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Perturbation theory for dark matter clustering has received a lot of attention in recent years, but its
convergence properties remain poorly justified and there is no successful model that works both for
correlation functions and for power spectra. Here we present the halo Zel’dovich approach combined with
perturbation theory, in which we use standard perturbation theory at one-loop order (SPT) at very low k,
and connect it to a version of the halo model, for which we adopt the Zel’dovich approximation plus a Padé
expansion of a compensated one-halo term. This low-k matching allows us to determine the one-halo term
amplitude and redshift evolution, both of which are in an excellent agreement with simulations, and
approximately agree with the expected value from the halo model. Our Padé expansion approach of the
one-halo term added to the Zel’dovich approximation identifies a typical halo scale averaged over the halo
mass function, the halo radius scale of order of 1 Mpc=h, and a much larger halo mass compensation scale,
which can be determined from SPT. The model gives better than one-percent-accurate predictions for the
correlation function above 5 Mpc=h at all redshifts, without any free parameters. With three fitted Padé
expansion coefficients the agreement in the power spectrum is good to a percent up to k ∼ 1 h=Mpc, which
can be improved to arbitrary k by adding higher-order terms in the Padé expansion.
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I. INTRODUCTION

One of the major puzzles in cosmology is understanding
the nonlinear formation of structure in the Universe. The
current state of the art are the N-body simulations, which
have been verified to give reliable answers at the 1% level
in the power spectrum up to k ∼ 1 h=Mpc [1], but are
expensive to run, require large allocations, and are often not
fully convergent using typical current-generation box sizes
and resolutions. The convergence properties become a lot
more difficult to achieve for higher-order correlations. For
example, recent studies have shown that to reach one
percent convergence on the covariance matrix one needs to
simulate a volume in excess of 1000 Gpc3 [2], and the
covariance matrix depends both on the cosmological model
and on the size of the survey one is simulating, making the
numerical solution to the full problem an excessively
demanding task given the current typical resources. Even
more importantly, we want to use clustering statistics to
extract information about our Universe, and simulations do
not provide much insight into questions such as where is
the information content and how to optimally extract it
from the data.

An alternative approach is to use perturbation theory
(PT), of which the two most prominent examples are
standard PT (SPT) and Lagrangian PT (LPT) (see
Ref. [3] for a review). In this approach one assumes that
the density perturbation is less than unity, and one expands
the nonlinear equations perturbatively. Since density per-
turbations growwith thewavevector k, this approach breaks
down for some k > knl. The current approaches typically
underpredict power in LPT and overpredict in one-loop
SPT. For example, we know that the Zel’dovich approxi-
mation is quite successful in modeling the correlation
function on large scales, including the baryonic acoustic
oscillation (BAO)wiggles [4]. However, it fails miserably in
the power spectrum, underestimating the power at all but the
lowest values of k, and giving predictions that are even
below the linear theory at z ¼ 0 [5]. Various one-loop LPT
extensions (one-loop LPT [6], convolved LPT [7], con-
volved LPTs [5]) somewhat improve this for the power
spectrum, but make things worse for the correlation function
[5]. Physically, the problem of the Zel’dovich approxima-
tion and its extensions is that while it can describe properly
the initial streaming of dark matter particles, it fails to
account for their capture by the dark matter halos: instead,
the particles continue to stream along their trajectories, set
by the initial velocity in the Zel’dovich approximation,
leading to an excessive smoothing of the power.
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Standard Eulerian PT has the opposite problem. In the
power spectrum it quickly overpredicts the amount of
power at the one-loop level, specially at low redshifts.
The reason for this is that the loop integrals extend over all
modes, including those that are in the nonlinear regime
k > knl. These modes are not in the PT regime and typically
these contributions are strongly suppressed in the simu-
lations relative to PT, leading to too much power in SPT
relative to simulations. Its Fourier transform, using a
Gaussian smoothing to obtain a convergent correlation
function, results in a worse model than the Zel’dovich
approximation around BAO, but is otherwise comparable.
Recent work emphasized this point in the context of
effective field theory (EFT) [8]. For example, for power-
law power spectra these integrals can be divergent, so PT is
wrong in such situations [9]. Instead, it is argued that the
best that one can do is to introduce EFT parameters that
describe the correction from the small-scale physics. For
k < 1=Rh these terms can be expressed as a low-k limit of
PT, but with free parameters. A priori it is unclear what Rh
is, and how large these corrections are for our Universe. In
particular, realistic cold dark matter (CDM) power spectra
have the shape where most of the low-k-limit loop integral
comes from scales in the linear regime, where PT is
believed to be valid, making the corrections from the
nonlinear scales small, although probably not negligible.
We will try to quantify this in more detail below. We will
argue that the halo model requires Rh to be a typical halo
radius.
The philosophy we will advocate in this paper is that any

analytic approach must give reliable results both in Fourier
space and in configuration space. Failure to do so is a sign
of something missing in the model. For example, a Taylor
series may give reliable results in Fourier space up to a
certain k, but if truncated at a certain order it generally
diverges at high k and makes its Fourier transform
impossible to calculate. The reason is that the series is
not convergent at high k, and one has to adopt a different
summation of the terms that has a better convergence. Our
goal is to develop a model that is rooted in PT as much as
possible, but is also able to reproduce simulations. Since
simulations have been verified at 1%, we will strive for this
precision in this paper.

II. HALO ZEL’DOVICH MODEL AND
PERTURBATION THEORY

The main ingredients of our approach are the following.
(1) One-loop SPT has loop integrals which, for low k

and high z, are entirely in the linear regime and thus
reliably computed. There is no guarantee that the
entire loop integral is correct at all redshifts, even for
low k, but we will make this assumption here and
derive the consequences. We will therefore assume
that EFT corrections to one-loop SPT are negligible
at low k. For higher k and low z SPT predictions

become increasingly unreliable and will not be used.
Similarly, two-loop SPT integrals are negligible at
high z, while for low z they extend deeply into the
nonlinear regime and are grossly overestimated in
SPT [5]. Here we will simply ignore two-loop SPT,
with one exception, discussed next.

(2) The Zel’dovich approximation gives an approxi-
mately correct physical picture of how the particles
are displaced up to the process of halo formation,
which stops the particles from displacing. The latter
has very little effect on the Zel’dovich displacement:
most of the displacement is generated by modes in
the linear regime and we will not be correcting the
Zel’dovich approximation. In terms of SPT the
Zel’dovich approximation receives contributions
from loops at all orders, but only from very specific
terms related to the linear displacement field corre-
lation function.

(3) Halo formation has to be an essential part of the
complete model. Halos are objects of very high
density, leading to a nearly white noise-like contri-
bution to the power spectrum at low k, with the halo
profile parameters determining deviations fromwhite
noise at higher k. At high k, the halo term contribution
dominates the correlations: all of the close pairs are
inside the same halos. At a scale k ∼ 1=2Rvir the
number of close pairs involves all of the pairs inside
thevirial radius,whichmust give a contribution of the
other of M2, where M is the virial mass of the halo.
Integrating over all the halos, and weighting by the
halomass functiondn=dM, oneobtains anestimate of
theone-haloamplitude ρ̄−2

R
M2ðdn=dMÞdM,where

ρ̄ is the mean density of the Universe. At redshift
0 the integral is dominated by cluster mass halos with
virial radius of 1–2 h−1 Mpc.We expect the one-halo
term to be approximately of this amplitude at
k ∼ 0.2–0.4 h=Mpc. However, the mass has to be
conserved so thehaloshave tobecompensated,which
forces the one-halo term to vanish at very low k. There
is no unique way to do this, since it depends on what
we compensate against. The compensation is by
definition a two-halo term, since the mass is being
compensated by the particles outside the virial radius.
Here we compensate against Zel’dovich and demand
that the total agrees with SPT, which then automati-
cally enforces mass and momentum conservation.

(4) More specifically, we will assume that 1) can be
connected to 2) and 3) at some low k, which is low
enough that SPT can be assumed to be valid, yet
large enough to still be close to the scale which
dominates the compensation. We will match the two
on this scale where both descriptions are valid, and
use 2Þ þ 3Þ at higher k. Since we believe that the
Zel’dovich approximation is a good starting point
for any modeling we will include it as one ingredient

UROŠ SELJAK AND ZVONIMIR VLAH PHYSICAL REVIEW D 91, 123516 (2015)

123516-2



of the theory, and decompose the power spectrum
and correlation function into two parts,

PðkÞ ¼ PZel þ PBB; ξðrÞ ¼ ξZelðrÞ þ ξBBðrÞ:
ð1Þ

Here the subscript Zel stands for Zel’dovich and BB
stands for broadband beyond Zel’dovich [5], which
is our one-halo term. While there may be a residual
BAO wiggle signature that is not captured by
Zel’dovich, it is essentially negligible in the power
spectrum and at most a few percent in the correlation
function around BAO (100 Mpc=h), probably too
small to be observed by existing or future redshift
surveys due to large sampling variance errors. Here
we will thus focus on the modeling of the broadband
one-halo component and ignore the wiggle part.
Note that we do not assume that the Zel’dovich part
is uncorrelated with the one-halo term. In this sense
our one halo term is not the so-called stochastic term
uncorrelated with Zel’dovich.

As we argued the key physics ingredient missing in PT is
the halo formation, which leads to a large contribution from
the near-zero lag correlations, also called the one-halo term
in the halo model [10–13]. The halo model postulates that
the nonlinear evolution leads to halo formation, and that all
the dark matter particles belong to collapsed halos, with the
halo mass distribution given by the halo mass function
dnðMÞ. The correlations between the dark matter particles
can be simply split into correlations within the same halo,
the one-halo term, and between halos, the two-halo term.
On large scales the latter reduces to linear theory PLðkÞ.
The one-halo term in the halo model has a simple physical
interpretation on small scales, which is that all dark matter
particles are inside the dark matter halos distributed with a
radial halo density profile, and this leads to a power
spectrum that is simply an integral over the halo mass
function times the Fourier transform of the halo profile
squared. The halo profile has a compact support, extending
out to roughly the virial radius, and its correlation function
is a convolution of the profile with itself, extending to
roughly twice that. In the power spectrum the convolution
becomes a square of the Fourier transform of the profile,
which can be expanded as a series of even powers of k [14],

PBBðkÞ ¼ FðkÞA0ð1 − R2
1h;2k

2 þ R4
1h;4k

4 þ � � �Þ: ð2Þ

Here the parameters A0R1h;n have a specific interpretation
in terms of the integrals over the halo mass function nðMÞ
times the halo mass M squared, and times 2n moments of
the halo radius averaged over the halo density profile [14].
Specifically, A0 ¼ ρ̄−2

R
M2dnðMÞ is just a weighted halo

mass squared divided by the mean density ρ̄ and does not
depend on the halo density profile. These arguments
however do not yet account for the halo compensation.

Above we introduced FðkÞ, which is the compensation
function, which is required to vanish in the k → 0 limit as
long as the two-halo term converges to linear theory in the
same limit: mass conservation requires that the leading
nonlinear one-halo term cannot be a constant A0 [14]. Thus
the one-halo term has to be generalized to include mass
compensation effects: nonlinear effects cause the dark
matter to collapse into dark matter halos, bringing in
mass from larger scales, so it has to be compensated by
a mass deficit at large scales to satisfy the mass (and
momentum) conservation. Because of this one can
show that the one-halo term has to scale as k4 at low k
[10,15,16].
The two-halo term can also be expressed as a convolu-

tion of the linear theory over the halo profiles, and the
resulting Taylor expansion is given by a similar series

P2hðkÞ ¼ PLðkÞð1 − k2R2
2h;2 þ k4R4

2h;4 � � �Þ: ð3Þ

The leading-order correction scales as k2PLðkÞR2
2h;2, where

R2h;2 is also related to an average second moment of the
halo density profile, although with a different mass and
halo bias weighting [10]. Note that this gives at the leading-
order correction the usual EFT term [8]. It is clear that both
the one-halo and two-halo Taylor expansions break down
for k > R−1

h;2. The breakdown of the two-halo term does not
matter: at the relevant k the correlations are dominated by
the one-halo term. For the latter however, a different
expansion is advantageous, as we discuss below.
In this paper we argue that the natural way to connect

SPT to small-scale nonlinear effects is in the context of the
Zel’dovich approximation plus a compensated one-halo
term. In this picture we can think of PZel as the leading-
order two-halo term, and PBB as the one-halo term. The
motivation for this is that the Zel’dovich correlation
function is almost exact for r > 5 Mpc=h, and that the
correction relative to it is negative, suggesting a compen-
sation of a nonlinear term ξBBðrÞ. All the corrections to the
Zel’dovich model thus go into the compensation term FðkÞ.
In the halo model these corrections would arise from the
compensation of the halo term and from two-halo term
correlations of particles inside the halos. We do not try to
separate these into the latter that one expects to scale as
k2PLðkÞ at low k, and the former that scales as k4 at very
low k. In general it is difficult to do this separation, as both
of these arise from the two-halo term correlations. It is
also not clear that in the regime where it matters
(k > 0.1 h=Mpc) these low-k expansions still apply. We
will however use them at very low k ∼ 0.02 h=Mpc, where
we expect SPT to be valid. However, it should be clear
that the term PBB is not just the one-halo term in the
traditional sense, because of these compensation correc-
tions at low k.
In Ref. [14] this function FðkÞ was simply fitted using a

polynomial form. We will begin by keeping this function
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completely general, and then choosing a very simple form
for it. Our one-halo term, and thus the compensation form
of FðkÞ, is defined relative to the Zel’dovich term. If we
adopted a different form for the two-halo term we would
obtain a different form of FðkÞ. In principle, the Zel’dovich
approximation itself could contain some halos with the
correct mass and so a part of what we usually call the one-
halo term could already be contained there. However, we
will see that this must be a minor effect and the one-halo
term we derive agrees with the expected value from the
halo model.
While the one-halo expansion in even powers of k above

works in Fourier space up to the virial radius scale of order
k ∼ R−1

1h;2 ∼ 1 h=Mpc, it breaks down above that. Moreover,
powers of k diverge at high k and do not have a well-
defined Fourier transform, making this form unsuitable for
correlation function predictions without resumming it first.
Instead we will use in this paper the Padé series ansatz

PBB ¼ A0FðkÞ
1þPnmax−1

m¼1 ðkRmÞ2m
1þPnmax

n¼1ðkRnhÞ2n
: ð4Þ

By requiring the series in the denominator to run to a higher
power than in the numerator we guarantee that the series
does not diverge at high k and has a finite Fourier
transform. Here we will explore the truncation of the series
at nmax ¼ 0; 1; 2. In terms of the halo model A0 has the
same interpretation as before; it is the halo mass squared
averaged over the halo mass function. It is the only quantity
that has units of power spectrum; all the other parameters
have units of length. For the Rm and Rnh parameters we
expect that they will be related to a typical scale of the
halos. There are several halo scales one can define. One is
the scale radius Rs, defined as the scale where the slope of
the density profile is −2. Another scale we can define is the
virial radius Rvir ¼ cRs, where c is the concentration
parameter with values around 3–4 for the most massive
halos and increasing towards less massive halos [17]. The
mean overdensity at Rvir is 200 by definition, while the
typical mean overdensity at Rs can be of the order of 1000
or more. In the halo model approach we integrate over these
with the halo mass function, and the number of pairs for
each is proportional to M2, which gives most of the weight
to the very massive halos. As a result, if we use nmax ¼ 1
and only have one scale parameter, which we denote R0

h1,
then we find that the typical scale, when averaged over all
halos, is of the order of 1 Mpc=h at z ¼ 0, a typical scale of
a cluster.
While the halo model has been successful as a phenom-

enological model, its connection and consistency with PT
has not been explored. In this paper we propose a halo
Zel’dovich model applied to perturbation theory (HZPT)
approach, in which we connect the halo model to PT in the
regime where both can be expected to be approximately
valid. We take the approach that one-loop SPT has a regime

of validity on very large scales and gives us the correct
description of the onset of nonlinearity. This is not
guaranteed by SPT: the one-loop SPT may receive con-
tributions from small scales which are nonlinear and thus
not reliably computed. For CDM-type power spectra, the
integrals are convergent and for sufficiently high redshift all
of the one-loop integral contributions come from linear
scales, the prediction is reliable, and no EFT correction is
needed. For now we will simply assume there are no
corrections to SPT at low k, and return to this discussion
later.
Let us therefore assume that one-loop SPT is correct at

very low k, and that it can be matched to the halo model
ansatz in the equation in the regime of its validity. The
low-k limit of the Zel’dovich approximation is [5]
PZel ¼ ð1 − k2σ2L þ k4σ4L=2ÞPL þQ3=2, where PL is the
linear power spectrum, σ2L ¼ 1=ð6π2Þ R dqPðqÞ is the
square of the linear displacement field dispersion andQ3 ¼
1=ð10π2Þk4 R dqP2ðqÞ=q2 ¼ C3k4 is a mode coupling
integral, as defined in Ref. [6]. It has been shown in
Ref. [5] that this expansion is valid for k < 0.1 h=Mpc.
Note that we kept terms beyond one loop in the Zel’dovich
approximation. One-loop SPT can be written as
PSPT ¼ PL þ P13 þ P22, which at low k is P13 ¼
−61=105k2σ2LPL and P22 ¼ 45Q3=98.
Let us begin by first dropping the two-loop term

k4σ4LPL=2 from the Zel’dovich approximation. Then all
of the one-loop terms scale as the square of the power
spectrum. Matching at low k gives

PSPTðkÞ − PZelðkÞ ¼
44

105
k2σ2LPL −

2

49
Q3 ¼ A0FðkÞ;

ð5Þ
where the linear order cancels in the difference and
we have dropped all higher-order terms since they are
negligible at low k. What does this imply for the amplitude
dependence of A0 and FðkÞ? We will adopt the standard σ8
normalization for the amplitude of fluctuations, where
σ8ðzÞ is the rms fluctuation of spheres of radius of
8 Mpc=h, and which is redshift dependent. Often this is
phrased in terms of the redshift dependence of the growth
factor DðzÞ, and in linear theory we would write
σ8ðzÞ ¼ DðzÞσ8ðz ¼ 0Þ. But the amplitude dependence is
more general than the redshift dependence, since it
encompasses the idea that changing the redshift or chang-
ing the amplitude should give the same result in the context
of PT. Since both SPT and Zel’dovich at low k scale as a
square of the power spectrum, which itself scales as σ28,
requiring Eq. (5) to be valid over a broad range of k where
FðkÞ is rapidly changing, there can only be one solution to
the amplitude dependence, A0 ∝ σ48 and FðkÞ ¼ const. This
simple result is in very close agreement with simulations
spanning a wide range of redshifts and models [14], where
the slope of 3.9 was derived. We will see below that
including the full Zel’dovich instead of its lowest order
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further improves the agreement on the slope. Note that this
is valid for a general compensation function FðkÞ.
To proceed we need to assume a specific functional form

for the compensation term. A simple way to achieve
compensation is to use FðkÞ ¼ 1 − 1=ð1þ k2R2Þ, which
has an analytic Fourier transform and vanishes as k → 0, so
that the overall model for the one-halo term is

PBB ¼ A0

�
1 −

1

1þ k2R2

�
1þPnmax−1

m¼1 ðkRmÞ2m
1þPnmax

n¼1ðkRnhÞ2n
: ð6Þ

The parameter R governs the transition of the one-halo term
to 0 at low k: this is the compensation scale parameter, and
we expect it to be very large compared to the typical halo
size. Here we simply chose the simplest form for this
function FðkÞ ¼ ð1 − 1=ð1þ k2R2Þ, but we do not expect
this to be the correct form at all k, since, as seen from
Eq. (5), the residual between SPTand Zel’dovich at low k is
not k2, but k2PL. We evaluate SPT and Zel’dovich in the
low-k limit and fit for the parameters A0 and R. We find that
there is a range of kwhere the fit is good (Fig. 1) and we use
0.02 < k < 0.05 h=Mpc for the fits. The fit is not perfect, a
consequence of the simplified form of FðkÞ term, but it is a
good fit for 0.02 < k < 0.05 h=Mpc. Even for the more
general forms of FðkÞ one can still define a typical
compensation scale on which FðkÞ goes from unity to
zero. The current form of compensation is sufficient for our
purposes and we will not explore more general forms. We
find

A0 ¼ 750

�
σ8ðzÞ
0.8

�
3.75

ðh=MpcÞ3

R ¼ 26.0

�
σ8ðzÞ
0.8

�
0.15

ðMpc=hÞ: ð7Þ

This is a remarkably simple result. Moreover, it agrees
well with the recent numerical determination of the A0

amplitude from a suite of 38 emulator simulations at
different redshifts in Ref. [14], where a scaling A0 ¼
670ðσ8=0.8Þ3.9ðMpc=hÞ3 has been derived over the redshift
range 0–1. The amplitude is a bit different because the form
of compensation used in this paper is a bit different than in
Ref. [14], but they both provide an equally good fit to the
simulations, as shown in Fig. 1. The two parameters are
correlated, and the parameter R is less well determined than
A0: R comes with a 5 times larger relative error than the
error on A0. Figure 1 shows the band over which R is varied
by 12%: a reasonable estimate of its error is 3–5% (and the
error on A0 is 1% or less). We find the slopes of A0 and R to
be uncertain at the 0.1 level. The value of the amplitude also
agrees very well with the expected amplitude of the one-
halo term in the halo model, which is ρ̄−2

R
M2dn, whereM

is the halo mass, dn=dM is the halo mass function and ρ̄ is
the mean density of the Universe. This suggests that the
Zel’dovich approximation by itself does not contribute
much to the one-halo term.
Toqualitativelyderiveavalue forRandA0 let us lookat the

low-k limit of SPT, focusing on the leading-order k2 and k4

terms at the peak of the power spectrum around kpeak∼
0.02 h=Mpc,wherePLðkpeakÞ ∼ 27000ðσ8=0.8Þ2 ðh=MpcÞ3
and σ2L ∼ 36ðσ8=0.8Þ2 ðMpc=hÞ2. Since the difference
between Zel’dovich and SPT for low k gives ð44=105Þ
k2σ2LPL, by equating that to k2A0R2 [the low-k limit of
Eq. (5)] we derive R ∼ ð0.42σ2LPLðkpeakÞ=A0Þ1=2 ∼
24 Mpc=h for the best-fit value of A0, in qualitatively good
agreement with the value of 26 Mpc=h derived numerically.
Thus the value of R is determined by the linear power
spectrum amplitude at the peak, the rms displacement field
and the amplitudeof the one-halo termA0. Todetermine both
A0 and R we need to expand SPT and Zel’dovich up to k4

FIG. 1. The HZPT model for nmax ¼ 0; 1; 2 (dotted, dashed and solid lines respectively), together with SPT (dot-dashed line) are
shown as a function of k. We match SPT to HZPT around k ∼ 0.02 h=Mpc to derive A0 and R, while the remaining parameters of our
model (R1, R1h, R2h) are fitted to simulations (points) at scales k > 0.1 h=Mpc. The gray band shows the change in the HZPT, nmax ¼ 0
model in the case where the R value varies for�3 Mpc=h. This plot is for z ¼ 0, and higher z versions are similar. Simulation points are
taken from Ref. [5], and are for the σ8 ¼ 0.807 Lambda-CDM model.
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around PLðkpeakÞ, for which we also need to numerically
evaluate C3 ∼ 2 × 109 Mpc=h. Matching k4 terms gives
½ð1=2 − 45=98ÞC3 þ ðσ2LÞ2PL=2� ¼ A0R4, which, when
combined with the k2 term gives R ∼ 20 Mpc=h and A0 ∼
700 ðMpc=hÞ3 at z ¼ 0. We note further that there is a
considerablecontributionbeyondk4 fromP13 alreadyaround
k ∼ 0.02 h=Mpc, and in the numerical fits there is some
correlation between A0 and R.
The Zel’dovich term beyond one loop, ðσ2LÞ2PL=2,

cannot be neglected compared to the rest of the k4 terms
even for k < 0.05 h=Mpc, and as a consequence the
scaling of A0 ∝ σ48 and R ¼ const is mildly broken.
This term is larger for low redshifts, explaining why
the slope of σ8 scaling is less than 4.0 and closer to 3.8.
Remarkably, that is exactly what simulations suggest.
Given the uncertainties in the form of FðkÞ we cannot
address in detail the remarkably small scatter of A0 against
the amplitude σ11.3 when the shape of the power spectrum
is varied [14].
The leading order for our compensation term of the one-

halo FðkÞ is k2. It is often stated that the mass and
momentum conservation effects generate the k4 tail [18],
and so one would naively expect the leading term of one
halo to be k4. This term is generated by P22 in SPT.
However, nonlinear evolution also leads to propagator
effects contained in P13, which at the leading order give
k2PL corrections to the linear theory and we have seen that
these effects dominate at low k. We have assumed the two-
halo term to be the Zel’dovich approximation, which
contains part of the k2PL term in SPT but not all, and
so the difference is still given by the k2PL term at the
leading order, which has to be the leading-order one-halo
term, and happens to coincide with k2 at the peak of the
power spectrum around k ∼ 0.02 h=Mpc, where we fit to
our ansatz. As discussed above, we could use a more
general form of FðkÞ that would make the compensation
and two-halo terms exact, but we found that this makes no
practical difference to the final results. It is also possible to
make a different two-halo ansatz where k2PL is entirely
cancelled; for example, our two-halo ansatz could be
simply P13 of SPT, or its nonlinear propagator version
[18]. As shown in Ref. [18], this ansatz leads to a one-halo
term that is several times larger than expected in the halo
model. It is possible to generate a valid halo model based on
a different ansatz for the two-halo term, but we do not
pursue this further here.

III. POWER SPECTRUM PREDICTIONS
OF HZPT

In this section we fit higher-order parameters of the one-
halo term to obtain the best possible agreement against
simulations. The best fits for these parameters as powers of
the amplitude σ8ðzÞ give

R0
1h ¼ 1.87 Mpc=h

�
σ8ðzÞ
0.8

�
−0.47

;

R1h ¼ 3.87 Mpc=h

�
σ8ðzÞ
0.8

�
0.29

;

R1 ¼ 3.33 Mpc=h
σ8ðzÞ
0.8

0.88
;

R2h ¼ 1.69 Mpc=h

�
σ8ðzÞ
0.8

�
0.43

: ð8Þ

Here R0
1h refers to the nmax ¼ 1 case, while R1h, R2h and R1

refer to the nmax ¼ 2 case. Even though we only fit to one
set of simulations, we expect that these parameters are
nearly universal and apply well to all cosmological models,
just as in the case of the halo plus Zel’dovich model of
Ref. [14]. The main difference relative to Ref. [14] is the
form of the compensation function FðkÞ, which was fitted
to a tenth-order polynomial in Ref. [14], while here we
adopt a much simpler form of Eq. (6), and the expansion of
the one-halo term, which was in even powers of k in
Ref. [14], while we use the Padé expansion here.
In Fig. 2 we show HZPT for PðkÞ against the N-body

simulations for four different redshifts. We find that the
model with nmax ¼ 1 can fit the simulations at 1% up to
k ∼ 0.3 h=Mpc, while for nmax ¼ 2 the fits are good to 1%
up to k ∼ 1 h=Mpc. The parameter R ensures the low-k
behavior of the model, while A0 sets the peak amplitude of
PBB which is around k ∼ 0.12 h=Mpc for all redshifts. In
Ref. [19] it was argued that SPT is a relatively good
description against N-body simulations for z > 3. This is
consistent with our results: as shown in Fig. 2, for z ¼ 2
SPT differs from simulations by only 2%, and this differ-
ence is presumably even smaller for higher z.
We have established that one-loop SPT can determine A0

and R. Which other coefficients of Eq. (6) can PT
determine? Since the coefficients Rnh, Rn, n > 0, are
determined by a typical halo scale averaged over the halo
profile and averaged over the halo mass function, they
depend on the regime where the overdensity is very large:
the halo virial radius Rvir is defined at a mean overdensity
of 200, and Rs is even smaller (with the correspondingly
larger mean overdensity). These cannot be computed from
standard PT, which is only supposed to work in the regime
where δ < 1. One can show (Fig. 2) that these terms
become important at the percent level around k ∼
0.2 h=Mpc at z ¼ 0. It seems unlikely that PT can make
predictions at the percent level for k > 0.2 h=Mpc, regard-
less of which PT formalism we use. It is however
remarkable that one-loop SPT can predict the amplitude
of the one-halo term A0. This is possible because A0

depends on the total halo mass that has nonlinearly
collapsed and not on its profile. At low k the nonperturba-
tive halo profile effects also give rise to the two-halo
correction term of order k2R2

2hPL, where R2h ∼ 1 Mpc=h.
This is the EFT term of Ref. [8]. At low k this term is a
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small, few-percent, correction to the SPT term, which is of
course small compared to linear theory. At higher k this
term is modified and in our model it is absorbed into the
overall compensated one-halo term PBB.

IV. CORRELATION FUNCTION PREDICTIONS
OF HZPT

We would like to require from a good PT model that it
works both in Fourier space and in configuration space, but
so far there has been no successful model achieving this.
Typically, the Zel’dovich approximation works quite well
in the correlation function but fails in the power spectrum,
while SPT does not give very good correlation function
predictions, especially around BAO. In the HZPTapproach,
we expect the Zel’dovich term to dominate the correlation
function at large radii. In the absence of compensation the
one-halo term would be limited to scales around twice the
virial radius and below. With compensation these effects
extend to large radii, but as we will show, remain small.
There is thus a crucial difference of the effect of the one-
halo term between the correlation function and the power
spectrum: the one-halo term is mostly a few-percent effect
for r > 5 Mpc=h in the correlation function, caused by
compensation effects. On the other hand, the one-halo term
can be very large for k > 1=R ∼ 0.04 h=Mpc in the power
spectrum and dominates PðkÞ for k > 0.2 h=Mpc.
An advantage of the ansatz in Eq. (6) is the existence of

an analytical Fourier transform for low nmax. On scales
r ≫ Rhalo, and assuming R ≫ Rnh; Rn, one can use nmax ¼
0 and find

ξBBðrÞ ¼ −
A0e−

r
R

4πrR2
: ð9Þ

Similarly, if we keep the leading Rh1 effects in the nmax ¼ 1
case we get

ξBBðrÞ ¼ −
A0e−

r
R

4πrR2

�
1 −

�
R
Rh1

�
2

exp

�
−
Rþ Rh1

RRh1
r

��
:

ð10Þ

The first equation effectively reduces the low-k model that
we started with in Fourier space to a model in the
configuration space with the same two parameters, A0

and R, that have been determined using SPT. Since the
virial radius of the largest halos is about 2 Mpc=h at z ¼ 0,
we expect the transition between the two regimes to be
around 4 Mpc=h. The results for the correlation function
are shown in Fig. 3. We see that our model significantly
improves upon other PT results, achieving 1–2% agreement
down to 5 Mpc=h at all redshifts. A possible exception is
the BAO wiggle, r > 80 Mpc=h, where there may be an
additional wiggle contribution that was discussed in
Ref. [5], but it is unclear whether it is real given the large
sampling variance fluctuations. It also improves upon the
Zel’dovich approximation, which is already very good by
itself, with only few-percent deviations from simulations
over this range. Our model reduces the correlation function
relative to Zel’dovich, as expected by the compensation
effects, which take mass from large scales to enhance one-
halo terms on small scales. As expected our results agree
with SPTon large scales, but only away from BAO, making
the range where SPTagrees with simulations and our model
at the 1% level only around 50–70 Mpc=h.
Given that the one-halo contribution relative to

Zel’dovich is a few percent only, any further corrections
have a very small effect on ξðrÞ for r > 5 Mpc=h. For
example, one can improve the agreement of the model with
simulations somewhat by increasing R. We can do this at
the few-percent level since this is the formal error from the
fits to SPT. In the context of our approach, increasing R

FIG. 2. The simulation power spectrum (points) is shown relative to the HZPT model prediction (Pmodel) with nmax ¼ 2 (black solid
line) at four different redshifts (z ¼ 0.0, 0.5, 1.0 and 2.0). Also shown are SPT (dot-dashed line), HZPTwith nmax ¼ 1 (dashed line) and
linear theory (dotted line). Simulation points are taken from Ref. [5], and are for the σ8 ¼ 0.807 Lambda-CDM model.
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beyond its SPT predicted value at a level more than this
would only be possible if there are nonperturbative or two-
loop corrections at low k, since an assumption of our model
is that one-loop SPT is the correct theory at low k. Note that
EFT corrections as advocated by Ref. [8] will reduce A0R2,
which goes in the opposite direction. Nevertheless, as
discussed above, there is no guarantee for SPT to be true
even for very low k: the loop integrals can extend into the
regime where density perturbations exceed unity.
At z ¼ 0, for CDM models, this happens around
knl ∼ 0.1–0.2 h=Mpc. The low-k expansion of SPT is
dominated by k2σ2LPlinðkÞ terms, which depend only on
the convergence of the σ2L integrals. This converges to about
90% of the value for q≲ knl ∼ 0.2 h=Mpc at z ¼ 0, and
converges even more to its full value for z > 0 where knl >
0.2 h=Mpc [5]. So we expect the one-loop SPT to be almost
perfectly valid at low k for high redshifts, but there may be
low-redshift corrections at the several-percent level, which
may allow for additional changes in R or A0 beyond the
predicted value at a comparable level. In addition, our form
of the compensation term is just an assumed ansatz, which
could be modified for a better agreement.
A related question is whether one should include higher-

loop contributions. The next order in PT is the two-loop
SPT or, similarly (although not equivalently), one-loop
LPT. In both cases the corrections to one-loop SPT can
become important at low redshifts, even at low k. For
example, at z ¼ 0 the two-loop SPT correction to P13 is
about 15% [5], and since the relative correction of the two-
loop to one-loop scales as σ28, the correction is much
smaller at higher redshifts. However, higher-loop contri-
butions are likely to be grossly overestimated in PT. For
example, a comparison against simulations suggests that
the one-loop LPT contribution to the rms displacement is in
reality almost entirely suppressed, such that the total

nonlinear value of σ2NL differs by only 1–2% relative to
the linear value σ2L at all redshifts [5,20,21]. Physically this
can be understood by the process of halo formation, which
stops particles from displacing on small scales, and instead
traps them inside the dark matter halos: the large-scale
displacements, which are one loop in SPT, are correctly
predicted, while the small-scale displacements, which are
two loop and higher in the SPT sense, are strongly
suppressed. It thus seems better to drop two-loop terms
entirely, although we have no formal proof of this
statement.
In summary, formally one cannot exclude corrections at

low k, which will be of the EFT form k2PL, but these are
likely to be of the order of a few percent only. We see no
need for such corrections in our approach: our model is
accurate at the current precision of simulations. We thus
argue that one-loop SPT is close to the correct theory for
k < R−1, but this is not a result that can be formally derived.

V. CONCLUSIONS

In this paper we developed a model for the dark matter
power spectrum and correlation function that is 1%
accurate for both, and that is based on PT as much as
possible. We argued that PT approaches to large-scale
structure can only have a hope of being valid for very large
scales, k < 0.05 h=Mpc, a regime that we usually do not
focus on when comparing PT to simulations, since devia-
tions from linear theory are very small there. We also
argued that the Zel’dovich approximation is a useful
starting point for any halo-based model, and that halo
formation has to be an essential part of the model. We
proposed a model which we called the halo Zel’dovich PT
model, in which the Zel’dovich approximation is supple-
mented with the one-halo term, and the sum of the two is

FIG. 3. The simulation correlation function (points) is shown relative to the HZPT model prediction (ξmodel) with nmax ¼ 0 (black solid
line) at four different redshifts (z ¼ 0.0, 0.5, 1.0 and 2.0). Note that the HZPT ξmodel with nmax ¼ 0 if completely determined with the A0

and R parameters obtained from the low k of the SPT power spectrum. Also shown are HZPTwith nmax ¼ 1 (dashed line), Zel’dovich
(long dashed line), SPT (dot-dashed line), and linear theory (dotted line). Simulation points are taken from Ref. [5], and are for the
σ8 ¼ 0.807 Lambda-CDM model.
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connected to one-loop standard PT at low k. Within this
model we derived the one-halo term amplitude
A0 ¼ 750 ðMpc=hÞ3σ3.88 , which agrees with simulations
both in amplitude and in the σ8 scaling.
The one-halo term needs to be compensated by the other

halos for the mass conservation, and there are nonlinear
contributions from two-halo correlations, both of which we
modeled by using a very simple functional form. This
compensation scale of the one-halo term has effects on the
power spectrum at the percent level or smaller, but we have
argued that it is essential in order to have a self-consistent
model that connects the halo model to PT: its introduction
gave us one-percent accuracy on both the power spectrum
and the correlation function. In particular, the deviations of
the correlation function of simulations from Zel’dovich is
negative and a few percent only, and this term explains
its origin. We have argued that the regime where SPT is
valid in the power spectrum, is at best limited to
k ∼ 1=R ∼ 0.04 h=Mpc, while for higher k one-halo terms
[generalized by the two-halo term corrections encoded in
FðkÞ] begin to dominate. It is not possible to formally
exclude the presence of nonperturbative or higher-loop
correction terms even at very low k, but we see no need to
consider them and they are likely at most several percent for
our Universe. These terms will also generate a correction to
the BAO wiggles [5] that we have ignored in this paper.
We have proposed a Padé-type expansion of the one-halo

term as a useful functional form that allows one to go
beyond the convergence radius of the Taylor expansion. We
have argued that the value of this radius is around 1 Mpc=h,
a typical virial radius of halos properly averaged over the
halo mass function, and hence the Padé expansion is
necessary if one wants a valid description for
k > 1 h=Mpc. Our approach is similar to the treatment
of nonlinear redshift-space distortions (the so-called
Fingers of God, FoG), which also require one to have a
valid expression for k > 0.2 h=Mpc (the FoG scale is
typically 5 Mpc=h). In the context of FoG a Lorentzian
distribution is often used, which is just the Padé series at the
first order. Padé expansion also has the advantage of being
convergent in both the power spectrum and the correlation
function, making the Fourier transforms calculable. With
this expansion, and keeping terms up to second order, we
were able to match the power spectrum to better than 1%
against simulations, up to k ¼ 1 h=Mpc. The correlation

functions also agree against simulations to this accuracy
down to 5 Mpc=h. We expect that a Padé ansatz for the one-
halo term will be useful in modeling other correlation
functions as well, such as galaxy-dark matter and galaxy-
galaxy correlations. In principle a Padé expansion would
also be needed for the two-halo terms that scale as PL, but
in practice the two-halo term is irrelevant on scales where
this would make any difference (k ∼ 1 h=Mpc), so a simple
Taylor expansion giving rise to k2PL… terms suffices.
We have argued that the predictive power of PT beyond

Zel’dovich has been reduced to two numbers, A0 and R. To
improve the model further one needs to provide informa-
tion on the halo profiles in the deeply nonlinear regime,
which is unlikely to be predictable by PT. It has been
argued in Ref. [14] that these coefficients are also not
predictable by N-body simulations, due to the baryonic
effects, so PT is not necessarily inferior to N-body
simulations. For example, there are baryons inside the
dark matter halos in the form of gas and stars and these can
redistribute the matter inside halos beyond what the N-
body simulations can predict. Baryon gas has pressure and
this already changes the total matter profiles significantly,
and even more dramatic effects arise from some feedback
models where gas is pushed out of the halo center, possibly
even dragging dark matter along [22]. These processes will
change parameters associated with the halo profile, such as
Rnh and Rn (the models of Ref. [22] suggest that these
coefficients change at a level of 5–10% [14]), but because
of mass conservation A0 changes a lot less [14]. Moreover,
most of the cosmological information content is already in
the Zel’dovich term and A0 [14]. So while HZPT, and PT in
general, may only be able to determine two numbers
beyond the Zel’dovich approximation, this may also be
all that can be reliably extracted from N-body simulations
at the two-point function level.
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