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Artificial fragmentation of the matter density field causes the formation of spurious groups of particles in
N-body simulations of nonstandard dark matter (DM) models which are characterized by a small scale
cutoff in the linear matter power spectrum. These spurious halos alter the prediction of the mass function in
a range of masses where differences among DM models are most relevant to observational tests. Using a
suite of high resolution simulations we show that the contamination of artificial groups of particles
significantly affect the statistics of halo spin, shape and virial state parameters. We find that spurious halos
have systematically larger spin values, are highly elliptical or prolate and significantly deviate from virial
equilibrium. These characteristics allow us to detect the presence of spurious halos even in nonstandard
DMmodels for which the low-mass end of the mass function remains well behaved. We show that selecting
halos near the virial equilibrium provides a simple and effective method to remove the bulk of spurious
halos from numerical halo catalogs and consistently recover the halo mass function at low masses.
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I. INTRODUCTION

A generic feature of dark matter models alternative to the
standard cold dark matter (CDM) hypothesis is the pres-
ence of a small scale cutoff in the linear matter power
spectrum. In the warm dark matter (WDM) scenario this
arises from the damping of matter density fluctuations on
scales smaller than the free-streaming length of WDM
particles (see e.g. [1,2]). Similarly, in models of ultra-light
axion (ULA) dark matter, the effective Jean’s length
associated to the oscillating axion field naturally introduces
a damping scale in the matter power spectrum (see e.g. [3]).
Scenarios of late forming dark matter (LFDM) also predict
a suppression of power at small scales that depends on the
epoch of DM formation [4]. Because of this feature,
nonstandard DM models and the standard CDM scenario
differ in the late-time clustering properties at small scales,
where the dynamics of the gravitational collapse is highly
nonlinear. In this regime quantitative predictions have been
possible thanks to the use of large volume high-resolution
N-body simulations (see e.g. [5–15]).
The accuracy of N-body results relies upon the ability to

control numerical systematic effects. These can be con-
trolled through convergence analysis tests that evaluate the
dependence on the volume and mass resolution of the
simulations. However, in the case of models with a sharp
cutoff in the initial power spectrum, N-body simulations
have shown the presence of unphysical group of particles
which result from the artificial fragmentation of the matter
density field at small scales [16–18]. These artifacts have

been shown to form independently of how initial conditions
are generated [18]. This is because artificial fragmentation
is a discretization phenomenon which arises from N-body
sampling Poisson noise at wave numbers larger than the
cutoff in matter power spectrum.
Artificial halos contaminate the low-mass end of the halo

mass function in the interval range where difference among
the different DM scenarios are most relevant. Hence, their
removal is essential to predict the correct abundance of
dwarf-galaxy halos as well as the dynamical properties of
halo sub-structures that in recent years have become a
probe of the nature of DM through observations of the local
Universe [19–23].
Numerical studies have shown that increasing the mass

resolution of the simulations alleviates artificial fragmen-
tation [18,24]. In fact, increasing the number of N-body
particles (Np) reduces the intraparticle distance d (i.e.
increases the Nyquist frequency of the simulations) as
well as the amplitude of the Poisson noise (∝ 1=Np) thus
leading to less fragmentation near the cutoff scale.
However, it would require the fluid limit to completely
remove this effect (for an attempt in this direction see e.g.
[25,26]). Hence, in the presence of artificial halos we ought
to rely on empirical methods to infer artifact-free model
predictions.
Wang andWhite [18] have suggested to apply a mass-cut

to numerical halo catalogs and retain only halos with mass
larger than Mlim ¼ 10.1ρdk−2peak, where ρ is the mean
cosmic matter density and kpeak is the wave number of
the peak in the dimensionless power spectrum Δ2ðkÞ of
WDM models and the numerical coefficient is estimated
from simulations.
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Schneider, Smith and Reed [24] outlined an alternative
approach based on the fact that artificial halos contribute to
an upturn of the low-mass end of the mass function with a
characteristic power law behavior. Using this information,
the contribution of artificial halos can be extrapolated at
larger masses and subtracted from the measured mass
function.
A more sophisticated approach was adopted by Lovell

et al. [10]. Their method combines multiple criteria: first,
Lagrangian patches in the initial conditions are identified
for each halo in the catalogs, those associated to patches
whose shape is flatter than a given threshold are removed
since genuine proto-halos are spheroidal; second, halos
below a given mass-cut are removed; finally, a match
between the residual halos in simulations at different
resolution is applied and only halos present at both
resolutions are retained. Schneider [27] performed a study
of the properties of halos in nonstandard DM scenarios
using a similar approach.
Here, we develop a complementary method that relies

on the structural properties of halos as a way to differ-
entiate genuine halos from artificial ones. Using a suite of
high resolution N-body simulations of nonstandard DM
models we show that artificial halos are characterized by
extreme values of the spin and shape parameters and
significantly depart from virial equilibrium. Hence, dis-
carding unrelaxed halos from numerical halo catalogs can
account for most of the effects induced by artificial group
of particles and allows us to predict the correct halo mass
function over a wider range of mass than using simple
mass cuts.
The paper is organized as follows: in Sec. II we present

the models and describe the N-body simulation character-
istics. In Sec. III we show the results on the halo mass
function and the analysis of the structural properties of
halos. In Sec. IV we propose a halo selection criterion
based on the virial state of halos and present the results on
the halo mass function and the distribution of halo spins.
Finally, we discuss and conclude in Sec. V.

II. N-BODY SIMULATIONS

A. Models and simulation characteristics

We run a suite of cosmological simulations using
RAMSES [28], an adaptive mesh refinement code with a
tree-based data structure that allows recursive grid refine-
ment on a cell-by-cell basis. Particles are evolved using a
particle-mesh (PM) solver, while the Poisson equation is
solved using a multigrid method [29].
We consider as a reference model a standard cold dark

matter scenario with cosmological constant (ΛCDM) with
zero curvature and the following set of parameters:
Ωm ¼ 0.3, h ¼ 0.7, σ8 ¼ 0.8, ns ¼ 0.96 and Ωb ¼
0.046. For the nonstandard DM cosmologies we consider
two WDM models with thermal relic particle mass of

mwdm ¼ 1.465 keV (WDM-a) and 0.696 keV (WDM-b),
and a LFDM model with phase transition redshift zt ¼
1.5 × 106 (for details on the LFDM model, see [15]). The
cosmological parameters for these nonstandard DMmodels
are set to our reference ΛCDM values. We note that out of
these three nonstandard DM models, only the LFDM
satisfies the constraints imposed on the matter power
spectrum inferred from the Lyman-α measurements [30].
WDM models with mwdm < 2 keV are disfavored at 4σ
confidence level, however we include them in this paper to
study artificial fragmentation of the matter density field.
The linear matter power spectra of the nonstandard DM
models are characterized by a cutoff scale and damping
slope.1 These are shown for z ¼ 0 in Fig. 1. We can see that

FIG. 1 (color online). Linear matter power spectra at z ¼ 0 for
ΛCDM (red solid line), LFDM (blue dotted line), WDM-a (green
dashed line) and WDM-b (brown dash-dotted line).

1We compute the initial linear power spectra using CAMB
[31]. In the case of the WDM models we evaluate the linear
transfer function as in [32]:

TðkÞ ¼ ½1þ ðαkÞ2ν�−5
ν; ð1Þ

with spectrum cutoff scale

α ¼ 0.05

�
Ωm

0.4

�
0.15

�
h

0.65

�
1.3
�
1 keV
mwdm

�
1.15

�
1.5
gwdm

�
0.29

ð2Þ

in units of h−1 Mpc. We assume damping slope ν ¼ 1 and
number of degrees of freedom gwdm ¼ 1.5. The power spectrum
of WDM models is then obtained from that of ΛCDM as

PWDMðkÞ ¼ TðkÞ2PΛCDMðkÞ: ð3Þ
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the WDM-b model has a larger scale cutoff compared to
WDM-a and LFDM, while the damping slope of LFDM is
less steep than that of the WDM models.
We use the linear power spectra to generate Gaussian

initial conditions using the Zel’dovich approximation as
implemented in MPGRAFIC [33]. To facilitate comparison
we have used the same phase of the initial conditions
for all simulated models. We set the starting redshift
of the simulation by imposing the constraint relation
σðΔcoarse

x Þ ¼ 0.02, such that at the initial redshift all models
have the same value of the standard deviation of the initial
density field σ smoothed on the scale of the coarse grid
Δcoarse

x . This guarantees that the initial redshift of the
simulations is sufficiently high to suppress spurious effects
due to transients [34].
In Table I we list the characteristics of the N-body

simulation runs. For all models we run ð27.5 h−1 MpcÞ3
volume simulations with 5123 and 10243 particles corre-
sponding to a mass resolution of mp ¼ 1.29 × 107 h−1M⊙
and mp ¼ 1.61 × 106 h−1 M⊙, respectively. For WDM-b
we have also run a lower resolution simulation in larger
volume: ð64 h−1MpcÞ3 volume with 5123 particles corre-
sponding to a mass resolution mp ¼ 1.63 × 108 h−1M⊙.
This simulation suite allows us to perform a detailed
convergence study on artificial halos.

B. Halo finder and halo properties

We detect halos using the code PFOF [35] based on a
parallelized version of the friend-of-friend algorithm [36].
This detects halos as a group of particles characterized
by an intraparticle distance smaller than a given linking
length parameter b, which we set to 0.2. During the
first iteration, the algorithm groups all particles in the
simulation box which are within distance b of an initial
particle. This search is then carried out for the rest of the
particles of the group until no new neighbors are found.
This final set of particles is then tagged as a halo and
removed from the list. The algorithm then iterates over the

next untagged particles repeating the above procedure to
detect a new halo.
For each halo in the simulations we estimate the spin

parameter defined as [37]:

λ0 ¼ Jffiffiffi
2

p
MVR

; ð4Þ

where M is the mass of the halo, V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
is the

orbital velocity at the virial radius R (G being Newton’s
constant) and J is the amplitude of the halo angular
momentum:

~J ¼ mp

XNh

i¼1

ð~ri − ~rcÞ × ð~vi − ~vcÞ; ð5Þ

where the sum runs over all Nh-halo particles with position
~ri and velocity ~vi (~rc and ~vc being the position and velocity
of the halo center of mass). The definition of the spin
parameter given by Eq. (4) normalizes the halo angular
momentum to its maximal value.
We also quantify the shape of halos by computing

the symmetric mass distribution tensor defined as
(see e.g. [38])

Mαβ ¼
mp

M

XNh

i¼1

ðrα;i − rα;cÞðrβ;i − rβ;cÞ; ð6Þ

where α; β ¼ 1; 2; 3 denote the three components of the
position vectors. The eigenvalues of Mαβ, a2 ≥ b2 ≥ c2,
define a triaxial ellipsoid with axis lengths a ≥ b ≥ c.
These can be combined to define halo shape parameters.
Here, we focus on the sphericity s ¼ c=a, ellipticity e ¼
1
2
ða − cÞ=ðaþ bþ cÞ and prolateness p ¼ 1

2
ða − 2bþ cÞ=

ðaþ bþ cÞ. Genuine halos, being close to spheroidal,
have large values of sphericity and low ellipticity and
prolateness. On the other hand, spurious halos are
expected to be abnormally elliptical (large value of e) with
disk-like (oblate, p < 0) or needle-like (prolate, p > 0)
shapes.
We estimate the dynamical state of halos by computing

the virial state parameter η ¼ 2K=jEj ∈ ½0;∞�, where K is
the total kinetic energy and E is the gravitational potential
energy. In the case of virialized halos η ≈ 1. It is worth
reminding that η only provides an approximate estimation
of a halo’s virial state. In fact, while there is no ambiguity in
the determination of the kinetic energy of the halo (i.e. the
sum of the kinetic energy of each halo particle), the
potential energy E is a nonlocal quantity, since it also
depends on particles that do not belong to the halo, but are
in the surrounding density field. This may introduce a
systematic source of uncertainty in the evaluation of the
virial state. Despite such a limitation, η remains a useful
proxy especially to identify halos with large deviation from
the virial condition (i.e. η ≫ 1).

TABLE I. N-body simulation characteristics. L is the simu-
lation box length, Np is the number of N-body particles and mp
the mass resolution.

Model L (h−1 Mpc) Np mp (h−1 M⊙)
ΛCDM 27.5 5123 1.29 × 107

ΛCDM ” 10243 1.61 × 106

LFDM ” 5123 1.29 × 107

LFDM ” 10243 1.61 × 106

WDM-a ” 5123 1.29 × 107

WDM-a ” 10243 1.61 × 106

WDM-b ” 5123 1.29 × 107

WDM-b ” 10243 1.61 × 106

WDM-b 64 5123 1.63 × 108
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III. ANALYSIS OF SPURIOUS HALOS

A visual inspection of the simulations shows that there
are progressively less structures in LFDM, WDM-a and
WDM-b compared to theΛCDM. This can be seen in Fig. 2
where we plot a 2D projection of the dark matter density
field at z ¼ 0 in a box of ∼7 h−1 Mpc side from the
ð27.5 h−1 MpcÞ3 volume simulations with 5123 particles.
This trend is consistent with expectations due to the fact
that the damping of the linear matter power spectrum of the
nonstandard DM models considered here occurs at an
increasingly larger scale (small wave numbers) as we go
from LFDM to WDM-b (see Fig. 1). For these models
we can also notice an increasing granularity of the density
field along filamentary structures with the appearance of
regularly spaced group of particles that are especially
distinguishable in the WDM-b case. These are spurious
numerical halos.

A. Halo mass function

The presence of a cutoff in the linear matter power
spectrum introduces a characteristic mass scale in the halo
mass function. As shown in [39] for WDM models, this
scale can be parametrized in terms of the “half-mode”mass
Mhm, namely the mass associated to the length scale where
the linear transfer function drops to half of its value. In the
case of the WDM models considered here we have
Mhm ¼ 7.41 × 109 h−1M⊙ for WDM-a and Mhm ¼ 9.65 ×
1010 h−1 M⊙ for WDM-b, while for the LFDM model we
estimate Mhm ¼ 3 × 109 h−1M⊙.
In Fig. 3 we plot the halo mass function at z ¼ 0 for

halos with at least 100 particles from the simulation suite.
Let us first consider the results of the ð27.5 h−1 MpcÞ3
volume runs with 5123 particles. We can see that the
number density of halos in the nonstandard DM models is
suppressed with respect to the ΛCDM case at around the
half-mode mass as expected. The larger the half-mode mass
the larger the suppression of the mass function relative to
ΛCDM. However, in the case of the WDM models we can
see that the low mass end of the mass function rises instead
of falling. The effect is more dramatic for WDM-b model
which has the largest half-mode mass. As shown in [18]

this upturn is an artifact due to the contribution of artificial
halos. Above the half-mode mass all models converge to
the ΛCDM mass function within finite volume errors.
Because of the absence of an upturn in the LFDM case
one might think that the model is exempt from spurious
halo contamination. However, the mass function from the
higher resolution run shown in Fig. 3 reveals this not to be
the case since an upturn is present at much smaller masses.
Let us compare the mass function from the

ð27.5 h−1MpcÞ3 volume simulations with 5123 and
10243 particles. From Fig. 3 we see that the slope of
the upturn at the low-mass end depends on the mass
resolution of the simulations, in agreement with the
findings of [24]. This dependence is a clear indication of
the fact that the majority of halos in this mass range are
numerical artifacts. We find that the mass functions of the

FIG. 2 (color online). 2D projection of the dark matter density field at z ¼ 0 in a box of ∼7 h−1 Mpc side from the simulations with
ð27.5 h−1 MpcÞ3 volume and 5123 particles for ΛCDM, LFDM, WDM-a and WDM-b (from left to right).

FIG. 3 (color online). Halo mass function at z ¼ 0 for ΛCDM
(red circles), LFDM (blue circles), WDM-a (green circles) and
WDM-b (brown circles/stars) from the simulations listed in
Table I. Error bars are given by Poisson errors. Vertical dotted
lines indicate the value of the half-mode mass for LFDM (blue),
WDM-a (green) and WDM-b (brown) models.
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lower resolution runs converge to those of higher resolution
at ≈5% for M≳ 4 × 109 h−1M⊙—roughly corresponding
to halos with more than 300 particles. For the WDM-b
simulation of ð64 h−1MpcÞ3 volume and 5123 particles we
find a similar level of convergence for M≳ 5×
1010 h−1 M⊙, again roughly corresponding to a minimum
of 300 particles per halo. Thus, from now on we only
consider halos with at least 300 particles. For simulations of
ð27.5 h−1 MpcÞ3 volume and 5123 particles, a 300-particle
halo has a mass of 4 × 109 h−1M⊙ and well below the half-
mode mass Mhm of the WDM models (green and blue
vertical dotted lines in Fig. 3). The WDM mass functions,
instead of falling, continue to rise even below their
respective Mhm values. As such, even a conservative
300-particle cut does not fully solve the problem of
spurious halos. Moreover, from the analysis of the
LFDM mass function with 5123 particles we can deduce
that for a given mass resolution simulation the absence of a
well-defined upturn at the low-mass end of the mass
function does not imply that a model characterized by a
suppression of power at small scales is exempt from
artificial halo contamination.
The point that we want to stress is that artifacts caused by

spurious halos cannot be addressed by solely assuming
conservative mass cuts in the halo catalogs. Moreover,
extrapolating information from the upturn of the mass
function might not be possible since depending on the
cosmological model and the simulation characteristics an
upturn may be absent near the half-mode mass. A case in
point is the LFDM mass function (see Fig. 3) from the
ð27.5 h−1 MpcÞ3 volume simulations with 5123 particles,
where at the lowest mass end there is no well-defined
upturn. As we will show hereafter, removing the contri-
bution of artificial halos requires their characterization in
terms of physical properties that may distinguish them from
genuine halos.

B. Halo spin and shape

In Fig. 4 we plot the normalized probability density
function of the halo spin parameter at z ¼ 0 from the box
length L ¼ 27.5 h−1Mpc simulations with 5123 particles.
The different lines correspond to equally spaced logarith-
mic mass bins in the range 4 < M½109 h−1M⊙� < 8 for
ΛCDM, LFDM and WDM-a, and 4 < M½109 h−1M⊙� <
100 for WDM-b2.
Previous studies have shown that the distribution of halo

spins in ΛCDM model depends only weakly on the halo
mass and is approximately described by a log-normal
distribution [40,41]. As we can see from the top left panel
of Fig. 4 our results are consistent with these findings.
Notice that the tail of the ΛCDM distribution appears to be
heavier in the lowest mass bin (red solid line). As shown in

[40] this is mostly due to unrelaxed halos. We will confirm
this conclusion in the analysis presented in Sec. III C.
In the top right panel of Fig. 4 we plot the distribution of

spins for the LFDM model. Compared to the ΛCDM case,
we can see a stronger dependence on halo mass. The
distribution appears to be well described by a log-normal
only for the highest mass bin (blue solid line), while
becoming increasingly heavy tailed at lower masses.
Despite a larger statistical noise, such a trend can also be

seen in the WDM models shown in the lower panels of
Fig. 4. We may notice large departures from log-normality.
As in the LFDM case the distribution is increasingly heavy
tailed, in particular the lower mass bins are characterized by
a bimodal distribution of the spin parameter. Since spurious
halos dominate the halo abundance in this mass range (see
Fig. 3), we can deduce that the bimodality is a numerical
artifact similar to the upturn in the halo mass function.
Furthermore, as the lowest mass bin in the LFDM case in
Fig. 4 shows a heavy tail compared to a log-normal
distribution, this indicates that spurious halos also affect
the LFDM halo mass function (see Fig. 3) as confirmed by
the presence of an upturn in the higher resolution run. This
implies that other nonstandard DM scenarios characterized
by a suppression of power at small scales similar to LFDM,
such as a class of self-interacting dark matter (SIDM)
models discussed in [15], may be contaminated by spurious
halos as well.
In Fig. 5 we plot the normalized probability density

function of halo shape parameters at z ¼ 0 as a function of

0
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0.01 0.1 1 10
0

0.5
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0.01 0.1 1 10

WDM-b

FIG. 4 (color online). Probability density function of the spin
parameter at z ¼ 0 for ΛCDM (top left panel), LFDM (top right
panel), WDM-a (bottom left panel) and WDM-b (bottom right
panel). The different lines correspond to 5 equally spaced
logarithmic mass bins in the range 4 < M½109 h−1 M⊙� < 8
for the LFDM, ΛCDM and WDM-a models and 4 <
M½109 h−1 M⊙� < 100 for the WDM-b model. The red (blue)
solid line corresponds to the lowest (highest) mass bin.

2The upper limit of the mass range roughly corresponds to the
largest half-mode mass of the pair of DM models considered.
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halo mass. We can see a mass trend similar to that of
the spin parameter shown in Fig. 4. In the ΛCDM case the
majority of halos are slightly elliptical, moreover the
distribution of the shape parameters is nearly independent
of the halo mass. This is not the case for the low mass bins
of the nonstandard DM models. In particular, in the WDM
case we see that only the higher mass bins have a
distribution that is consistent with that of the ΛCDM. At
lower masses, halos have systematically higher values of
ellipticity and prolateness. This suggests that besides high
spin values, artificial halos are highly elliptical and
prolate compared to genuine ones. Though not directly
comparable, these results are consistent with the analysis

by Lovell et al. [10] which found that in WDM simulations
spurious subhalos are associated to proto-halos character-
ized by small values of the sphericity, while genuine
subhalos at higher masses are more spheroidal and
closer to that of ΛCDM prediction. This trend is similar
to that of the sphericity distribution shown in the top
panel of Fig. 5. Similar results were found in [27]
which studied the distribution of shape parameters in
nonstandard DM scenarios with power suppression at
small scales.

C. Virial state vs spin statistics

Further insight on the structural properties of artificial
halos can be gained by considering the probability dis-
tribution of the virial state parameter η. Since spurious halos
are the result of artificial fragmentation, it is reasonable to
expect that such groups of particles are not virialized.
Therefore, in the case of artificial halos the parameter η
deviates from unity and correlates with large values of
halo spin.
In Fig. 6 we show the density plot of the normalized

probability density function in the λ0 − η plane for the
simulations with 5123 particles and box length L ¼
27.5 h−1Mpc z ¼ 0. The set of four panels on the left
shows the distribution of halos with mass M<1010 h−1M⊙,
while the set on the right shows halos with mass in the
range 1011 < M½h−1M⊙� < 1013. In the former case we can
clearly see a strong correlation between large deviations
from virial equilibrium (i.e. η ¼ 1) and high spin values.
This manifests through a heavy tail that is absent in the
higher mass bin case. From the density plot we see that the
fraction of halos populating this extended tail is lowest for
ΛCDM, while it increases for the non-CDM models in
proportion to their half-mode mass. Moreover, the tail

0 0.5 1
0

1

2

3

4
s

0 0.5 1

s

0 0.5 1

s

0 0.5 1

s

0 0.1 0.2
0

5

10

15 e

0 0.1 0.2

e

0 0.1 0.2

e

0 0.1 0.2

e

-0.1 0 0.1 0.2
0

5

10

15
p

-0.1 0 0.1 0.2

p

-0.1 0 0.1 0.2

p

-0.1 0 0.1 0.2

p

FIG. 5 (color online). Probability density function of halo
sphericity, ellipticity and prolateness (panels top to bottom) at
z ¼ 0 for ΛCDM, LFDM, WDM-a and WDM-b (panels left to
right), respectively. We consider the same mass bins as in Fig. 4.
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systematically extends toward larger values of λ0 and η. We
also notice that in the case of the WDM models the tail of
the distribution becomes bimodal. Let us remark that while
the ΛCDM halos with M < 1010 h−1M⊙ shown Fig. 6
have a distribution of spin and shape parameters which is
nearly independent of their mass (see Figs. 4–5), this is not
the case for the nonstandard DMmodels. This suggests that
while the extended tail of the ΛCDM probability density
function in the λ0 − η plane is composed of genuine
unrelaxed halos, that of the non-CDMmodels is dominated
by spurious halos.

IV. SPURIOUS HALOS SELECTION

In the previous section we have shown that the structural
properties of spurious halos in nonstandard DM simulations
differ from that of genuine halos.3 In particular, we have
found a strong correlation between deviations from the virial
condition and large values of halo spin at low masses.
Spurious halos with such features contribute to the heavy
tale of the spin distribution in the LFDM model and the
bimodality in WDMmodels. These results suggest a simple
way of removing artificial halos from N-body halo catalogs
since a cut based on the virial state of halos, as parametrized
by η, can filter out spurious halos in the tail of the halo
distribution. In the CDM case this approach leaves only
halos that are approximately well relaxed (see e.g. [40]),
while it effectively removes the bulk of spurious halos in
non-CDMmodels. As wewill show here, this halo selection
allows us to recover the halo mass function consistent with
expectations at low masses and gives convergent results
when applied to N-body runs with different mass resolution.
In Fig. 7 we plot the halo mass function at z ¼ 0 for

halos with at least 300 particles for the simulations listed in
Table I. The grey points show the mass functions for halos
with the virial state parameter in the range 0 ≤ η ≤ 1.5. In
particular, let us focus on the mass function of LFDM (blue
points), WDM-a (green points) andWDM-b (brown points)
models before and after the virial state parameter cut from
the simulations of box length L ¼ 27.5 h−1 Mpc with 5123

(empty circles) and 10243 (solid circles) particles. Notice
that discarding unrelaxed halos (η > 1.5) has removed the
upturn at low masses. Now, the mass functions drop as
expected below the half-mode mass of each model.
Moreover, we can see that for the LFDM and WDM-a
models, in the mass range where the halo catalogs from the
low and high resolution runs overlap, the respective mass
functions converge at ∼5% level, while for the WDM-b
case a scatter of ∼20% is found only in certain mass bins

FIG. 7 (color online). Halo mass function at z ¼ 0 for ΛCDM
(red circles), LFDM (blue circles), WDM-a (green circles) and
WDM-b (brown circles/stars) from the simulations listed in
Table I before and after removing unrelaxed halos (grey points).
All halos have at least 300 particles. Vertical lines correspond to
the mass cut Mlim from [18] for WDM-a (green) and WDM-b
(brown) models in the case of the simulations with box length
L ¼ 27.5 h−1 Mpc and 5123 particles.
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FIG. 8 (color online). Probability density function of the spin
parameter at z ¼ 0 for ΛCDM (top left), LFDM (top right),
WDM-a (bottom left) and WDM-b (bottom right) for all halos
in the mass bins shown in Fig. 4. Green triangles correspond
to the distributions inferred before removing unrelaxed halos,
while the red circles and blue squares correspond to relaxed
halos with 0 ≤ η ≤ 1.5 and 0 ≤ η ≤ 2, respectively. The red and
blue solid curves are the corresponding best-fitting log-normal
functions.

3Here, we have not considered the density profile of halos,
since spurious groups of particles are irregularly shaped and
unrelaxed. As shown in [42] the density profile of such perturbed
systems is badly fit by the universal Navarro-Frenk-White profile,
consequently the concentration parameter is completely unin-
formative about the internal structure of the halos.
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due to Poisson noise. Hence, this approach allows us to
recover a numerically convergent mass function over a
wider range of low masses compared to the aggressiveMlim
cut [18] that discards all halos—genuine or otherwise—
with massM < Mlim while still leaving the halo abundance
uncorrected between Mlim and Mhm. This suggests that the
halo selection criterion proposed here can efficiently
remove spurious halos (i) independently of the resolution
of the simulations, and (ii) independently of the specific-
ities of the cosmological model.
In Fig. 8 we plot the normalized probability density

function of the spin parameter for all halos shown in Fig. 4
before and after removing unvirialized halos for two
different cuts, η > 1.5 and 2, respectively. We see that
removing unrelaxed halos from the numerical catalogs of
the different models recovers spin distributions which are
well approximated by a log-normal and are consistent with
each other over the same range of values.
In Fig. 9 we plot the normalized probability density

function of the halo shape parameters after the cut η > 1.5
for the same mass bins as shown in Fig. 5. Again we see
that having removed unrelaxed halos gives consistent
distributions of the shape parameters at low masses with
minimal contribution from objects with extreme values of
ellipticity and prolateness.

V. CONCLUSIONS

Unphysical groups of particles arise from the artificial
fragmentation of the matter density field in N-body
simulations of nonstandard DM models characterized by

a small scale cutoff in the linear matter power spectrum.
These spurious halos contaminate numerical halo catalogs
altering the low-mass end of the halo mass function in the
range of masses which are most relevant for observational
tests of DM scenarios. In the case of warm dark matter
models these artifacts manifest as an upturn of the mass
function at low masses. However, the absence of an upturn
does not imply that the DM models with a softer sup-
pression of power at small scales are exempt from spurious
halo contamination, rather they are subdominant.
Here, we have argued that the study of the structural

properties of halos is a better proxy to differentiate between
artificial group of particles and genuine halos. Using a
suite of high-resolution simulations we have shown that
spurious halos have systematically larger values of the spin
parameter, are less spherical, more elliptical or prolate
and strongly deviate from virial equilibrium compared to
genuine halos. All these features are highly correlated for
spurious halos and we find them even in the case of the
LFDM scenario whose mass function does not exhibit any
upturn at low masses.
The strong correlation between the spin parameter and

the deviation from virial equilibrium suggests that selecting
approximately well-relaxed halos can remove the bulk of
spurious halo contamination. We find that a mildly
conservative cut in the virial state parameter allows us to
recover corrected halo mass function. Most importantly, we
show that this approach gives convergent results when
applied to halo catalogs computed from N-body simula-
tions with different mass resolution.
The advantage of this approach is twofold. One, it allows

us to estimate the correct halo abundance over a wider
range of masses than a simple mass cut prescription which
depends on the resolution of the simulation and the
characteristics of the simulated cosmology. Two, as the
halo selection is based on a physical criterion it is also
applicable to cosmological models where the halo mass
function lacks a visible upturn due to the spurious halos
being subdominant at low masses.
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