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We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the ϕn

potential with 2 ≤ n ≤ 6. We show that the coexistence of a nonminimal coupling to gravity fR ¼
1þ cRϕn=2 with a kinetic mixing of the form fK ¼ cKfmR can accommodate inflationary observables

favored by the BICEP2/Keck Array and Planck results for 0≤m≤4 and 2.5 × 10−4 ≤ rRK ¼ cR=c
n=4
K ≤ 1,

where the upper limit is not imposed for n ¼ 2. Inflation can be attained for sub-Planckian inflaton values
with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
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I. INTRODUCTION

It is well known [1–3] that the presence of a nonminimal
coupling function

fRðϕÞ ¼ 1þ cRϕn=2; ð1Þ
between the inflaton ϕ and the Ricci scalarR, considered in
conjunction with a monomial potential of the type

VCIðϕÞ ¼ λ2ϕn=2n=2; ð2Þ
provides, at the strong cR limit with ϕ < 1—in the reduced
Planck units with mP ¼ MP=

ffiffiffiffiffiffi
8π

p ¼ 1, an attractor [3]
towards the spectral index, ns, and the tensor-to-scalar
ratio, r, respectively

ns ≃ 1 − 2=N̂⋆ ¼ 0.965 and r≃ 12=N̂2⋆ ¼ 0.0036;

ð3Þ

for N̂⋆ ¼ 55 e-foldings with negligible ns running, as.
Although perfectly consistent with the present combined
BICEP2/Keck Array and Planck results [4,5],

ns ¼ 0.968� 0.0045 and r ¼ 0.048þ0.035
−0.032 ; ð4Þ

r in Eq. (3) lies well below its central value in Eq. (4) and
the sensitivity of the present experiments searching for
primordial gravity waves—for an updated survey see [6].
Nonetheless, this model—called henceforth “nonminimal
chaotic inflation” (non-MCI)—exhibits also a weak cR
regime, with ϕ > 1 and cR-dependent observables [3,7]
approaching for decreasing cR’s their values within MCI
[8]. Focusing on this regime, we would like to emphasize
that solutions covering nicely the 1-σ domain of the present
data in Eq. (4) can be achieved, even for ϕ < 1, by
introducing a suitable noncanonical kinetic mixing
fKðϕÞ. For this reason we call this type of non-MCI
“kinetically modified.” Although a new parameter cK,
included in fK, may take relatively high values within

this scheme, no problem with the perturbative unitarity
arises.

II. NON-SUSY FRAMEWORK

Non-MCI is formulated in the Jordan frame (JF) where
the action of ϕ is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
fR
2

Rþ fK
2
gμν∂μϕ∂νϕ − VCIðϕÞ

�
:

ð5Þ

Here g is the determinant of the background Friedmann-
Robertson-Walker metric, gμν with signature ðþ;−;−;−Þ
and we allow for a kinetic mixing through the function
fKðϕÞ. By performing a conformal transformation [2]
according to which we define the Einstein frame (EF)
metric ĝμν ¼ fRgμν we can write S in the EF as follows,

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
1

2
R̂þ 1

2
ĝμν∂μϕ̂∂νϕ̂ − V̂CIðϕ̂Þ

�
;

ð6aÞ

where hat is used to denote quantities defined in the EF.
We also introduce the EF canonically normalized field, ϕ̂,
and potential, V̂CI, defined as follows,

dϕ̂
dϕ

¼J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fK
fR

þ3

2

�
fR;ϕ

fR

�
2

s
and V̂CI¼

VCI

f2R
; ð6bÞ

where the symbol ϕ as subscript denotes derivation with
respect to (w.r.t) the field ϕ. In the pure non-MCI [1–3] we
take fK ¼ 1 and so, as shown from Eq. (6b), the role of fR
in Eq. (1) is twofold: (i) it determines the canonical
normalization of ϕ̂; and (ii) it controls the shape of V̂CI
affecting thereby the observational predictions.
Inspired by Ref. [9,10], where noncanonical kinetic

terms assist in obtaining inflationary solutions for ϕ < 1,
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we liberate fR from its first role above implementing it by a
kinetic function of the form

fKðϕÞ ¼ cKfmR where cK ¼ ðcR=rRKÞ4=n; ð7Þ

with rRK being introduced for later convenience. The form
of fK in Eq. (7) is chosen so that the perturbative unitarity is
preserved up to Planck scale. Its most general form could
be fK ¼ cK ~f with ~f being an arbitrary function such that
~fðhϕi ¼ 0Þ ¼ 1—see below. However, the variation of fK
generated by ~f can be covered by the parametrization of
Eq. (7) selecting conveniently m ¼ ln ~f= ln fR.
Plugging, finally, Eqs. (7) and (2) into Eq. (6b), we

obtain

J2 ¼ cK
f1−mR

þ 3n2c2Rϕ
n−2

8f2R
≃ cK

f1−mR
and V̂CI ¼

λ2ϕn

2n=2f2R
;

ð8Þ
assuming cK ≫ cR. In contrast to Ref. [10] the presence of
both fK and fR plays a crucial role within our proposal.

III. SUPERGRAVITY EMBEDDINGS

The supersymmetrization of the above models requires
the use of two gauge singlet chiral superfields, i.e.,
zα ¼ Φ; S, with Φ (α ¼ 1) and S (α ¼ 2) being the inflaton
and a “stabilized” field, respectively. The EF action for zα’s
within supergravity (SUGRA) [11] can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
1

2
R̂þ Kαβ̄ĝ

μν∂μzα∂νz�β̄ − V̂

�
; ð9aÞ

where summation is taken over the scalar fields zα, star (*)
denotes complex conjugation, K is the Kähler potential
with Kαβ̄ ¼ K;zαz�β̄ and Kαβ̄Kβ̄γ ¼ δαγ . Also V̂ is the
EF F–term SUGRA potential given by

V̂ ¼ eKðKαβ̄ðDαWÞðD�̄
β
W�Þ − 3jWj2Þ; ð9bÞ

where DαW ¼ W;zα þ K;zαW with W being the super-
potential. Along the inflationary track determined by the
constraints

S ¼ Φ − Φ� ¼ 0; or s ¼ s̄ ¼ θ ¼ 0; ð10Þ
if we express Φ and S according to the parametrization

Φ ¼ ϕeiθ=
ffiffiffi
2

p
and S ¼ ðsþ is̄Þ=

ffiffiffi
2

p
; ð11Þ

VCI in Eq. (2) can be produced, in the flat limit, by

W ¼ λSΦn=2: ð12Þ
The form of W can be uniquely determined if we impose
two symmetries: (i) an R symmetry under which S and Φ

have charges 1 and 0 and (ii) a global Uð1Þ symmetry with
assigned charges −1 and 2=n for S and Φ.
On the other hand, the derivation of V̂CI in Eq. (8) via

Eq. (9b) requires a judiciously chosenK. Namely, along the
track in Eq. (10), the only surviving term in Eq. (9b) is

V̂CI ¼ V̂ðθ ¼ s ¼ s̄ ¼ 0Þ ¼ eKKSS� jW;Sj2: ð13Þ

The incorporation fR in Eq. (1) and fK in Eq. (7) dictates
the adoption of a logarithmic K [11], including the
functions

FRðΦÞ ¼ 1þ 2
n
4Φ

n
2cR and FK ¼ ðΦ − Φ�Þ2: ð14aÞ

Here FR is an holomorphic function reducing to fR, along
the path in Eq. (10), and FK is a real function which assists
us to incorporate the noncanonical kinetic mixing gen-
erating by fK in Eq. (7). Indeed, FK leaves intact V̂CI,
since it vanishes along the trajectory in Eq. (10), but it
contributes to the normalization of Φ—contrary to the
naive kinetic term jΦj2=3 [11] which influences both J and
V̂CI in Eq. (6b). Although FK is employed in Ref. [3] too,
its importance in implementing nonminimal kinetic terms
within non-MCI has not been emphasized so far. We also
include in K the typical kinetic term for S, considering the
next-to-minimal term for stability reasons [11]—see
below, i.e.

FS ¼ jSj2=3 − kSjSj4=3: ð14bÞ

Taking for consistency all the possible terms up to fourth
order, K is written as

K ¼ −3 ln
�

cK
2m6

ðFR þ F�
RÞmFKþ

1

2
ðFR þ F�

RÞ

−FS þ
kΦ
6
F2
K −

kSΦ
3

FKjSj2
�
: ð15aÞ

Alternatively, if we do not insist on a pure logarithmic K,
we could also adopt the form

K ¼ −3 ln
�
1

2
ðFR þ F�

RÞ − FS

�
−
cK
2m

FK

ðFR þ F�
RÞ1−m

·

ð15bÞ

Note that for m ¼ 0 [m ¼ 1] FK and FR in K given by
Eq. (15a) [Eq. (15b)] are totally decoupled, i.e. no higher
order term is needed. Our models, for cK ≫ cR, are
completely natural in the ’t Hooft sense because, in the
limits cR → 0 and λ → 0, the theory enjoys the following
enhanced symmetries (cf. Ref. [12]),

Φ → Φ�; Φ → Φþ c and S → eiαS; ð16Þ
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where c is a real number. Therefore, the terms propor-
tional to cR can be regarded as a gravity-induced violation
of the symmetries above.
To verify the appropriateness of K in Eqs. (15a) and

(15b), we can first remark that, along the trough in Eq. (10),
it is diagonal with nonvanishing elements KΦΦ� ¼ J2,
where J is given by Eq. (8), and KSS� ¼ 1=fR. Upon
substitution of KSS� ¼ fR and expK ¼ f−3R into Eq. (13)
we easily deduce that V̂CI in Eq. (8) is recovered. If we
perform the inverse of the conformal transformation
described in Eqs. (6a) and (5) with frame function Ω=3 ¼
− exp ð−K=3Þ we end up with the JF potential VCI ¼
Ω2V̂CI=9 in Eq. (2). Moreover, the conventional Einstein
gravity at the SUSY vacuum, hSi ¼ hΦi ¼ 0, is recovered
since −hΩi=3 ¼ 1.
Defining the canonically normalized fields via the

relations

dϕ̂=dϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
KΦΦ�

p
¼ J; θ̂ ¼ Jθϕ; ð17Þ

and ðŝ; ˆ̄sÞ ¼ ffiffiffiffiffiffiffiffiffi
KSS�

p ðs; s̄Þ, we can verify that the configu-
ration in Eq. (10) is stable with respect to the excitations of
the noninflaton fields. Taking the limit cK ≫ cR we find
the expressions of the masses squared m̂2

χα (with χα ¼ θ
and s) arranged in Table I, which approach rather well the
quite lengthy, exact expressions taken into account in our
numerical computation. These expressions assist us to
appreciate the role of kS > 0 in retaining positive m̂2

s .
Also we confirm that m̂2

χα ≫ Ĥ2
CI¼ V̂CI0=3 for ϕf ≤ϕ≤ϕ⋆;

note that nθ ¼ 4 or 6 for K taken by Eq. (15a) or Eq. (15b),
respectively. In Table I we display the masses m̂2

ψ� of the

corresponding fermions too. We define ψ̂S ¼
ffiffiffiffiffiffiffiffiffi
KSS�

p
ψS and

ψ̂Φ ¼ ffiffiffiffiffiffiffiffiffiffiffi
KΦΦ�

p
ψΦ where ψΦ and ψS are the Weyl spinors

associated with S and Φ, respectively.
Inserting the derived mass spectrum in the well-known

Coleman-Weinberg formula, we can find the one-loop
radiative corrections, ΔV̂CI to V̂CI. It can be verified that
our results are immune from ΔV̂CI, provided that the
renormalization group mass scale Λ, is determined by
requiring ΔV̂CIðϕ⋆Þ ¼ 0 or ΔV̂CIðϕfÞ ¼ 0. The possible
dependence of our results on the choice of Λ can be
totally avoided if we confine ourselves to kSΦ ∼ 1 and
kS ∼ ð0.5–1.5Þ resulting in Λ≃ ð1 − 5Þ × 1014 GeV—cf.
Ref. [2,13]. Under these circumstances, our results in the

SUGRA setup can be exclusively reproduced by using V̂CI
in Eq. (8).

IV. INFLATION ANALYSIS

The period of slow-roll non-MCI is determined in the EF
by the condition

maxfϵ̂ðϕÞ; jη̂ðϕÞjg ≤ 1; ð18aÞ

where the slow-roll parameters ϵ̂ and η̂ read

ϵ̂ ¼ ðV̂CI;ϕ̂=
ffiffiffi
2

p
V̂CIÞ2 and η̂ ¼ V̂CI;ϕ̂ ϕ̂=V̂CI ð18bÞ

and can be derived employing J in Eq. (6b), without
explicitly expressing V̂CI in terms of ϕ̂. Our results are

ϵ̂ ¼ n2

2ϕ2cKf
1þm
R

;

η̂

ϵ̂
¼ 2

�
1 −

1

n

�
−
4þ nð1þmÞ

2n
cRϕ

n
2:

ð19Þ

Given that ϕ ≪ 1 and so fR ≃ 1, Eq. (18a) is saturated at
the maximal ϕ value, ϕf , from the following two values,

ϕ1f ≃ n=
ffiffiffiffiffiffiffiffi
2cK

p
and ϕ2f ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þn=cK

p
; ð20Þ

where ϕ1f and ϕ2f are such that ϵ̂ðϕ1fÞ≃ 1 and η̂ðϕ2fÞ≃ 1.
The number of e-foldings N̂⋆ that the scale k⋆ ¼

0.05=Mpc experiences during this non-MCI and the
amplitude As of the power spectrum of the curvature
perturbations generated by ϕ can be computed using the
standard formulas,

N̂⋆ ¼
Z

ϕ̂⋆

ϕ̂f

dϕ̂
V̂CI

V̂CI;ϕ̂

and A1=2
s ¼ 1

2
ffiffiffi
3

p
π

V̂3=2
CI ðϕ̂⋆Þ

jV̂CI;ϕ̂ðϕ̂⋆Þj
;

ð21Þ

where ϕ⋆½ϕ̂⋆� are the value of ϕ½ϕ̂� when k⋆ crosses the
inflationary horizon. Since ϕ⋆ ≫ ϕf , from Eq. (21) we find

N̂⋆ ¼ cKϕ2⋆
2n 2F1ð−m; 4=n; 1þ 4=n;−cRϕ

n=2⋆ Þ; ð22Þ

where 2F1 is the Gauss hypergeometric function [14]
which reduces to unity for m ¼ 0 (and any n) or to the
factor ðf1þm

R − 1Þ=ϕ2⋆cRð1þmÞ for n ¼ 4 (and any m).
Concentrating on these cases, we solve Eq. (22) with
respect to ϕ⋆ resulting in

ϕ⋆ ≃
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nN̂⋆=cK
p

for m ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fm⋆ − 1

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rRKcK

p
for n ¼ 4;

ð23Þ

TABLE I. Mass spectrum along the path in Eq. (10).

FIELDS EINGESTATES MASS SQUARED

1 Real scalar θ̂ m̂2
θ ≃ nθV̂CI=3 ¼ nθĤ

2
CI

2 Real scalars ŝ; ˆ̄s m̂2
s ≃ 2ð6kSfR − 1ÞĤ2

CI

2 Weyl spinors ðψ̂S � ψ̂ΦÞ=
ffiffiffi
2

p
m̂2

ψ� ≃ 3n2Ĥ2
CI=2cKϕ

2f1þm
R
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where f1þm
m⋆ ¼ 1þ 8ðmþ 1ÞrRKN̂⋆. In both cases there

is a lower bound on cK, above which ϕ⋆ < 1 and so, our
proposal can be stabilized against corrections from higher
order terms. From Eq. (21) we can also derive a constraint
on λ and cK, i.e.

λ ¼
ffiffiffiffiffiffiffi
3As

p
π ·

( ðcK=nN̂⋆Þn4ð2nfn⋆=N̂⋆Þ12 for m ¼ 0;

16cKr
3=2
RK=ðfm⋆ − 1Þ32f1þm

2
m⋆ for n ¼ 4;

ð24Þ

where fn⋆ ¼ fRðϕ⋆Þ ¼ 1þ rRKð2nN̂⋆Þn=4.
The inflationary observables are found from the relations

ns ¼ 1 − 6ϵ̂⋆ þ 2η̂⋆; r ¼ 16ϵ̂⋆; ð25aÞ

as ¼ 2ð4η̂2⋆ − ðns − 1Þ2Þ=3 − 2ξ̂⋆; ð25bÞ

where the variables with subscript ⋆ are evaluated at
ϕ ¼ ϕ⋆ and ξ̂ ¼ V̂CI;ϕ̂V̂CI;ϕ̂ ϕ̂ ϕ̂=V̂

2
CI. For m ¼ 0 we find

ns ¼ 1 − ð4þ nþ n=fn⋆Þ=4N̂⋆; r ¼ 4n=fn⋆N̂⋆;

ð26aÞ

as ¼ ðn2 − nðnþ 4Þfn⋆ − 4ðnþ 4Þf2n⋆Þ=16f2n⋆N̂2⋆:

ð26bÞ

In the limit rRK → 0 or fn⋆ → 1 the results of the simplest
power-law MCI, Eq. (2), are recovered—cf. Ref. [8]. The
formulas above are also valid for the original non-MCI [3]
with cK ¼ 1 and rRK ¼ cR lower than the one needed to
reach the attractor’s values in Eq. (3). In this limit our
results are in agreement with those displayed in Ref. [7] for
n ¼ 4. Furthermore, for n ¼ 4 (and any m) we obtain

ns ¼ 1 − 8rRK
m − 1 − ðmþ 2Þfm⋆

ðfm⋆ − 1Þf1þm
m⋆

; ð27aÞ

r ¼ 128rRK

ðfm⋆ − 1Þf1þm
m⋆

; as ¼
64r2RKð1þmÞðmþ 2Þ
ðfm⋆ − 1Þ2f4ð1þmÞ

m⋆
·

f2m⋆
�
f2mm⋆

�
1 −m
mþ 2

þ 2m − 1

mþ 1
fm⋆

�
− f2ð1þmÞ

m⋆
�
:

ð27bÞ

For n¼4 and m¼1;2 and 4 the outputs of Eqs. (26a)–
(27b) are specified in Table II after expanding the relevant
formulas for 1=N̂⋆ ≪ 1. We can clearly infer that increas-
ing m for fixed rRK, both ns and r increase. Note that this
formulas, based on Eq. (23), is valid only for rRK > 0
(and m ≠ 0).
From the analytic results above, see Eq. (24) and

Eqs. (26a)–(27b), we deduce that the free parameters of
our models, for fixed n and m, are rRK and λ=cn=4K and not
cK, cR and λ as naively expected. This fact can be
understood by the following observation: If we perform
a rescaling ϕ ¼ ~ϕ=

ffiffiffiffiffi
cK

p
, Eq. (5) preserves its form replac-

ing ϕ with ~ϕ and fK with fmR where fR and VCI take,
respectively, the forms

fR ¼ 1þ rRK
~ϕn=2 and VCI ¼ λ2 ~ϕn=2n=2cn=2K ; ð28Þ

which, indeed, depend only on rRK and λ2=cn=2K .
The conclusions above can be verified and extended to

others n’s and m’s numerically. In particular, confronting
the quantities in Eq. (21) with the observational require-
ments [4]

N̂⋆ ≃ 55 and A1=2
s ≃ 4.627 × 10−5; ð29Þ

we can restrict λ=cn=4K and ϕ⋆ and compute the model
predictions via Eqs. (25a) and (25b), for any selected m, n
and rRK. The outputs, encoded as lines in the ns − r0.002
plane, are compared against the observational data [4,5] in
Fig. 1 for m ¼ 0; 1; 2, and 4 and n ¼ 2 (dashed lines),
n ¼ 4 (solid lines), and n ¼ 6 (dot-dashed lines). The
variation of rRK is shown along each line. To obtain an
accurate comparison, we compute r0.002¼16ϵ̂ðϕ0.002Þwhere
ϕ0.002 is the value of ϕ when the scale k ¼ 0.002=Mpc,
which undergoes N̂0.002 ¼ N̂⋆ þ 3.22 e-foldings during
non-MCI, crosses the horizon of non-MCI.
From the plots in Fig. 1 we observe that, for low enough

rRK’s—i.e. rRK ¼ 10−7; 10−4, and 0.001 for n ¼ 6; 4, and
2—the various lines converge to the ðns; r0.002Þ’s obtained
within MCI. At the other end, the lines for n ¼ 4 and 6
terminate for rRK ¼ 1, beyond which the theory ceases to
be unitarity safe—see below—whereas the n ¼ 2 line
approaches an attractor value for any m. For m ¼ 0 we
reveal the results of Ref. [3]; i.e., the displayed lines are
almost parallel for r0.002 ≥ 0.02 and converge at the values

TABLE II. Inflationary predictions for n ¼ 4 and m ¼ 1; 2, and 4.

m ¼ 1 m ¼ 2 m ¼ 4

ns 1 − 3=2N̂⋆ − 3=8ðN̂3⋆rRKÞ1=2 1 − 4=3N̂⋆ − 1=2ð3N̂4⋆rRKÞ1=3 1 − 6=5N̂⋆ − 3=5ð40N̂6⋆rRKÞ1=5 − 3=10ð50N̂7⋆r2RKÞ1=5
r 1=2N̂2⋆rRK þ 2=ðN̂3⋆rRKÞ1=2 8=3ð3N̂4⋆rRKÞ1=3 þ 4=3ð9N̂5⋆r2RKÞ1=3 8ð4=5N̂6⋆rRKÞ1=5=5þ 4ð16=25N̂7⋆r2RKÞ1=5=5
as −3=2N̂2⋆ − 9=16ðN̂5⋆rRKÞ1=2 −4=3N̂2⋆ − 2=3ð3N̂7⋆rRKÞ1=3 −6=5N̂2⋆ − 9ð4=5N̂11⋆ rRKÞ1=5=25
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in Eq. (3)—for n ¼ 4 and 6 this is reached even for
rRK ¼ 1. For m > 0 the curves move to the right and
span more densely the 1-σ ranges in Eq. (4) for quite natural
rRK’s—e.g. 0.005≲ rRK ≲ 0.1 for m ¼ 1 and n ¼ 4. It is
worth mentioning that the requirement rRK ≤ 1 provides a
lower bound on r0.002, which ranges from 0.0032 (for
m ¼ 0 and n ¼ 6) to 0.015 (for m ¼ 4 and n ¼ 4). Note,
finally, that our estimations in Eqs. (26a)–(26b) are in
agreement with the numerical results for n ¼ 2 and
rRK ≲ 1, n ¼ 6½4� and rRK ≲ 0.002½0.05�. For m > 0

(and n ¼ 4) our findings in Eqs. (27a)–(27b) (and
Table II) approximate fairly the numerical outputs for
0.003≲ rRK ≤ 1.

V. EFFECTIVE CUTOFF SCALE

The selected fK in Eq. (7) not only reconciles non-MCI
with the 1-σ ranges in Eq. (4) but also assures that the
corresponding effective theories respect perturbative uni-
tarity up to mP ¼ 1, although cK may take relatively large
values for ϕ < 1; e.g., for n ¼ 4; m ¼ 1 and rRK ¼ 0.03,
we obtain 140≲ cK ≲ 1.4 × 106 for 3.3 × 10−4 ≲ λ≲ 3.5.
This achievement stems from the fact that ϕ̂ ¼ hJiϕ does

not coincide—contrary to the pure non-MCI [15,16] for
n > 2—with ϕ at the vacuum of the theory, given that

hJi ¼ ffiffiffiffiffi
cK

p
or hJi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cK þ 3c2R=2

q
for hϕi ¼ 0 and n > 2

or n ¼ 2 [see Eq. (8)]. It is notable that this byproduct of
our proposal for n > 2 arises without invoking large hϕi’s
as in Ref. [10,13,17].
To further clarify this point, we analyze the small-

field behavior of our models in the EF. We focus on the
second term in the right-hand side of Eq. (6a) or (9a) for
μ ¼ ν ¼ 0, and we expand it about hϕi ¼ 0 in terms of ϕ̂;
see Eq. (6b). Our result for m ¼ 0 and n ¼ 2; 4, and 6 can
be written as

J2 _ϕ2 ¼
�
1 − rRKϕ̂

n
2 þ 3n2

8
r2RKϕ̂

n−2 þ r2RKϕ̂
n � � �

�
_̂ϕ
2
:

Similar expressions can be obtained for the other m’s too.
Expanding similarly V̂CI, see Eq. (8), in terms of ϕ̂, we have

V̂CI ¼
λ2ϕ̂n

2cn=2K

�
1 − 2rRKϕ̂

n
2 þ 3r2RKϕ̂

n − 4r3RKϕ̂
3n
2 þ � � �

�
;
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FIG. 1. Allowed curves in the ns − r0.002 plane for m ¼ 0; 1; 2 and 4, n ¼ 2 (dashed lines), n ¼ 4 (solid lines), n ¼ 6 (dot-dashed
lines) and various rRK’s indicated on the curves. The marginalized joint 68% [95%] regions from Planck, BICEP2/Keck Array and BAO
data are depicted by the dark [light] shaded contours.
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independently of m. From the expressions above we
conclude that our models do not face any problem with
the perturbative unitarity for rRK ≤ 1. For n ¼ 2 this
statement is also valid even for rRK > 1 as shown in
Ref. [2,16]. In the latter case, though, the naturalness
argument mentioned below Eq. (15b) is invalidated.

VI. CONCLUSIONS

Prompted by the recent joint analysis of BICEP2/Keck
Array and Planck which, although it does not exclude
inflationary models with negligible r’s, seems to favor
those with r’s of order 0.01, we proposed a variant of non-
MCI which can safely accommodate r’s of this level.
The main novelty of our proposal is the consideration of the
non-canonical kinetic mixing in Eq. (7)—involving the
parametersm and cK—apart from the nonminimal coupling
to gravity in Eq. (1) which is associated with the potential in
Eq. (2). This setting can be elegantly implemented in
SUGRA, too, employing the super-and Kähler potentials
given in Eqs. (12) and (15a) or (15b). Prominent in this
realization is the role of a shift-symmetric quadratic
function FK in Eq. (14a) which remains invisible in the

SUGRA scalar potential while dominates the canonical
normalization of the inflaton. Using m ≥ 0 and confining
rRK to the range ð2.5 × 10−4 − 1Þ, where the upper bound
does not apply to the n ¼ 2 case, we achieved observational
predictions which may be tested in the near future and
converge towards the “sweet” spot of the present data—its
compatibility with them ¼ 1 case, especially for n ¼ 4 and
6, is really impressive (see Fig. 1). These solutions can be
attained even with sub-Planckian values of the inflaton
requiring large cK’s and without causing any problem with
the perturbative unitarity. It is gratifying, finally, that a
sizable fraction of the allowed parameter space of our
models (with n ¼ 4) can be studied analytically and rather
accurately.
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