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Vorticity generation in accretion disks around Schwarzschild and Kerr black holes is investigated in
the context of magnetofluid dynamics derived for both General Relativity (GR) and modified gravity
formulations. In both cases, the Kerr geometry leads to a “stronger” generation of vorticity than its
Schwarzschild counterpart. Of the two principal sources, the relativistic drive peaks near the innermost
stable circular orbit (isco), whereas the baroclinic drive dominates at larger distances. Consequences of this
new relativistic vorticity source are discussed in several astrophysical settings.
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I. INTRODUCTION

An exploration of the dynamics of accretion disks near
compact astrophysical objects can advance our understand-
ing of phenomena as diverse as angular momentum trans-
port, jet production, and gamma ray bursts [1–6]. Baroclinic
instability arising from misalignment between temperature
and entropy gradients in a hot charged fluid rotating in an
accretion disk is considered to be one of the most probable
pathways for vorticity generation in astrophysics [7–10].
Such vortices (electromagnetic and hydrodynamic) can be
amplified through several mechanisms such as dynamos and
magnetorotational instability (MRI) leading to a large scale
vortical field [11–13]. The resulting vortical field geometry
can be responsible for angular momentum transport and
production, acceleration and collimation of jets in black
holes, protostars, microquasars, etc. [5,7].
In this paper, we will explore additional sources of

vorticity generation that can contribute to angular momen-
tum transport, jet production, and collimation as well as
broaden our understanding of black hole accretion, in
general. Unlike the traditional “baroclinic” mechanism,
these additional drives depend on the relativistic effects—
both special and general. Vorticity generation (via the
relativistic drives) in the accretion disk near the
Schwarzschild black hole was, previously, studied for a
generalized “magnetofluid” in curved space-time [14]. The
relativistic drive for a pure barotropic system naturally
emerges in the dynamics of a magnetofluid, combining
kinematic and thermodynamical attributes of a hot fluid.
Let us begin by recapturing the salient features of the

magnetofluid formalism and of earlier work on relativistic
drives:
1) The essence of the magnetofluid formalism (for a

perfect fluid) lies in the construction of an antisymmetric,
hybrid tensor [15]

Mμν ¼ Fμν þ ðm=qÞSμν; ð1Þ

that is a weighted sum of the electromagnetic field tensor
Fμν (weight ¼ charge q), and the composite (kinematic-
statistical) fluid tensor Sμν ¼ ∇μðGUνÞ −∇νðGUμÞ
(weight ¼ massm) [15,16]. The statistical factor G is the
thermodynamic enthalpy. In terms of Mμν, the entire
dynamics of the relativistic hot fluid is expressible in the
succinct equation (T is the temperature of the fluid)

qUνMμν ¼ ∇μp −mn∇μG
n

¼ T∇μσ; ð2Þ

where the right-hand side is the thermodynamic force
expressed in terms of the fluid entropy σ using the standard
thermodynamic relation between entropy with enthalpy.
Here, Uμ and n represent, respectively, the plasma 4-
velocity and the number density.
2) The 3-vector part of (2) reduces to the more familiar

form of 3D vortex dynamics except that the standard
fluid vorticity is replaced by the hybrid magnetofluid
vorticity. The addition of relativity, however, introduces
a fundamental change; the topological helicity invariant

H ¼ h ~Ω ·∇×−1 ~Ωi (with ~∇ ×−1 ~Ω being the inverse curl of
vorticity) of an ideal nonrelativistic fluid no longer pertains.
Through the “distortion” of space-time, relativistic

dynamics breaks the helicity invariant even in ideal
dynamics (σ ¼ σðTÞ); new sources and sinks appear, and
the creation and destruction of the generalized vorticity
become possible in ideal dynamics [14,15,17,18]. Such
sources can, therefore, be available to create vorticity in the
accretion disk.
3) Recently, this formalism was generalized to incorpo-

rate nonminimal coupling of the magnetofluid to a curved
background space-time [19]. It is quite remarkable that
the nonminimal coupling [introduced through fmðRÞ, a
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function of the Ricci scalar R] changes the equation of
motion (2) only minimally

qUνMμν ¼ QT∇μσ; ð3Þ

it multiplies the right-hand side with a curvature dependent
factor Q ¼ ð1þ λfmðRÞÞ that reduces to unity as the
nonminimal part goes to zero, as expected. This has also
resulted in the introduction of additional gravity-coupled
flow field tensor which, after appropriate 3þ 1 decom-
position, yields new expressions for generalized electric
and magnetic field. The formalism, epitomized in Eqs. (2)
and (3), will be, henceforth, called magnetofluid formalism.
In this paper, then, we will investigate vorticity gener-

ation in accretion disk for minimally as well as non-
minimally coupled magnetofluid in Schwarzschild and
Kerr space-time. The magnitude of induced vorticity will
be estimated in the special case when matter and space-time
are coupled with constant Ricci scalar R0, the simplest
functional form of nonminimal coupling.
We first give a summary of the derivation of generalized

equation of motion of a new hybrid magnetofluid in curved
background space-time. Next, the Arnowitt–Deser–Misner
(ADM) formalism of electrodynamics [20–23] presented in
Appendix is applied to this new formulation of magneto-
fluid, and the equations obtained are cast into the vorticity
evolution equation. These equations are analyzed for
accretion disks to calculate and estimate generalized
vorticity. Finally we compare the relativistic drives with
the more conventional baroclinic drive.

II. MAGNETOFLUID FORMALISM

The modified theory of gravity offers an alternative
approach to explain the inferred accelerated expansion of
the Universe and other cosmological data by introducing
deviations from Einstein’s GR. The so-called fðRÞ gravity
modifies GR in the low energy (curvature) regime, but its
behavior in the high energy regime has also been the topic
of current research [24–26]. To expand the scope of our
earlier calculations, we incorporate the fðRÞ gravity
[through the term λfðRÞ] in the magnetofluid formalism.
Referring the reader to Ref. [19] for a detailed derivation,
we simply write down, here, the two main equations: the
modified Einstein equation (G ¼ c ¼ 1)

ð1þ FgðRÞÞRμν −
1

2
ðRþ fgðRÞÞgμν

− ð∇μ∇ν − gμνÞFgðRÞ ¼ 8πTμν
total ð4Þ

and the magnetofluid equation of motion

ð1þ λfmðRÞÞ∇μT
μν
pf

¼ ½qnFν
βUβ − λFmðRÞðTμν

pf þ gμνρÞ∇μR�; ð5Þ

where Fg ¼ fg0ðRÞ, R is the Ricci scalar and Tμν
total is the

total stress-energy tensor for both the perfect fluid and
Maxwell’s field in curved space-time. In the preceding
equations, q is the charge of the particle, and Tμν

pf ¼
ðpþ ρÞUμUν þ pgμν (with Uμ ¼ dxμ=dτ) is the energy-
momentum tensor for a perfect isotropic fluid; τ is the
proper time. The phenomenological parameter λ represents
the coupling strength of the plasma to its background
geometry, now modified through fmðRÞ and FmðRÞ ¼
f0mðRÞ. The quantity pþ ρ ¼ h is the enthalpy of the fluid
plasma and often appears in the formalism as the combi-
nation G ¼ h=mn with m, n, ρ, and p being the mass,
number density, energy density, and pressure, respectively.
Notice that the equation of motion (5) is not yet in the

promised “canonical” form (3). To make progress, follow-
ing Refs. [15,19], we will construct the new grand unified
vorticity tensor Mμν that reflects nonminimal coupling.
After some patient algebra, we find that Mμν is again the
weighted sum [as (2)],

Mμν ¼ Fμν þm
q
Dμν; ð6Þ

but with a considerably more complicated

Dμν ¼ ð1þ λfmðRÞ − λRFmÞSμν þ
m
q
λFmKμν ð7Þ

replacing Sμν ¼ ∇μðGUνÞ −∇νðGUμÞ. We needed to “find”
a new curvature-weighted antisymmetric flow field tensor

Kμν ¼ ∇μðRGUνÞ −∇νðRGUμÞ; ð8Þ

to derive the sought-after form. The new fluid tensor Dμν

contains, explicitly, the coupling of flow field to gravity.
Thus, the dynamics of a hot fluid system in curved
background space-time can be written into the canonical
four-dimensional (4D) vortex form

qUνMμν ¼ ð1þ λfmðRÞÞT∇μσ; ð9Þ

the form advertised in (3). We have “assumed” that the
standard thermodynamic relations continue to hold; it is, of
course, contingent upon an appropriately well-defined local
concept of temperature in curved space-time.
Notice that, when λ ¼ 0, Mμν reduces to its minimally

coupled counterpart tensor Mμν defined in Refs. [14,15].
Equation (9) is the main result that describes the

magnetofluid dynamics in curved space-time. It reveals
that a charged relativistic fluid, coupled nonminimally to
gravity, obeys a 4D vortex dynamics like its gravity free
and minimally coupled (to gravity) counterparts. The new
grand vorticity tensor subsumes earlier limiting cases in a
transparent manner.
We would now apply the above formulation to inves-

tigate the vorticity generation in accretion disks around
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black holes. To do calculations in terms of familiar
quantities, an appropriate 3þ 1 decomposition of the
space-time is necessary; it is presented in Appendix.
Next, we present the 3D vortical dynamics in order to
facilitate computation of vorticity generation.

A. Vortical dynamics

With the 3þ 1 decomposition presented in Appendix,
the spacelike projection, i.e., γβμ projection of the unified
field equation of motion (9), gives us the momentum
evolution equation

αqΓ~ξþ qΓð~v × ~ΩÞ ¼ −ð1þ λfmðRÞÞT ~∇σ; ð10Þ

whereas the timelike (nμ) projection gives the equation of
energy conservation

αqΓ~v · ~ξ ¼ Tð1þ λfmðRÞÞðLtσ − ~β · ~∇σÞ; ð11Þ

where ~ξ and ~Ω are, respectively, the generalized electric and
magnetic fields given by Eqs. (A6) and (A7) in Appendix.
Also, α, Γ, and ~v are defined in Eqs. (A1), (A2), and (A3).
Sources responsible for magnetic field generation, in
particular, the sources that are gravity driven, can be
derived from the generalized vorticity evolution equation
(which is really the generalized Faraday’s law) by manipu-
lating Eq. (10).
SinceMμν is an antisymmetric tensor, the divergence of

its dual is zero, i.e.,∇μM�μν ¼ 0. Taking the γβμ projection
of the preceding identity, we derive

Lt
~Ω ¼ L~β

~Ω − ~∇ × ðα~ξÞ − αΘ ~Ω; ð12Þ

where L denotes Lie derivatives with Lt ¼ ∂t along tμ,

L~β
~Ω ¼ ½~β; ~Ω�, and the expansion factor Θ is defined in

Appendix.
It should be noted that, even in the absence of non-

minimal coupling to gravity (λ ¼ 0), (minimal) coupling to
gravity still manifests in the formalism. Equation (12), in
conjunction with Eq. (10), gives us the vorticity evolution
equation

Lt
~Ω − ~∇ × ð~v × ~ΩÞ − L~β

~Ωþ αΘ ~Ω

¼ ~∇ ×

�
T
qΓ

ð1þ λfmðRÞÞ ~∇σ
�
: ð13Þ

All terms on the left-hand side operate on the vorticity
3-vector ~Ω while the right-hand side provides, just as in the
conventional picture, possible sources for vorticity gener-
ation. The left-hand side, however, has lot more structure
than the conventional 3D vortex dynamics; the first two
terms reflect the standard Helmholtz vortical dynamics,

while αΘ ~Ω and L~β
~Ω, are nontrivial gravity modifications.

Thus, the gravity coupling does, fundamentally, modify the
projected 3D vortex dynamics, in spite of the fact that the
4D vortex equations have exactly the same form.

III. VORTICITY GENERATION

To apply the formalism to vorticity generation in
astrophysics, specifically in accretion disks around com-
pact objects like Schwarzschild and Kerr black holes, we
have to specify the space-time geometry, the space-time
metric that controls the motion of plasma particles. The
standard metric describing the stationary and axially
symmetric (or spherically symmetric) space-time for
Kerr (or Schwarzschild) black holes can be written as [27]

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ grrdr2 þ gθθdθ2 þ gϕϕdϕ2:

ð14Þ

The exploration of geodesic motions of plasma in accretion
disks will allow us to compute various relevant physical
quantities. Since we are interested only in the timelike
geodesics in thin accretion disks, the Euler–Lagrange
equations can be derived from the Lagrangian for the
above stationary and axisymmetric space-time, 2L ¼
ds2=dτ2 ¼ −1, with τ being the proper time along timelike
geodesics. Thus, the corresponding Euler–Lagrangian
equations describing the timelike geodesics in the equato-
rial plane take the form ([27])

dt
dτ

¼
~Egϕϕ þ ~Lgtϕ
g2tϕ − gttgϕϕ

; ð15Þ

dϕ
dτ

¼ −
~Egtϕ þ ~Lgtt
g2tϕ − gttgϕϕ

; ð16Þ

grr

�
dr
dτ

�
2

¼ −1þ
~E2gϕϕ þ 2 ~E ~Lgtϕ þ ~L2gtt

g2tϕ − gttgϕϕ
≡ Veff ;

ð17Þ

where ~E and ~L are specific energy and specific angular
momentum, respectively. For stable circular orbits in
the equatorial plane, using Veff ¼ 0 and dVeff=dr ¼ 0,
the constants of motion including angular velocity ω are
found to be

~E ¼ −
gtt þ gtϕωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕω − gϕϕω2
q ; ð18Þ

~L ¼ gtϕ þ gϕϕωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕω − gϕϕω2

q ; ð19Þ
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ω ¼ dϕ
dt

¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;rÞ2 − gtt;rgϕϕ;r

q
gϕϕ;r

: ð20Þ

The Lorentz factor for particles can be derived from

Γ ¼
~Egϕϕ þ ~Lgtϕ
g2tϕ − gttgϕϕ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕω − gϕϕω2

q : ð21Þ

Moreover, for any given scalar function P, the gradient is
defined as

~∇P¼ 1ffiffiffiffiffiffi
grr

p ∂rPêrþ
1ffiffiffiffiffiffi
gθθ

p ∂θPêθþ
1ffiffiffiffiffiffiffigϕϕ

p ∂ϕPêϕ: ð22Þ

Next, we assume a thin accretion disk with zero
latitudinal speed vθ ¼ 0 for the plasma; we will also
assume that the radial velocity of the plasma is negligible
compared to the orbital velocity vϕ ≫ vr. The orbits of the
plasma constituents are also taken to be almost circular
(_r ≈ 0). Since our formalism is based on perfect fluid, we
can also assume the plasma to be barotropic with its
pressure depending on density only, i.e., σ ¼ FðTÞ.
Then, with this assumption, we can write the relation
between the temperature and entropy gradient as

T ~∇σ ¼ χkb ~∇T, which evidently will cause the baroclinic
drive NB to vanish, where χ is a dimensionless quantity of
order unity.
To compute the appropriate temperature profile in the

region of interest in the accretion disk, we follow the
prescription presented by Novikov and Thorne [28]. It turns
out that, for M ¼ 14.3M⊙ and _M ¼ 0.472 × 1019 gs−1, the
inner- and outermost stable circular orbits (average width
of the accretion disk) are located mostly in the optically
thick region of the accretion disk; this is true for both
geometries. Therefore, for an optically thick region, using
the Stefan–Boltzmann law, the temperature profile can be
written as [26,27]

TðrÞ ¼ z

�
fðrÞ
σSB

�1
4

; ð23Þ

where σSB is the Stefan–Boltzmann constant and z is
redshift due to gravitational effects. For θ ¼ π=2, and for
a vanishing disk inclination angle, the redshift can be
written as 1þ z ¼ Γ. Here, fðrÞ is the energy flux for a
relativistic accretion disk presented in Refs. [26,29] by
Page and Thorne as

fðrÞ ¼ −
_M0

4π
ffiffiffiffiffiffi−gp ω;r

ð ~E − ω ~LÞ2
Z

r

risco

ð ~E − ω ~LÞ ~L;rdr; ð24Þ

where risco is the radius of the innermost stable circular
orbit in the accretion disk and _M0 is the mass accretion rate.

The temperature and the Lorentz factor profiles, displayed,
respectively, in Figs. 1 and 2, reveal similar general features
for the Kerr space-time: increasing from their correspond-
ing value at risco, they reach a peak at some radius and then
monotonically decrease as we move away from the center
of the corresponding black holes [30]. However, only the
temperature profile in the Schwarzschild geometry shares
the similar feature. These features of the temperature and
the gamma (Γ) profiles will manifest in the vorticity
generation as well as in the relative strength between the
corresponding relativistic and classical drives.
Throughout this paper, we will use parameters obtained

from observation on the Galactic black hole Cygnus-XI as

FIG. 1 (color online). Temperature profile for the Schwarzs-
child (blue) and Kerr black hole (red) from x ¼ 1.5 to x ¼ 30.

FIG. 2 (color online). Lorentz factor for Schwarzschild (green)
and Kerr black hole (red) from x ¼ 1.5 to x ¼ 30. The dashed
line (blue) indicates innermost circular orbit (isco) for the
Schwarzschild blackhole.
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representative, M ¼ 14.38M⊙, _M ¼ 0.472 × 1019 gs−1,
and a ¼ 0.99rg, where M and a are, respectively, the mass
and angular momentum per unit mass of the black hole
[31,32]. Figure 1 shows the temperature profile in Kerr
(Schwarzschild) geometry from r ¼ 1.5rg (r ¼ 6rg) to
r ¼ 30rg with rg ¼ GM=c2 in the normalized unit of
x ¼ r=rg. The profile shows a peak temperature between
106–107K which drops as we move from the event horizon
radially outward. These profiles are used in this paper to
calculate the vorticity generation in the accretion disk.

A. Schwarzschild geometry

For a spherically symmetric and static space-time
(Schwarzschild space-time), the above vortical evolution
equation (13) reduces to the one presented in Ref. [14], i.e.,

Lt
~Ω − ~∇ × ð~v × ~ΩÞ ¼ ~∇ × ððT=qΓÞ ~∇σÞ. Since the spheri-

cally symmetric and static space-time can be foliated

without any shift function ~β, and the foliation obeys the
time translation symmetry leading to a vanishing extrinsic
curvature, the new term involving Θ on the left-hand side
disappears. Thus, the structure is precisely like the 3D
vortex dynamics. The simplified vortical evolution equa-
tion can be used to approximately compute the weak field
seed generation in the hot fluid system in the accretion disk
in Schwarzschild geometry.
The relevant space-time metric elements are

gtt ¼ −α2 ¼ −
�
1 −

2rg
r

�
; grr ¼

�
1 −

2rg
r

�
−1
;

gθθ ¼ r2; gϕϕ ¼ r2sin2θ: ð25Þ

Then, using the Eqs. (18)–(21), we can calculate the
orbital velocity and gamma factor for the orbital motion of
plasma in the accretion disk. Since the radial velocity of the
plasma is assumed to be negligible compared to the orbital
velocity vϕ ≫ vr, the orbits of the plasma elements are
taken to be almost circular (_r ≈ 0). Then, inserting the
Schwarzschild metric elements, (25), in Eqs. (15)–(17) and
imposing Veff ¼ 0 and dVeff=dr ¼ 0 reveals that there
exists one stable circular orbit at x > 6 and one unstable
circular orbit at 6 > x > 3 [22]. This also dictates the
applicability of the temperature profile in accretion disk.
The temperature profile used in this paper is valid in the
region of stable circular orbits.

B. Kerr geometry

For an axisymmetric (but not spherically symmetric)
stationary system, like the Kerr black hole, our previous
assumption of the zero shift function, ~β ¼ 0, is no longer
valid. Consequently, the pertinent equation (13), in general,
does not show any similarity to standard 3D vortex
dynamics. The shift function for rotating black holes can

be taken to be ~β ¼ −ω êϕ with respect to a zero angular

momentum observer. The term involving the shift function,
however, will give zero contribution since we assume that
both ω and Ω have only radial dependence. In addition, it
can be further shown that the term involving the expansion
factor Θ vanishes. Thus, the vorticity evolution equation,
even for Kerr geometry, will resemble the standard 3D
vortex dynamics.
The relevant space-time metric elements in Boyer–

Lindquist coordinates are [26]

gtt ¼ −α2 ¼ −
ðΔr − a2Þ

r2
; grr ¼

r2

Δr
;

gtϕ ¼ −
2a
r2

ðr2 þ a2 − ΔrÞ; gϕϕ ¼ ðr2 þ a2Þ2 − Δra2

r2
;

ð26Þ

where Δr ¼ ðr2 þ a2Þ − 2rgr. Then, again inserting the
Kerr metric elements, (26), in Eqs. (15)–(17) and imposing
Veff ¼ 0 and dVeff=dr ¼ 0 reveals that the innermost
circular orbit in the Kerr black hole is located at x ¼
1.4545 for a ¼ 0.99rg, which was taken into account in
deriving the temperature profile for the accretion disk in
Kerr geometry. Note that we will assume a ¼ 0.99rg
throughout the rest of the paper.

C. Computing vorticity

For both Schwarzschild and Kerr configurations, com-
putation of vorticity generation requires knowledge of the ϕ
dependence of the temperature profile. However, the most
commonly used temperature profiles (including the GR
corrected ones) for accretion disks show only radial
dependence. Previously, an estimate of vorticity generation
was computed using an average temperature of the accre-
tion disk [14]. However, as shown in Fig. 1, General
Relativity restricts the application of an average disk
temperature throughout the disk as it involves regions of
unstable orbits leading to nonlinear behavior. Moreover,
plasmas orbiting in accretion disks for both black hole
configurations undergo gravitational radiation reaction,
which for a Kerr black hole can cause a plasma particle
to lose as much as 42% of its initial energy as it approaches
the event horizon [22].
Toroidal temperature dependence is created due to the

gravitational radiation by the orbiting plasma particles; the
induced radiation reaction, in turn, makes the stable circular
orbits deviate slightly from geodesic motion [22]. A
particle, initially in a circular orbit at x > 6 (x > 1.4545)
for the Schwarzschild (Kerr) metric, slowly spirals into
smaller nearly circular orbits as it radiates energy until it
reaches the orbital radius x ¼ 3 (x ¼ 1.4545), where the
orbit becomes unstable. Therefore, the stable circular orbits
do not close in either geometry, and, depending on the
magnitude of radiation reaction, the spatial orbital trajec-
tory in the equatorial plane is assumed to be represented by

NOVEL MECHANISM FOR VORTICITY GENERATION IN … PHYSICAL REVIEW D 91, 123005 (2015)

123005-5



r ¼ rðϕÞ, a solution to the geodesic equation relating
coordinates r to ϕ.
Next, we assume, without loss of generality, that the

orbits of the spiraling plasma elements in the disk can be
approximated by rðϕÞ ¼ r0e−ζϕ, where r0 is the initial
radial distance of the plasma particles from the center of the
black hole and ζ is the parameter that controls how tightly a
nearly circular orbit spirals around the black hole. In
general, the factor ζ can be a complicated function of
black hole mass as well as the energy and the angular
momentum of plasma elements. Determined from the
geodesic equation relating coordinates r to ϕ with appro-
priate boundary conditions, ζ can be a function of the radial
distance. However, since our focus is on the region of
accretion disk over which the timelike geodesic orbits of
the plasma elements are closely bound, we can assume the
spiraling parameter ζ to be a constant. A rapidly varying
spiral with varying ζ will contribute more to the vorticity as
can be seen from Eq. (27).
As mentioned earlier, the radiation reaction can be the

source for slight deviations from the closed stable circular
orbit, thereby imparting temperature variations around
a spirally circular orbit. Thus, for the spiral orbit,
rðϕÞ¼ r0e−ζϕ, ∂T=∂ϕ¼ð∂T=∂rÞðdr=dϕÞ¼−ζrð∂T=∂rÞ,
and the seed vortical field j ~Ωj may be estimated as

~ΩðrÞ ¼ −
χkbcrζ

q
1ffiffiffiffiffiffiffiffiffiffiffiffiffigrrgϕϕ

p ∂rðΓ−1Þð∂rTÞΔtθ̂; ð27Þ

where Δt is the characteristic time for linear vorticity
generation under which the changes in space-time geom-
etry are negligible. Therefore, we choose this time scale
to be Δt ¼ 2π=ω, and, as expected, this coordinate time
interval Δt is related to the proper time interval Δτ by
Δt ¼ ΓΔτ. For an observer far away from the accretion
disk under observation, these two time intervals are practi-
cally the same. For the Schwarzschild geometry, Eq. (27)
simplifies to

~ΩðxÞ ¼ −
3ζkbπΓαχ
q

ffiffiffi
x

p
rg

∂xTθ̂; ð28Þ

x ¼ r=rg is the normalized distance, and q ¼ −e is the
electron charge.
Figures 3 and 4 show the radial dependence of the

magnitude of the vorticity generated in the accretion disk
plasmas embedded in Schwarzschild and Kerr geometries
for three different choices of ζ. Both figures show a drastic
reduction in jΩj as the temperature maxima are approached
(temperature gradient going to zero), and then jΩj picks up
as we go over to the other side of the maximum. In addition,
the existence of a second dip in the Kerr vorticity profile
can be attributed to the vanishing of the gradient of the
corresponding Lorentz factor. Therefore, the effect of the
relevant gamma and temperature gradients indicates a

distinct vorticity profile in Kerr space-time, where vorticity
changes direction twice before it gradually decays radially
outward in the disk.
However, as we move radially outward in the disk,

both induced vorticities decrease almost at the same rate,
maintaining their difference.

D. Black hole accretion disk in modified gravity

The results of last section were derived for the accretion
disk fluid minimally coupled to standard GR. We will
now explore the changes in vorticity generation brought
about by modified gravity, more precisely, by the simplest
functional form of fðRÞ ¼ R0 ¼ constant. Following the

FIG. 3 (color online). Vorticity magnitude (in the units of
Gauss) for the Schwarzschild black hole with different ζ values
between 6.0rg and 30rg for M ¼ 14.8M⊙.

FIG. 4 (color online). Vorticitymagnitude (in the units of Gauss)
for theKerrblackholewithdifferentζ valuesbetween1.5rg and30rg
for M ¼ 14.8M⊙ with an accretion rate _M ¼ 0.472 × 1019 g=s
and a ¼ 0.99.
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discussion presented in Sec. III, plasma particles in the
Schwarzschild accretion disk are described by metric
components

gtt ¼ −
�
1 −

2rg
r

−
R0

12
r2
�

¼ α2;

grr ¼
1

α2
; gθθ ¼ r2; gϕϕ ¼ r2sin2θ; ð29Þ

where R0 is the constant Ricci scalar. First, setting
gttðrÞ ¼ 0, we obtain the condition on the Ricci scalar R0

R0x3 − 12xþ 24 ¼ 0; ð30Þ

with R0 ¼ R0r2g, x ¼ r=rg, and a ¼ a=rg. To get a black
hole without any naked singularity and with event/cosmo-
logical horizons, the solution of Eq. (30) restricts the value
forR0 to be ð−∞; 4=9Þ ([26]). Further restrictions onR0 to
isolate the geodesics for stable circular orbits can be
imposed by demanding Veff ¼ 0, dVeff=dr ¼ 0, and
d2Veff=d2r ≥ 0,

R0 ¼
12ð6 − xcÞ
ð15 − 4xcÞx3c

; ð31Þ

with xc being the radius of the stable circular orbit. The
above relation also reveals that there exist one innermost
and one outermost stable circular orbit, and the upper limit
on R0 reduces to 2.85 × 10−3. However, the choice of an
exact value ofR0 befitting our current analysis depends on
the average width, the temperature, and luminosity profiles
of black holes. Thus, if the temperature and luminosity
profiles prescribed by Page and Thorne [29] are taken into
account, it turns out that, for fðRÞ Schwarzschild black
holes, the new range of R0 further reduces to ð−∞; 10−6�.
Then the only judicious choice turns out to be R0 ¼ 10−6,
for it satisfies the average radius of the outer edge of a
Schwarzschild black hole accretion disk at r ≈ 70rg by
setting the innermost and outermost stable circular orbits,
according to Eq. (31), at xc ¼ 6 and xc ¼ 143.45 [26].
A similar analysis, carried out for the Kerr metric in

modified gravity with the metric elements,

gtt ¼ −α2 ¼ −
ðΔr − a2Þ

Ξ2r2
; grr ¼

r2

Δr
;

gtϕ ¼ −
2a
Ξ2r2

ðr2 þ a2 − ΔrÞ;

gϕϕ ¼ ðr2 þ a2Þ2 − Δra2

Ξ2r2
ð32Þ

with

Δr ¼ ðr2 þ a2Þ
�
1 −

R0

12
r2
�
− 2rgr; ð33Þ

Ξ ¼ 1þ R0

12
a2 ð34Þ

demands R0 (upon setting 1=grr ¼ 0) to satisfy

�
x2 þ a2

r2g

��
1 −

R0x2

12

�
− 2x ¼ 0: ð35Þ

While Eq. (35) yields the range for R0 ∈ ½−0.3; 0.6�, a
new range for R0 ∈ ð0; 0.6� emerges if a Kerr black hole
with two event horizons and one cosmological horizon
is demanded. However, once again, upon demanding
veff ¼ 0, dVeff=dr ¼ 0, and d2Veff=d2r ≥ 0 along with
the appropriate temperature and luminosity profiles men-
tioned above, we find the stable circular orbits can exist
only for R0 ∈ ½−1.2 × 10−3; 6.67 × 10−4�. To maintain the
consistency in our numerical plots, we again choose
R0 ¼ 10−6, for it satisfies the average radius of the outer
edge of a Kerr black hole accretion disk at r ≈ 16rg by
setting the innermost and outermost stable circular orbits at
xc ¼ 1.4545 and xc ¼ 143.45, respectively. It should be
noted here that temperature profiles used for both classes
of accretion disks remain the same as long as we choose
R0 ≈ 10−6 [26].
The general expression of vorticity generated in modi-

fied gravity is

~ΩðrÞ ¼ −ð1þR0Þ
χkbcrζ

q
1ffiffiffiffiffiffiffiffiffiffiffiffiffigrrgϕϕ

p ∂rðΓ−1
m Þð∂rTÞΔtθ̂;

ð36Þ

with Γm and λfmðRÞ ¼ R0 denoting the modified Lorentz
factor and the nonminimal coupling of plasma to fðRÞ
gravity, respectively. Similarly to Eq. (28), we have an
analytical expression for modified Schwarzschild space-
time,

~ΩðxÞ ¼ −ð1þR0Þ
3ζkbπΓmαmχ

q
ffiffiffi
x

p
rg

∂xTθ̂; ð37Þ

where αm is associated with modified Schwarzschild metric
component gtt.
Figures 5 and 6 show the plot of this generalized vorticity

jΩj (in the disk) as a function of the distance x ¼ r=rg in the
gravitational field of a black hole of mass M ¼ 14.8M⊙
and R0 ¼ 10−6. The kinklike behavior of jΩj vs x ¼ r=rg,
as earlier, originates in the vanishing gradients of temper-
ature and the Lorentz factor. Different values of ζ, used in
Figs. 5 and 6, capture the influence of the modified gravity
on toroidal temperature fluctuations. Here, it should be
emphasized that vorticity magnitude profile in the modified
gravity can be drastically different for arbitrary functions
of fðRÞ, which signifies how the matter is coupled to its
background space-time.
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It must be noted that, as maximum temperature obtained
in fðRÞ models turns out to be lower than Cygnus X-1
observation values, the probability of the existence of an
accretion disk in the fðRÞ Schwarzschild black hole
becomes very slim [32]. Still we present the result here
for fðRÞ Schwarzschild black hole as an analytical
example.

E. Relative strength of relativistic
and baroclinic drive

The generalized magnetofluid dynamics, derived for a
barotropic equation of state, will have only the relativistic

vorticity drives. We would now like to compare the relative
magnitudes of the relativistic, and possibly baroclinic,
vorticity sources. At first glance, it is evident (from the
metric) that the relativistic source will dominate the
baroclinic source as we approach the event horizon. But
to make a comparison between the relativistic and bar-
oclinic drives, let us construct a simple baroclinic drive
of the form ∇T ×∇σ ≈ ðϵ=rÞg−1=2ϕϕ ∂ϕðkbTÞ, where ϵ is a
measure of the departure from strict barotropic behavior.
The preceding approximation introduces a smaller toroidal
temperature variation that quantifies the nonbarotropic
component.
In Figs. 7 and 8, we compare the relative strength of the

relativistic and baroclinic drive for black hole accretion
disks in Schwarzschild and Kerr geometries. We plot the
relative magnitude as a function of the radial distance,
x ¼ r=rg; both plots start from their respective isco. In both
cases, the relativistic drive becomes dominant as we
approach the innermost stable orbit. For smaller values
of ϵ, we see the magnitude of the relativistic drive keeps
increasing as the departure from barotropic fluid is min-
imal. Also, the dashed line shows the ratio to be unity, and
from both figures we see that the relativistic drive remains
dominant, for smaller values of ϵ; the dominance continues
to longer distances from the innermost stable circular orbit.
In both cases, the Lorentz factor plays an important role in
determining their relative strength. Thus, the sudden dip in
the relative strength profile in Kerr metric can be attributed
to the vanishing gradient of the corresponding Lorentz
factor inherent in the relativistic drive. Moreover, the
relative magnitude in the Kerr black hole is less than that
in Schwarzschild black hole because of the significant
energy loss of plasmas in Kerr space-time due to gravita-
tional radiation reaction as it approaches the nonstable

FIG. 6 (color online). Vorticity Ω (in the units of Gauss) for
the Kerr black hole with different ζ values in modified gravity
within 1.5rg and 30rg for M ¼ 14.8M⊙ with an accretion rate
_M ¼ 0.472 × 1019 g=s and a ¼ 0.99.

FIG. 7 (color online). Ratio between relativistic and baroclinic
drive in Schwarzschild black hole with ϵ ¼ 0.01 (black), 0.05
(green), and 0.1 (blue). The red line represents the ratio of unity.

FIG. 5 (color online). Vorticity Ω (in the units of Gauss) for the
Schwarzschild black hole with different ζ values in modified
gravity within 6.0rg and 30rg for M ¼ 14.8M⊙.
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orbits. The jump in relative intensity from ϵ ¼ 0.01 to
ϵ ¼ 0.05 remains significant in both geometries.

IV. CONCLUSION

We have explored in this paper the possibility of
generating what may be called “generalized vorticity” in
accretion disks surrounding compact gravitating objects, in
particular, the Kerr and Schwarzschild black holes. The
accretion disc plasma is coupled nonminimally [via fðRÞ
gravity] to the surrounding specified space-time. Although
vorticity can be generated by the well-known baroclinic
mechanism (nonzero ∇T ×∇σ), we have concentrated, in
this paper, on exploring what are classed as relativistic
drives stemming from space-time distortions caused by
special as well as general relativistic effects. We find that
the Kerr geometry, due to the intrinsic rotation, is a more
efficient vorticity generator as compared to the
Schwarzschild counterpart. We also observe a slight
increase in vorticity generation even if an extremely weak
fðRÞ (nonminimal) coupling, fðRÞ ¼ R0 ¼ constant, is
turned on, which implies that a noticeable change in
vorticity generation will be observed in strong fðRÞ
coupling. Physically, the increase in efficiency is directly
related to the amount of deviation from the circular orbits
(of the plasma particles) caused by the distorted geometry.
We also compared the efficiency of the relativistic drive

with a model baroclinic drive. The strength of the bar-
oclinic drive is given in terms of a parameter ϵ, that
measures the departure from strict barotropy. For most
accretion disk plasmas in quasiequilibrium, ϵ is expected to
be small. We find that, for reasonable values of ϵ, the
relativistic drive is dominant for the disk regions nearer to
the compact object; as the distance increases, and for

relatively larger ϵ, the barcolinic term becomes comparable
to the relativistic drive. This vorticity growth occurs in the
orbital time scale, similar to MRI instability, which later
can amplify through several dynamo mechanisms [33–35].
Unlike GR-Magnetohydrodynamics, our formalism can

be extended to multifluid species with each species obeying
its own vortical dynamics [36,37]. In addition, the induc-
tion equation in this formalism has source terms for
vorticity generation; these sources can catapult the accre-
tion disk to a state of finite vorticity from one with no
vorticity (electromagnetic and hydrodynamic). This for-
malism can also be studied in the context of vortex
generation in the protoplanetary disks near a supermassive
star where gravity plays a dominant role. Hyrdodynamic
simulations indicate these protoplanetary disks to be
inherently baroclinic due to a negative radial entropy
gradient [7,13,35]. The turbulence caused by the baroclinic
instabilities is found to be suitable for angular momentum
transport and vortex formation in the disk which are
suggested to lead to planet formation. Our model, if applied
to the evolution of the protoplanetary disk, will provide
additional sources for angular momentum transport and
vortex formation even in a barotropic disk.
Regardless of the details, the curvature drive (in minimal

as well as in nonminimal gravity) will always generate
“generalized” vorticity which, either by itself or after
amplification through a generalized dynamo mechanism,
can provide a mechanism for angular momentum transport.
These amplified vortical fields can also collimate the jets
emanating from the disk where field lines corotate with the
disk, by the flux freezing theorem. The plasma leaving the
disk can drag the field lines due to its large conduction
coefficient which wraps the field lines around the rotation
axis. The field lines then exert a radial force which can
compress the jet of plasma leading to jet collimation [2].
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APPENDIX: 3þ 1 DYNAMICS OF
GRAVITOMAGNETOFLUID

The approach chosen for the 3þ 1 splitting selects a
family of foliated fiducial three-dimensional hypersurfaces
(slices of simultaneity) Σt labelled by a parameter t ¼
constant in terms of a time function on the manifold.
Furthermore, we let tμ be a timeline vector of which the
integral curves intersect each leaf Σt of the foliation
precisely once and which is normalized such that
tμ∇μt ¼ 1. This tμ is the “evolution vector field” along
the orbits of which different points on all Σt ≡ Σ can be
identified. This allows us to write all space-time fields in

FIG. 8 (color online). Ratio between the relativistic and bar-
oclinic drive in the Kerr black hole with ϵ ¼ 0.01 (black), 0.05
(green), and 0.1 (blue). The red line represents the ratio of unity.
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terms of t-dependent components defined on the spatial
manifold Σt. Lie derivatives of space-time field along tμ are
identified with “time derivatives” of the spatial fields since
Lie derivatives reduce to a partial time derivative for an
adapted coordinate system tμ ¼ ð1; 0; 0; 0Þ.
Moreover, since we are using the Lorentzian signature,

the vector field tμ is required to be future directed. Let us
decompose tμ into normal and tangential parts with respect
to Σt by defining the lapse function α and the shift vector βμ

as tμ ¼ αnμ þ βμ with βμnμ ¼ 0, where nμ is the future
directed unit normal vector field to the hypersurfaces Σt.
More precisely, the natural timelike covector nμ ¼
ð−α; 0; 0; 0Þ ¼ −α∇μt is defined to obtain nμ ¼
ð1=α;−βμ=αÞ which satisfies the normalization condition
nμnμ ¼ −1. Then, the space-time metric gμν induces a
spatial metric γμν by the formula γμν ¼ gμν þ nμnν. Finally,
the 3þ 1 decomposition is usually carried out with the
projection operator γμν ¼ δμν þ nμnν, which satisfies the
condition nμγμν ¼ 0. Also, the acceleration is defined
as aμ ¼ nν∇νnμ.
Now, with the above foliation of space-time, the space-

time metric takes the canonical form [20]

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ðA1Þ

and it immediately follows that, with respect to an Eulerian
observer, the Lorentz factor turns out to be

Γ ¼ ½α2 − γijðβiβj þ 2βivj þ vivjÞ�−1=2; ðA2Þ

satisfying dτ ¼ dt=Γ, where vi is the ith component of
fluid velocity ~v ¼ d~x=dt. Then the decomposition for the
4-velocity is [14]

Uμ ¼ αΓnμ þ Γγμνvν; ðA3Þ
with nμUμ ¼ −αΓ.
Now, since our unified antisymmetric field tensorMμν is

constructed from the antisymmetric tensors Fμν and Dμν,

we apply the ADM formalism of electrodynamics pre-
sented in Refs. [20–23] to define the generalized electric
and magnetic fields, respectively, as

ξμ ¼ nνMμν; Xμ ¼ 1

2
nρϵρμστMστ; ðA4Þ

and thus express the unified field tensor

Mμν ¼ nμξν − nνξμ − ϵμνρσXρnσ: ðA5Þ

We remind the reader that the generalized magnetic field
and the generalized vorticity are essentially synonymous.
Using the definition of the unified field tensor Mμν, the
expressions of 3D generalized electric and magnetic fields
turn out to be

~ξ ¼ ~E −
m
q
ð1þ λfmðRÞ − λRFmðRÞÞ ~∇ðαGΓÞ

−
m
q
λFmðRÞ ~∇ðαGRΓÞ

−
m
q
ð1þ λfmðRÞÞ

h
2σ · ðGΓ~vÞ þ 2

3
ΘGΓ~v

i

−
m
qα

ð1þ λfmðRÞ − λRFmðRÞÞðLtðGΓ~vÞ − L~βðGΓ~vÞÞ

−
m
qα

λFmðRÞðLtðGRΓ~vÞ − L~βðGRΓ~vÞÞ; ðA6Þ

~X ¼ ~Bþm
q
ð1þ λfmðRÞ − λRFmðRÞÞ ~∇ × ðGΓ~vÞ

þ λFmðRÞ
m
q
~∇ × ðRGΓ~vÞ; ðA7Þ

where σ ¼ σνμ and Θ are, respectively, the shear and
expansion of the congruence, defined as σαβ ¼
γμαγνβ∇ðμnνÞ − 1

3
θγμν and Θ ¼ ∇μnμ. We have also used

the relation ∇μnν ¼ −aνnμ þ σαβ þ 1
3
θγμν to derive (A6).

[1] S. L. Shapiro and S. A. Teukolsky, Blackholes, White
Dwarfs and Neutron Stars (University of Chicago, Chicago,
1984).

[2] M. Vietri, Foundations of High Energy Astrophysics (Uni-
versity of Chicago, Chicago, 2008).

[3] X. Cao and H. C. Spruit, The large-scale magnetic fields of
thin accretion disks, Astrophys. J. 765, 149 (2013).

[4] M. A. Abramowicz and P. C. Fragile, Foundations of black
hole accretion disk theory, Living Rev. Relativiy 16, 1
(2013).

[5] M. C. Begelman, R. D. Blandford, and M. J. Rees, Theory
of extragalactic radio sources, Rev. Mod. Phys. 56, 255
(1984).

[6] J. H. Krolik, Active Galactic Nuclei: From the Central
Black Hole to the Galactic Environment (Princeton Uni-
versity, Princeton, NJ, 1999).

[7] H. H. Klahr and P. Bodenheimer, Turbulence in accretion
disks. Vorticity generation and angular momentum transport
via the global baroclinic instability, Astrophys. J. 582, 869
(2003).

CHINMOY BHATTACHARJEE, RUPAM DAS, AND S. M. MAHAJAN PHYSICAL REVIEW D 91, 123005 (2015)

123005-10

http://dx.doi.org/10.1088/0004-637X/765/2/149
http://dx.doi.org/10.12942/lrr-2013-1
http://dx.doi.org/10.12942/lrr-2013-1
http://dx.doi.org/10.1103/RevModPhys.56.255
http://dx.doi.org/10.1103/RevModPhys.56.255
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1086/344743


[8] M. R. Petersen, K. Julien, and G. R. Stewart, Baroclinic
vorticity production in protoplanetary disks. I. Vortex
formation, Astrophys. J. 658, 1236 (2007).

[9] M. R. Petersen, G. R. Stewart, and K. Julien, Baroclinic
vorticity production in protoplanetary disks. II: Vortex growth
and longevity, Astrophys. J., 658, 1252 (2007).

[10] R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu, The
protogalactic origin for cosmic magnetic fields, Astrophys.
J. 480, 481 (1997).

[11] J. F. Hawley and S. A. Balbus, The dynamical structure of
nonradiative black hole accretion flows, Astrophys. J. 573,
738 (2002).

[12] S. A. Balbus and J. F. Hawley, Instability, turbulence, and
enhanced transport in accretion disks, Rev. Mod. Phys. 70, 1
(1998).

[13] N. Raettig, W. Lyra, and H. Klahr, A parameter study for
baroclinic vortex amplification,Astrophys. J.765, 115 (2013).

[14] F. A. Asenjo, S. M. Mahajan, and A. Qadir, Generating
vorticity and magnetic fields in plasmas in general relativity:
Spacetime curvature drive, Phys. Plasmas 20, 022901
(2013).

[15] S. M. Mahajan, Temperature-Transformed ‘Minimal
Coupling’: Magnetofluid Unification, Phys. Rev. Lett. 90,
035001 (2003).

[16] J. D. Bekenstein, Helicity conservation laws for fluids and
plasmas, Astrophys. J. 319, 207 (1987).

[17] S. M. Mahajan and Z. Yoshida, Twisting Space-Time:
Relativistic Origin of Seed Magnetic Field and Vorticity,
Phys. Rev. Lett. 105, 095005 (2010).

[18] S. M. Mahajan and Z. Yoshida, Relativistic generation of
vortex and magnetic field a), Phys. Plasmas 18, 055701
(2011).

[19] C. Bhattacharjee, R. Das, and S. M. Mahajan, Magnetofluid
dynamics in curved spacetime, Phys. Rev. D 91, 064055
(2015).

[20] A. J. Wheeler, C. W. Misner, and K. S. Thorne, Gravitation
(Freeman, San Francisco, 1973).

[21] K. S. Thorne and D. MacDonald, Electrodynamics in curved
spacetime: 3þ 1 formulation, Mon. Not. R. Astron. Soc.
198, 339 (1982).

[22] R. M. Wald, General Relativity (University of Chicago,
Chicago, 1984).

[23] K. S. Thorne, R. H. Price, and D. A. MacDonald, Black
Holes: The Membrane Paradigm (Yale University, New
Haven, CT, 1986).

[24] P. Chang and L. Hui, Stellar structure and tests of modified
gravity, Astrophys. J. 732, 25 (2011).

[25] A.-C. Davis, E. A. Lim, J. Sakstein, and D. J. Shaw,
Modified gravity makes galaxies brighter, Phys Rev. D
85, 123006 (2012).

[26] D. Pérez, G. E. Romero, and S. E. Perez Bergliaffa, Accre-
tion disks around black holes in modified strong gravity,
Astron. Astrophys., 551, A4 (2013).

[27] T. Harko, Z. Kovács, and F. S. N. Lobo, Thin accretion
disks in stationary axisymmetric wormhole spacetimes,
Phys. Rev. D 79, 064001 (2009).

[28] I. D. Novikov and K. S. Thorne, in Astrophysics of black
holes, edited by C. Dewitt, B. S. Dewitt, Black Holes (Les
Astres Occlus, 1973), pp. 343–450.

[29] D. N. Page and K. S. Thorne, Disk-accretion onto a black
hole. time-averaged structure of accretion disk, Astrophys.
J. 191, 499 (1974).

[30] A. Skadowski, M. Abramowicz, M. Bursa, W. Kluźniak,
J.-P. Lasota, and A. Różańska, Relativistic slim disks with
vertical structure, Astron. Astrophys. 527, A17 (2011).

[31] J. A. Orosz, J. E. McClintock, J. P. Aufdenberg, R. A.
Remillard, M. J. Reid, R. Narayan, and L. Gou, The mass
of the black hole in cygnus x-1, Astrophys. J. 742, 84
(2011).

[32] L. Gou, J. E. McClintock, M. J. Reid, J. A. Orosz, J. F.
Steiner, R. Narayan, J. Xiang, R. A. Remillard, K. A.
Arnaud, and S. W. Davis, The extreme spin of the black
hole in cygnus x-1, Astrophys. J. 742, 85 (2011).

[33] M. Marklund and C. A. Clarkson, The general relativistic
magnetohydrodynamic dynamo equation, Mon. Not. R.
Astron. Soc. 358, 892 (2005).

[34] M. Reinhardt and A. Rosenblum, A note on general
relativistic dynamo mechanisms, Phys. Lett. A 53, 269
(1975).

[35] H. Klahr, The global baroclinic instability in accretion disks.
2: Local linear analysis, Astrophys. J. 606, 1070 (2004).

[36] J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford,
General relativistic magnetohydrodynamic simulations of
magnetically choked accretion flows around black holes,
Mon. Not. R. Astron. Soc. 423, 3083 (2012).

[37] R. F. Penna, J. C. McKinney, R. Narayan, A. Tchekhovskoy,
R. Shafee, and J. E. McClintock, Simulations of magnetized
discs around black holes: Effects of black hole spin, disc
thickness and magnetic field geometry, Mon. Not. R.
Astron. Soc. 408, 752 (2010).

NOVEL MECHANISM FOR VORTICITY GENERATION IN … PHYSICAL REVIEW D 91, 123005 (2015)

123005-11

http://dx.doi.org/10.1086/511513
http://dx.doi.org/10.1086/511523
http://dx.doi.org/10.1086/303987
http://dx.doi.org/10.1086/303987
http://dx.doi.org/10.1086/340765
http://dx.doi.org/10.1086/340765
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1088/0004-637X/765/2/115
http://dx.doi.org/10.1063/1.4792257
http://dx.doi.org/10.1063/1.4792257
http://dx.doi.org/10.1103/PhysRevLett.90.035001
http://dx.doi.org/10.1103/PhysRevLett.90.035001
http://dx.doi.org/10.1086/165447
http://dx.doi.org/10.1103/PhysRevLett.105.095005
http://dx.doi.org/10.1063/1.3566081
http://dx.doi.org/10.1063/1.3566081
http://dx.doi.org/10.1103/PhysRevD.91.064055
http://dx.doi.org/10.1103/PhysRevD.91.064055
http://dx.doi.org/10.1093/mnras/198.2.339
http://dx.doi.org/10.1093/mnras/198.2.339
http://dx.doi.org/10.1088/0004-637X/732/1/25
http://dx.doi.org/10.1103/PhysRevD.85.123006
http://dx.doi.org/10.1103/PhysRevD.85.123006
http://dx.doi.org/10.1051/0004-6361/201220378
http://dx.doi.org/10.1103/PhysRevD.79.064001
http://dx.doi.org/10.1086/152990
http://dx.doi.org/10.1086/152990
http://dx.doi.org/10.1051/0004-6361/201015256
http://dx.doi.org/10.1088/0004-637X/742/2/84
http://dx.doi.org/10.1088/0004-637X/742/2/84
http://dx.doi.org/10.1088/0004-637X/742/2/85
http://dx.doi.org/10.1111/j.1365-2966.2005.08814.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08814.x
http://dx.doi.org/10.1016/0375-9601(75)90061-4
http://dx.doi.org/10.1016/0375-9601(75)90061-4
http://dx.doi.org/10.1086/383119
http://dx.doi.org/10.1111/j.1365-2966.2012.21074.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17170.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17170.x

