nonzero amplitudes at x ¼ 0 and
x ¼ 1, and it will be difficult to fit functions that are
nonzero at the endpoints.
Given these inputs, existing codes, such as

Mathematica’s BSPLINEBASIS function, can recursively
generate a basis of kþ q b-splines such that each one is
spanned by qþ 2 knots, made up of qþ 1 polynomial
pieces, with derivatives continuous up to order q − 1. In
addition, the sum of all b-spline amplitudes at any x is
unity. For example, the b-splines in Fig. 1 are easily
generated by choosing q ¼ 3 and k ¼ 3 such that the
knots vector is knots ¼ f0; 0; 0; 0; 1=3; 2=3; 1; 1; 1; 1g,
and executing BSplineBasis½fq; knotsg; i; x�, where i is
an integer 0 ≤ i ≤ kþ q − 1 identifying each particular
b-spline. In this work, we vary the number and widths of
the b-splines by varying k, but always keep the degree fixed
to q ¼ 3.
Next, the choice of data points depends on how finely we

wish to sample fðxÞ. We would like to choose a data set
consisting of M data pairs, ðxi; fiÞ, where fi ≡ fðxiÞ, such

10In our fits with fixed η0 in Sec. IV we took k� to be similar to
kmin (∼10−3 Mpc−1) which is what the Planck team had used
in [28].
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that our data resolves any potentially fine features in the
function we would like to fit, without including so many
extra data points that our numerical calculation becomes
intractable. The final fit should ultimately be insensitive to
the sampling we have chosen. Again, for simplicity, we
always use equidistant sampling points xi in our analysis,
but vary the density of sampling points by changing M.
The spline fit then approximates the original function as

f0ðxÞ ¼
XN−1

n¼0

αnBnðxÞ; ðC1Þ

where the expansion coefficients fαng are solved for by
minimizing the least-squares function,

LS ¼
XM
i¼1

�
fi −

XN−1

n¼0

αnBnðxiÞ
�2

: ðC2Þ

This requires solving the linear system of equations given

by BTB~α ¼ BT~f, where B is an M × N matrix containing
the values of BnðxiÞ, and is easily performed with algo-
rithms such as Mathematica’s LINEARSOLVE.
We note one extension of b-splines, called p-splines, that

aims to avoid overfitting a set of input data by imposing
smoothness on the resulting fit. Short for “penalty
b-splines,” in the p-spline method, the fit’s expansion
coefficients are determined by both the choice of basis
and the choice of input data, plus a choice of penalty
function that generally disfavors fits with large differences
between coefficients of neighboring b-splines [57]. In this
context one would instead minimize

LS ¼
XM
i¼1

�
fi −

XN−1

n¼0

αnBnðxiÞ
�2

þ λ
XN−1

j¼k

ðΔkαjÞ2; ðC3Þ

where λ is a constant that controls the smoothness of the fit
and k is the order of the penalty, a typical choice being
k ¼ 2, such that Δ2αj ¼ αj − 2αj−1 þ αj−2. The use of a
penalty is optional, and its main purpose in the context of
data fitting is to avoid fitting any noisy features in the data.
Further, if there are not sufficiently many data points
sampling fðxÞ, with many more splines than data points,
then without a penalty the fits may display spurious
features, as we will deliberately try to show in the 1D
example that follows.
In Fig. 4 we show fits to fðxÞ ¼ sinð10xÞ=ð10xÞ with

different choices of data points and smoothing parameter λ.
We have fixed the knots at f0; 0; 0; 0; 0.1; 0.2;…;
0.8; 0.9; 1; 1; 1; 1g, yielding a basis of 13 b-splines. We
find, as illustrated in the figure, that we can achieve good
fits without introducing extra smoothing through a nonzero
value of λ, as long as we fit to enough data points. So we

now continue to an example of fitting a primordial shape in
two dimensions, without a penalty.
To illustrate the b-spline fitting algorithm in two dimen-

sions, we construct a basis of 2D b-splines and use it to fit
the scale-invariant enfolded template,

Senfðx; yÞ ¼
1

xy
ð1 − x − y − x2 − y2 þ x3 þ y3

− x2y − xy2 þ 3xyÞ; ðC4Þ

where x≡ k3=k1 and y≡ k2=k1. As in the 1D case, the
inputs to the fitting algorithms are made up of a choice of
basis and a set of data points. The basis is specified by a
choice of polynomial degree and a sequence of knots in
each of the two dimensions, x and y. In our particular
application, since we are aiming to fit shape functions that
are symmetric in their wave number arguments, we only
specify the knots and degree in one dimension, and use the
same b-spline basis for the additional second dimension.
The 2D b-splines are then made of products of any two 1D
splines, for example, BnðxÞBmðyÞ. The data are given by
ðxi; yj; Sðxi; yjÞÞ and stored in Yij ¼ Sðxi; yjÞ, where again
some care must be taken in the choice of sampling, which
must be dense enough to capture any small features such as
oscillations that we would like to capture in the resulting fit.
The 2D analogue of the least-squares function in

Eq. (C2) is

FIG. 4 (color online). Example 1D b-spline fits to
fðxÞ ¼ sinð10xÞ=ð10xÞ. All fits shown have used a basis of 13
splines. In the upper panel, the fits have been computed using 6
data points, sampled at xi ¼ f0; 0.2; 0.4; 0.6; 0.8; 1g. Attempting
to construct such a fit without smoothing [solid red] causes the
splines to produce spurious features, especially at smaller values
of x, while introducing a penalty and a small amount of
smoothing [dashed red], λ ¼ 0.1, restores the fit to a reasonable
representation of the true function. The lower panel is the
same fit, except with 21 data points, sampled at
xi ¼ f0; 0.05; 0.1;…; 0.9; 0.95; 1g. In this case, the fits with
[dashed blue] and without [solid blue] smoothing are very similar.
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LS ¼
XM
i¼1

XM
j¼1

�
Yij −

XN−1

m¼0

XN−1

n¼0

αmnBmðxiÞBnðyjÞ
�2

: ðC5Þ

To turn the problem of solving for the expansion coef-
ficients αmn into a linear system, we create a regression
basis C from the M × N b-spline basis matrices in each
dimension, B1 and B2, which in our case are equal. We
define

C ¼ ðB2 ⊗ eTLÞ⊙ðeTK ⊗ B1Þ≡ B1□B2; ðC6Þ

where ⊗ is the Kronecker product, ⊙ is an element-by-
element multiplication, the second equality defines
the □ operation, and eL and eK are vectors of 1’s with
length L each. In Mathematica, we define the □ operation
as box:

box ½B1 ;B2 � ≔ Module½fK;L; eK; eLg,
K ¼ Length½B1½½1;All���;
L ¼ Length½B2½½1;All���;
eK ¼ ConstantArray½1; fKg�;
eL ¼ ConstantArray½1; fLg�;
KroneckerProduct ½B2; feLg�

*KroneckerProduct ½feKg;B1�
]

Then by stacking the columns of the coefficients array

αmn and the data array Yij to get vectors ~β and ~y
respectively, the task of finding a solution for the coef-
ficients is once again reduced to solving a linear system of

equations given by CTWC~β ¼ CTW~y. Here W is a matrix
containing weights, which may be different for each data
point, but for simplicity we restrict ourselves to using a
weight of unity for all of our data.
For modest amounts of data and numbers of b-splines,

one can quickly solve for the coefficients in this straight-
forward way. For large data sets and numbers of b-splines,
however, this approach becomes computationally cumber-
some due to the large size of C. While it is still possible to
numerically solve for the coefficients αmn using a low-level
language like C(++) or FORTRAN, we have instead used
algorithms developed for higher level languages, such as
MATLAB in [53], using only vector and matrix operations.
This has the benefit of being easier to implement, while still
being able to sidestep much of the memory storage and
speed issues typical of a more brute-force approach in a
high-level language. Instead of starting with a calculation
of C in the brute-force approach, the algorithm from [53]
that we have adopted computes CTWC and CTW~y using
only B. We refer the reader to [53] for a detailed discussion
of how the method itself is devised and constructed, or to
see the equivalent MATLAB code, and present here an
implementation of the b-spline fitting algorithms in
Mathematica.

The normal equations can be efficiently constructed
and solved, given an input of data in Y and
information about the data sampling and b-spline basis
in B:

get2dfit ½Y ;B � ≔ Module [{m, n,W, R, r,
F, a, A},

m ¼ Length [Y[[1, All]]];
n ¼ Length [B[[1, All]]];
W ¼ ConstantArray ½1; fm;mg�;
R ¼ Transpose [B].(W*Y).B;
r ¼ ArrayReshape ½R; fn � n; 1g�;
F ¼ Transpose [box [B, B]].W.box [B.B];
F ¼ ArrayReshape ½F; fn; n; n; ng�;
F ¼ TensorTranspose [F, Cyclesff3; 2gg]];
F ¼ ArrayReshape [F; fn � n; n � ng];
a ¼ LinearSolve [F, r];
A ¼ ArrayReshape [a; fn; ng]
]

After the matrix of coefficients is solved for, we
construct the final fit through two steps. First, we map
the coefficients output as A from get2dfit to a new set of
coefficients that corresponds to a 2D basis of splines which
is symmetric in its two arguments, so that each 2D basis
mode is a sum of up to two terms: BiðxÞBjðyÞ þ
BjðxÞBiðyÞ. Second, in building up the fit, mode by mode,
we start with the modes that contribute most to the fit. Since
the b-splines in a choice of basis have similar shapes and
amplitudes, we use the magnitude of the Aij coefficient as a
proxy for gauging how much any particular b-spline
contributes to a fit’s overall cosine with the original
shape. This motivates building up a fit by adding in
modes, starting with those that have the largest jAijj.
The cosine is then computed in the usual way, through
an inner product over ðx; yÞ-space between the original
shape Senf and the fit.
As an example, we use a basis of 10 splines in each

dimension constructed by choosing k ¼ 7 and q ¼ 3,
and use as our data set a grid of uniformly spaced ðx; yÞ
values from taking 50 samples in each dimension, to
compute the matrix of coefficients Aij, using the algorithms
box and get2dfit above. The total number of symmetric
modes is then 55, and the modes are ordered by their
corresponding values of largest to smallest jAijj to produce
the cosines in Fig. 5. A visual comparison of the full fit
using 55 modes and the original enfolded template is given
in Fig. 6.
For our 3D fits, the fitting method is the same: a choice

of b-spline basis and data set make up the inputs to the
algorithm, which returns an array Amnp containing
the expansion coefficients that approximate the input
shape as S0ðk1;k2;k3Þ¼

P
mnpAmnpBmðk1ÞBnðk2ÞBpðk3Þ.

However, due to the higher dimensionality of the problem,
we must introduce a new function, rho, to generalize the
matrix product to the product of a matrix and a 3D array.
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Below, we show Mathematica code for rho [A,B,p], which
computes the normal matrix product between rows of A and
the pth column of B, resulting in a product,C, which has the
same dimensions as B:

rho ½A ;B ; p � ≔ Module [{sa,sb,n,ip,
cycles,sbip,prodsbip,tempB,C},

sa ¼ Dimensions [A];
sb ¼ Dimensions [B];
n ¼ Length [sb];
ip ¼ Join½Range½pþ 1; n�;Range½1; p − 1��;
Which[

p ¼¼ 1, cycles ¼ Cycles [{}],
p ¼¼ 2, cycles ¼ Cycles [{{1,3,2}}],
p ¼¼ 3, cycles ¼ Cycles [ff1; 2; 3gg]];

tempB ¼ TensorTranspose [B, cycles];
sbip ¼ sb [[ip]];
prodsbip ¼ Product [sbip[[i]],

{i, 1, Length [sbip]}];
tempB ¼ ArrayReshape [tempB, {sb[[p]],

prodsbip}];
C ¼ Transpose [A].tempB;
C ¼ ArrayReshape [C, Join [{sa[[2]]},

sb[[ip]]]];
C ¼ TensorTranspose [C,

InversePermutation [cycles]]
]

Given this definition of rho, the 3D b-spline fit coef-
ficients are calculated using get3dfit:

get3dfit ½Y ;B � ≔ Module [{m,n,W,F,R,A},
m ¼ Length [Y[[1, 1, All]]];
n ¼ Length [B[[1, All]]];
W ¼ ConstantArray [1, fm;m;mg];
F ¼ rho [box[B,B],W,1];
F ¼ rho [box[B,B],F,2];
F ¼ rho [box [B,B], F,3];
R ¼ rho [B,Y*W,1];
R ¼ rho [B,R,2];
R ¼ rho [B,R,3];
F ¼ ArrayReshape [F,fn; n; n; n; n; ng];
F ¼ TensorTranspose [F,

Cycles [ff3; 2; 4; 5gg]];
F ¼ ArrayReshape [F; fn3̂; n3̂g];
A ¼ LinearSolve [F,

ArrayReshape [R; fn3̂; 1g]];
A ¼ ArrayReshape [A; fn; n; ng]
]
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