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If vector type perturbations are present in the primordial plasma before recombination, the generation of
magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard
cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-
order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of
magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and
extend it by newly taking into account the time evolution of purely second-order vector perturbations with a
newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the
product-terms of the first-order scalar modes is consistent with the result in our previous study. However,
we find, both numerically and analytically, that the magnetic fields from the purely second-order vector
perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar
modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the
magnetic fields on small scales, k≳ 10 hMpc−1, is smaller than the previous estimates. The amplitude of
the generated magnetic fields at cosmological recombination is about Brec ¼ 5.0 × 10−24 Gauss on
k ¼ 5.0 × 10−1 hMpc−1. Finally, we discuss the reason for the discrepancies that exist in estimates of the
amplitude of magnetic fields among other authors.
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I. INTRODUCTION

The presence of magnetic fields on large scales is
established by current observations [1–5]. Such cosmo-
logical magnetic fields coevolve with the Universe, e.g.,
astrophysical objects, cosmic microwave background radi-
ation (CMB), large scale structure, and inflation. Recent
observations indicate that cosmological magnetic fields
have the strength about micro-Gauss on Mpc scales (see,
e.g., Refs. [1,2,5–8], and references therein). Moreover,
the pair-echo method [9–13] determines the lower bound
of strength in the intergalactic magnetic fields as
B≳Oð10−22Þ Gauss. The remarkable progress of obser-
vations indicates that cosmological magnetic fields appear
everywhere even in the cosmic voids. Furthermore, the
future experiments of the radio telescope such as Square
Kilometer Array can survey much deeper and wider
regions, and give us rich information about coevolution
between cosmological magnetic fields and baryonic mat-
ters. However, very interestingly, the origin of cosmologi-
cal magnetic fields is not entirely revealed.
The key process related to evolution of magnetic fields is

the dynamo mechanism [7,14–16], which is the amplifi-
cation mechanism of magnetic fields in the nonlinear

magnetohydrodynamics. In the stars, galaxies, and galaxy
clusters, their nonlinear evolution can amplify seed mag-
netic fields, and the strength of seed fields is about
10−20–10−30 Gauss [17]. Generally, the dynamo mecha-
nism cannot generate magnetic fields from the absence of
seed fields but amplify the seed fields, which should be set
before the dynamo mechanism works. Therefore, when we
believe that the origin of cosmological magnetic fields is as
a result of amplification of seed fields by the dynamo
mechanism, seed fields must be created in the early stage of
the universe, namely before cosmological recombination.
One of the candidates to create seed fields is the quantum

fluctuations of the electromagnetic fields in the inflation
era. During the inflation era, the scale of fluctuations is
extended beyond the Hubble horizon due to the nearly
exponential expansion. At first glance, it is possible to rely
on this scenario to generate large-scale magnetic fields.
However, this scenario does not work since the standard
Maxwell theory has the symmetry under the conformal
transformation. Under this symmetry, the vector fields,
such as magnetic fields, undergo decaying only and
become negligible. In other words, when the conformal
invariance is broken, inflationary magnetogenesis possibly
works. In many of the previous studies [18–22], the authors
have introduced interaction between the electromagnetic
fields and the dilaton-like scalar field to break conformal*saga.shohei@nagoya‑u.jp
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invariance. However, even in this case, there are other
problems in the inflationary magnetogenesis, i.e., strong-
coupling and backreaction problems [23,24]. These prob-
lems make the situation worse. Therefore we can conclude
that it is difficult to generate seed fields during the inflation
era alone. In the more recent studies [25–27], a new
interaction between electromagnetic fields and axion-like
pseudoscalar field is added in the context of dilaton-like
magnetogenesis. This interaction ends up with generation
of helical magnetic fields on small scales. The inverse
cascade can transfer helical magnetic fields from smaller
scales to much larger scales owing to conservation of the
magnetic helicity. We therefore expect the existence of
magnetic fields on all scales in later epochs although the
detailed numerical estimation is needed [28,29].
The cosmological phase transition is another possibility

to generate seed fields (e.g., Refs. [7,8]). In general, phase
transitions release the free energy and electric charges. The
released free energy is converted into the electric currents.
If these electric currents have rotational components,
cosmological seed fields are induced at epochs of phase
transitions. However, the coherent length of seed fields
generated in the cosmological phase transitions cannot
exceed the Hubble horizon scale at that time due to the
causality. Therefore phase transitions alone are not able to
explain observed large-scale magnetic fields [30].
Another category of generation mechanism is originated

from astrophysical phenomena. For example, the Biermann
battery is one of the candidates of generation mechanism
after recombination. The gravitational force can be
described as a gradient of the scalar potential and hence
cannot generate vorticity. However, the Biermann battery,
which is nonadiabatic phenomena such as shocks, can
generate vorticity and subsequently, seed fields are induced
with the amplitude about 10−17 Gauss in protogalaxies
[31], 10−17–10−14 Gauss in supernova remnants [32], and
∼10−21 Gauss in galaxies [33]. The Weibel instability,
which is microscopic instability in the plasma, can amplify
tiny seed fields at the epoch of structure formation [34,35].
When the velocity distribution of plasma particles has an
anisotropy in the phase space, the isotropized process of the
velocity distribution releases the energy, and subsequently,
the energy is converted into magnetic fields. Accordingly,
magnetic fields amplified by the Weibel instability have a
quite large amplitude of about 10−7 Gauss [34,35].
However, the Biermann battery and Weibel instability
can only work with the existence of baryonic matters or
astrophysical objects. Therefore it is difficult to explain the
origin of intergalactic magnetic fields or magnetic fields in
the voids.
Yet another interesting mechanism of generating mag-

netic fields is the Harrison mechanism [36] in which
magnetic fields are generated via vorticity of the primordial
plasma. In Ref. [37], the authors have formulated the
Harrison mechanism based on the cosmological

perturbation theory in the primordial plasma which is a
multicomponent system composed of photons, electrons,
protons, dark matters, and neutrinos. In this system,
photons and electrons or protons interact with each other
through the Compton scattering. However, photons push
electrons more frequently than protons because of the
difference of scattering rates. Accordingly, the charge
separation takes place. If there exist rotation-type electric
fields, magnetic fields are generated. However, in the linear
perturbation theory, the Harrison mechanism does not work
because there is no growing mode solution for the vector-
mode perturbations which induce rotation-type electric
fields. In other words, the models including the active
vector mode supplied by external sources, i.e., free-
streaming neutrinos [38–40], cosmic defects [41,42], and
modified gravity with vector fields [43], can generate
magnetic fields via the Harrison mechanism.
Moreover, it turns out that even standard cosmological

perturbations can generate magnetic fields if we take into
account contributions from higher-order perturbations. In
fact, it is known that the second-order perturbation theory
has not only the scalar mode but also the vector and tensor
modes through the product of the first-order scalar pertur-
bations. Recently, the second-order cosmological pertur-
bation theory is well established in the context of the CMB
formalisms [44–55]. For example, the B-mode polarization
is calculated based on the second-order perturbation theory
while there is no B-mode polarization in linear scalar
perturbations.
Recently, generation of magnetic fields via the second-

order perturbation has been studied in detail [56–60]. In
these studies, the tight-coupling approximation is
employed to estimate the amplitude of magnetic fields
analytically. Each study has shown that the amplitude of
generated magnetic fields is about 10−30–10−27 Gauss at
recombination on Mpc scales. However, it is difficult to
know the detail of the magnetic power spectrum since the
tight-coupling approximation breaks down inside the
horizon scale at recombination. By solving perturbation
equations up to the second order without employing the
tight-coupling approximation, it is possible to analyze the
power spectrum of magnetic fields. In Ref. [61], the authors
have evaluated the spectrum generated by the vorticity of
charged particles, which are induced by the nonlinear
coupling between the first-order density perturbations.
And they have found that resultant comoving magnetic
fields have the amplitude of about 10−29 Gauss at recom-
bination on Mpc scales. Subsequently, in Refs. [62,63], the
authors have studied the Harrison mechanism including
the anisotropic stress of photons. They have found that the
amplitude of magnetic fields has 10−20 Gauss at recombi-
nation on Mpc scales. However, they ignore the purely
second-order velocity difference between charged particles
and photons in their analysis. In Ref. [64], the authors
include the purely second-order effects for the first time and
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analyze the spectrum of magnetic fields on super-horizon
scales. In these studies, however, there are some discrep-
ancies which have to be clarified.
In this paper we numerically solve the vector mode of

cosmological Einstein-Boltzmann equations at the second
order including all the effects relevant to the generation of
magnetic fields, with a newly developed numerical code. In
addition we present analytic interpretations of the shapes
and time evolutions of the power spectrum of magnetic
fields on sub- and super-horizon scales, and make it clear
what has caused the discrepancies among the previous
studies. The paper is organized as follows. In Sec. II, we
review the generation mechanism of magnetic fields. We
decompose the evolution equation of magnetic fields up to
the second order in terms of scalar and vector perturbations.
It is shown that the magnetic fields are generated by the
vector mode only. In Sec. III, we describe the perturbed
Einstein-Boltzmann system up to the second order to
compute the purely second-order perturbations, and show
the tight-coupling solutions of the system. Time evolutions
of magnetic fields and spectra are numerically evaluated
and the analytic expressions are given in Sec. IV. We devote
Sec. V to our discussions and conclusions.
Throughout this paper, we use the units in which c ¼

ℏ ¼ 1 and the metric signature as ð−;þ;þ;þÞ. We obey
the rule that the subscripts and superscripts of the Greek
characters and alphabets run from 0 to 3 and from 1 to 3,
respectively.

II. GENERATION OF MAGNETIC FIELDS

In this section, we review basic equations for the
generation of magnetic fields [37,65], i.e., perturbation
equations of photon, proton, and electron fluids. While
protons and electrons are conventionally treated as a single
fluid, however, it is necessary to deal with proton and
electron fluids separately in order to discuss the generation
of magnetic fields. Let us begin with the Euler equations.
Those are given by

mpnu
μ
pupi;μ − enuμpFiμ ¼ Cpe

i þ Cpγ
i ; ð1Þ

menu
μ
euei;μ þ enuμeFiμ ¼ Cep

i þ Ceγ
i ; ð2Þ

where mpðeÞ is the proton (electron) mass, upðeÞ is the bulk
velocity of protons (electrons), Fμi is the usual Maxwell
tensor. The thermal pressures of proton and electron fluids
are neglected. The right-hand side of Eqs. (1) and (2)
represent the collision terms. The first terms in Eqs. (1) and
(2) are collision terms for the Coulomb scattering between
protons and electrons, which are given by [56]

Cpe
i ¼ −Cep

i ¼ −ðui − ueiÞe2n2ηr; ð3Þ

where

ηr ¼
πe2m1=2

e

ðkBTeÞ3=2
lnΛ∼ 9.4× 10−16 sec

�
1þ z
105

�−3=2�lnΛ
10

�
;

ð4Þ

is the resistivity of the plasma and lnΛ ∼Oð1Þ is the
Coulomb logarithm, which is the almost constant param-
eter. As is well known, this term acts as the diffusion term
in the evolution equation of magnetic field. The importance
of the diffusion effect can be estimated by the diffusion
scale,

λdiff ≡ ffiffiffiffiffiffi
ηrτ

p
∼ 100

�
τ

H−1
0

�
1=2

AU; ð5Þ

above which magnetic field cannot diffuse in the time-scale
τ. Here H0 ¼ 100h km=s=Mpc is the present Hubble
parameter with h being the normalized Hubble parameter.
Thus, at cosmological scales considered in this paper, this
term can be safely neglected.
The other terms expressed by CpðeÞγ

i are the collision
terms for Compton scattering of protons (electrons) with
photons. Since photons scatter off electrons preferentially
compared with protons by a factor of ðme=mpÞ2, we can
safely drop the termCpγ

i from the Euler equation of protons.
This difference in collision terms between protons and
electrons ensures that small difference in velocity between
protons and electrons, that is, electric current, is indeed
generated once the Compton scattering becomes effective.
In the next subsection, we derive the explicit form of the
Compton scattering term.

A. Compton collision term

Let us now evaluate the Compton scattering term. In the
limit of completely elastic collisions between photons and
electrons, this term vanishes. Typically, in the regime of
interest in this paper, very little energy is transferred
between electrons and photons in Compton scatterings.
Therefore, it is a good approximation to expand the
collision term systematically in powers of the energy
transfer.
Let us demonstrate this specifically. We consider the

collision process

γðpμÞ þ e−ðqμÞ → γðp0μÞ þ e−ðq0μÞ; ð6Þ

where the quantities in the parentheses denote the particle
momenta. To calculate this process, we evaluate the
collision term in the Boltzmann equation of photons:

C½f�¼ a
EðpÞ

Z
d3p0

ð2πÞ32Eðp0Þ
d3q

ð2πÞ32EeðqÞ
d3q0

ð2πÞ32Eeðq0Þ
jMj2

×ð2πÞ4δ4ðqμþpμ−q0μ−p0μÞ½geðq0Þfðp0Þð1þfðpÞÞ
−geðqÞfðpÞð1þfðp0ÞÞ�; ð7Þ
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where fðpÞ and geðqÞ are the distribution functions of
photons and electrons, EeðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p
is the energy of

an electron, and the delta functions enforce the energy and
momentum conservations. And jMj2 is the scattering
amplitude for Compton scattering. We have dropped
the Pauli blocking factor ð1 − geÞ. The Pauli blocking
factor can be always omitted safely in the epoch of
interest, because ge is very small after electron-positron
annihilations.
Integrating over q0, we obtain

C½f� ¼ a
p

Z
d3p0

ð2πÞ32p0
d3q

ð2πÞ32EeðqÞ
2π

2Eeðjqþ p − p0jÞ jMj2

× δ½p − p0 þ EeðqÞ − Eeðjqþ p − p0jÞ�
× ½geðqþ p − p0Þfðp0Þð1þ fðpÞÞ
− geðqÞfðpÞð1þ fðp0ÞÞ�: ð8Þ

In the regime of our interest, energy transfer through the
Compton scattering is small and can be ignored in the first
order density perturbations. As we already discussed ear-
lier, however, it is essential to take the second-order
couplings in the Compton scattering term into consider-
ation for the generation of magnetic fields. Therefore, we
expand the collision term up to the first order in powers of
the energy transfer,1 and keep terms up to the second order
in density perturbations.
The expansion parameter is the energy transfer,

EeðqÞ − Eeðjqþ p − p0jÞ≃ ðp0 − pÞ · q
me

− ðp − p0Þ
2me

; ð9Þ

over the temperature of the universe. Employing p ∼ T, we
can estimate the order of this expansion parameter as
Oð pq

meT
Þ ∼Oð q

me
Þ, which is small when electrons are non-

relativistic. Note that, in the cosmological Thomson
regime, electrons in the thermal bath of photons are

nonrelativistic, p ∼ q2

2me
, and the energy of photons is much

smaller than the rest mass of a electron, p ≪ me. Thus, it
also holds that q ∼

ffiffiffiffiffiffiffiffiffiffiffi
2mep

p
≫ p, and the second term in

Eq. (9) is usually smaller than the first one.
Now let us divide the collision integral into four

parts, i.e., the denominators of the Lorentz invariant
volume, the scattering amplitude, the delta function, and
the distribution functions, and expand them due to the
expansion parameter defined above. First of all, the
denominator in the Lorentz invariant volume can be
expanded to

1

EeðqÞEeðjqþ p − p0jÞ

¼
�
me þ

1

2me
q2
�−1�

me þ
1

2me
jqþ p − p0j

�−1

≈
1

m2
e

h
1 − Eð q

me
Þ2 − Eðpq

m2
e
Þ − Eð p

me
Þ2
i
; ð10Þ

where

Eð q
me
Þ2 ¼

q2

m2
e
; Eðpq

m2
e
Þ ¼

ðp−p0Þ ·q
m2

e
; Eð p

me
Þ2 ¼

ðp−p0Þ2
2m2

e
:

ð11Þ

Second, we consider the scattering amplitude.
Fortunately, it has been known that the leading term
(zeroth order term), obtained by multiplying together the
first term in the delta function and the zeroth-order
distribution functions, is zero. It means that we only have
to keep up to the first order terms when we expand the
scattering amplitude and the energies, in order to keep the
collision term up to the second order [66]. The scattering
amplitude for Compton scattering in the rest frame of the
electron is given by

jMj2 ¼ 6πm2
eσT

� ~p0

~p
þ ~p

~p0 − sin2 ~β
�
;

cos ~β ¼ ~̂p · ~̂p0; ð12Þ

where ~p and ~p0 are the energies of incident and scattered

photons, ~̂p and ~̂p0 are the unit vectors of ~p and ~p0,
respectively, denoting the directions of the photons in this
frame. The Lorentz transformation with electron’s velocity
(q=me) gives the following relations,

p
~p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðq=meÞ2

p
1 − p · q=ðpmeÞ

; ð13Þ

pμpμ ¼ ~pμ ~pμ: ð14Þ
Using these relations, we evaluate the scattering amplitude
in the CMB frame as [67]

jMj2 ¼ 6πm2
eσT ½M0 þMð q

me
Þ�; ð15Þ

where

M0 ¼ 1þ cos2β;

Mð q
me
Þ ¼ −2 cos βð1 − cos βÞ

�
q
me

· ðn̂þ n̂0Þ
�
: ð16Þ

Here n̂ and n̂0 are the unit vectors of p and p0, respectively.
1However, we shall keep up to the second-order terms for the

purpose of deriving the Einstein-Boltzmann system in Sec. III.
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Third, we expand the delta function to

δ½p − p0 þ EeðqÞ − Eeðq0Þ� ≈ δðp − p0Þ þ ∂δ½p − p0 þ EeðqÞ − Eeðq0Þ�
∂p

����
q¼q0

ðEeðqÞ − Eeðq0ÞÞ

þ 1

2

∂2δ½p − p0 þ EeðqÞ − Eeðq0Þ�
∂p2

����
q¼q0

ðEeðqÞ − Eeðq0ÞÞ2

¼ δðp − p0Þ þ ∂δðp − p0Þ
∂p0 Dð q

me
Þ þ

∂δðp − p0Þ
∂p0 Dð p

me
Þ þ

1

2
D2

ð q
me
Þ
∂2δðp − p0Þ

∂p02 ; ð17Þ

where

Dð q
me
Þ ¼

ðp − p0Þ · q
me

; Dð p
me
Þ ¼

ðp − p0Þ2
2me

: ð18Þ

Finally, the distribution of the electron can be
expanded to

geðqþ p − p0Þ ≈ geðqÞ þ
∂ge
∂q · ðp − p0Þ

þ 1

2
ðpi − p0iÞ ∂2ge

∂qi∂qj ðp
j − p0jÞ: ð19Þ

We assume that the electrons are kept in thermal equilib-
rium and in the Boltzmann distribution:

geðqÞ ¼ ne

�
2π

meTe

�
3=2

exp
�
− ðq −meveÞ2

2meTe

�
; ð20Þ

where ve is the bulk velocity of electrons. The derivatives
of the distribution function with respect to the momentum
are given as

∂ge
∂qi ¼ −ge qi −mevei

meTe
; ð21Þ

∂2ge
∂qi∂qj ¼ −

∂ge
∂qj

qi −mevie
meTe

− ge
δij

meTe
: ð22Þ

By substituting the above equations, Eq. (19) is written
as

geðqþp−p0Þ≈geðqÞ
�
1−F ð q

me
Þ þ

1

2
F 2

ð q
me
Þ−F ð p

me
Þ

�
; ð23Þ

where

F ð q
me
Þ ¼

q−meve
meTe

· ðp−p0Þ; F ð p
me
Þ ¼

1

2

ðp−p0Þ2
meTe

: ð24Þ

Therefore, we have

geðqþ p − p0Þfðp0Þð1þ fðpÞÞ − geðqÞfðpÞð1þ fðp0ÞÞ
¼ geðqÞ½fðp0Þ − fðpÞ� − fðp0ÞgeðqÞF ð q

me
Þ

− fðp0ÞgeðqÞ
�
F ð p

me
Þ − 1

2
F 2

ð q
me
Þ

�

þ geðqÞfðpÞfðp0Þ
�
−F ð q

me
Þ þ

1

2
F 2

ð q
me
Þ − F ð p

me
Þ

�
: ð25Þ

Combining altogether, we obtain the collision term
expanded with respect to the energy transfer as (note
that this expansion is not with respect to the density
perturbations)

C½f� ¼ 3

2
π2

aσT
p

Z
d3p0

ð2πÞ3p0

Z
d3q
ð2πÞ3

× ½ð0th orderÞ þ ð1st orderÞ þ ð2nd orderÞ�; ð26Þ

where

0th order term∶

M0δðp − p0ÞgeðqÞ½fðp0Þ − fðpÞ�; ð27Þ

1st order terms∶

M0geðqÞ
�
−δðp − p0Þfðp0ÞF ð q

me
Þ

þ ∂δðp − p0Þ
∂p0 ½fðp0Þ − fðpÞ�Dð q

me
Þ

�
þMð q

me
ÞgeðqÞδðp − p0Þ½fðp0Þ − fðpÞ�;

ð28Þ
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2nd order terms∶

M0geðqÞ
�
−δðp − p0Þfðp0Þ

�
F ð p

me
Þ − 1

2
F 2

ð q
me
Þ

�
þ 1

2

∂2δðp − p0Þ
∂p02 D2

ð q
me
Þ½fðp0Þ − fðpÞ�

þ ∂δðp − p0Þ
∂p0 Dð p

me
Þ½fðp0Þ − fðpÞ� − ∂δðp − p0Þ

∂p0 Dð q
me
Þfðp0ÞF ð q

me
Þ

�

þMð q
me
ÞgeðqÞ

�
−δðp − p0Þfðp0ÞF ð q

me
Þ þ

∂δðp − p0Þ
∂p0 Dð q

me
Þ½fðp0Þ − fðpÞ�

�

þM0geðqÞfðpÞfðp0Þ
�
−∂δðp − p0Þ

∂p0 F ð q
me
ÞDð q

me
Þ þ

�
1

2
F 2

ð q
me
Þ − F ð p

me
Þ

�
δðp − p0Þ

�
− geðqÞfðpÞfðp0ÞMð q

me
ÞF ð q

me
Þδðp − p0Þ: ð29Þ

From now on, we omit the second-order terms. These terms
are not only much smaller than the first-order terms but also
may not contribute to the Euler equation at all (see,
Ref. [47]). Evaluating the first moment of the above
collision term, we obtain the Compton scattering term in
the Euler equation (37) as

Ceγ
i ¼ −

Z
d3p
ð2πÞ3 piC½f�

¼ −
4aneσT

3
ργ

�
ðvei − vγiÞ þ

3

4
vejΠγi

j

�
; ð30Þ

where the product of the velocity of electrons and aniso-
tropic stress of photons in Eq. (30) is the anisotropic part of
“radiation drag” in the context of the radiation hydro-
dynamics. The radiation drag is originated by the electron
motion in anisotropic radiation fields with absorptions and
emissions. The velocity of electrons vei obeys the Euler
equation given in the next section, and the velocity and
anisotropic stress of photons, vγi and Πγi

j, obey the
Boltzmann equation. We will show the explicit equations
for electrons and photons in Sec. III A. And we will show
the anisotropic stress of photons can be written in terms of
the brightness function, which is also defined in Sec. III A.
Here moments of the distribution functions are given byZ

d3p
ð2πÞ3 pfγðpÞ ¼ ργ; ð31Þ

Z
d3p
ð2πÞ3 pifγðpÞ ¼

4

3
ργvγi; ð32Þ

Z
d3q
ð2πÞ3 geðqÞ ¼ ne; ð33Þ

Z
d3q
ð2πÞ3 qigeðqÞ ¼ ρevei; ð34Þ

Z
d3p
ð2πÞ3 p

−1pipjfγðpÞ ¼ ργΠγij þ
1

3
ργδij; ð35Þ

where ργ and ρeð¼ meneÞ are energy densities of photons
and electrons, viγ and vie are their bulk three velocities

defined by vi ≡ ui=u0, and Πij
γ is anisotropic stress of

photons. Hereafter we use the relative velocity between
photons and electrons as δvγbi ≡ vγi − vei. It should be
noted that the collision term (30) was obtained nonpertur-
batively with respect to density perturbations [37].

B. Evolution equations of magnetic fields

Now we obtain the Euler equations for protons and
electrons as

mpnu
μ
pupi;μ − enuμpFiμ ¼ 0; ð36Þ

menu
μ
euei;μ þ enuμeFiμ ¼

4σTργan

3

�
δvγbi − 3

4
vejΠγi

j

�
;

ð37Þ

where mp is the proton mass. Here, we ignore the pressures
of proton and electron fluids. In addition, the Coulomb
collision term is neglected as explained below Eq. (5). Note
that the collision term was not evaluated in a manifestly
covariant way. Here the left-hand side in Eqs. (36) and (37)
should be evaluated in a conformal coordinate system. We
also assumed the local charge neutrality: n ¼ ne ∼ np. In
the case without electromagnetic fields (Fiμ ¼ 0), the sum
of the equations (36) and (37) gives the Euler equation for
the baryons in the standard perturbation theory. On the
other hand, subtracting Eq. (36) multiplied by me from
Eq. (37) multiplied by mp, we obtain

−
mpme

e

�
nuμ

�
ji
n

�
;μ

þ jμ
�
mp −me

mp þme

ji
en

− ui

�
;μ

�

þ enðmp þmeÞuμFiμ − ðmp −meÞjμFiμ

¼ 4mpργanσT
3

�
δvγbi − 3

4
vejΠγi

j

�
; ð38Þ
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where uμ and jμ are the center-of-mass 4-velocity of the
proton and electron fluids and the net electric current,
respectively, defined as

uμ ≡mpu
μ
p þmeu

μ
e

mp þme
; ð39Þ

jμ ≡ enðuμp − uμeÞ: ð40Þ

Employing the Maxwell equations Fμν
;ν ¼ jμ, we see that

the quantities in the square bracket in the left-hand side of
Eq. (38) is suppressed at the recombination epoch, com-
pared to the second term, by a factor [68]

c2

L2ω2
p
∼ 3 × 10−40

�
103 cm−3

n

��
1 Mpc

L

�
2

; ð41Þ

where c is the speed of light, L is a characteristic length of
the system, and ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πne2=me

p
is the plasma frequency.

The third term in the left-hand side of Eq. (38), i.e.,
ðmp −meÞjμFiμ, is the Hall term which can also be
neglected because the Coulomb coupling between protons
and electrons is so tight that juij ≫ juip − uiej. Then we
obtain a generalized Ohm’s law:

uμFiμ ¼
4σTργa

3e

�
δvγbi − 3

4
vejΠγi

j

�
≡ Ci: ð42Þ

Now we derive the evolution equation for the magnetic
field, which can be obtained from the Bianchi identities
F½μν;λ� ¼ 0, as

0 ¼ 3

2
ϵijkuμF½jk;μ�

¼ uμBi
;μ − ϵijk

�
Cj;k þ

u0;j
u0

Ck

�

− ðui;jBj − ui;jBiÞ þ u0;j
u0

ðBjui − BiujÞ; ð43Þ

where ϵijk is the Levi-Cività tensor and Bi ≡ ða2BiÞ ¼
ϵijkFjk=2 is the magnetic field in the comoving frame [69].
We will now expand the photon energy density, fluid
velocities, and photon anisotropic stress with respect to
the density perturbation as

ργðt; xiÞ ¼ ρð0Þγ ðtÞ þ ρð1Þγ ðt; xiÞ þ � � � ;
u0ðt; xiÞ ¼ aðtÞ−1 þ uð1Þ0ðt; xiÞ þ � � � ;

uiðt; xiÞ ¼ uð1Þiðt; xiÞ þ
1

2
uð2Þiðt; xiÞ þ � � � ;

viðt; xiÞ ¼ vð1Þi ðt; xiÞ þ
1

2
vð2Þi ðt; xiÞ þ � � �

Πij
γ ðt; xiÞ ¼ Πð1Þij

γ ðt; xiÞ þ � � � ; ð44Þ

where the superscripts (0), (1), and (2) denote the order of
expansion and t is the cosmic time. Remembering that Bi is
a second-order quantity, we see that all terms involving Bi

in Eq. (43), other than the first term, can be neglected. Thus
we obtain

dBi

dt
∼ ϵijk

�
Cj;k þ

u0;j
u0

Ck

�

¼ 4σTρ
ð0Þ
γ a

3e
ϵijk

�
1

2
δvð2Þγbj;k − δð1Þγ;j δv

ð1Þ
γbk − 3

4
ðvð1Þel Π

ð1Þl
γj Þ

;k

�
;

ð45Þ

where we used the density contrast of photons,

δð1Þγ;k ≡ ρð1Þγ;k=ρ
ð0Þ
γ . Further, we employed the fact that there

is no vorticity in the linear order: ϵijkvð1Þj;k ¼ 0. It should be
noted that the velocity of electron fluid can be approxi-
mated to the center-of-mass velocity at this order,

vð1Þie ∼ vð1Þib . The physical meaning of this equation is that
electrons gain (or lose) their momentum through scatterings
due to the relative velocity to photons, and the anisotropic
stress of photons. The momentum transfer from the photons
ensures the velocity difference between electrons and
protons, and thus eventually generates magnetic fields.
We found that the contribution from the curvature pertur-
bation is always much smaller than that from the density
contrast of photons. Furthermore the tensor perturbation,
i.e., primordial gravitational waves, is subdominant com-
paring with the scalar perturbation in the current observa-
tions [70–72]. Therefore, we have omitted the curvature
perturbation and the tensor perturbation in Eq. (45) when
considering the evolution of magnetic fields. Equation (45)
shows that the magnetic field cannot be generated in the
first order. The right-hand side of Eq. (45) contains two
types of source terms, i.e., a purely second-order term and
those that consist of the products of first order quantities.
The first term in Eq. (45) is exactly the same as that

discussed in [73]. They have estimated the amplitude of
magnetic fields from these terms by considering typical
values at recombination. Here, we solve the equation
numerically and obtain a robust prediction of the amplitude
of magnetic fields in the standard ΛCDM cosmology.

C. Scalar, vector, and tensor decomposition

We devote this subsection to rewriting the evolution
equation of magnetic fields in the context of the scalar,
vector, and tensor decomposition approach. In the standard
cosmological perturbation theory, the perturbations can be
decomposed into three modes, i.e., scalar, vector, and
tensor modes [74] as

ωiðkÞ ¼ ω0ðkÞOð0Þ
i ðk̂Þ þ

X
λ¼�1

ωλðkÞOðλÞ
i ðk̂Þ; ð46Þ
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χijðkÞ ¼ χisoðkÞδij þ χ0ðkÞOð0Þ
ij ðk̂Þ þ

X
λ¼�1

χλðkÞOðλÞ
ij ðk̂Þ

þ
X
σ¼�2

χσðkÞOðσÞ
ij ðk̂Þ; ð47Þ

where OðmÞ
i and OðmÞ

ij are the orthogonal bases for Fourier
modes with wave number k≡ kk̂ and m ¼ 0, �1, and �2
represent the scalar, vector, and tensor modes, respectively.
Note that, in our notations, the normalization is different
from that adopted in Ref. [74]. These inverses are given as

ω0ðkÞ¼−Oð0Þ
i ðk̂ÞωiðkÞ; ωλðkÞ¼−Oð−λÞ

i ðk̂ÞωiðkÞ;
ð48Þ

χ0ðkÞ ¼
3

2
Oð0Þ

ij ðk̂ÞχijðkÞ;

χλðkÞ ¼ −2Oð−λÞ
ij ðk̂ÞχijðkÞ;

χσðkÞ ¼
2

3
Oð−σÞ

ij ðk̂ÞχijðkÞ: ð49Þ

In this notation, magnetic fields can be decomposed

into the scalar and vector modes, i.e., Bi ¼ B0O
ð0Þ
i þP

λ¼�1BλO
ðλÞ
i . When we pull out the scalar mode from

Eq. (45), we find that the right hand side of Eq. (45)
vanishes, namely,

dB0

dt
¼ 0: ð50Þ

This is because magnetic fields consist of rotation of the
vector potential, or in other words, magnetic fields do not
have the scalar component. In contrast, the vector mode for
Eq. (45) is given by

dBλðkÞ
dt

¼ 4σTρ
ð0Þ
γ a

3e
ðλkÞ

�
−1

2
δvð2ÞγbλðkÞ

þ
Z

d3k1
ð2πÞ3 δv

ð1Þ
γb0ðk1Þδð1Þγ ðk2Þ

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

−
Z

d3k1
ð2πÞ3

5

4
vð1Þb0 ðk1ÞΠð1Þ

γ0 ðk2ÞY1;2
1;λðk̂1; k̂2Þ

�
; ð51Þ

where we define the function Yl1;l2
l;m ðk̂1; k̂2Þ as

Yl1;l2
l;m ðk̂1; k̂2Þ≡ ð−1Þmð2lþ1Þ

×
X
m1;m2

�
l1 l2 l

0 0 0

��
l1 l2 l

m1 m2 −m
�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l1þ1

s
Y�
l1;m1

ðk̂1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l2þ1

s
Y�
l2;m2

ðk̂2Þ:

ð52Þ

where Yl;mðk̂Þ is the spherical harmonics. In the above
equation, the multipoles should satisfy the condition that
l1 þ l2 þ l ¼ even because of a property of theWigner-3j
symbol. Furthermore, the triangle condition, k2 ¼ k − k1,
is ensured by the delta function. Throughout this paper, we
keep k2 in equations for simplicity of presentation even
after being integrating out. This function obeys the follow-
ing relations,

Yl1;l2
l;m ðk̂1; k̂2Þ ¼ Yl2;l1

l;m ðk̂2; k̂1Þ;

Yl1;0
l;m ðk̂1; k̂2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
l;mðk̂1Þδl;l1

;

Y0;l2
l;m ðk̂1; k̂2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
l;mðk̂2Þδl;l2

: ð53Þ

To obtain the magnetic fields from Eq. (51), we need to
know the second-order relative velocity between baryons
and photons for the vector mode. In the next section, we
show the formulation of the second-order Einstein-
Boltzmann system.

III. SECOND-ORDER EINSTEIN-BOLTZMANN
SYSTEM

In this section, we derive the perturbed equations of the
Einstein-Boltzmann system up to the second order.
Throughout this paper, we work in the Poisson gauge of
which the line element is

ds2¼ a2ðηÞ½−e2Ψdη2þ2ωidηdxiþðe−2ΦδijþχijÞdxidxj�:
ð54Þ

Under the Poisson gauge, the gauge conditions ωi
;i ¼

χij;j ¼ 0 and the traceless condition χii ¼ 0 are imposed on
ωi and χij. We expand the metric perturbations as

Ψ ¼ Ψð1Þ þ 1
2
Ψð2Þ, Φ ¼ Φð1Þ þ 1

2
Φð2Þ, ωi ¼ 1

2
ωð2Þ
i , and

χij ¼ 1
2
χð2Þij , where we neglect the first-order vector and

tensor perturbations. The first-order vector perturbation is
neglected in the standard cosmology because the vector
perturbation has only a decaying mode in the first-order
perturbation theory. The first-order tensor perturbation is
observationally shown to be subdominant compared with
the scalar one at first order [71].

A. Boltzmann equation

From Eq. (51), full computation of magnetic fields needs
to evaluate the relative velocity between baryons and
photons in the second-order perturbation theory. The
velocity perturbations of the two fluids are described by
the Boltzmann equation.
The Boltzmann equation with binary collisions can be

written as
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df
dλ

ðxμ; PμÞ ¼ ~C½f�; ð55Þ

where λ is the affine parameter and ~C½f� is the collision
term, i.e., in the case of the photon distribution function, the
Thomson interaction between photons and electrons. Note
that protons and electrons interact with each other through
the Coulomb interaction. We can treat proton and electron
fluids as a single component since these particles couple
strongly by the Coulomb interaction. For the Boltzmann
equation for dark matter or neutrinos, the collision term
must vanish.
To calculate the perturbed Boltzmann equation, it is

useful to change the coordinate system from the Poisson
gauge ðxμ; PμÞ to the local inertial frame ðxμ; pμÞ [45].
Since we consider the cosmological perturbations up to the
second order, the distribution function is expanded as

fðη;x;p; n̂Þ¼ fð0Þðη;pÞþfð1Þðη;x;p; n̂Þþ1

2
fð2Þðη;x;p; n̂Þ;

ð56Þ

where p and n̂ are the amplitude and the direction of the
photon’s momentum, respectively. The zeroth-order dis-
tribution function, fð0Þðη; pÞ, is fixed to the Planck dis-
tribution. It is useful to define the brightness function which
is given by

Δð1;2Þðη; x; n̂Þ ¼
R
dpp3fð1;2Þðη; x; p; n̂ÞR

dpp3fð0Þðη; pÞ ; ð57Þ

where the denominator of the right-hand side is propor-
tional to the mean energy density of photons.
The angle dependence of the brightness function is

expanded by the spherical harmonics as

Δð1;2Þðη;x; n̂Þ¼
X
l

Xl
m¼−l

Δð1;2Þ
l;m ðη;xÞð−iÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ1

r
Yl;mðn̂Þ:

ð58Þ

The coefficients Δð1Þ
l;m are related to the density perturba-

tion, velocity, and anisotropic stress for photons as

Δð1Þ
0;0 ¼ δð1Þγ , Δð1Þ

1;0 ¼ 4vð1Þγ0 , and Δð1Þ
2;0 ¼ 5Πð1Þ

γ0 , respectively,
as is shown in Eqs. (31)–(35). The Boltzmann equation of

photons in terms of Δð1;2Þ
l;m at first- and second-order is

written as

_Δð1;2Þ
l;m þk

�
clþ1;m

2lþ3
Δð1;2Þ

lþ1;m− cl;m
2l−1

Δð1;2Þ
l−1;m

�
¼Sð1;2Þl;m ; ð59Þ

where cl;m ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

p
. A dot represents a derivative with

respect to the conformal time η and here we have translated

from real space to Fourier space. The source term Sð2Þl;m can
be expressed as

Sð2Þl;mðk; ηÞ ¼ Cð2Þl;mðk; ηÞ þ Gð2Þ
l;mðk; ηÞ; ð60Þ

Here, Cð2Þl;m is the collision term that is proportional to _τc,
where _τc is the differential optical depth which is defined
by the number density of the electron ne, scale factor a, and
the Thomson scattering cross-section σT as _τc ¼ −aneσT,
and Gð2Þ

l;m denotes the gravitational effects, i.e., the lensing

and the redshift terms. The collision term Cð2Þl;m is related to
Eq. (26) as

Cð2Þl;mðk; ηÞ ¼
Z

dΩnð−iÞ−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Y�
l;mðn̂Þ

×

R
dpp3Cð2Þðη; k; p; n̂ÞR
dpp3fð0Þðη; pÞ ; ð61Þ

where Cð2Þðη; k; p; n̂Þ is the Fourier transformation of

Eq. (26), while the gravitational effect Gð2Þ
l;m is coming

from the left-hand side of the Boltzmann equation (55) with
the same procedure as obtaining Cð2Þðη; k; p; n̂Þ. In this
paper, we call Cl;m and Gl;m the scattering term and the

gravitational term, respectively. The explicit forms of Cð2Þl;m

and Gð2Þ
l;m are given in our previous study [75].

The source terms of the first-order Boltzmann equation
vanish when m ≠ 0, because we consider only the scalar
mode in the first-order perturbations. However, for the
second-order perturbations, not only the scalar mode
ðm ¼ 0Þ, but also the vector ðm ¼ λÞ and tensor ðm ¼
σÞ modes arise due to nonlinear couplings, where λ ¼ �1
and σ ¼ �2, respectively.
In the case of massless neutrinos, one can set _τc ¼ 0 in

the above equations because massless neutrinos interact
with the other fluids only through gravity. We do not write
down the hierarchical equation of neutrinos here since it is
trivial. The distribution function of neutrinos is also
expanded by the spherical harmonics.

B. Tight coupling solutions of the vector mode

To solve the second-order equations derived in Sec. III A
numerically, we should set up the initial condition of each
perturbation variable. Thus we first solve the equations
analytically with kη ≪ 1 and using the tight coupling
approximation, and find the initial condition at sufficiently
early time for our numerical calculation.
Deep in the radiation dominated era, photon and baryon

fluids are tightly coupled because the opacity _τc is large
[57,58,76,77]. Although the photon and baryon fluids
would behave as a single fluid, there is a small difference
in motion between photon and baryon fluids. For this
reason, we can expand the perturbation variables using the
tight-coupling parameter which is given by

MAGNETIC FIELD SPECTRUM AT COSMOLOGICAL … PHYSICAL REVIEW D 91, 123510 (2015)

123510-9



ϵ≡
���� k_τc

���� ∼ 10−2
�

k
1 Mpc−1

��
1þ z
104

�−2�Ωbh2

0.02

�−1
; ð62Þ

where Ωb is the baryon density normalized by the critical
density, and h is the normalized Hubble constant. In what
follows, we derive the tight-coupling solution up to the first
order to set the initial condition of photon and baryon fluids
at second-order in cosmological perturbations and to
calculate the evolution of perturbations in a numerically
stable manner.
We expand the cosmological perturbation variables using

the tight-coupling parameter ϵ up to the first order as

ΔðCPT¼1;2Þ ¼ ΔðCPT¼1;2;TCA¼∅Þ þ ΔðCPT¼1;2;TCA¼IÞ þ � � � ;
ð63Þ

where the Arabic number and the Roman number represent
orders in the cosmological perturbation and the tight
coupling expansion, respectively. In the rest of this paper,
we focus on the vector mode m ¼ �1.

First, the solutions at zeroth order in the tight-coupling
expansion, namely, in the tight-coupling limit, are given as

δvð2;∅Þγbλ ðkÞ ¼ 0; ð64Þ

Δð2;∅Þ
2;λ ðkÞ ¼ 20

Z
d3k1
ð2πÞ3

h
vð1;∅Þγ0 ðk1Þvð1;∅Þγ0 ðk2Þ

i
Y1;1

2;λðk̂1; k̂2Þ;

ð65Þ

Δð2;∅Þ
l≥3;λðkÞ ¼ 0; ð66Þ

where k2 ¼ k − k1 in Eq. (65). In the tight-coupling limit,
the relative velocity between photons and baryons vanishes
as well as in the first-order cosmological perturbation
theory. However, the anisotropic stress of photons is
present due to the quadratic of the photon velocity.
Second, the solutions at first-order in the tight-coupling

expansion are given as

1þR
R

δvð2;IÞγbλ ðkÞ¼
ffiffiffi
3

p

20

�
k
_τc

�
Δð2Þ

2;λðkÞ−
�
H
_τc

�
ðωð2Þ

λ ðkÞþvð2Þbλ ðkÞÞþ
Z

d3k1
ð2πÞ3 ½−2δv

ð1Þ
γb0ðk1Þðδð1Þb þδð1Þγ þΨð1ÞÞðk2Þ�

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
1

2
vð1Þb0 ðk1ÞΠð1Þ

γ0 ðk2Þ
� ffiffiffiffiffiffi

4π

3

r
Y�
1;λðk̂1Þþ

Z
d3k1
ð2πÞ3 ½2v

ð1Þ
γ0 ðk1Þδvð1Þγb0ðk2Þ�

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ 1

R

Z
d3k1
ð2πÞ3 ½−2δv

ð1Þ
γb0ðk1Þðδð1Þγ þΨð1ÞÞðk2Þ�

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
k1
_τc

��
−1

2
δð1Þγ ðk1ÞðΨð1Þ þΦð1ÞÞðk2Þ−2Ψð1Þðk1Þδð1Þγ ðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
k2
_τc

��
1

2
vð1Þγ0 ðk1Þðδð1Þγ þ4Ψð1ÞÞðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
k1
_τc

��
−8

3
vð1Þγ0 ðk1Þδð1Þγ ðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þþ

Z
d3k1
ð2πÞ3

�
k2
_τc

��
−2

3
vð1Þb0 ðk1Þvð1Þb0 ðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
−15

4
Πð1Þ

γ0 ðk1Þvð1Þb0 ðk2Þ
�
Y2;1

1;λðk̂1; k̂2Þþ
1

R

Z
d3k1
ð2πÞ3

�
−5

2
Πð1Þ

γ0 ðk1Þvð1Þb0 ðk2Þ
�
Y2;1

1;λðk̂1; k̂2Þ

þ
Z

d3k1
ð2πÞ3

�
k1
_τc

��
−10

3
vð1Þb0 ðk1Þvð1Þb0 ðk2Þ

�
Y2;1

1;λðk̂1; k̂2Þ; ð67Þ

9

10
Δð2;IÞ

2;λ ðkÞ¼−
�
k
_τc

� ffiffiffi
3

p

3
Δð2Þ

1;λðkÞþ
Z

d3k1
ð2πÞ3 ½−9Π

ð1Þ
γ0 ðk1Þðδð1Þb þΨð1ÞÞðk2Þ�

ffiffiffiffiffiffi
4π

5

r
Y�
2;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3

�
k1
_τc

��
−16

3
vð1Þγ0 ðk1ÞðΨð1Þ þΦð1ÞÞðk2Þ

� ffiffiffiffiffiffi
4π

5

r
Y�
2;λðk̂1Þ

þ
Z

d3k1
ð2πÞ3 ½18v

ð1Þ
γ0 ðk1Þvð1Þγ0 ðk2Þþ8vð1Þγ0 ðk1Þδvð1Þγb0ðk2Þ�Y1;1

2;λðk̂1; k̂2Þ

þ
Z

d3k1
ð2πÞ3

�
k1
_τc

�
½ð10δð1Þγ ðk1Þ−8Φð1ÞÞðk1Þvð1Þγ0 ðk2Þ�Y1;1

2;λðk̂1; k̂2Þ; ð68Þ
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Δð2;IÞ
3;λ ðkÞ ¼ −

�
k
_τc

�
2

ffiffiffi
2

p

5
Δð2Þ

2;λ

þ 15

Z
d3k1
ð2πÞ3 ½Π

ð1Þ
γ 0 ðk1Þvð1Þγ 0 ðk2Þ�Y2;1

3;λðk̂1; k̂2Þ;

ð69Þ

Δð2;IÞ
l≥4;λðkÞ ¼ 0; ð70Þ

where R≡ 3ρð0Þb =ð4ρð0Þγ Þ. To derive the above solutions, the
time derivative of the first-order curvature perturbation _Φ is
ignored due to the conservation of the curvature perturba-
tion on large scales. In the right-hand side of Eqs. (67),
(68), and (69), for simplicity, we omit the superscript for the
order of the tight-coupling parameter. Note that the octo-
pole does not vanish and higher multipoles than l ¼ 3 are
equal to zero at this order [75].

C. Einstein equation of the vector mode

In this subsection, we derive the second-order Einstein
equation and hereafter we focus on the vector mode only.
The evolution equation for the metric perturbation of the

vector mode, i.e., ωλ can be derived from the ði; jÞ
component of the Einstein equation as

a2Gi
j ¼ e2ΦðΦ;i

;j −Ψ;i
;jÞ þ Φ;iΦ;j −Ψ;iΨ;j

− ðΦ;iΨ;j þ Φ;jΨ;iÞ þH½_χij − ðωi
;j þ ωj

;iÞ�

þ 1

2
½χ̈ij − ð _ωi

;j þ _ωj
;iÞ − χij

;a
;a�

þ ðdiagonal partÞδij; ð71Þ
and

Ti
r j ¼ ρrΠi

r j þ ðdiagonal partÞδij; ð72Þ

Ti
m j ¼ ρmv

ð1Þ
mi v

ð1Þ
mj þ ðdiagonal partÞδij; ð73Þ

where Ti
r j and T

i
m j represent the energy-momentum tensors

of massless (relativistic) particles such as photons and
neutrinos, and massive (nonrelativistic) particles such as
baryons and dark matter, respectively. The equation of the
vector mode is derived by acting the projection operator,

−Oð−λÞ
ij ðk̂Þ which can pull the vector mode, as

_ωð2Þ
λ ðkÞ þ 2Hωð2Þ

λ ðkÞ ¼ 2

5
ffiffiffi
3

p 1

k
ð8πGa2ρð0Þγ Δð2Þ

2;λðkÞ þ 8πGa2ρð0Þν N ð2Þ
2;λðkÞÞ þ

Z
d3k1
ð2πÞ3 4k1½Φ

ð1Þðk1ÞΨð1Þðk2Þ�
ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ

−
Z

d3k1
ð2πÞ3

4ffiffiffi
3

p k21
k
½Φð1Þðk1ÞΦð1Þðk2Þ þΨð1Þðk1ÞΨð1Þðk2Þ�

ffiffiffiffiffiffi
4π

5

r
Y�
2;λðk̂1Þ

þ
X

s¼b;dm

8πGa2ρð0Þs

Z
d3k1
ð2πÞ3

�
4

k
vð1Þs 0 ðk1Þvð1Þs 0 ðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;0ðk̂1Þ

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂2Þ: ð74Þ

Note that in the Poisson gauge, the vector metric perturba-
tion is only included in ωi. When we consider the evolution
equation up to the first order in the standard cosmology
with perfect fluids, the right-hand side of Eq. (74) becomes
zero. As a result, the vector mode has only a decaying
solution, which is neglected in the linear theory.

IV. COSMOLOGICAL MAGNETIC FIELDS

In this section, we show the evolutions and spectra of
magnetic fields driven by the Harrison mechanism. In the
previous studies [60,61,63,64,78], generated magnetic
fields are partially estimated by numerical or analytical
ways, and there is a small discrepancy between in
Refs. [63] and [64]. In this paper, we build on Ref. [63]
and expand the work by including all contributions
numerically. The source terms of the magnetic fields

consist of three contributions, i.e., δð1Þγ δvð1Þγb , v
ð1Þ
b Πð1Þ

γ , and

δvð2Þγb , which hereafter we call “the slip term,” “the aniso-
tropic stress term,” and “the second-order slip term,”
respectively.

In this paper, we focus on three issues on the generation
of magnetic fields at recombination. First, we consider how
large is the contribution of the second-order slip term on
magnetic fields compared with the contributions of the slip
and the anisotropic stress terms. Second, to evaluate the
total spectrum of magnetic fields we need to include the
cross-correlation terms between the sources, namely,
PB ∼ hðB2nd Slip þ BSlip þ BAnisÞ2i. The cross terms can
be negative and it has the possibility to cancel the generated
magnetic fields from each of the source terms. Third, we try
to find the cause of the small discrepancy between
Refs. [63] and [64]. In the following subsections, we show
the evolutions and spectra of magnetic fields and the
answers of the above three considerable questions.

A. Configuration in Fourier space

Before moving to the results, we mention the configu-
ration of Fourier space in carrying out the convolution since
all second-order quantities are written by the products of
the first-order scalar perturbations. To calculate the second-
order power spectrum, we decompose the second-order
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variable into the transfer function and the primordial
amplitude [79] as

Δð2Þðη; kÞ ¼
Z

d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 δðk − k1 − k2Þ

× Δð2Þ
T ðη; k; k1; k2ÞΦðk1ÞΦðk2Þ; ð75Þ

whereΔð2Þ
T andΦ are the second-order transfer function and

the primordial amplitude, respectively. The ensemble
average of the variance of the primordial amplitude can
be expressed as hΦ�ðk1ÞΦðk2Þi ¼ ð2πÞ3PΦðk1Þδðk1 − k2Þ,
where PΦðkÞ is the primordial power spectrum determined
from cosmological observations such as CMB and large
scales structure. In this paper, we use the power-law
spectrum as

k3

2π2
PΦðkÞ ¼

4

9
As

�
k
k0

�
ns−1

; ð76Þ

where the parameters, As and ns, are the amplitude and the
spectral index of primordial perturbations, respectively. We
set As ¼ 2.4 × 10−9 from the WMAP nine-year results
[80], and for simplicity, we consider a scale-invariant
spectrum, namely, ns ¼ 1.0.
In this decomposition, the second-order power spectrum

can be written as

PΔð2Þ ðη; kÞ ¼ 2

Z
d3k1
ð2πÞ3 ½Δ

ð2Þ
T ðη; k; k1; k2Þ�2PΦðk1ÞPΦðk2Þ;

ð77Þ
where we can use the symmetry under the exchange of k1
and k2 without loss of generality to derive the above
relation. Note that k2 ¼ k − k1 should be satisfied implic-

itly, namely, Δð2Þ
T ðη; k; k1; k2Þ ¼ Δð2Þ

T ðη; k; k1; k − k1Þ and
PΦðk2Þ ¼ PΦðjk − k1jÞ, as is mentioned before.
We need to solve the Einstein-Boltzmann system in

ðk; k1; k2Þ space. Note that the transfer function is trans-
formed under the rotation of ϕ as

Δð2Þ
T ðη; k; k1; k2Þ⟶Δð2Þ

T ðη; k; k1; k2Þeimϕ: ð78Þ
In practice, we take ϕ ¼ θ ¼ 0, ϕ1 ¼ 0, and ϕ2 ¼ π for k,
k1, and k2, respectively. In other words, the transfer
function under the exchange of k1 and k2 transforms as

Δð2Þ
T ðη; k; k1; k2Þ ¼ ð−1ÞmΔð2Þ

T ðη; k; k2; k1Þ: ð79Þ

It is very interesting that for the case of the scalar and tensor
modes, the dominant contribution comes from near the
k ∼ k1 ∼ k2. Because the transfer functions of the scalar
(m ¼ 0) and tensor (m ¼ �2) modes are symmetric under
the exchange of k1 and k2. On the other hand, the vector
mode does not have dominant contribution near the

k ∼ k1 ∼ k2 since the transfer function of the vector mode
is antisymmetric under the exchange of k1 and k2.
In the vector mode, we can naively consider three

configurations of the triangle k ¼ k1 þ k2 that contribute
to the power spectrum on superhorizon scales, namely, the
one where both k1 and k2 are on superhorizon scales, where
k1 (k2) is at superhorizon scales while k2 (k1) is at
subhorizon scales, and where both k1 and k2 are at
subhorizon scales. When both k1 and k2 are at subhorizon
scales, the square of the primordial power spectrum in
Eq. (77) does not contribute on the power spectrum because
of the antisymmetric nature of the vector transfer function.
In the vector mode, therefore, we need a careful treatment
of how to sample wave numbers in ðk; k1; k2Þ space. This
difficulty does not arise in the second-order scalar and
tensor modes calculations because the transfer functions of
the scalar and tensor modes have a symmetry under the
exchange of k1 and k2.

B. Evolutions of magnetic fields

In Fig. 1, we show the evolutions of magnetic fields
induced by the slip, the anisotropic stress, and the second-
order slip terms. First, we focus on the evolutions of
magnetic fields before the horizon crossing. The time
evolutions of magnetic fields can be approximated by a
power law, and the powers of the slip and the anisotropic
stress terms are BSlip ∝ η1.5 and BAnis ∝ η0.5, respectively.
These results correspond to the previous study [63].
Furthermore, the second-order slip term is proportional
to η0.5 on superhorizon scales. We can explain the coinci-
dence of the powers between the anisotropic stress and the
second-order slip terms as follows. In Eq. (67), the
dominant terms in early times can be estimated by using
the superhorizon solutions at linear order. At first glance,

the term δð1Þγ × Φð1Þ in Eq. (67) seems to give a dominant
contribution to the second-order slip term. However,

because both δð1Þγ and Φð1Þ are scale invariant in the
Poisson gauge and according to the formula of spherical

harmonics, k1
ffiffiffiffi
4π
3

q
Y�
1;mðk̂1Þ þ k2

ffiffiffiffi
4π
3

q
Y�
1;mðk̂2Þ ¼ kδm;0, this

scale invariant term vanishes in the vector mode. As a
result, we find that the most dominant term in Eq. (67) is

that proportional to vð1Þb Πð1Þ
γ , which is the same form as the

anisotropic stress term. Therefore, the powers of the time
evolutions of the anisotropic stress and second-order slip
terms coincide.
Next, we discuss the evolutions of magnetic fields after

the horizon crossing. We can see that the magnetic fields
from the slip and the anisotropic stress terms start to decay
adiabatically as ∝ a−2, after the horizon crossing since their
sources also diminish after the horizon crossing. On the
other hand, magnetic fields induced by the second-order
slip term do not decay adiabatically even after the horizon
crossing. This arises from the fact that the second-order slip
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term δvð2Þγb continues to grow even after the source terms
from the first-order perturbations become negligible, until
the corresponding scale reaches the Silk damping scale.
Therefore, the purely second-order perturbations can con-
tribute to the magnetic field generation even if the product
of the first-order perturbations is absent. When we neglect
the product of the first-order perturbations, the evolution
equations for magnetic fields are corresponding to the case
of the first-order magnetic fields generation [39]. The

relative velocity between photons and baryons, δvð2Þγbλ

contributes to the generation of magnetic fields after the
horizon crossing. This additional enhancement can be seen
in the bottom of Fig. 1 at k ¼ 100 hMpc−1. However,
magnetic fields induced by the additional enhancement
undergo nontrivial cancellation after the Silk damping
epoch and magnetic fields decay faster than the adiabatic
decay that it is proportional to a−2 [39]. The final amplitude
of magnetic fields is consequently determined by the initial
amplitude around horizon crossing.

C. Spectra of magnetic fields

Next, we show the spectra of magnetic fields induced by
the slip, the anisotropic stress, and the second-order slip

terms in Fig. 2. From Fig. 2, resultant magnetic fields are
dominated by the anisotropic stress and second-order slip
terms on smaller scales, i.e., k≳ 1.0 hMpc−1, at
1þ z ¼ 1100. Conversely, on these scales, the slip term
is a subdominant source for magnetic fields.
On superhorizon scales, we can see that the spectra of

magnetic fields are proportional to k3.5, which also corre-
sponds to the results about the slip and the anisotropic
stress terms in Ref. [63]. This power is also consistent with
the power spectrum for causal magnetic fields [81]. From
Ref. [63], the magnetic power on superhorizon scales can
be estimated as below. For example, we focus on magnetic
fields induced by the slip term. We can integrate the
evolution equation for the second-order magnetic fields
(51) and take the ensemble average as

k3

2π2
PBðkÞ

����
Slip

∝k5
Z

d3k1
ð2πÞ3ð1−μ21ÞPΦðk1ÞPΦðk2Þ

×

�
S2ðk2;k1Þ−k1

k2
Sðk1;k2ÞSðk2;k1Þ

�
; ð80Þ

where μ1 ¼ cos θ1 and Sðk1; k2Þ is defined as
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FIG. 1 (color online). Evolutions of generated magnetic fields sourced by the slip term (top left), the anisotropic stress term (top right),
and the second-order slip term (bottom). We show evolutions of generated magnetic fields for wave numbers k ¼ 10−2 hMpc−1,
10−1 hMpc−1, and 100 hMpc−1 as indicated in the above panels. We can see that magnetic fields at smaller scales generated earlier and
their amplitudes are larger.
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Sðk1;k2Þ¼
Z

dηa2ðηÞρð0Þγ ðηÞδð1Þγ ðk1;ηÞδvð1Þγb0ðk2;ηÞ; ð81Þ

where for simplicity, we omit the time dependence of
Sðk1; k2Þ. To proceed the estimation of the magnetic power,
we take the limit k=k1 → 0. This approximation can
include the contributions from subhorizon scales. In this
limit,

k2 ¼ k1

�
1 − k

k1
μ1 þOððk=k1Þ2Þ

�
: ð82Þ

Furthermore, we can approximate the integrated source
term as Sðk1; k2Þ ≈ Sðk2; k1Þ ≈ Tðk1Þ since Sðk1; k2Þ can be
treated as k independent in the above limit. Then by using
the fact that PΦðkÞ ∝ kns−4, Eq. (80) can be rewritten as

k3

2π2
PBðkÞ

����
Slip

∝ k5
Z

k21dk1

Z
dμ1ð1 − μ21Þkns−41 kns−42

×

�
1 − k1

k2

�
T2ðk1Þ ð83Þ

∝ k7: ð84Þ

This nonlinear power law can be seen in Fig. 2. Note that if

we use the superhorizon solution only, namely, δð1Þγ ∝ ðkηÞ0
and δvð1Þγb 0 ∝ k3η5, the magnetic power is returned as ∝ k8.
This superhorizon power does not match for our numerical
results.
By using our numerical code, we trace a possible cause

of the discrepancies between the results in previous studies.
As we noted in Sec. IVA, the transfer function of the vector
mode is antisymmetric under the exchange of k1 and k2,
and therefore, the isosceles configuration such that k1 ¼ k2
in Fourier space does not contribute in the calculation of the
power spectrum. However, to achieve the result correctly,
contributions from the configurations of k1≲k2 and k2≲k1
should be included. When these contributions are not
included in the numerical calculation, the power spectrum
of magnetic fields on superhorizon scales shows ∝ k4,
which corresponds to the result obtained in Ref. [64].
On subhorizon scales, we can find that the spectra of

magnetic fields induced by the slip, the anisotropic stress,
and the second-order slip terms are proportional to k0.2,
k1.0, and k1.0, respectively. The spectra induced by the slip
and the anisotropic stress terms are consistent with
Ref. [63]. A noticeable feature in the spectrum induced
by the second-order slip term is the additional amplification
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FIG. 2 (color online). Spectra of generated magnetic fields sourced by the slip term (top left), the anisotropic stress term (top right),
and the second-order slip term (bottom). We show spectra of generated magnetic fields for redshifts z ¼ 1.1 × 105, 1.1 × 104, and
1.1 × 103 as indicated in the above panels.
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at k ≈ 5.0 × 10−1 hMpc−1 at z ¼ 1100. As discussed in
Sec. IV B, this additional amplification is due to the
second-order relative velocity between photons and bary-
ons after the horizon crossing. However, this amplification
is a temporary effect and the amplified magnetic fields by
this effect had been erased by the epoch of Silk damping
[39]. Therefore, the amplification cannot be seen for
scales k≳ 1.0 hMpc−1.
The above discussions and results in this subsection are

valid only for the auto-power spectra of the magnetic fields
from the slip, the anisotropic stress, and the second-order
slip terms. In the following subsection, we focus on the
total power spectrum induced by all the contributions
including the cross spectra.

D. The second-order magnetic fields

We depict the total power spectrum at recombination in
Fig. 3. It is clear that the second-order slip term gives a
dominant contribution to the total magnetic fields. The
amplitude of magnetic fields from the second-order slip
term is 10 times larger than without the second-order slip
term. However, we find that the magnetic fields from the
second-order slip term are canceled out by the magnetic
fields from the anisotropic stress term on small scales.
By using the tight coupling solution given by Eq. (67),

this cancellation is easily understood analytically. As we
mentioned in Sec. IV B, the dominant term in Eq. (67) is
the anisotropic stress term given by

δvð2Þγb λ ≃ 1

1þ R

Z
d3k1
ð2πÞ3

�
− 5

2
Πð1Þ

γ0 ðk1Þvð1Þb 0 ðk2Þ
�
Y2;1

1;λðk̂1; k̂2Þ;

ð85Þ

while any other terms related to the anisotropic stress
are subdominant with the baryon-photon ratio R ∝

3ρð0Þb =ð4ρð0Þγ Þ as a suppression factor. By substituting this
expression into Eq. (51), the evolution of magnetic fields
from the second-order slip and the anisotropic stress terms
is given as

dBλ

dt
∝
�
5

4

1

1þ R
− 5

4

�
vð1Þb 0 ðk1ÞΠð1Þ

γ 0 ðk2ÞY1;2
1;λðk̂1; k̂2Þ; ð86Þ

where the first and the last terms in the parentheses are
coming from the second-order slip term and the anisotropic
stress term, respectively. We can see that the two terms in
the parentheses in Eq. (86) are canceled in the radiation
dominated era, where R is negligibly small. However, in
the matter dominated era, the baryon-photon ratio has large
value and this cancellation does not occur.
The dominant contribution from the second-order slip

term is canceled out by the contribution from the aniso-
tropic stress term in the radiation dominated era.
Conversely, there still remain some contributions from

the second-order slip term as shown in Fig. 3 and discussed
below using the tight-coupling solution. The subleading
contribution from the second-order slip term can be
written as

δvð2Þγbλ≃ 1

1þR

Z
d3k1
ð2πÞ3

�
−2δvð1Þγb0ðk1Þδð1Þγ ðk2Þ

� ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ:

ð87Þ

Then, the evolution equation of magnetic fields induced by
the slip and the second-order slip terms can be rewritten as

dBλ

dt
∝
�

1

1þ R
þ 1

�
δvð1Þγb 0ðk1Þδð1Þγ ðk2Þ

ffiffiffiffiffiffi
4π

3

r
Y�
1;λðk̂1Þ; ð88Þ

where the first and the last terms in the parentheses are
coming from the second-order slip term and the slip term,
respectively. From Eq. (88), we find that the total amplitude
of the spectrum of magnetic fields is twice as large as the
case only with the slip term. This tendency can be seen
in Fig. 3.
Next, let us discuss the evolution of magnetic fields

through the epoch of recombination. As the process of
recombination proceeds, electrons form neutral hydrogen
atoms with protons and the number of free electrons rapidly
decreases. Accordingly the effect of the Compton scattering
on generation of magnetic fields becomes negligible and
magnetic fields are no longer generated through the
Harrison mechanism. We show the power spectrum of
the second-order magnetic fields after recombination at z≃
500 in Fig. 4. In Fig. 4, one can find new features in the
spectrum different from one at recombination on inter-
mediate scales such as 10−2 hMpc−1 ≲ k≲ 1.0 hMpc−1.
These features are nearly consistent with Ref. [64]. For
instance, magnetic fields induced by the slip term decrease
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FIG. 3 (color online). Magnetic spectra generated from the
slip term, the anisotropic stress term, the second-order slip
term, and all terms included in the cross terms at recombination
(1þ z≃ 1100).
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on intermediate scales. On the other hand, magnetic fields
induced by the second-order slip term are enhanced at
cosmological recombination since the relative velocity is
also enhanced at that era. We furthermore extend the
magnetic spectrum to much smaller scales. On scales
where 1.0 hMpc−1 ≳ k, magnetic fields induced by the
slip, the anisotropic stress, and the second-order slip terms
have the same structures as the magnetic spectrum at
recombination shown in Fig. 3. As a result, the spectrum
of second-order magnetic fields has a slightly blue tilt on
small scales.

E. Nonhelical magnetic fields

Before closing this section, we investigate the possibility
whether helical magnetic fields are generated in the
Harrison mechanism or not since the helicity may play
important roles in the cosmological observations [82–86].
In fact, in Ref. [87], the authors found the evidence of
existence of helical magnetic fields on a few Mpc scales. It
is believed that helical magnetic fields can only be
generated through the process of parity violation.

Because helicity is conserved in the standard magnetohy-
drodynamics, it is a good indicator to probe the generation
mechanism of magnetic fields. We will show below that the
Harrison mechanism does not induce helical magnetic
fields since this mechanism relies on the standard
Compton scattering which does not break the parity
symmetry.
At first, under the existence of helical magnetic fields,

the correlation of magnetic fields can be written as

hBiðkÞBjðk0Þi

¼ ð2πÞ3δðk − k0Þ
�
ðδij − k̂ik̂jÞ

PBðkÞ
2

þ iϵijkk̂
k PHðkÞ

2

�
;

ð89Þ

where PBðkÞ and PHðkÞ are the spectra of nonhelical and
helical magnetic fields, respectively. The power spectrum
of helical magnetic fields can be pulled by the subtraction
as hBiðkÞBjðk0Þi − hBjðkÞBiðk0Þi. In the Harrison mecha-
nism that is given by Eq. (45), generated magnetic fields
can be symbolically expressed as

BiðkÞ∝ ϵiabka
Z

d3k1
ð2πÞ3 k̂

b
1fðk1;k2ÞXð1Þðk1ÞYð1Þðk2Þ; ð90Þ

where fðk1; k2Þ is an arbitrary real function of k1 and k2,
and Xð1Þðk1Þ and Yð1Þðk2Þ are the time integrals of first-
order scalar perturbations. The scalar perturbations can
be decomposed into the primordial perturbation Φð1ÞðkÞ
and the transfer function XTðk1Þ or YTðk2Þ as
Xð1Þðk1ÞYð1Þðk2Þ ¼ Φð1Þðk1ÞΦð1Þðk2ÞXTðk1ÞYTðk2Þ. Note
that we use the fact that the purely second-order variables,
e.g., δvγbi, are composed of the product of the first-order
scalar perturbations.
Finally, we evaluate the helical part of the power

spectrum as

hBiðkÞBjðk0Þi− hBjðkÞBiðk0Þi∝ ð2πÞ3δðk−k0Þðϵiabϵja0b0 −ϵjabϵia0b0 Þkaka0 ×
Z

d3k1
ð2πÞ3fðk1;k2ÞXTðk1ÞYTðk2ÞPΦðk1ÞPΦðk2Þ

×

�
k̂b1 k̂

b0
1 fðk1;k2ÞXTðk1ÞYTðk2Þþ

1

2
ðk̂b1 k̂b

0
2 þ k̂b2k̂

b0
1 Þfðk2;k1ÞXTðk2ÞYTðk1Þ

�
¼ 0; ð91Þ

where we symmetrize about b↔ b0 in the square bracket
by using the nature of the symmetry under the exchange of
k1 and k2. In conclusion, the Harrison mechanism cannot
induce helical magnetic fields. This result is coming from
the fact that general relativity and the standard Maxwell
theory do not violate the parity symmetry. Therefore, the
observed helical magnetic fields call for other mechanisms
to explain.

V. CONCLUSION AND SUMMARY

In this paper, we reinvestigate the spectrum of magnetic
fields induced by cosmological perturbations through the
Harrison mechanism. If we consider the cosmological
perturbation theory up to the first order, the Harrison
mechanism does not work since the vector mode, which
is needed for this mechanism, has only a decaying solution.
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FIG. 4 (color online). Same as Fig. 3 but for after recombina-
tion as (1þ z≃ 500).
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However, when we expand the cosmological perturbations
up to the second order, the regular solution of the vector
mode is excited by the first-order scalar mode. The
Harrison mechanism works in the higher-order cosmologi-
cal perturbation theory.
In previous studies, the spectrum of magnetic fields

induced by this mechanism has been estimated. In
Ref. [63], the authors show the spectrum of second-order
magnetic fields induced by the product of the first-order
perturbations, namely, the slip and anisotropic stress terms.
Subsequently, in Ref. [64], the purely second-order slip
term is included. By comparing these works, however, it is
found that there are some discrepancies in the product of
first-order perturbations. For example, the power law tails
of the spectrum induced by the slip and anisotropic stress
terms on large scales have different k-dependences in
Refs. [63] and [64]. Furthermore, the scale-dependences
of the spectrum are slightly different from each other. We
find that the discrepancy can be explained by the lack of
sampling in the Fourier modes at k1 ≈ k2 of the first-order
scaler perturbations in Ref. [64], and our results agree with
the ones of Ref. [63].
Let us summarize features of the magnetic fields induced

by the second-order magnetic fields at cosmological
recombination as follows.

(i) The scale dependence of magnetic fields on large
scales is ∝ k3.5, which is consistent with the result in
Ref. [63]. Note that magnetic fields generated by
causal processes have the same power [81].

(ii) On small scales, the spectra of magnetic fields
induced by the slip, the anisotropic stress, and the
second-order slip terms have the power of k0.2, k1.0,
and k1.0, respectively. In particular, the spectra of
magnetic fields induced by the slip and anisotropic
stress terms are consistent with the result in Ref. [63].

(iii) The cancellation occurs between the anisotropic
stress term and the second-order slip term on small
scales in the tight coupling regime in the radiation
dominated era, and the power of magnetic field
spectrum becomes ∝ k0.2. This result indicates that
the spectrum of magnetic fields cannot have the
large amplitude as argued in Ref. [63].

(iv) The spectrum of magnetic fields at cosmological
recombination has a bump at k≈ 5.0×10−1hMpc−1
owing to extra amplification after the horizon

crossing, where the amplitude of magnetic fields is
Brec ≈ 5.0 × 10−24 Gauss. However, after all, this
amplification vanishes by nontrivial flipping of the
relative velocity between photons and baryons dis-
cussed in Ref. [39]. This cancellation creates char-
acteristic diffusion scales in the magnetic fields
spectrum around k ≈ 100 hMpc−1.

(v) The Harrison mechanism does not work efficiency
below the scale of Silk damping at the electron-
positron pair creation epoch as kcut ≈ 109 hMpc−1,
as discussed in Ref. [63]. Even if we extrapolate our
numerical result toward smaller scales by using the
power of ∝ k0.2 up to the cutoff scale, the amplitude
of the magnetic fields at that scale cannot be larger
than 10−23 Gauss, assuming that the linear density
perturbations are scale invariant.

Finally, we discuss implications of the cosmological seed
fields. The derived amplitude of magnetic fields at recom-
bination has a peak about 5.0 × 10−24 Gauss, which is
sufficient for a candidate of the seed of galactic magnetic
fields [17]. However, this amplitude seems to be somewhat
small to explain the intergalactic magnetic fields [10,11].
Note that the above amplitude is derived assuming that the
primordial perturbations are scale-invariant, while primor-
dial perturbations with a blue tilt lead a larger amplitude of
the magnetic fields on smaller scales.
The magnetic fields induced by the second-order per-

turbation must be inevitably generated in the standard
cosmology, and it is possibly that the magnetic fields act as
seed fields for the turbulent dynamo during the structure
formation of the universe.
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