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We propose a simple and computationally fast method for performing N-body simulations for a large
class of modified gravity theories with a screening mechanism such as chameleons, symmetrons, and
Galileons. By combining the linear Klein–Gordon equation with a screening factor, calculated from
analytical solutions of spherical symmetric configurations, we obtain a modified field equation of which the
solution is exact in the linear regime while at the same time taking screening into account on nonlinear
scales. The resulting modified field equation remains linear and can be solved just as quickly as the Poisson
equation without any of the convergence problems that can arise when solving the full equation. We test our
method with N-body simulations and find that it compares remarkably well with full simulations well into
the nonlinear regime.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe is one of the biggest puzzles of modern cosmol-
ogy and is attributed to an unknown substance dubbed dark
energy [1]. One of the proposed solutions to this puzzle is
that dark energy is a new field, with a scalar field being the
simplest possibility. If such a scalar field exists and has
interactions with matter, as is expected from many theories
beyond the standard model, then there will be a long-rang
fifth force in nature; i.e., we have a modified theory of
gravity [2].
Results from gravity experiments on Earth (see, e.g.,

Ref. [3]) and in the Solar System [4] so far agree perfectly
with the predictions of General Relativity (GR), and
consequently any modified gravity theory must satisfy
the stringent constraints coming from these experiments.
This requires either that the scalar field couples to matter
much more weakly than gravity or that there exists some
mechanism for restoring GR in the Solar System.
Over the last decade, several different types of screening

mechanisms havebeen proposed. The first class of screening
is the so-called chameleon [5,6] and symmetron [7] mecha-
nism. Here the scalar field is massive, and the mass depends
on the local matter density. If a body is screened
or not depends on the value of its gravitational potential
relative to a critical potential defined by the theory. A second
class containsmodelswith a shift symmetry,ϕ → ϕþ c, that
are generally known as k-mouflage [8,9]. In these models
screening happens for bodies that experience a large gravi-
tational force (again with respect to a model-dependent
critical force).A third class containsmodelswith a derivative
shift symmetry, ∂ϕ → ∂ϕþ c. In this class we find the
Dvali-Gabadadze-Porrati (DGP) model [10–13] (in the
decoupling limit) and the Galileon [14,15]. Screening in
these models takes place for bodies that experience large
force gradients. This is the so-called Vainshteinmechanism

[16]. We should also mention screening mechanisms
for models that employ a disformal coupling to matter
[17]. Here screening is driven by time derivatives of the
scalar field becoming small in high-density environments.
The cosmology of modified gravity models, such as the

ones mentioned above, has been extensively studied. The
main signature they predict, beyond modifying the back-
ground cosmology, is to alter structure formation. The
scalar fifth force present in these models is, by design,
hidden in high-density environments like on Earth and in
the Solar System, but in the cosmological background
where the density is much smaller, the fifth force can be as
strong as gravity, leading to potentially large signatures.
Because of this effect, to accurately study the effects on

structure formation, the first line of attack is linear
perturbation theory, and naively one would think that on
large scales this should be a good approximation. However,
linear theory has the disadvantage of not taking the
screening mechanism into account, and it has been shown
(see, e.g., Refs. [18,19]) for many models that linear theory
gives a poor fit to the true result, found by solving the full
nonlinear dynamics in N-body simulations, even on scales
we normally think of as linear. The reason for this is the
screening effect on small scales, which represents a break-
down of the superposition principle, making the large-scale
fifth force depend sensitively on small-scale clustering.
To calculate accurate predictions for structure formation,

one is therefore led to N-body simulations. Over the last
couple of years, several codes have been developed to
simulate modified gravity models [20–23]. Such simula-
tions need to solve the full Klein–Gordon (KG) equation
for the scalar field in order to be able to calculate the fifth
force. Because the KG equation is highly nonlinear, this
task is often hard, in terms of convergence properties, and
also computationally expensive. A typical N-body simu-
lation of models in this class can easily take ten times as
long to finish as a similar simulation for the ΛCDM model.
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If modified gravity models such as those discussed above
are to be confronted with observations in the nonlinear
regime, then a fast method to compute clustering statistics
would be of great value. For ΛCDM simulations, for
example, such a fast method, called COmoving
Lagrangian Acceleration (COLA), has recently been pro-
posed [24]. The goal of this paper is to investigate the
possibility of a similar speedup for modified gravity
simulations, albeit with a completely different methodol-
ogy: instead of trying to find a novel way of solving the
exact equations, we try to construct an equation that can
match the behavior in regimes over which we have some
analytical control, i.e., in the linear regime and the deep
nonlinear regime.
The field equation we propose is found by combining a

screening factor, calculated from spherical symmetric
configurations, with the linear Klein–Gordon equation.
The screening factor depends only on the metric potential
Φ which is already known to us when performing an
N-body simulation (if we use a particle mesh code) and
therefore does not require any additional computations.
Importantly, our proposed field equation is linear (in the
scalar field) which makes it simple to solve: we can use the
same method as used to solve the Poisson equation for Φ.
The method proposal therefore has the advantage that it is
able to simulate modified gravity theories taking only
approximately one to two times the computational time
of a corresponding ΛCDM simulation.1 The method is most
suitable for particle mesh codes like RAMSES [25] which
we have used in this paper, but in most of our cases, it
should be fairly straightforward—at least in principle—to
implement it in codes that do not calculate the metric
potential explicitly, like, for example, in the popular tree
code GADGET2 [26].
The setup of this paper is as follows. In Sec. II we briefly

review the different screening mechanisms. In Sec. III we
present our method for the different types of screening
mechanisms. Then in Sec. IV we apply the method to
N-body simulations before concluding in Sec. V.

II. SCREENING MECHANISMS

In this paper we will focus on scalar-tensor theories of
modified gravity that display some sort of screening
mechanism [27]. These are encompassed by the general
(Hordenski) Lagrangian

L ¼ R
2
M2

Pl þ Lðϕ; ∂ϕ; ∂∂ϕÞ þ LmðA2ðϕÞgμν;ψmÞ: ð1Þ

To see how screening emerges, let us expand the
Lagrangian about a field value ϕ0,

L≃ R
2
M2

Pl þ Zμνðϕ0Þδϕ;μδϕ;ν ð2Þ

þm2ðϕ0Þδϕþ βðϕ0Þρm
MPl

þ � � � ð3Þ

In a cosmological background, we have ϕ0 ¼ ϕ̄, and the
scalar field produces a fifth force on a test mass with strength
Q ∝ β2ðϕ̄Þ relative to the gravitational force. Consider now
a different region of space where ϕ0 ¼ ϕlocal ≠ ϕ̄. One way
to reduce the effect of the fifth force (compared to the
cosmological background) is by having a large local mass
mðϕlocalÞ which implies a very short interaction range—this
is the chameleons mechanism. If the matter coupling
βðϕlocalÞ is small, the fifth force will also be weaker—the
symmetron mechanism. Lastly, if jZμνj becomes large, then
it leads to, after canonical normalization, a weakened matter
source and therefore also a weakened fifth force—the
Galileons or k-mouflage mechanism. There are, of course,
other screening effects that cannot be understood from a
simple linear expansion but require a full nonlinear analysis
as we will see below.
The rough description of the different types of screening

we gave above can be used to define and systematically
group together different screening models.
For the purpose of this paper, we define2 three classes of

screening mechanism in the following way:
(i) Type I: ϕ=MPl ≪ ΦN .
1. Type Ia: constant β like the chameleon.
2. Type Ib : field-dependent βðϕÞ like the symmetron.
(ii) Type II: j∂ϕj ≫ M2 as in the case of kinetic

theories.
(iii) Type III: j∂∂ϕj ≫ M3 which leads to Vainshtain

screening.
In the above M is some model-dependent mass scale.
The reason for this characterization is that it covers most of
the known models in the literature3 and also reflects the
symmetries of the underlying models (which might be
broken by sources). We have then that Type I theories arise
in the presence of a massive scalar field and have no
symmetry (except a possible Z2 symmetry for symme-
trons), Type II theories are underpinned by shift symmetry,
ϕ → ϕþ c, and Type III theories are associated to deriva-
tive shift symmetry, ∂ϕ → ∂ϕþ c. The classification we
have proposed covers a broad range of theories in the
literature, and we now turn to each of the classes in turn.

A. Type I: Chameleon mechanism

The chameleon mechanism (with the classification we
use, this class also contains models like the symmetron [7]

1This estimate is based on our tests on dark matter only
simulations, using a particle mesh code, where the computation
of the metric potential is the most time-consuming part.

2This is similar to what is presented in Ref. [28] which also
offers a more detailed and pedagogical review of the different
types of screening mechanisms.

3There can also be hybrid screening mechanisms; see, for
example, Ref. [29]. There also exist screening mechanisms for
theories which have a disformal coupling to matter [17].
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and the environment-dependent dilaton [30]) can be found
in models defined by the action

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R
2
M2

Pl −
1

2
ð∂ϕÞ2 − VðϕÞ

�
þ SmðgμνA2ðϕÞ;ψmÞ; ð4Þ

where g is the determinant of the metric gμν, MPl ¼ 1ffiffiffiffiffiffi
8πG

p is

the Planck mass, VðϕÞ is the self-interaction potential, and
ψm are the matter fields. The Klein–Gordon equation for
the scalar field becomes

□ϕþ Veff;ϕ ¼ 0: ð5Þ
In the presence of matter sources, the dynamics of ϕ is
determined by an effective potential which (for nonrela-
tivistic matter) is given by

Veff ¼ VðϕÞ þ AðϕÞρm
MPl

: ð6Þ

For the chameleon mechanism to work, there are some
restrictions on the form of the potential and coupling.
Roughly speaking the effective potential needs to have a
minimum for any matter density ρm, and the curvature (the
mass of the field) at this minimum must be an increasing
function of ρm. A more thorough discussion regarding
requirements on the potential and coupling can be found in
Refs. [31,32].
Too see how screening works in detail, we look at a

static, spherically symmetric object of density ρc and radius
R embedded in a background of density ρ∞. The KG
equation in this case reads

d
dr

�
r2
dϕ
dr

�
¼ r2

�
V;ϕ þ

βðϕÞρcðrÞ
MPl

�
: ð7Þ

The solution to this equation is known, in general, for two
regimes. First, if the equation can be linearized, then the
solution gives us a fifth force that is proportional to the
gravitational force (within the Compton wavelength of
the field) with strength 2β2∞ where β∞ ¼ βðϕ∞Þ is the
coupling strength in the background.
If the Newtonian potential of the object is much larger

than some critical value, in a way made precise below, the
nonlinearities of the potential kick in, and the field is forced
down to the minimum of the effective potential (ϕc) inside
the body. The exterior solution is here found to approach a
critical solution [33,34]

ϕðrÞ ¼ ϕ∞ þ ðϕc − ϕ∞ÞR
r

e−m∞r; r > R; ð8Þ

which, remarkably, is independent of both the coupling
and the mass of the body. This will be the case whenever
the screening factor

ΔR
R

≡ jϕ∞ − ϕcj
2β∞MPlΦN

≪ 1: ð9Þ

Here ΦN is the Newtonian potential of the body, and ϕ∞ is
the scalar-field value in the background. Note that this
screening condition applies for the whole class of models
and not just chameleons in particular [33].
The resulting fifth force per unit mass on a test particle

outside the object is given by

Fϕ ¼ 2β2∞
GM
r2

�
ΔR
R

�
ð1þm∞rÞe−m∞r

≃ 2β2∞
GM
r2

�
ΔR
R

�
for r ≪ m−1

∞ ð10Þ

and shows that only a small fraction,

Meff

M
¼ ΔR

R
≪ 1; ð11Þ

of the mass of the object contributes to the fifth force.
For Type Ib models (like the symmetron), we have the
additional effect that the coupling β∞ is field dependent and
becomes small in high-density regions. This again causes
additional screening compared to Type Ia models.
It is also worth mentioning, as has been shown in

Refs. [33,35], that any model in this class is also fully
characterized by specifying the two “heuristic” functions
fβðaÞ; mðaÞg. βðaÞ is the coupling strength andmðaÞ is the
mass of the field in the cosmological background4 as a
function of the scale factor a. The mapping from this
formulation to the formulation in terms of the potential and
coupling is given by

ϕðaÞ ¼ ϕc þ 9ΩmMPl

Z
a

ac

βðaÞda
ðmðaÞ=H0Þ2a4

ð12Þ

VðaÞ ¼ Vc − 27Ω2
mM2

PlH
2
0

Z
a

ac

β2ðaÞda
ðmðaÞ=H0Þ2a7

ð13Þ

logAðaÞ ¼ logAc þ 9Ωm

Z
a

ac

β2ðaÞda
ðmðaÞ=H0Þ2a4

; ð14Þ

where ac is some fiducial value of the scale factor. This
formulation will be very useful when discussing our new
method below.

4More precisely, the value at the minimum of the effective
potential as a function of the scale factor a. The field will
generally have to follow this minimum from the early Universe
and until today [33].
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B. Type II: Kinetic/k-mouflage

This class contains models where the scalar self-inter-
actions are governed by a kinetic function fðXÞ and possess
a shift symmetry in the absence of matter sources. The
action is given by

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R
2
M2

Pl − fðXÞ
�

þ SmðgμνA2ðϕÞ;ψmÞ; ð15Þ

where X ¼ ð∂ϕÞ2
2

, AðϕÞ ¼ e
βϕ
MPl , and fðXÞ is some model

specific function. A simple example is found by taking

fðXÞ ¼ X þ 1

M4
X2: ð16Þ

The cosmology of k-mouflage models was recently studied
in Refs. [36,37]. The static spherical symmetric KG
equation becomes

d
dr

�
r2fX

dϕ
dr

�
¼ βρmðrÞr2

MPl
; ð17Þ

which can be integrated up to yield

fX
dϕ
dr

¼ 2βMPl
GMðrÞ

r2
; ð18Þ

where MðrÞ ¼ R
4πρmðrÞr2dr is the mass enclosed within

a radius r. This gives a fifth force

Fϕ ¼ GMðrÞ
r2

×
2β2

fXðrÞ
; ð19Þ

where fXðrÞ is determined from

f2XX ¼ 2ðβMPlÞ2
�
GM
r2

�
2

: ð20Þ

This term can be written in terms of the Newtonian
potential

f2XX ¼ 2ðβMPlÞ2ð∇ΦNÞ2; ð21Þ

where we have used GM
r2 ¼ dΦN

dr ¼ ∇ΦN . We have screening
whenever fX ≫ 1. Unscreened objects, on the other hand,
have fX ≃ 1.

C. Type III: Vainshtein mechanism

This class contains models with a derivative shift
symmetry in the absence of sources. The Vainsthein
mechanism is responsible for the viability of massive
gravity, but it can be present in other theories, most notably
the Galileons. For simplicity we will here restrict our

attention to the cubic Galileon model. The model is
described by the action

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R
2
M2

Pl −
1

2
Lgal

�
þ SmðA2ðϕÞgμν;ψmÞ; ð22Þ

where AðϕÞ ¼ e
βϕ
MPl and

Lgal ¼ ð∂ϕÞ2 þ 1

Λ3
s
ð∂ϕÞ2□ϕ: ð23Þ

Looking at a static spherical symmetric configuration, we
find that the KG equation becomes

1

r2
d
dr

�
r2

dϕ
dr

�
þ 2

Λ3
s

d
dr

�
r
�
dϕ
dr

�
2
�

¼ βρm
MPl

: ð24Þ

This equation can be integrated up to yield

dϕ
rdr

þ 2

Λ3
s

�
dϕ
rdr

�
2

¼ 2βMPl
GMðrÞ

r3
; ð25Þ

which gives that the fifth force on a test mass is

Fϕ ¼ FN × 2β2 × 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrV=rÞ3

p
− 1

ðrV=rÞ3
�
; ð26Þ

where rV ¼ 1
Λs
ð2βMπMPl

Þ1=3 is the Vainshtein radius. The fifth
force is screened whenever r ≪ rV. Note that we can
rewrite the screening factor as

Meff

M
¼

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρðrÞ=ρcrit
p

− 1
�

ρðrÞ=ρcrit
; ð27Þ

where ρðrÞ ¼ ρmð< rÞ≡ MðrÞ
4π=3r3 is the average density

within radius r and ρcrit ¼ 3Λ3
sMPl
8β is the critical density

for screening.

III. APPROXIMATE METHOD FOR
CLUSTERING STATISTICS

In this section we describe our method for obtaining an
approximate equation to be used in N-body simulations.
We will, to simplify the discussion, assume that the
quasistatic approximation [38] can be applied to the
models we discuss below. The quasistatic approximation
states that on subhorizon scales time derivatives of the
scalar field (and the metric potential) can be neglected
compared with spatial derivatives; i.e., we assume
j∇ϕj ≫ H−1j _ϕj. The system of equations solved in
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N-body simulations are as follows: the particle displace-
ment equation,5

ẍþ
�
2H þ β

MPl

_ϕ

�
_x ¼ −

1

a2

�
∇ΦN þ β

MPl
∇ϕ

�
; ð28Þ

where ∇ΦN is the gravitational force, β≡ d logA
dϕ MPl, and

β
MPl

∇ϕ is the fifth force; the Newton Poisson equation for
the metric potential,

∇2ΦN ¼ 4πGa2δρm; ð29Þ
where we have assumed that the clustered energy density in
the scalar field can be neglected (see Sec. IV C for more
details); and the modified KG equation for the scalar field
which we will discuss in what follows.
These equations form a closed system which needs to be

solved every time step of a simulation. We will derive our
approximate equation below by the following procedure:

(i) Derive the linearized KG equation. This follows
from perturbation theory.

(ii) Calculate the screening factor from a static spherical
symmetric configuration. Rewrite it in terms of the
Newtonian potential.

(iii) Append the screening factor to the matter source in
the linear KG equation.

In the quasistatic limit and for subhorizon scales, we quite
generally find a growth equation for the matter perturbation
of the form

δ̈m þ 2H_δm ¼ 3

2
ΩmðaÞH2δm

Geffðk; aÞ
G

; ð30Þ

where Geffðk;aÞ
G is an effective gravitational constant that may

depend on both time and scale.
Let us now focus on the modifications for each type of

screening mechanism.

A. Type I

For this class of theories, linear perturbation theory gives
[33] that the evolution of the matter perturbations δm is
described by Eq. (30) with an effective gravitational
constant

Geffðk; aÞ
G

¼ 1þ 2β2ðaÞk2
k2 þ a2m2ðaÞ : ð31Þ

HeremðaÞ and βðaÞ are the mass and coupling of the scalar
field along the cosmological attractor. In real space this
corresponds to the KG equation

∇2ϕ ¼ a2m2ðaÞϕþ βðaÞa2ρ̄m
MPl

δm: ð32Þ

Now we recall the screening condition, Eq. (11), for
spherical symmetric configurations implies that only a
fraction ðΔRR Þ of the mass contributes to the fifth force.
To be able to interpolate between the screened regime and
the unscreened regime, we define

ΔR
R

≡Min

� jϕ∞ − ϕcj
2β∞MPlΦN

; 1

�
: ð33Þ

Note that this screening condition depends only on the
potential ΦN and the scalar field value in the background
ϕ∞. We propose to use the same expression with ΦN being
the metric potential [g00 ¼ −ð1þ 2ΦNÞ in the Newtonian
gauge]. We replace the matter density perturbation δm with
the effective one in the linear KG equation giving us the
equation

∇2ϕ ¼ a2m2ðaÞϕþ βðaÞa2ρ̄m
MPl

δeffm ð34Þ

with

δeffm ¼ δm ×Min

�
ϕðaÞ

2βðaÞMPljΦN j
; 1

�
: ð35Þ

WenoteagainthatΦN isheretakentobethemetricpotential in
a perturbed Friedmann-Lemaître-Robertson-Walker uni-
verse, and we have taken jϕ∞ − ϕcj ¼ ϕðaÞ, the cosmologi-
cal value. This approximation is used since otherwise we
would need to solve the full equation to get it, which would
render this method useless. There is, however, another
possibility here, which is to use the mapping, Eq. (12), and
replace ϕðaÞ → ϕðaðρmÞÞ, the minimum of the effective
potential at a givendensity. Ifwe recall that [seeEq. (12)] any
theory described by fVðϕÞ; AðϕÞg can equally be well
described in termsby thecosmological valuesof thecoupling
and mass fβðaÞ; mðaÞg, then our method allows for a direct
way to perform simulations directly from a model para-
metrized by fβðaÞ; mðaÞg.
This final equation, Eq. (34), is, as promised, linear in ϕ,

will give rise to screening in high-density environments,
and reduces to the linear equation on large scales.

B. Type II

For this class we have [39] that the linear growth
equation is Eq. (30),

δ̈m þ 2H _δm ¼ 3

2
ΩmðaÞH2δm

�
1þ 2β2

fXðaÞ
�
: ð36Þ

Note that we have no k dependence here, so G is modified
on all (linear) scales. In real space this translates into

5Constraints on variations of constants require that j β _ϕ
MPl

j ≪ 2H
so that this term can usually be neglected. This will be the case for
most models considered in this paper. If this is not the case, then
when applying our method, we will have to use ϕ ¼ ϕ̄, the
cosmological value, in the evolution equation.
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∇2ϕ ¼ βa2ρ̄m
MPlfXðaÞ

δm; ð37Þ

where fXðaÞ ¼ fXðXðaÞÞ with XðaÞ ¼ − 1
2
_ϕ2.

In the same spirit as for Type I, we now propose to
include screening in this equation by appending the screen-
ing condition to the KG equation as

∇2ϕ ¼ βa2ρ̄m
MPlfXðaÞ

δeffm ; ð38Þ

where

δeffm ¼ δm ×Min

�
1

fXðXðx; y; zÞÞ
; 1

�
; ð39Þ

where Xðx; y; zÞ ¼ 1
2
ð∇ϕÞ2 is determined from ΦN via

Eq. (21).
There is another possibility to implement screening

which saves computational time. We can try to attach
the screening condition directly in the force law as

~Fϕ ¼ β

MPl
∇ϕ ¼ ∇ΦN × 2β2 ×

1

fXðaÞ

×Min

�
1

fXðXðx; y; zÞÞ
; 1

�
ð40Þ

with the third factor calculated from the background
solution and the last factor calculated from Eq. (21). Note
that this way of doing it is a completely different way of
including the screening effect, and it is not equivalent to
Eq. (38). A numerical simulations based on this procedure
will be just as fast as a standard ΛCDM simulation. See the
end of the next section for some important caveats related
to this procedure.
Since the screening factor for Type II depends on the

force ∇ΦN , it should also be possible to implement this in
N-body codes that do not explicitly compute the gravita-
tional potential.
No N-body simulations of these types of models exist in

the literature, and such an implementation is beyond the
scope of this paper, so it remains to see how accurate the
results are that this approach produces.

C. Type III

In the quasistatic limit, the KG equation for the cubic
Galileon model is

∇2ϕþ 1

Λ3
sa2

ðð∇2ϕÞ2 − ð∇i∇jϕÞ2Þ ¼
βa2ρ̄m
MPl

δm: ð41Þ

In the linear regime, we have [40]

Geff ¼ Gð1þ 2β2Þ; ð42Þ

which, as was the case for Type II above, gives the simple
real-space equation

∇2ϕ ¼ βa2ρ̄m
MPl

δm: ð43Þ

We can now attach the screening factor, Eq. (27), to the
linear solution giving

∇2ϕ ¼ βa2ρ̄m
MPl

δm ×
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρm=ρcrit
p

− 1
�

ρm=ρcrit
ð44Þ

as our proposed equation. This equation again reduces to
the linear one on large scales, includes screening, and is
linear in ϕ. This procedure is similar to what was done in
Ref. [41] for the case of DGP simulations.
As for Type II, we also have the possibility of attaching

the screening factor directly to the force law using the
Newtonian potential

~Fϕ¼
β

MPl
∇ϕ¼∇ΦN ×2β2

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þρm=ρcrit
p

−1
�

ρm=ρcrit
: ð45Þ

Again we stress that this is a completely different way of
including the screening effect than that described in
Eq. (44) above. As for Type II, it should also be possible
to implement this method in N-body codes that do not
explicitly compute the gravitational potential.
There is, however, one serious drawback of this latter

way of including the screening. The densities of individual
grid cells in the simulation are very sensitive to the
resolution of the simulation, so if we increase the reso-
lution, the fifth force will decrease and actually approach
zero for an infinitely resolved grid.6 If this method is to be
used, then one should therefore use a smoothed density
field like, for example, a top hat with radius R where the
best value of R would need to be fit to full simulations.
Another issue related to this method is that it can violate
Newton’s third law: the sum of the forces on all the particles
in the simulations might no longer sum to zero.

IV. TESTS ON N-BODY SIMULATIONS

In this section we present tests of our method by
applying it to N-body simulations. We will focus on
Type Ia, Ib, and III mechanisms—as mentioned before,
there are no fully fledged Type II simulations with which
we can compare our approximation.
For simplicity we will use the same ΛCDM background

cosmology and initial conditions for all the tests below.7

6In the limit where the grid spacing goes to zero, the density of
cells that contain particles increases without bounds.

7Note that the modifications we have proposed are in the
gravitational sector only.
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The cosmological parameters used are Ωm ¼ 0.27,
ΩΛ ¼ 0.73, h ¼ 0.72, σ8 ¼ 0.8, and ns ¼ 0.97. In all the
85 simulations performed, see Table I for a list, we have
used N ¼ 2563 particles in a box of B ¼ 200 Mpc=h. The
simulations are performed using a modified version of the
RAMSES code [25]. The fðRÞ and symmetron simulations
presented below have been run with five levels of refine-
ments in RAMSES, while the Galelion simulations have no
refinements as no such code was in hand at the time the
analysis was performed.

A. Type Ia

As our first test case, we have chosen the Hu–Sawicky
fðRÞ model [46]. N-body simulations of this model have
been performed in several papers [20–22,42,43]; see
Ref. [20] for the description of the code used to run the
full simulations we compare our method against.
For the Hu–Sawicky model, the screening factor

becomes

ΔR
R

¼ 3

2

				 fR0ΦN

				
�

Ωm þ 4ΩΛ

Ωma−3 þ 4ΩΛ

�
nþ1

; ð46Þ

where jfR0j and n are model parameters. We have per-
formed tests for n ¼ 1 and jfR0j ¼ f10−4; 10−5; 10−6g.
We perform three different simulations: i) using the full

Klein–Gordon equation, ii) using the linear Klein–Gordon
equation, and iii) using our hybrid method. We have also
performed a standard ΛCDM simulation to serve as a
reference point against which we measure power spectra
and mass functions. The time required to perform the
simulations using the new method was on average two
times longer, compared with eight to ten times longer for
the full simulations,8 the time spent on the ΛCDM
simulation for all the three models.

In Fig. 1 we show the fractional difference with respect
to ΛCDM of the power spectra. The agreement is very
good, with errors measured with respect to the full
simulations of a few percent at most; see Fig. 2. For the
scales where the error reaches its maximum value, the
corresponding signal relative to ΛCDM is as high as
40%–50%. As we go toward smaller values of jfR0j (which
implies more screening), the agreement seems to get better
and better (while worse and worse for the linear simu-
lations). For jfR0j ¼ 10−6 the error with respect to the full
simulations is below 1%, compared to ∼10% − 15% for the
linear simulations, in the whole range of scales probed.
To see how well our new method is at conserving energy,

we have computed the time evolution of the average kinetic
energy, computed from all the particles in our simulation
box. Monitoring energy conservation, which is usually
done by evolving the Layzer–Irvine equation, is much more
involved in modified gravity simulations than for ΛCDM.
A Layzer–Irvine equation for modified gravity theories was
derived in Ref. [47], but it requires the scalar field ϕ to be
computed. Since our method is designed to model the fifth
force correct and not the field value itself (which can be
quite different), we choose to simply compare with the full
simulations. This gives us a rough measure on how well the
(global) energy is conserved, and the results shown in
Fig. 3 show that the error is around 1%–4% throughout the
evolution, i.e., of the same order of the error we find in the
power spectrum.
In Fig. 4 we show the fractional difference in the mass

function with respect to ΛCDM. The agreement here is
even better than for the power spectra. The exception is the
low-mass range of the jfR0j ¼ 10−6 simulations. Here we
predict too few halos for M ≲ 4 × 1013Msun=h. This is
likely due to our method producing too much screening in
high-density regions, preventing additional formation of
halos.
In all cases we seem to slightly underestimate the power

spectra and the mass function. This is a desirable property of
our method. If we use our method to derive constraints on
model parameters then this property implies that these con-
straintswill be conservative.On theother hand ifweuse linear
theorytoderivethesameconstraintswecouldenduprulingout
regions of parameter space that are in fact allowed.

TABLE I. The model parameters used in the N-body test simulations. For each model we have run the full
simulation, the linear simulation, and our approximative simulation for a total of 85 single N-body simulations.

Model Parameters Realizations N-body implementation

ΛCDM - 5 [25]
fðRÞ gravity jfR0j ¼ 10−4, n ¼ 1 5 [20–22,42,43]
fðRÞ gravity jfR0j ¼ 10−5, n ¼ 1 5 � � �
fðRÞ gravity jfR0j ¼ 10−6, n ¼ 1 5 � � �
Symmetron λϕ0 ¼ 1.0Mpc

h , aSSB ¼ 0.5, β ¼ 1.0 5 [18,44]

Cublic Galileon c2=c
2=3
3 ¼ −5.378, c3 ¼ 10 5 [45]

8The time used to run the simulation will depend sensitively on
the implementation of the scalar field solver, the convergence
criterion, and also the computational facilities and details. The
quoted values for the full simulations are for our particular
implementation of the scalar field solver, so other solvers (and
codes) might be able to do this faster.
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FIG. 1 (color online). The fractional difference in the power spectrum for the Hu–Sawicky fðRÞ model with respect to ΛCDM at a ¼
0.5 (left) and a ¼ 1.0 (right). We show the results from simulations solving the full KG simulation (red), the linear KG equation (blue), and our
approximate equation (green). The model parameters used are jfR0j ¼ 10−4 (top), jfR0j ¼ 10−5 (middle), and jfR0j ¼ 10−6 (bottom).
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One possible extension to our (zero-parameter) method,
that can compensate for the slight underestimation of power
that we see, is to introduce a fudge factor γ as

Meff

M
¼ Min

�
γ
ΔR
R

; 1

�
: ð47Þ

When γ → 0 we recover ΛCDM, and when γ → ∞ we
recover the linear simulation results. Thus, the effect of
varying γ is to interpolate between these two regimes. The
optimal value for γ will have to be fitted to full simulations.
In general we expect that γ will have to be set to a different
value for each set of model parameters used, but it might be
that this factor can be set universally for each model. In
Fig. 5 we show the effect of varying γ for one of the
realizations of the initial conditions used in the analysis.

When γ ¼ 1 we recover our original method, and when
γ → ∞ we recover the linear simulation. For this particular
set of model parameters, we find that by taking γ ≈ 1.4 we
get a result that agrees with the full simulations to ∼0.5%
accuracy for scales k≲ 1 h=Mpc.

B. Type Ib

For our second test case in this class, we have simulated
the symmetron model. N-body simulations of the symme-
tron model have been performed in Refs. [18,44]. For the
symmetron model, the screening factor becomes (see
Ref. [44] for the definition of the parameters)

ΔR
R

¼ Ωm

3.0a3SSB

�
λϕ0

Mpc=h

�
2
				 10−6ΦN

				; ð48Þ

and the mass and coupling read (for a > aSSB)

mðaÞ ¼ 1

λϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
aSSB
a

�
3

s
ð49Þ

βðaÞ ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
aSSB
a

�
3

s
; ð50Þ

and β ¼ 0 when a < aSSB. We have run simulations using
the model parameters aSSB ¼ 0.5, β0 ¼ 1.0, and
λϕ0 ¼ 1 Mpc=h. The time spent on running our modified
method was on average two times slower, compared with
seven times slower for the full simulations, compared
to ΛCDM.
In Fig. 6 we show the fractional difference in the power

spectra with respect to ΛCDM for the full simulation
and our approximate method. We see that our method is
able to produce very accurate results all the way up to
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FIG. 3 (color online). The fractional difference in average
kinetic energy, of all the particles in our simulation box, for our
approximate method with respect to the full simulations for the
case of fðRÞ.
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k ∼ 1 h=Mpc. On smaller scales our method overestimates
the clustering. A very likely reason for this is that the
symmetron model has the novelty, compared with fðRÞ
models, that the coupling βðϕÞ ¼ βðaÞðϕ=ϕ̄Þ is field
dependent. In high-density regions, ϕ ≪ ϕ̄, and the cou-
pling is suppressed. This leads to additional screening
which we do not take into account.
In Fig. 7 we show the fractional difference in the mass

function with respect to ΛCDM. Our approximate method
does much better than the linear simulation but predicts
slightly more halos in the middle- to high-mass end. The
error with respect to the true result is ∼5% − 10% (com-
pared to ∼30% − 70% for the linear simulations). This is
again likely due to the fact that our method does not take
the additional screening into account.
One possible way to extend our method in this case is to

make β space dependent in the geodesic equation or in
the field equation (or both). If the scalar field tracks the
minimum of the effective potential, then using the
fmðaÞ; βðaÞg mapping, we have that the value of β in a
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FIG. 4 (color online). The fractional difference in the mass function for the Hu–Sawicky fðRÞ model with respect to ΛCDM at
a ¼ 1.0. We show the results from simulations solving the full KG simulation (red), the linear KG equation (black), and our approximate
equation (green). The model parameters used are jfR0j ¼ 10−4 (top left), jfR0j ¼ 10−5 (top right), and jfR0j ¼ 10−6 (bottom).
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region of space with matter density ρ is given by

βðρÞ ¼ βðaðρ̄=ρÞ1=3Þ ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρ̄

�
aSSB
a

�
3

s
: ð51Þ

When the term inside the square root is negative, we have
β ¼ 0. We have implemented and tested this approach.
Unfortunately, this modification was found to produce too
much screening, and almost no modified gravity signal was
left in the power spectrum. It might be possible to make this
method viable by using a smoothed density with the
smoothing radius a free parameter to be fitted by perform-
ing simulations or to introduce a fudge factor γ ≤ 1 as

βðρÞ ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þ γðρ − ρ̄Þ

ρ̄

��
aSSB
a

�
3

s
ð52Þ

or as something like

βðρÞ ¼ β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ

ρ̄

�
γ
�
aSSB
a

�
3

s
: ð53Þ

This will have the effect of reducing the screening in high-
density regions and could possibly be made to work.
We have not tested this and leave this to future work.

C. Type III

As our test case, we have taken the covariant cubic
Galileon model9 [48]. N-body simulations of this model
have been performed in Refs. [45,49]. Our implementation
of the full scalar field solver is identical to that presented in
Ref. [45] (see also Ref. [50]), and the simulations have been
performed using the same best-fit parameters as found in
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FIG. 6 (color online). The fractional difference in the power spectrum for the symmetron model with respect to ΛCDM at a ¼ 0.7
(left) and a ¼ 1.0 (right). We show the results from simulations solving the full KG simulation (red), the linear KG equation (blue). and
our approximate equation (green). The model parameters used are aSSB ¼ 0.5, β0 ¼ 1.0, and λϕ0 ¼ 1.0 Mpc=h.
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9Note that the covariant Galileon simulated in Ref. [45] is not
directly coupled to matter. However, the Poisson equation for the
metric potential Φ in the quasistatic limit reads

∇2Φ ¼ 4πGa2δρm þ fðaÞ∇2ϕ; ð54Þ

where f is some time-dependent function and the particle
displacement equation is simply ẍþ 2H _x ¼ −∇Φ. By defining
ΦN ¼ Φ − fðaÞϕ we get a standard Poisson equation,

∇2ΦN ¼ 4πGa2δρm; ð55Þ

and the force law becomes ẍþ 2H _x ¼ −∇ΦN − fðaÞ∇ϕ. In this
form theN-body equations are identical to Eqs. (28) and (29), and
this is how we have implemented them in our code.
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Ref. [45]. We have for simplicity used the same ΛCDM
initial conditions as for the other simulations presented in
this paper, so our results are not directly comparable. We
also note that our Galelion simulations have been per-
formed using no grid refinements in RAMSES. For this test
we chose to attach the screening factor directly in the force
law as described in Eq. (45). This implies we do not have to
solve any scalar-field equation making the speed of the
simulation very similar to that of ΛCDM.
In Fig. 8 we show the fractional difference in the power

spectra with respect to our reference model which is
ΛCDM simulated using the same initial conditions. The
agreement is remarkable. The power spectrum agrees
perfectly for all the scales probed by the simulation.
However, due to the issues discussed below Eq. (45), we

should be careful to conclude too strongly here. What we
can conclude is that we picked the right choice of the
smoothing length for the density field (since our simula-
tions are not refined, the grid has a fixed comoving size at
all times of R ¼ 200 Mpc=h

256
≃ 0.8 Mpc=h) and that, if we

choose the smoothing length appropriately, then our
method can produce very good results. Also note that
the resolution limit for the particle Nyquist frequency for
the Galelion simulations is k ∼ 2 h=Mpc, so our results
cannot necessarily be trusted above k ∼ 1 h=Mpc, and we
have decided to cut the power spectra here (even though the
results of our method are in perfect agreement with the full
simulations above this scale).
To see how well our method is at conserving energy

(globally), we show in Fig. 9 the evolution of the total
kinetic energy of all the particles in our simulations
compared with the corresponding quantity in simulations
where we solve the correct equation of motion. Today we
find a 2% deviation in the kinetic energy, which is
comparable with what we found for fðRÞ gravity. We have
not explicitly investigated momentum conservation. As
mentioned in Sec. III C, the method used does not neces-
sarily have to respect Newton’s third law; i.e., the sum of
the forces on all the particles does not have to sum to zero.
If this law is violated, then, even though it is not seen here
in the power spectrum, it could be visible in higher-order
statistics of the density field and/or in other observables not
considered here.
In Fig. 10 we show the mass function at a ¼ 1.0. Again

the agreement is very good for all the halo masses within
the resolution limit. As with the fðRÞ simulations, it seems
like our approach is slightly underestimating the clustering
or, in other words, overestimating the amount of screening.
This seems to be reasonable, as in our approach the
screening is local (it only looks at the local density),
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and this will overestimate the amount of screening at the
outskirts of halos. This is, as we discussed above, a nice
property as an attempt to use this method to fit to
observables will produce conservative constraints.
We have the opportunity to modify the screening

condition (as we did for Type I above) if we need to by
raising the critical density for screening ρcrit → γρcrit in
Eq. (27) for some γ ≥ 1 that needs to be fitted by
performing simulations. For the particular model we have
simulated here, this does not seem to be necessary as the fit
is already excellent.

V. CONCLUSION

We have proposed a simple and fast, in terms of computa-
tional resources needed, method to perform N-body simu-
lations for scalar-tensor theories which has a screening
mechanism on the form described below Eq. (1).
The method consists of running N-body simulations

using a modified, and much simpler, field equation for the
scalar field. By studying solutions of the full field equation
for spherical symmetric configurations we are able to
derive a screening factor which tells us how much the
fifth-force is screened as a function of the Newtonian
gravitational potential. This screening factor is then
attached to the matter density term in the linearized scalar
field equation and used in the simulations.
For the three screening mechanisms studied here, our

method produces accurate results far into the nonlinear
regime, i.e., up to k ∼ a few h=Mpc for fðRÞ gravity and
the Galelion and k ∼ 1 h=Mpc for the symmetron. For the
fðRÞ models, we seem to do better the further into the

screening regime we get, i.e., when the linear simulations
gets further and further away from the true result. In all test
cases, our method seems to slightly overestimate the
screening (at least on scales k≲ 1 h=Mpc). The only
exception is found for the symmetron. Models where the
coupling is field dependent, such as the symmetron, can
have the property that it produces additional screening on
small scales. Our method, in its simplest form, does not
take this into account and consequently overestimates the
power, which is what we find on scales k≳ 1 h=Mpc and
the mass function in the high-mass end. Our method can be
modified to try to make the fit to the true result better by
introducing a fudge factor that parametrizes this average
overestimation.
We have only tested our method when it comes to power

spectra and mass functions. It remains to see how good this
method is at predicting other interesting observables such
as halo and void profiles, halo and void shapes, and
velocity statistics, to mention some. If attempting to apply
our method, another warning is in place: the method is
fundamentally phenomenological, and if applied it should
be tested against full simulations to get an estimate on the
error. However, this only needs to be done on a few
simulations compared to several tens at least needed to
build up a covariance matrix.
Our method can also be useful when trying to map out

the nonlinear regime for a new modified gravity model not
simulated before. Using our approach we can very easily
implement the model, run simulations, and get a good feel
for the possible signatures that it might produce.
Finally it will be very interesting to see if our method can

be used in conjunction with the COLA approach [24] to
further speed up modified gravity simulations. Such a
combined method could open up the window, allowing us
to do a full Markov chain Monte Carlo analysis of modified
gravity models using data from future large-scale structure
surveys.
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FIG. 10 (color online). The fractional difference in the mass
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a ¼ 1.0. We show the results from simulations solving the full
KG simulation (red), the linear KG equation (black), and our
approximate equation (green).
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